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We discuss the interplay of wave packet decoherence and decoherence induced by quantum gravity via
interactions with spacetime foam for high-energy astrophysical neutrinos. In this context, we point out a
compelling consequence of the expectation that quantum gravity should break global symmetries, namely
that quantum-gravity induced decoherence may not only be the most sensitive probe for quantum
properties of spacetime but also can provide both a powerful tool for the search for new particles, including
totally decoupled backgrounds interacting only gravitationally, and at the same time a window into the
intricacies of black hole information processing.
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I. INTRODUCTION

The search for quantum effects of gravity and the
exploration of the quantum-to-classical transition belong
to the most exciting frontier areas in fundamental physics.
Yet, the interplay between both kinds of effects in quantum-
gravitational decoherence is addressed in the literature only
rarely. In this paper, we point out that quantum-gravitational
decoherence may provide groundbreaking opportunities for
a third important frontier area of fundamental physics,
namely the search for new, electrically neutral particles,
including fermionic dark matter, new “sterile” neutrino
degrees of freedom beyond the Standard Model of particle
physics, and totally decoupled backgrounds interacting only
gravitationally.
Decoherence describes the loss of coherence of a quantum

system due to interactions with an environment and is
generally accepted as one if not the defining aspect of the
quantum-to-classical transition [1]. The concept that quantum
gravity could induce decoherence of otherwise isolated
quantum systems is based on John Wheeler’s idea that
quantum spacetime should exhibit a foamy structure com-
posed of virtual black holes on small scales of orderM−1

P , with
MP being the Planck mass (Ref. [2]; for a recent review, see
Ref. [3]). The dynamical properties of spacetime foam may
act then as a decoherence inducing environment. Such
decoherence triggered by interactions with spacetime foam
has an interesting property, namely that it is expected to violate

global symmetries. The idea goes back to classical papers on
black hole evaporation by Hawking (e.g., Ref. [4]) and Page
[5]: according to General Relativity, a black hole is fully
characterized by mass, angular momentum, and charge, and
all other information such as global quantum numbers (flavor,
baryon number, and lepton number) is supposedly lost (also
known as the no-hair theorem). Thus, the interaction with a
black hole should violate the unitarity of quantummechanics.
If gravity is quantized, this may be observable in interactions
with the virtual black hole background present in spacetime
foam; see, e.g., Ref. [6] or [7] for a review. These heuristic
conjectures have recently been confirmed with holographic
arguments in the context of theAdS=CFT correspondence [8].
Ellis et al. described such effects with a sink term in the
Liouville–von Neumann equation giving rise to gravita-
tional induced decoherence in vacuo (Ref. [9]; see also
Refs. [10,11]). An application to neutrino oscillations has
been worked out, e.g., in Refs. [12–16].
As a consequence of the breaking of global symmetries by

quantum gravity, this type of decoherence is typically
considered to be independent on flavor mixing. For example,
a beam of astrophysical neutrinos will be distributed demo-
cratically over all flavors, implying that flavor ratios probed
in neutrino telescopes such as, e.g., IceCube may be sensitive
to such effects. As was pointed out more than two decades
ago by one of us and collaborators [17] and later developed,
e.g., in Refs. [18–21], the study of astrophysical neutrinos
provides an extremely sensitive probe on such a kind of
effects.
There are at least three good reasons to revisit this

interesting phenomenon now:
(1) The mounting cosmological evidence for dark mat-

ter in the Universe combined with the fact that no
new particles have been found at the LHC so far.
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(2) The recent developments in the research of quantum
gravity that brought the question how black holes
process information to the center stage of attention
[22–24] and inspired a wealth of interesting works
about the relations between spacetime and quantum
information that lack, however, concrete possibilities
to be probed experimentally.

(3) The discovery of PeV scale extragalactic neutrinos
in the IceCube neutrino telescope [25–27].

In this paper, we thus study the transition from standard
wave packet decoherence to the hypothetical quantum-
gravitational decoherence. In this context, we focus on the
energy dependence of the mechanism and point out a
curious phenomenon that we believe has been overlooked
so far, namely, that the state space must be extended if there
exist neutral fermions beyond the three SM neutrinos. By
deriving the consequences of this extension, we show that a
global symmetry breaking decoherence process provides a
sensitive portal to fermionic hidden sectors of the Universe
that feature no unbroken gauge quantum numbers and thus
a powerful tool to search for neutral fermions, including
undiscovered neutrino flavors, dark matter particles, and
totally decoupled sectors that interact only gravitationally
with the Standard Model particles.

II. DECOHERENCE IN THE 2ν FRAMEWORK

We start with a Lindblad equation describing the density
matrix ϱðtÞ of an open quantum system being exposed to
both wave packet separation and quantum-gravitational
decoherence,

d
dt
ϱðtÞ ¼ −i½H; ϱðtÞ� − 1

Lcoh
ð1 − D̂ÞϱðtÞ − GϱðtÞ: ð1Þ

Here, the first term describes the standard von Neumann
time evolution of an undisturbed quantum system (giving
rise to the typical flavor oscillation for L ≪ Lcoh) with the
Hamiltonian given in the mass basis as

H ¼
�
0 0

0 Δm2

2E

�
; ð2Þ

and the following terms describe the loss of unitarity due to
wave packet [28] and quantum-gravitational decoherence,
respectively. The term corresponding to the effect of wave
packet separation is chosen such that it gives rise to a simple
exponential damping of the coherence between neutrino
mass eigenstates, assuming Lorentzian wave packets [29].1

To illustrate the basic features of the phenomenon under
investigation, we consider here a two-neutrino scenario
where Δm2 is the mass squared difference of the two states

involved. In the following, we use the abbreviation Δ ≔
Δm2=2E for a less cluttered notation. Furthermore, D̂ is an
operator projecting out the diagonal elements of a 2 × 2
matrix, and

Lcoh ¼ σx
2E2

Δm2
ð3Þ

is the coherence length [30] of the neutrino system of energy
E and initial wave packet size σx.
The action of the operator G is defined as [12]

Gϱ ¼ 2hijσiϱj; ð4Þ

h ¼

0
B@ 0 0 0

0 α β

0 β γ

1
CA; ð5Þ

where α; β; γ ∝ En=Mn−1
P are the quantum-gravity

decoherence parameters and n determines their energy
dependence. From now on, we use a single parameter
γ ¼ α, i.e., the universal interaction rate of the system with
the spacetime foam, to parametrize the exponential damp-
ing of the density matrix components which is mainly
controlled by the diagonal entries of hij. Furthermore, we
make the common choice of n ¼ 2 motivated by several
Planck scale models [31–33], enabling us to employ the
upper bounds derived in Ref. [34] and used in Ref. [21].
By writing Eq. (4), we already expanded the result in the
basis of the Pauli matrices. If we do this for all terms in
(1), we arrive at a differential equation for the components
ϱj of the density matrix

d
dt
ϱ⃗ ¼ Lϱ⃗; ð6Þ

with

L ¼

0
BBBBB@

0 0 0 0

0 − 1
Lcoh

Δ 0

0 −Δ −2γ − 1
Lcoh

−2β

0 0 −2β −2γ

1
CCCCCA: ð7Þ

Equation (6) can be easily solved using the assumption
jβj ≪ jγj, implying that L ¼ SJS−1 is diagonalized by the
matrix

S ¼

0
BBBBB@

1 0 0 0

0 0
−γþi

ffiffiffiffiffiffiffiffiffiffi
Δ2−γ2

p
Δ

−γ−i
ffiffiffiffiffiffiffiffiffiffi
Δ2−γ2

p
Δ

0 0 1 1

0 1 0 0

1
CCCCCA ð8Þ

1Since the coherence damping is always of exponential type
[29], the concrete wave packet shape does not affect the
conclusions of this work.
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and its inverse, leading to

J ¼ diag

�
0;−2γ;−γ −

1

Lcoh
− i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − γ2

q
;

− γ −
1

Lcoh
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − γ2

q �
: ð9Þ

Using this decomposition, we can give an explicit solution
to Eq. (6), i.e.,

ϱ⃗ðtÞ ¼ S exp ðJtÞS−1ϱ⃗ð0Þ: ð10Þ

Assuming the initial neutrino to be an electron neutrino,

ϱ⃗ð0Þ ¼
�
1

2
;
1

2
sinð2θÞ; 0; 1

2
cosð2θÞ

�
T
; ð11Þ

we obtain the evolution of the density matrix as

ϱ⃗ðtÞ¼

0
BBBBB@

1
2

1
2
e−ðγþ

1
Lcoh

Þt sinð2θÞfcosðωtÞþ γ
ωsinðωtÞg

−1
2
e−ðγþ

1
Lcoh

Þt sinð2θÞΔωsinðωtÞ
1
2
cosð2θÞe−2γt

1
CCCCCA; ð12Þ

where ω ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − γ2

p
and θ is the neutrino mixing angle.

From this, we can calculate the probability for detecting
an electron neutrino [PeeðLÞ] or a differently flavored
neutrino (PeðμτÞðLÞ) at a certain baseline L ≃ t,

PeeðLÞ ¼
1

2
þ 1

2
cos2ð2θÞe−2γL þ 1

2
sin2ð2θÞe−ðγþ 1

Lcoh
ÞL

×

�
cos ðωLÞ þ γ

ω
sin ðωLÞ

�
; ð13Þ

Peðμ;τÞðLÞ ¼ 1 − PeeðLÞ: ð14Þ

The oscillation formulas for quantum-gravitational
decoherence in the three-neutrino case have been presented
in Refs. [15,16]. In the limiting case of Lcoh ≪ L ≪ 1

jγj, the
exponential factor e−2γL is still close to unity, and the usual
results of wave packet decoherence are recovered:

PeeðLÞ ¼ 1 −
1

2
sin2ð2θÞ; ð15Þ

PeðμτÞðLÞ ¼
1

2
sin2ð2θÞ: ð16Þ

If L approaches 1
jγj, i.e., for large base length and high

energies, we obtain

PeeðLÞ ¼
1

2
þ 1

2
cos2ð2θÞe−2γL; ð17Þ

PeðμτÞðLÞ ¼
1

2
−
1

2
cos2ð2θÞe−2γL: ð18Þ

For illustration, we consider electron neutrinos origi-
nating from neutron decay oscillating into a maximally
mixed superposition of νμ and ντ, Δm2 ¼ Δm2

sol ¼ 7.53 ×
10−5 eV2 and sin2ð2θÞ ¼ sin2ð2θsolÞ ≈ 0.85 [35]. For the
quantum gravity parameter, we adopt the common
[21,34] parametrization γ ¼ ξE2=MP with ξ ¼ 10−28,
many orders of magnitudes below the upper bounds
obtained in Refs. [21,34] and the more natural expect-
ation of ξ≲Oð1Þ if the underlying energy scale is the
Planck scale. This parameter choice demonstrates the
ground-breaking sensitivity of astrophysical neutrinos,
even for extremely large coherence lengths LQG

coh ∝ 1=γ.
Finally, we adopt σx ¼ 10−11 cm [30] for the initial
neutrino wave packet size, corresponding to neutrinos
produced in very short lived processes.
Figure 1 highlights the sensitivity of astrophysical neu-

trinos to quantum-gravitational decoherence by plotting the
baseline dependence of the oscillation probabilities from
Eqs. (13) and (14) for neutrino energies ofE ¼ 100 TeV. As
can be seen, the no-oscillation regime at small baselines is
followed by standard neutrino oscillations at medium base-
lines that are supplanted first by standard wave packet
decoherence and finally by hypothetical quantum gravity
decoherence, implying a limiting oscillation probability of
1=n (¼ 0.5 in the present example) for all flavors involved.
More interesting than the baseline dependence is the

energy dependence, though, displayed in Fig. 2 at a fixed
baseline of L ¼ 10 kpc (the approximate distance to a
potential neutrino source of electron antineutrinos in the
direction of the Cygnus spiral arm [20]). The figure
exhibits the fundamentally different energy behavior of
the two types of decoherence considered: while both
types of decoherence become effective at large baselines,
wave packet decoherence dominates low-energy neutri-
nos (E≲ 100 TeV), higher-energy neutrinos still oscil-
late, and neutrinos of the highest energies E≳ 1 PeV are
subject to quantum-gravitational decoherence that entails
a rapid convergence toward a democratic flavor mix. This
prediction has to be compared with palatable flavor ratios
obtained from wave packet separation in the standard
scenario that allows for flavor compositions at Earth
that range from (0.6:1.3:1.1) to (1.6:0.6:0.8) [36–38].
A serious obstacle for the discovery of quantum-
gravitational decoherence is the fact that the canonical
flavor ratio obtained from wave packet separation from a
pion source is exactly a democratic 1∶1∶1 mix. One
possibility to discriminate quantum-gravity induced
decoherence from wave packet decoherence is thus to
identify point sources with flavor ratios different from
1∶1∶1, originating, e.g., from neutron decay. One can-
didate point source has been identified as Cygnus OB2 in
the direction of the Cygnus spiral arm [20,39]. While

SEARCHING NEW PARTICLES AT NEUTRINO TELESCOPES … PHYS. REV. D 105, 055007 (2022)

055007-3



small statistics and limited angular resolution make the
identification of neutrino point sources challenging, the
KM3NET [40] and GVD [41] detectors under construc-
tion in the northern hemisphere will complement the
IceCube sky coverage, and the recent IceCube-Gen2
proposal is designed to achieve an improved sensitivity
to discriminate neutrino sources [42].

III. DECOHERENCE IN THE PRESENCE
OF NEW FERMIONS

The problem of identifying quantum-gravitational
decoherence can be ameliorated by a particularly inter-
esting feature of the phenomenon under study that arises
if there exist unknown neutral fermions in addition to the

three known neutrino flavors. In this case, quantum-
gravitational effects are expected to cause a uniform
distribution among all known and unknown fermions
with equal (unbroken) gauge quantum numbers after the
beam has traveled a sufficiently large distance from the
source to the detector. Thus, considering a scenario with
two Standard Model neutrinos and N − 2 additional
neutral fermion fields χk not mixing with the neutrino
sector, the oscillation formulas shown in Eqs. (13) and
(14) are altered in order to account for the loss of
probability from the neutrino system to the newly
introduced neutral flavors χk. Expanding the Lindblad
equation and density matrix using the generators of
SUðNÞ together with the identity matrix, we arrive at
the modified oscillation probabilities

FIG. 2. Energy dependence of the neutrino oscillation probabilities Pee (blue) and PeðμτÞ (orange) at a fixed baseline of L ¼ 10 kpc.
The asymptotic values of 1=2 sin2ð2θÞ and 1=Nflavor are shown as horizontal, dashed, green, and black lines, respectively.

FIG. 1. Probabilities for an initial electron neutrino of E ¼ 100 TeV to oscillate into an electron neutrino and a differently flavored
neutrino, which is either the tau or the muon neutrino, respectively. The blue curve depicts the probability PeeðLÞ, while the orange curve
represents the probability PeðμτÞðLÞ. Furthermore, we show dashed, horizontal lines for the asymptotic values of 1=2 sin2ð2θÞ (green)
and 1=Nflavor (black) and a dashed vertical line for the position of the coherence length Lcoh (red).
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PeeðLÞ ¼
1

N
þN − 2

2N
e−2γL þ 1

2
cos2ð2θÞe−2γL

þ 1

2
sin2ð2θÞe−ðγþ 1

Lcoh
ÞL
�
cos ðωLÞ þ γ

ω
sin ðωLÞ

�
;

ð19Þ

PeðμτÞðLÞ¼
1

N
þN−2

2N
e−2γL−

1

2
cos2ð2θÞe−2γL

−
1

2
sin2ð2θÞe−ðγþ 1

Lcoh
ÞL
�
cosðωLÞþ γ

ω
sinðωLÞ

�
:

ð20Þ

For a proof of these formulas, see Appendix. Again, for
the case where expð−2γLÞ ≈ 1, the 2ν oscillation formula
with wave packet decoherence is recovered. This is
expected because the neutrino and χ sectors are com-
pletely decoupled from each other as long as quantum-
gravitational decoherence effects are negligible. For much
larger base lengths or energies, the exponential factor
decays to 0 and leaves the asymptotic 1=N behavior
entailing a uniform flavor mix. This behavior is high-
lighted in Fig. 3, where we plot the energy dependence at a
fixed baseline L ¼ 10 kpc for a hypothetical scenario of
N − 2 ¼ 10 additional neutral fermions. As can be seen,
Eqs. (19) and (20) exhibit the same oscillation behavior as
Eqs. (13) and (14) in the regime where quantum-gravity
effects are negligible but exhibit a very different behavior,
i.e., drop to 1=12 instead of 1=2, at very high energies
where these effects become significant.
A generalization to the full 3ν formalism is straightfor-

ward but lengthy and will be presented elsewhere. We thus
confine ourselves here to point out that the asymptotic
behavior in the 3ν case can be easily inferred by comparing
the 2ν formalism discussed here with the 3ν formalism
presented, e.g., in Refs. [15,16]; cf. Eqs. (21) and (2.19) in

these references, respectively. In both cases, the high-
energy asymptotic approaches a democratic mix of all N
electrically neutral quantum fields so that the proposed
signature of a drop in the total flux from 1 to 2=N deduced
here is simply replaced by the corresponding asymptotic of
3=N above the critical threshold. The resulting asymptotic
oscillation probability will amount to 1=3 instead of 1=2 in
Figs. 1 and 2 and 1=13 instead of 1=12 in Fig. 3.

IV. CONCLUSION

Thus, if there exist undiscovered neutral fermions not
included in the Standard Model, as a consequence of
quantum-gravitational-decoherence equilibrating an original
flux of astrophysical neutrinos over all flavors, we expect a
dip in the total neutrino flux setting in at the threshold energy
of the quantum-gravitational effect. The position of the dip
will coincide with the transition to a democratic flavor mix in
cases where the flavor mix resulting from wave packet
decoherence at low energies is nondemocratic. This effect
depends on the number of neutral degrees of freedom and
can range from 25% for a single, additional sterile neutrino
or weakly interacting massive particle up to a dramatic cutoff
in models with a large number of new particles, e.g., Kaluza-
Klein excitations in models with extra space dimensions [43]
or scenarios with a large number of Standard Model copies
[44]. In Fig. 4, we show the total flux Φtotal of neutral
fermions stemming from an astrophysical neutrino source
with ΦtotalðEÞ ∝ E−2.5 and the corresponding total neutrino
fluxes after a travel distance of L ¼ 10 kpc at Earth for
different numbers of additional neutral fermions.
In this context, it is interesting to observe that IceCube so

far has not observed any astrophysical neutrinos above
10 PeV. This has inspired speculations about a possible
break in the astrophysical neutrino spectrum [45–48]
although the detection of an event attributed to the
Glashow resonance at 6.3 PeV has been reported recently

FIG. 3. Energy dependence of the modified neutrino oscillation probabilities Pee (blue) and PeðμτÞ (orange) at a fixed baseline of
L ¼ 10 kpc with ten additional neutral fermions in the model. The asymptotic values of 1=2 sin2ð2θÞ and 1=Nflavor are shown as
horizontal, dashed, green, and black lines, respectively.
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[49]. While it has been pointed out that antineutrinos may
feature different flavor ratios as compared to neutrinos and
that this fact may make it difficult to pinpoint the original
flavor ratios at the source [50], in our case, this effect is
beneficial rather than problematic as quantum-gravity
induced decoherence will equilibrate the original astrophysi-
cal neutrino flux over all neutral degrees of freedom including
antiparticles so that a transition from nondemocratic flavor
ratios to democratic ones at a certain energy threshold will
provide an indication for quantum gravity irrespective of the
original spectra.
Note that the dip predicted here is expected to be

smoothed by suppression factors of powers ∼ðm=EÞ2k for
particles of mass m having a weak isospin or other
hypothetical broken gauge quantum numbers different from
neutrinos. Here, E is the neutrino beam energy, and k is the
number of necessary insertions of the respective Higgs
vacuum expectation values. It is of course also smeared
out by traveling neutrons and backgrounds from the diffuse
flux from other sources. Finally, features in the astrophysical
neutrino spectra may also have their origin in the production
mechanisms.
The scenario discussed in this paper is speculative in

several respects. On the one hand, it is model dependent how
quantum spacetime interacts with particles propagating in
vacuo, whether this interaction indeed breaks global quan-
tum numbers and whether these effects are large enough to
be probed experimentally. On the other hand, it is not clear
when neutrino telescopes will be capable of identifying
Galactic or even extragalactic point sources that produce
neutrinos via neutron decays and accumulate sufficient
statistics to test the scenario discussed here. We nevertheless
feel that a thorough study of the effect discussed is
appropriate, for the following reasons. First, the breaking
of global quantum numbers and the consequential equili-
bration of original neutrino fluxes over all degrees of

freedom sharing the same gauge quantum numbers seems
to be a rather generic prediction of quantum gravity and is
the only crucial assumption made here. Thus, if this expect-
ation would not be realized in quantum-gravity induced
decoherence that would be an interesting result by itself and
may shed some light on the highly relevant question about
how black holes process information. Next, first point
sources of high-energy astrophysical neutrino fluxes have
been identified already in the IceCube experiment [26,27].
As argued in Ref. [39], multimessenger astronomy can
identify the neutrino flux accompanying cosmic ray accel-
eration in the Cygnus spiral armwith evidence at the 5σ level
in 15 years of observation. Finally, the potential relevance of
the effect discussed here can hardly be overestimated, as it
provides a unique window into hidden sectors and thus one
of the most pressing problems in present-day particle physics
and cosmology.
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APPENDIX: PROOF OF THE N LEVEL
OSCILLATION FORMULAS

Now, we want to proof the expression for the neutrino
oscillation probabilities (19) and (20) if N − 2 (N ≥ 2)
additional neutral fermions are present in the model. In
order to proof the respective formulas, we are using the
density matrix formalism in the mass eigenstate basis of the
system and employ the following assumptions:
(1) The system propagates in vacuum with approxi-

mately the same momentum p for all mass eigen-
states.

FIG. 4. Energy dependence of the total flux (Φtotal) of neutral particles in black compared to the summed neutrino fluxes Φν for 3
(blue), 10 (green), and 20 (red) additional neutral fermions in the model. A dip in the Φν spectrum occurs after approximate flavor
equilibration Φνe=Φνμτ ¼ 0.9 is reached. The corresponding energy of flavor equilibrium is indicated by the green, dashed, vertical line.
Afterward, the flavor ratio converges to 1.
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(2) The neutrino mass is much smaller than the
momentum p ≫ m; hence, we use E ≈ p in terms
of OðmνÞ.

(3) The additional neutral fermions are not mixed with
the (active) neutrino sector.

(4) The mixing of the two neutrinos is fully characterized
by the mixing angle θ and the mass squared differ-
ence Δm2.

(5) Decoherence induced by wave packet separation
leads to an exponential dampening of the off-diagonal
elements of the density matrix ϱ according to the
coherence length [30]

Lwp ≔
σx
Δvij

¼ σxE
ΔEij

; ðA1Þ

where σx is the initial wave packet size and ΔEij ¼
Ei − Ej is the difference of the Hamiltonian eigen-
values Ei and Ej.

(6) Decoherence induced by quantum gravity is caused by
interactions of the system with the hypothetical
spacetime foam during which a certain mass eigen-
state is selected democratically. Furthermore, quan-
tum-gravitationally induced decoherence is described
by only one parameter ΓðEÞ, as described in Ref. [21].

Using these prerequisites, we arrive at the oscillation
probabilities

PeeðLÞ ¼
1

N
þN − 2

2N
e−2γL þ 1

2
cos2ð2θÞe−2γL

þ 1

2
sin2ð2θÞe−ðγþ 1

Lcoh
ÞL
�
cos ðωLÞ þ γ

ω
sin ðωLÞ

�
;

ðA2Þ

PeðμτÞðLÞ¼
1

N
þN−2

2N
e−2γL−

1

2
cos2ð2θÞe−2γL

−
1

2
sin2ð2θÞe−ðγþ 1

Lcoh
ÞL
�
cosðωLÞþ γ

ω
sinðωLÞ

�
;

ðA3Þ

where γ ¼ Γ=2.
Proof.—In order to prove the oscillation formulas shown

in Eqs. (19) and (20), we first derive the Lindblad equation
for the 2νþ ðN − 2Þχ system. This equation is then
expressed in a specific basis B of the vector space of N × N
Hermitian matrices, HðNÞ, namely, the SUðNÞ equivalents
of the Pauli matrices. These matrices can be split into the set
of diagonal and off-diagonal matrices, and we adopt the
following basis ordering:

B ¼ f λ0|{z}
∝1

; λ1;…; λNðN−1Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
off−diagonal

; λNðN−1Þþ1; λN2−1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
diagonal

g: ðA4Þ

Here, we implicitly use the fact that there are exactly
NðN − 1Þ off-diagonal Pauli-like matrices and (N − 1)
diagonal ones. In order to get a complete basis, we need to
include a matrix proportional to the identity, i.e., λ0.

1. SU(N) Pauli-like matrices

Now, we discuss the explicit shape and properties of the
aforementioned basis matrices.

a. Off-diagonal Pauli-like matrices

In the following, the off-diagonal λk are of major impor-
tance; hence, we want to discuss them first. In general, they
are very simple in shape since they only contain two nonzero
entries at indices ðj0; k0Þ with k0 > j0 and the respective
transposed position ðk0; j0Þ where the complex conjugate of
the ðj0; k0Þ element is filled in such that they become
Hermitian matrices. Moreover, these nonzero entries alternate
between 1 and i. In total, this results in a simple formula for
the ða; bÞ element of a certain off-diagonal λk, i.e.,

½λoff �ab ¼ ζ�δj0aδk0b þ ζδk0aδj0b; ðA5Þ

with ζ alternating between 1 and i for neighboring matrices.
This special shape of the off-diagonal matrices has an
important consequence: let A ∈ HðNÞ; then, A ¼ A† by
definition, and therefore each off-diagonal ajk element of
A in its lower triangle (j > k) is related to the off-diagonal
element akj ¼ a�jk in its upper triangle. In the following, we
call this a related pair of off-diagonal elements and define the
real (imaginary) part of the related pair as the real (imaginary)
part of the element in the lower triangle. Using this definition,
we see that each off-diagonal λk directly corresponds to the
real or imaginary part of such a related pair. Here, corre-
spondence means that the component âk ≔ hA; λki of A with
respect to B, where λk is off-diagonal, equals the real (ζ ¼ 1)
or imaginary part (ζ ¼ i) of a related pair of off-diagonal
elements. This correspondence is one to one and is a key
point of the following discussion. Schematically, we can
express this the following way,

A ¼

0
BBBBBBBBBB@

� � � � � �
� � � � � �
� � � aj0k0 � �
� � ak0j0 � � �
� � � � � �
� � � � � �

1
CCCCCCCCCCA

∼ Reðaj0k0Þ|fflfflfflfflffl{zfflfflfflfflffl}
âk

λk þ Imðaj0k0Þ|fflfflfflfflffl{zfflfflfflfflffl}
âkþ1

λkþ1; ðA6Þ

where ∼ means that the explicitly mentioned related pair
ðaj0k0 ; ak0j0Þ on the left-hand side is put into the right position
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by evaluating the right-hand side. Lastly, if we want to
perform explicit calculations using this basis, we need to
specify the ordering of these off-diagonal matrices. For
simplicity, we use the same ordering scheme as is used
for the Gell-Mann matrices, i.e., neighboring λk alternate
between ζ ¼ 1 and ζ ¼ i, as already mentioned, and the

indices ðj0; k0Þ of nonzero λk elements are ordered such that
for the first N − 1 matrix pairs j0 ¼ 1 and k0 runs between 2
and N; for the next N − 2 pairs, we then choose j0 ¼ 2 and
k0 runs between 3 and N and so on. For, e.g., N ¼ 3, this
results in

λ1 ¼

0
B@ 0 1 0

1 0 0

0 0 0

1
CA; λ2 ¼

0
B@ 0 −i 0

i 0 0

0 0 0

1
CA; λ3 ¼

0
B@ 0 0 1

0 0 0

1 0 0

1
CA; ðA7Þ

λ4 ¼

0
B@ 0 0 −i

0 0 0

i 0 0

1
CA; λ5 ¼

0
B@ 0 0 0

0 0 1

0 1 0

1
CA; λ6 ¼

0
B@ 0 0 0

0 0 −i
0 i 0

1
CA: ðA8Þ

b. Diagonal basis matrices

After having discussed the off-diagonal λk, we now turn toward the (simpler) diagonal ones. These are composed of the
N − 1 diagonal Pauli-like matrices

λNðN−1Þþm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

mðmþ 1Þ

s
diagð1;…; 1|fflfflffl{zfflfflffl}

m×

;−m; 0;…; 0Þ; 1 ≤ m ≤ N − 1 ðA9Þ

and the scaled identity

λ0 ≔
ffiffiffiffi
2

N

r
1: ðA10Þ

As indicated above, the number of ones on the diagonal of the diagonal Pauli-like matrices is exactly m such that these
matrices are traceless. For N ¼ 3, this results in

λ0 ¼
ffiffiffi
2

3

r 0
B@ 1 0 0

0 1 0

0 0 1

1
CA; λ7 ¼

0
B@ 1 0 0

0 −1 0

0 0 0

1
CA; λ8 ¼

ffiffiffi
1

3

r 0
B@ 1 0 0

0 1 0

0 0 −2

1
CA: ðA11Þ

These matrices, together with the off-diagonal λk, exactly
resemble the Gell-Mann matrices of SUð3Þ with the
ordering imposed as above.

c. Properties of the basis matrices

The basis B forms an orthonormal basis with respect to
the scalar product

h·; ·i∶HðNÞ × HðNÞ → R ðA12Þ

hA; Bi ≔ 1

2
TrðA · BÞ: ðA13Þ

Moreover, B fulfills the completeness relation

I½·� ¼
XN2−1

k¼0

λkλ̄k½·�; ðA14Þ

λ̄k½A� ≔
1

2
TrðλkAÞ with A ∈ HðNÞ; ðA15Þ

where we introduced the identity operator I over HðNÞ and
the dual basis λ̄k ∈ B� ⊂ HðNÞ�. In the following, we will
partially employ the standard bra-ket notation for vectors in
HðNÞ where it is beneficial.
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2. Lindblad equation of the system

Now that we have specified the basis B of matrices we
are working in, we proceed by expanding the density
matrix ϱ and all operators from the Lindblad equation in it.
The Lindlblad equation reads

_ϱ ¼ −i½H; ϱ� þDwp½ϱ� þDqg½ϱ� ≔ L½ϱ�; ðA16Þ

where H is the Hamiltonian of the neutral fermion system
and Dwp and Dqg are the dissipators describing wave packet
and quantum-gravitationally induced decoherence, respec-
tively. Furthermore, we define the full Lindblad operator L.
In order to differentiate between vectors in HðNÞ and their
components with respect to the basis B, we use curly symbols
for the vectors and straight symbols for the components. For
example, the density matrix is denoted by ϱ, while its
components are denoted by ρk such that

ϱ ¼
XN2−1

k¼0

ρkλk: ðA17Þ

The same notation is employed for operators acting onHðNÞ,
for example, Dwp, and their matrix elements with respect to
B, for example, Dwp.

a. Commutator

First, we start with the derivation of the general repre-
sentation matrix C of the commutator part of the Lindblad
equation, i.e.,

C½ϱ� ≔ −i½H; ϱ�: ðA18Þ

Here, H represents the vacuum Hamiltonian reading

H ¼ diagðEν1 ; Eν2 ; Eχ1 ;…; EχN−2
Þ ðA19Þ

≔ diagðE1; E2; E3;…; ENÞ ðA20Þ

ðA21Þ

in the mass eigenstate basis of the system. For this
Hamiltonian, the components of the commutator read

ðC½ϱ�Þjk ¼ −ið½H; ϱ�Þjk ðA22Þ

¼ −i
XN
l¼1

Hjlϱlk − ϱjlHlk ðA23Þ

¼ −i
XN
l¼1

Ejδjlϱlk − ϱjlElδlk ðA24Þ

¼ −iðEj − EkÞϱjk ðA25Þ

≔ ΔEjkðImðϱjkÞ − iReðϱjkÞÞ ðA26Þ

¼ −ΔEjkρlþ1 − iΔEjkρl ðA27Þ

¼ hC½ϱ�; λli − ihC½ϱ�; λlþ1i; ðA28Þ

where we substituted in the coefficients of ϱ and C½ϱ� in the
basis B (the coefficient index l depends on the matrix
indices ðj; kÞ) in the last two lines in order to be able to
directly read off the matrix elements. Here, we need to
be careful because, depending on if we consider the case
j < k or j > k, the imaginary part of ϱjk corresponds to
either −ρlþ1 (j < k) or þρlþ1 (j > k), and the same holds
for C½ϱ� and its coefficients, because both matrices are
Hermitian. Independent of the choice, we will obtain the
same matrix element, which is why we chose j < k for
convenience. In order to derive the representation matrix
C of the operator C½·� ¼ −i½H; ·�, we have to make some
crucial observations from the previous equations:
(1) Diagonal elements of the resulting matrix ðC½ϱ�Þjj

vanish, since ΔEjj ¼ 0.
(2) ðC½ϱ�Þjk ∝ ϱjk, and no other components of ϱ con-

tribute to ðC½ϱ�Þjk.
(3) The coefficient ρlþ1 ¼ ImðϱkjÞ is scaled by −ΔEjk

and becomes the real part of ðC½ϱ�Þjk ¼ hC½ϱ�; λli.
(4) The coefficient ρl ¼ ReðϱkjÞ is scaled by ΔEjk and

then becomes the imaginary part of ðC½ϱ�Þjk ¼
hC½ϱ�; λlþ1i.

These four properties of the result of C operating on an
arbitrary Hermitian matrix ϱ completely determine the
form of its representation matrix C in the basis B. To
clarify our explanations below, we shortly recall the
meaning of the matrix elements of C ¼ ðCijÞN2−1

i;j¼0 . If we
expand C in the basis B, we obtain

C½ϱ� ¼ Cjϱi ¼
XN2−1

j¼0

ρjCjλji ðA29Þ

¼
XN2−1

j¼0

ρjICjλji ðA30Þ

¼
XN2−1

j¼0

XN2−1

i¼0

ρjjλiihλijCjλji|fflfflfflffl{zfflfflfflffl}
¼Cij

ðA31Þ

¼
XN2−1

i¼0

�XN2−1

j¼0

Cijρj

�
jλii: ðA32Þ

This means that the elements Cij for fixed i and j determine
the contribution of the jth component ρj of ϱ to the ith
component of the result. Using this and the first observation
from the enumeration above, we know that all rows i of C
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corresponding to diagonal basis matrices have to vanish. Otherwise one could always find a matrix ϱ ∈ HðNÞ, such that C½ϱ�
has diagonal entries, which contradicts our findings from above. Equally, the result C½ϱ� cannot contain ρi components
contributing to the diagonal of ϱ due to observations number 1 and 2. Hence, we find

Cij ¼ Cji ¼ 0; ∀ i ¼ 0; NðN − 1Þ þ 1;…; N2 − 1; ∀ j ¼ 0;…; N2 − 1:

Furthermore, the one-to-one correspondence of λk to
related pairs of off-diagonal elements of ϱ together with
observation number 2 implies that C is a block diagonal
matrix, since only the real and imaginary parts of ϱjk
contribute to the real and imaginary parts of the resulting
matrix element ðC½ϱ�Þjk. Therefore, we arrive at the
following form of C,

C ¼

0
B@ 0 0⃗

T

τ 0T

0⃗ 0 0

1
CA ∈ RN2×N2 ðA33Þ

τ ¼

0
BBBBBBBB@

� �
� �

. .
.

� �
� �

1
CCCCCCCCA

∈ RNðN−1Þ×NðN−1Þ; ðA34Þ

where 0⃗ ∈ RN2−1, 0 ∈ RðN−1Þ×NðN−1Þ, and
0 ∈ RðN−1Þ×ðN−1Þ. Finally, according to observations 3
and 4, we know that only the real part of ϱjk contributes to
the imaginary part of ðC½ϱ�Þjk, while only the imaginary
part of ϱjk contributes to the real part of ðC½ϱ�Þjk. The
coefficients these parts are scaled with determine the
corresponding matrix element of C. Hence, we arrive at
its final form, i.e.,

C ¼ Bdiagð0; A12; A13;…; AðN−1ÞN; 0Þ; ðA35Þ

Aij ¼
�

0 −ΔEij

ΔEij 0

�
: ðA36Þ

Here, the Bdiag instruction yields a block diagonal matrix
composed of the corresponding matrices given in its
argument list. The ordering of Aij matrices in this
construction resembles the same ordering scheme we
use for the off-diagonal λk; i.e., for each fixed i, we iterate
over all possible j values, greater than i, and after one full
j iteration, we increase i.

b. Dissipator

Next, we consider the dissipator D introducing the open
system effects into the time evolution of the density matrix.
As described in the prerequisites, we focus on two kinds of
decoherence, i.e., wave packet separation and quantum-
gravitational decoherence. First, we determine the wave
packet decoherence influence. For each pair of fermions,
neutrinos obviously included, we have a respective coher-
ence length determining the strength of coherence damp-
ening, based on the differences of the eigenvalues of the
Hamiltonian. This coherence dampening translates to
dampening of off-diagonal ϱ elements, since these describe
the coherence of different mass eigenstates. Assuming that
the real and imaginary parts of the off-diagonal elements
are damped with the same strength and that these off-
diagonal elements ϱjk are only affected by the respective
energy splitting ΔEjk, we find that Dwp is fully diagonal in
the basis B. It reads

Dwp ¼ diag
�
0;

−1
L12

;
−1
L12

;
−1
L13

;
−1
L13

;…;
−1

LðN−1ÞN
;

−1
LðN−1ÞN

; 0;…; 0|fflfflffl{zfflfflffl}
N−1 times

�
: ðA37Þ

Lastly, considering quantum gravitationally induced
decoherence, we assume, in accordance with Ref. [21],
a democratic selection of mass eigenstates during the
propagation of the beam. This leads to averaging over
all neutral flavor components of the beam, since each
superposition of mass eigenstates is projected onto
one certain mass eigenstate with equal probability.
This effect is simplest described by a dissipator of the
form

Dqg ¼ diagð0;−Γ1;…;−ΓN2−1Þ: ðA38Þ

The zeroth entry of the diagonal has to vanish in order to
conserve the overall probability of the system, which is
important, since in our scenario no probability is lost to
the environment. Furthermore, the entries Γ1;…;ΓNðN−1Þ
describe coherence dampening of the mass eigenstates due
to the projection onto certain mass eigenstates and have
essentially the same effect as the wave packet decoherence
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mechanism. As in Ref. [12], we choose Γ1 ¼ 0. Lastly, the
most interesting feature of quantum gravitationally induced
decoherence is encoded in the last N − 1 entries correspond-
ing to the diagonal λk matrices. This means that after a
sufficiently long travel distance only the part of ϱ propor-
tional to the identity remains undamped. Hence, these entries
lead to the dampening of any excess number of mass
eigenstates in the beam and therefore describe the democracy
in the selection of mass eigenstates. Following again
Ref. [21], we choose Γ ¼ Γk for all k ¼ 2;…; N2 − 1.
Now, we are able to assemble the representation matrix Λ
of the full Lindblad operator L, i.e.,

Λ ≔ CþDwp þDqg ðA39Þ

Λ ¼ Bdiagð0;Λν
12;Λ13;…;ΛðN−1ÞN;−Γ;…;−ΓÞ ðA40Þ

Λν
ij¼

� − 1
Lij

−ΔEij

ΔEij − 1
Lij
−Γ

�
; Λij¼

�− 1
Lij
−Γ −ΔEij

ΔEij − 1
Lij
−Γ

�
:

ðA41Þ

Due to the special block diagonal form of the Lindblad
operator in vacuum, we can solve the system of equations
analytically for arbitrary N ≥ 2 by employing diagonalizing
matrices of the form

S ¼ Bdiagð1; Sν12; S13;…; SðN−1ÞN; 1ðN−1Þ×ðN−1ÞÞ ðA42Þ

S−1 ¼ Bdiagð1; Sν12−1; S−113 ;…; S−1ðN−1ÞN; 1ðN−1Þ×ðN−1ÞÞ;
ðA43Þ

such that Λ ¼ SD̃S−1 and each Sij diagonalizes the corre-
sponding Λij ¼ SijD̃ijS−1ij . This form of the Lindblad
equation is also valid for more than two neutrino generations,
since until now the framework is independent of the special
type of neutral fermions included. This changes as soon as
we specify the mixing of flavor eigenstates of the fermions.

3. Oscillation probabilities

Now, again considering the 2νþ ðN − 2Þχ case, we are
especially interested in the scenario where we start with an
initially pure neutrino state. This is needed in order to
derive the neutrino oscillation probabilities from one
neutrino flavor into another (not necessarily different)
flavor. For example, starting with a pure electron flavor
at the source, the respective initial density matrix reads

ϱe¼

0
BBBBBBBBBB@

cos2ðθÞ cosðθÞsinð2θÞ 0 � � � 0

cosðθÞsinð2θÞ sin2ðθÞ 0 � � � 0

0 0 0 � � � 0

..

. ..
. ..

. � � � ..
.

0 0 0 0 0

1
CCCCCCCCCCA
; ðA44Þ

which translates within our λk basis into the component
vector

ρe0 ¼
1ffiffiffiffiffiffiffi
2N

p ðA45Þ

ρe1 ¼
1

2
sinð2θÞ ðA46Þ

ρe2 ¼ … ¼ ρeNðN−1Þ ¼ 0 ðA47Þ

ρeNðN−1Þþ1
¼ 1

2
cosð2θÞ ðA48Þ

ρeNðN−1Þþk ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kðkþ 1Þp ; 2 ≤ k ≤ N − 1: ðA49Þ

For the other initial neutrino state (the muon and tau
superposition νμτ), only the sign of ρ2 and ρNðN−1Þþ1 has to
be flipped. In order to calculate, for example, PeeðLÞ, we
have to find an analytical expression of the trace

PeeðLÞ ¼ TrðϱeϱeðLÞÞ ðA50Þ

¼ 2hϱe; ϱeðLÞi ðA51Þ

¼ 2ϱ⃗eT ϱ⃗eðLÞ ðA52Þ

¼ 2ϱ⃗eT expðΛLÞϱ⃗e ðA53Þ

¼ 2ϱ⃗eTS expðD̃LÞS−1ϱ⃗e: ðA54Þ

Using the special block diagonal shape of Λ and the fact
that ρe=μτk ¼ 0 for k ¼ 2;…; NðN − 1Þ, we can evaluate this
expression to

PeeðLÞ ¼ 2

�
1

2N
þ ρ⃗T12S

ν
12 expðD̃ν

12LÞSν;−112 ρ⃗12

þ e−ΓL

4
cos2ð2θÞ þ

XN−1

k¼2

e−ΓL

2kðkþ 1Þ
�
; ðA55Þ

ρ⃗T12 ≔
�

1
2
sinð2θÞ 0

�
: ðA56Þ
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After the index k ¼ NðN − 1Þ, the Lindblad operator is
purely diagonal, resulting in the last two terms of the
expression above. Consequently, we only need to diago-
nalize the Λν

12 matrix corresponding to the two-neutrino
system, which is an easy task, resulting in

D̃ν
12 ¼ diag

�
−

1

L12

−
Γ
2
− iω;−

1

L12

−
Γ
2
þ iω

�
ðA57Þ

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔE12Þ2 −

�
Γ
2

�
2

s
ðA58Þ

Sν12 ¼
�− 2iω−Γ

2ΔE12

2iωþΓ
2ΔE12

1 1

�
: ðA59Þ

From this, one can straightforwardly deduce the matrix
exponential of Λν

12, i.e.,

expðΛ12LÞ ¼ e−ð
1

L12
þΓ

2
ÞL
 
cosðωLÞ þ Γ

2ω sinðωLÞ − ΔE12

ω sinðωLÞ
ΔE12

ω sinðωLÞ cosðωLÞ − Γ
2ω sinðωLÞ

!
; ðA60Þ

leading to the final result

PeeðLÞ ¼ 2

�
1

2N
þ 1

4
sin2ð2θÞe−ð 1

L12
þΓ

2
ÞL
�
cosðωLÞ þ Γ

2ω
sinðωLÞ

	

þ 1

4
cos2ð2θÞe−ΓL þ

XN−1

k¼2

1

2kðkþ 1Þ e
−ΓL
�

ðA61Þ

¼ 1

N
þ 1

2
sin2ð2θÞe−ð 1

L12
þΓ

2
ÞL
�
cosðωLÞ þ Γ

2ω
sinðωLÞ

	

þ 1

2
cos2ð2θÞe−ΓL þ N − 2

2N
e−ΓL: ðA62Þ

Here, we used

XN−1

k¼2

1

kðkþ 1Þ ¼
XN−1

k¼2

�
1

k
−

1

kþ 1

�
¼ 1

2
−

1

N
¼ N − 2

2N
: ðA63Þ

As usual in the two-neutrino case, Pee ¼ PðμτÞðμτÞ and PeðμτÞ ¼ PðμτÞe hold. In order to obtain the oscillation probabilities
PeðμτÞ and PðμτÞe, we need to flip the signs in front of the 1=2 sin2ð2θÞ and 1=2 cos2ð2θÞ terms. Lastly, defining γ ≔ Γ=2
concludes our proof of Eqs. (19) and (20). ▪
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