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There is a growing need for anomaly detection methods that can broaden the search for new
particles in a model-agnostic manner. Most proposals for new methods focus exclusively on signal
sensitivity. However, it is not enough to select anomalous events—there must also be a strategy to
provide context to the selected events. We propose the first complete strategy for unsupervised detection
of nonresonant anomalies that includes both signal sensitivity and a data-driven method for background
estimation. Our technique is built out of two simultaneously trained autoencoders that are forced
to be decorrelated from each other. This method can be deployed off-line for nonresonant
anomaly detection and is also the first complete on-line-compatible anomaly detection strategy. We
show that our method achieves excellent performance on a variety of signals prepared for the ADC2021
data challenge.

DOI: 10.1103/PhysRevD.105.055006

I. INTRODUCTION

Despite the compelling indirect evidence for new fun-
damental particles from astrophysical and other observa-
tions, no direct discoveries have been confirmed since the
identification of the Higgs boson [1,2]. This means that the
new physics is either rare, inaccessible, or we are looking in
the wrong place for it. This last possibility has motivated
a new anomaly detection research program at particle
colliders by which search strategies are constructed with
less model dependence than previous approaches. Many of
these new methods employ modern machine learning to
achieve broad sensitivity to unforeseen scenarios [3–19,19–
60] (list from Ref. [61]).
A complete anomaly detection algorithm is required to

have two attributes: it should be sensitive to anomalous
events and it should be possible to estimate the rate of
Standard Model (SM) events that are labeled as anomalous
(false positive rate) [6]. Complete anomaly detection
methods have so far primarily focused on resonant anoma-
lies, where data sidebands can be used as reference samples
to both construct signal-sensitive classifiers and to estimate
the SM background [3–12,18,19].
Much less well explored so far has been complete

anomaly detection methods for nonresonant anomalies.

One widely studied approach based on unsupervised
learning that does not require the new physics to be
resonant is the autoencoder [13–54]. The idea is to build
models for compressing and uncompressing events, trained
directly on the (mostly background) data. Events that have
a low probability density tend to be poorly reconstructed
when compressing and uncompressing compared with
events that have a relatively higher probability density. If
anomalous events are located in regions of low data
probability density, then the reconstruction quality can
be used as an anomaly score.
However, autoencoders by themselves are not a complete

anomaly detection algorithm—they provide a method for
achieving signal sensitivity, but they do not have a natural
background estimation component. In the nonresonant
case, one could compare the spectrum of anomalous events
with background-only simulations, but this requires an
excellent model of the background. Given that we expect
the unexpected to occur in regions that are poorly modeled,
this is unlikely to be a viable strategy in general.
In this paper, we introduce a new method for detecting

nonresonant anomalies, based on autoencoders, that is
complete in the sense that it includes both signal sensitivity
and simulation-free background estimation. Instead of
constructing one autoencoder, we advocate for training
two or more autoencoders. The set of autoencoders are
trained to be as independent of each other as possible.
While many methods for decorrelating neural networks
exist [62–78] and could be used here, we chose to employ
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the distance correlation (DC) decorrelation method first
developed in Ref. [69] and explored for simultaneous
background estimation in Ref. [76]. Events are labeled
as anomalous if the reconstruction quality is poor for all
autoencoders. Events labeled as anomalous by one, but
not all, of the autoencoders provide the context needed
to estimate the Standard Model background in a model
independent way, via the ABCD method.
An additional benefit of our method is that it can be run

equally well on-line or off-line; indeed this forms a second
major motivation for our work. Typically, a key assumption
is that anomalous events will be saved by the detectors for
off-line analysis. Due to the immense data rate at the Large
Hadron Collider (LHC), it is not possible to save every
collision event for off-line processing. Instead, a system of
triggers are used to save interesting events [79,80]. The
definition of interesting is model dependent and therefore
the new physics may be thrown away in real time. It is
therefore of utmost importance to design model indepen-
dent strategies for saving anomalous events.
Autoencoders can be run on-line because they do not

require comparing data to a reference sample [28–31].
However, no autoencoder-based trigger proposal so far has
been complete in the sense introduced above. Many
conventional triggers are complemented by support triggers
which provide the context needed for data-driven back-
ground estimation off-line. Our method provides the first
complete anomaly detection strategy in a similar way to
these conventional methods. By using two decorrelated
autoencoders, we can trigger on potentially anomalous
events and then additionally save (at a reduced rate)
antitagged events in a way that background estimation is
possible off-line.
This paper is organized as follows. First, we introduce

the technique of decorrelated autoencoders in Sec. II.
Numerical results with the ADC2021 dataset are presented
in Sec. III. By definition, this demonstration highlights an
off-line application of our approach. Section IV provides a
discussion about the on-line compatibility of our technique
for experimental integration on-line. The paper ends with
conclusions and outlook in Sec. V.

II. DECORRELATED AUTOENCODERS

Avanilla autoencoder is a composition of two functions,
an encoder g and a decoder f. These two functions are
parametrized as neural networks and are optimized to
minimize the reconstruction loss:

L½f; g� ¼
X

i

ðfðgðxiÞÞ − xiÞ2; ð1Þ

where x ∈ Rn, g∶ Rn → Rm, and f∶ Rm → Rn. In order to
encourage compression, the latent space dimension is
chosen such that m < n. A popular variation on this setup

is the variational autoencoder [81,82], whereby the enco-
ding and decoding are probabilistic and the latent space has
well-defined statistical properties. The methods proposed
here are compatible with variational autoencoders, and
while preliminary studies indicate that the results are
similar, we leave a full exploration to future work.
Instead of training a single autoencoder as in Eq. (1), we

propose to train two (or more) statistically independent
autoencoders at the same time, in order to enable data-
driven background estimation. Following [69,76], we
achieve the decorrelation of the autoencoders by including
in the training a regularizer term based on the DC measure
of statistical dependence. Focusing on the case of two
autoencoders ðf1; g1Þ and ðf2; g2Þ for simplicity, we con-
sider the following loss function:

L½f1; f2; g1; g2� ¼
X

i

R1ðxiÞ2 þ
X

i

R2ðxiÞ2

þ λDC2½R1ðXÞ; R2ðXÞ�; ð2Þ

where RiðxÞ ¼ ðfiðgiðxÞÞ − xÞ2, λ > 0 is a hyperparameter,
and DC is the distance correlation [83–86]. DC is between
0 and 1 and is zero if and only if its arguments are
independent. The capital X is used in the last term of Eq. (2)
to indicate that the distance correlation is computed at the
level of a batch of examples x, which are realizations of the
random variable X. Given autoencoders trained via Eq. (2),
we can define counts N≶;≶ðc⃗ Þ¼

P
i I½R1ðxiÞ≶c1�I½R2ðxiÞ≶

c2�, where c⃗ ¼ ðc1; c2Þ are given thresholds and I½·� is the
indicator function that is zero when its argument is false
and one otherwise. The signal sensitive region is N>;>ðc⃗Þ
and the other three regions can be used to estimate the
background

Npredicted
>;> ðc⃗Þ ¼ N>;<ðc⃗ÞN<;>ðc⃗Þ

N<;<ðc⃗Þ
: ð3Þ

Equation (3) is known as the ABCD method and the
N>;>ðc⃗Þ is exactly the background in the signal-sensitive
region if there are enough events and if the two dimensions
are effective at rejecting the background.

III. EMPIRICAL RESULTS

The performance of the double autoencoder and decor-
relation strategy is tested on the ADC2021 dataset, which
was created for unsupervised anomaly detection [31,87]. In
the dataset, proton-proton collisions at the LHC are
simulated at center-of-mass energy of 13 TeV. Collision
events are required to contain at least one electron (e) or
muon (μ) with transverse momenta pT > 23 GeV. A set of
various Standard Model processes are generated with
PYTHIA 8.240 generator [88,89] with detector response
modeled by DELPHES 3.3.2 [90–92] using the Phase-II
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CMS detector card. During the training, 2 × 106 events are
used while results are reported using an independent
validation set containing 800 k SM events.
Four benchmark scenarios containing new physics proc-

esses are used to evaluate the performance of the algorithm:
a leptoquark with 80 GeV mass decaying to a b quark and a
τ lepton, a neutral scalar boson (A) of 50 GeV mass
decaying to a pair of off shell Z bosons, which in turn are
forced to decay to leptons (A → 4l), a scalar boson h0 of
60 GeV mass decaying to a pair of τ leptons (h0 → ττ), and
a charged scalar boson h� with 60 GeV mass, decaying to a
τ lepton and a neutrino (h� → τν). In the performance
evaluation, each new physics scenario is considered inde-
pendently, with total amount of events fixed to 0.1% of the
total sample size.
The autoencoders are trained on a sample of pure

background events. In practice, this corresponds to the
case of training on simulation and testing on data.
Differences between data and simulation (which are not
modeled or taken into account in the ADC2021 dataset
used here) may degrade the autoencoder performance if
background data events are not reconstructed as well by the
autoencoder as background simulation events. Fortunately,
it is well known from previous studies (see, e.g.,
[13,14,29]) that autoencoder training is highly insensitive
to low amounts of signal contamination. This means that
autoencoders can be trained directly on data with a small
amount of signal contamination without a significant
change in the learned neural networks. We have explicitly
verified this in the case of the decorrelated autoencoders
using the A → 4l and h0 → ττ signals, with additional
results shown in the Appendix A.
Each autoencoder architecture is built using deep neural

networks containing five fully connected layers. The
encoders have 256, 128, 64, 32, and 5 hidden nodes, while
the decoder is simply the mirrored version of the encoder.
The inputs given to the training are the four-momenta of
jets [93,94] and leptons in (pT, η, ϕ, m) coordinates, each
normalized to 1 during data preprocessing. Only the first
(sorted by pT) four muons, four electrons, and ten jets in the
event are kept with zero padding to each particle applied if
fewer objects are present. The implementation is carried out
with TENSORFLOW [95] optimized with the ADAM [96].
Even though all new physics scenarios considered here
contain a mass resonance, no invariant mass information is
directly used in the training process. The λ parameter from
Eq. (2) is fixed to 100 and training batch size fixed to 10 k
to improve the decorrelation performance. The double
autoencoder structure is then trained for a total of 1000
epochs, or stopped if the overall training loss does not
improve in an independent testing set for ten consecutive
epochs. The complete model uses 230 k trainable weights
with a total of 460 k floating point operations. The neural
network architecture and training procedure were not

extensively optimized, due in part to the unsupervised
nature of this task.
The performance of each autoencoder for anomaly

detection is assessed by using the reconstruction loss as
the main discriminator. The significance improvement
characteristic (SIC) curves are built for each new physics
scenario shown in Fig. 1. The comparison with a single
autoencoder trained without the decorrelation loss is also
shown. We also show in Fig. 1 the combined performance
of both autoencoders. The combined result uses a “diago-
nal” cut to select the same SM background efficiency for
each autoencoder. We see that the signal sensitivity of the
combined autoencoders is greater than (in fact roughly
double) that of each autoencoder individually. This obser-
vation indicates that the decorrelation was successful and
each autoencoder learned something independent about the
beyond the SM anomalies in question. For an additional
comparison for the SIC curve at different selection thresh-
olds see Appendix B.

FIG. 1. Top: SIC curves of the individual, decorrelated au-
toencoders, for each new physics benchmark scenario. Bottom:
SIC curves for the “diagonal” combination of both decorrelated
autoencoders, compared with that of a single autoencoder
(obviously trained without any decorrelation). In both panels,
the SIC curves are cut off at lower true positive rates due to low
background yields.
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The independence between reconstruction losses is more
fully validated by estimating the difference between the
background predicted using the ABCDmethod [Eq. (3)] and
the real number of background events in the region of
interest. The ratio between the two quantities is shown in
Fig. 2.Multiple choices of c⃗ yielding the same SMefficiency
are tested (represented as multiple entries in Fig. 2) for
samples containing only SM processes (blue) and mixtures
of SM and a new physics process. At lower SM efficiencies,
departures from unity (overestimated background [76]) are
observed in all mixed samples while the highest variation for
a sample containing only SM events is 2.5%, compatible the
statistical uncertainty of the sample.
These differences can also be quantified in terms of the

signal significance for each benchmark process by compar-
ing the observed and predicted number of background
events from the ABCD method. Given N observations in
the region of interest with predicted number of background
events B, the significance is defined as N−Bffiffiffi

N
p if N − B > 0

and 0 otherwise. With the initial signal fraction fixed, the
total sample significance is around 0.8 prior to the
application of the method. As pointed out in Ref. [76],
unaccounted contamination from the signal of interest in
the ABCD sidebands may result in different significance
values when compared to the correct estimation of the
background. While this issue can be accounted when
performing model specific exclusion limits, we also show
in Fig. 3 (top) the significance obtained using the ABCD
method with and without correcting the number of back-
ground events. To avoid fine-tuning, the threshold applied
to each autoencoder reconstruction loss is the one where
both autoencoders have the same SM rejection efficiency.
In all new physics benchmark scenarios, the uncorrected

significance for SM efficiencies above 1.5% is lower than
the corrected for SM efficiencies. Nevertheless, all new

physics scenarios show significance between 1 to 4 while
the SM only sample has a maximum deviation below 1. We
have also probed the stability of the method by performing
five independent trainings with different random weight
initialization. The standard variation of the average sig-
nificance was below 6% for all benchmark scenarios tested.
The additional distance correlation loss leads to

increased reconstruction loss in the background training
sample, resulting in decreased performance compared to a
single autoencoder training. This difference is illustrated in
Fig. 3 (bottom) where the significance is compared with the
values obtained from training a single autoencoder with
same network architecture. Since the ABCDmethod is only
applicable in the double autoencoder case, no background
estimation method is used in the comparison. In all
cases, the difference in significance of the double and
single autoencoders is less than 30%. While the single

FIG. 2. Closure test of the ABCD estimation method for
different SM efficiencies and benchmark scenarios. Different
selection combinations yielding the same background efficiency
are shown as independent entries.

FIG. 3. Signal significance for each benchmark scenario (top)
when the ABCD method is used to predict the background level
(solid lines) compared to the real significance value (dashed
lines). In the bottom panel, the comparison of the significance
between a single autoencoder (dashed lines) and the double
autoencoder (solid lines) is shown. In this case, no background
estimation method is used.
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autoencoder consistently outperforms the double autoen-
coder, the lack of dedicated background estimation might
lead to unattainable performances when applied to real
particle collisions.

IV. ANOMALY DETECTION ON-LINE

The discussion so far has demonstrated that the decorre-
lated autoencoder protocol is an effective tool for simu-
lation-free, nonresonant anomaly detection. This section
briefly describes how this technique is also on-line com-
patible. We envision that in an actual trigger system, we
would save all events in the signal sensitive region defined
by the two autoencoders and then save a random fraction
(“prescale”) of events in the three other regions for off-line
background estimation (similar to existing “support trig-
gers” for certain background processes). The prescale
would be set so that the statistical uncertainty on the
background prediction is smaller than the statistical uncer-
tainty from events in the signal region. If the SM efficiency
in the signal region is ϵ, then the trigger rate would scale
approximately as 4ϵ, including events saved from the
background-dominated regions. The autoencoders them-
selves could be trained directly on data. These data could be
from a previous run or from earlier in a given run. We note
that this is the first complete on-line compatible anomaly
detection protocol to be proposed—previous proposals
have used single autoencoders and do not come with a
method for estimating the background.
Moreover, each of our autoencoders is built using only a

set of fully connected layers to allow for a memory and time
efficient implementation. There have been many recent
demonstrations of ultra-low-latency implementations of
these and related architectures on field programable gate
arrays [30,97–102]. For studies with more computational
resources available, the baseline performance of each
autoencoder may be enhanced using more complex
reconstruction strategies, as studied in [34–36,103,104].
The ADC2021 community challenge dataset was used in

part because it was created for the purpose of developing
on-line methods [31,87] as summarized by the challenge
title: Unsupervised New Physics detection at 40 MHz.
However, there are some features of this dataset that limit
direct connection to on-line algorithms. For example,
ATLAS and CMS have single lepton triggers that would
likely save all of the challenge events for off-line process-
ing. Figure 3 indicates that our decorrelated autoencoder
trigger reduces the bandwidth by nearly two orders of
magnitude. This is not necessarily relevant for the lepton-
triggered data, but it is a common reduction for dedicated
triggers. Another issue is, as we have already noted above,
that the ADC2021 dataset does not distinguish between

“data” and “simulation”; this could be an issue for machine
learning methods, which generally require a representative
sample for the training data. Expanding the on-line chal-
lenge to other datasets would be interesting for the future.

V. CONCLUSIONS AND OUTLOOK

We have proposed a first complete on-line-compatible
unsupervised nonresonant anomaly detection method that
achieves signal sensitivity and can be used to estimate the
SM background.1 Autoencoders, a popular choice of
anomaly detection algorithm, are used to identify anoma-
lous events through a reconstruction loss. We advocate for
the combination of two or more autoencoders that are
trained simultaneously while a DC regularizer term is
added to make their reconstruction losses statistically
independent. In this strategy, the background from SM
events can be estimated with the ABCD method. In the
absence of new physics, the method shows a good agree-
ment between the predicted and observed amount of
background events. In the presence of new physics, the
signal significance varies between 1 and 4 for multiple new
physics scenarios with initial contribution amounting to
only 0.1% of all events. Given that our method is
architecture agnostic, it can be readily generalized for
other anomaly detection methods whose output is an
anomalous score capable of discerning new physics sce-
narios from background events.
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APPENDIX A: SIGNAL SIGNIFICANCE
WITH SIGNAL CONTAMINATION

We verify the changes in the significance obtained by
training two additional models on datasets containing
signal contamination of 0.1%, the same threshold used
to derive the results reported in Sec. III. In the alternative
setup we consider independently the contamination from
the A → 4l and h0 → ττ signals, the ones with highest and
lowest reported significance. In Fig. 4, results obtained in
each of these scenarios are shown and compared with the
results from the background-only training.

1The scripts used to produce the results shown in this work are
available at https://github.com/ViniciusMikuni/DoubleAE.
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APPENDIX B: SIGNIFICANCE IMPROVEMENT
CHARACTERISTIC FOR DIFFERENT

SELECTION THRESHOLDS

The studies presented in this work use the “diagonal” cut
as the representative selection for the combined perfor-
mance. Different choices, leading to different results, can
be used when a particular new physics scenario is under
study. To exemplify this difference, we show in Fig. 5
the SIC curve for different selections applied to the
reconstruction loss of each autoencoder. While a symmetric
selection results in maximum SIC values for all bench-
marks, the exact threshold resulting in maximum SIC is
different for each benchmark scenario.

FIG. 5. Significance improvement characteristic for different
new physics benchmark scenarios. The lower edges of each bin
represents the selection threshold applied for each autoencoder
loss function. (LQ ¼ leptoquark.)

FIG. 4. Signal significance obtained when training the model in
a dataset containing the signal contamination from A → 4l (top)
and h0 → ττ (bottom). Results from the background-only training
are shown for comparison. (LQ ¼ leptoquark.)
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[84] G. J. Székely and M. L. Rizzo, Brownian distance covari-
ance, Ann. Appl. Stat. 3, 1236 (2009).
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