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We study decomposition of SU(2) gauge field into monopole and monopoleless components. After
fixing the maximal Abelian gauge in SU(2) lattice gauge theory with Wilson action we decompose the non-
Abelian gauge field into the Abelian field created by monopoles and the modified non-Abelian field with
monopoles removed. We then calculate respective static potentials in the fundamental and adjoint
representations and confirm earlier findings that the sum of these potentials approximates the non-Abelian
static potential with good precision at all distances considered. Repeating these computations at three lattice
spacings we find that in both representations the approximation becomes better with decreasing lattice
spacing. Our results thus suggest that this approximation becomes exact in the continuum limit. We further
find the same relation (for one lattice spacing) to be valid also in the cases of improved lattice action and in
the theory with quarks.
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I. INTRODUCTION

We study numerically the lattice SU(2) gluodynamics in
the maximal Abelian gauge (MAG) and consider decom-
position of the lattice gauge field UμðxÞ [1]

UμðxÞ ¼ Umod
μ ðxÞUmon

μ ðxÞ; ð1Þ

whereUmon
μ ðxÞ is the monopole component andUmod

μ ðxÞ is,
respectively, the monopoleless component which we also
will call a modified gauge field. By modification we
understand removal of monopoles.
The decomposition (1) was first considered in [1]. It was

demonstrated for one value of lattice spacing a that the sum
of the static potentials VmodðrÞ þ VmonðrÞ [computed
respectively with use of Umod

μ ðxÞ and Umon
μ ðxÞ] was a good

approximation of the original non-Abelian static potential
VðrÞ at all distances while VmodðrÞ could be well fitted by
purely Coulomb fit function. Here we extend this study in a
few directions as discussed below.

It is well known [2–6] that after performing the Abelian
projection in the MAG [7,8], the Abelian string tension
calculated from the Abelian static potential is very close to
the non-Abelian string tension and the corresponding
coefficient of the Coulomb term is about 1=3 of that in
the non-Abelian static potential. It was also observed that
the Abelian component of the gauge field is responsible for
the chiral symmetry breaking [9]. This observation, like
many others, supports the concept of Abelian dominance
(for a review see, e.g., [10]). It was further discovered
[4,11,12] that the monopole static potential also has string
tension close to the non-Abelian one and small coefficient
of the Coulomb term. These observations are in agreement
with conjecture that monopole degrees of freedom are
responsible for confinement [13]. It is then interesting to
see what kind of static potential one obtains if the monopole
contribution into the gauge field is switched off, that is, if
only off-diagonal gluons and the so called photon part of
the Abelian gluon field are left interacting with static
quarks.
Previously computations of this kind were made in

[14–17], where it was shown that the topological charge,
chiral condensate and effects of chiral symmetry breaking
in quenched light hadron spectrum disappear after removal
of the monopole contribution from the relevant operators.
Similar computations were made within the scope of the Z2
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projection studies [18]. It was shown that modified gauge
field with removed projected center vortices (P-vortices)
produces Wilson loops without area law, i.e., devoid of the
confinement property. We do a similar removal with
monopoles. We consider three types of the static potential:
VmodðrÞ obtained from the Wilson loops of the modified
gauge field Umod

μ ðxÞ, VmonðrÞ obtained from the Wilson
loops of the monopole gauge field Umon

μ ðxÞ and the sum of
these two static potentials.
Here we study this phenomenon at three lattice spacings

using the Wilson lattice gauge field action and thus we can
make conclusions about the continuum limit. We also
present the results for one lattice spacing obtained with
the tadpole improved lattice field action [19] thus checking
the universality. Furthermore, we present results for the
SU(2) theory with dynamical quarks, i.e., for QC2D.
The paper is organized as follows. In the next section we

introduce relevant definitions and describe details of our
computations. In Sec. III results for the static potential
are presented. Section IV is devoted to discussion and
conclusions.

II. DEFINITIONS AND SIMULATION DETAILS

We consider the SU(2) lattice gauge theory after fixing
MAG. The Abelian projection means coset decomposition
of the non-Abelian lattice gauge field UμðxÞ into the
Abelian field uμðxÞ and the coset field CμðxÞ [7]:

UμðxÞ ¼ CμðxÞuμðxÞ: ð2Þ
The Abelian gauge field can be further decomposed into the
monopole (singular) part umon

μ ðxÞ and the photon (regular)

part uphμ ðxÞ [20]:
uμðxÞ ¼ umon

μ ðxÞuphμ ðxÞ: ð3Þ
In terms of the corresponding angles it has the form

θμðxÞ ¼ θmon
μ ðxÞ þ θphμ ðxÞ; ð4Þ

where θμðxÞ ∈ ð−π; π� is defined by uμðxÞ ¼ eiθμðxÞ, and
θmon;ph
μ ðxÞ are defined analogously. θmon

μ ðxÞ can be pre-
sented as follows:

θmon
μ ðxÞ ¼ −2π

X

y

Dðx − yÞ∂ 0
νmνμðyÞ; ð5Þ

where DðxÞ is lattice inverse Laplacian, ∂ 0
ν is lattice back-

ward derivative, mνμðxÞ are Dirac plaquettes. This solu-
tion satisfies the Landau gauge condition ∂ 0

μθ
mon
μ ðxÞ ¼ 0.

We calculate the usual Wilson loops

WðCÞ ¼ 1

2
TrWðCÞ;WðCÞ ¼

�Y

l∈C
UðlÞ

�
; ð6Þ

the monopole Wilson loops

WmonðCÞ ¼
1

2
Tr

�Y

l∈C
umonðlÞ

�
; ð7Þ

and the non-Abelian Wilson loops with removed monopole
contribution

WmodðCÞ ¼
1

2
TrWmodðCÞ; WmodðCÞ ¼

�Y

l∈C
ŨðlÞ

�
;

ð8Þ

where the modified non-Abelian gauge field ŨμðxÞ is
defined as

ŨμðxÞ ¼ CμðxÞuphμ ðxÞ: ð9Þ

Note that uphμ ðxÞ is the Abelian projection of ŨμðxÞ and
involves no monopoles.
It is known that MAG fixing leaves Uð1Þ gauge

symmetry unbroken. The general form of the Uð1Þ gauge
transformation is given by

θ0μðxÞ ¼ θμðxÞ þ ∂μωðxÞ þ 2πnμðxÞ; ð10Þ

where θ0μðxÞ;ωðxÞ ∈ ð−π; π�, nμðxÞ ¼ 0;�1. Thus there
are “small” gauge transformations with nμðxÞ ¼ 0 and
“large” gauge transformations with nμðxÞ ¼ �1. The
monopole Wilson loop WmonðCÞ is invariant under these
gauge transformations. This is not true forWmodðCÞ. It was
shown in [1] that WmodðCÞ is invariant only under “small”
gauge transformations and it is necessary to remove “large”
gauge transformations. To this end we fix the Uð1Þ Landau
gauge using the gauge condition

max
ω

X

x;μ

cosðθ0μðxÞÞ: ð11Þ

Up to Gribov copies this condition fixes configuration of
Dirac plaquettes mμνðxÞ completely. Fixing Uð1Þ Landau
gauge is excessive for our purposes but is eligible for
calculations of Wmod.
We calculated r × t rectangular Wilson loops Wðr; tÞ,

Wmonðr; tÞ and Wmodðr; tÞ. To extract respective static
potentials the APE smearing [21] has been employed.
Computations were done with the Wilson lattice action at
β ¼ 2.4, 2.5 [for SU(2) gauge group β ¼ 4=g2, where g is
the bare coupling constant] on 244 lattices and at β ¼ 2.6
on 324 lattices using 100 statistically independent configu-
rations. With the tadpole improved action [19] the simu-
lations were made at β ¼ 3.4 on 244 lattices. The
simulations in QC2D were made on 324 lattices with small
lattice spacing a ¼ 0.044 fm [22]. To fix MAG, the
simulated annealing algorithm [4] with one gauge copy
was used.
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III. STATIC POTENTIAL IN FUNDAMENTAL AND
ADJOINT REPRESENTATIONS

We present our results for the sum VmonðrÞ þ VmodðrÞ
and compare it with the non-Abelian potential VðrÞ in
Fig. 1 for lattice Wilson action and three lattice spacings.
One can see that the non-Abelian static potential VðrÞ is
well approximated by this sum, i.e.,

VðrÞ ≈ VmonðrÞ þ VmodðrÞ: ð12Þ
This observation can be formulated in the following way:
potential VðrÞ between static sources interacting with the

non-Abelian gauge field UμðxÞ can be approximated by the
sum of the potential VmonðrÞ between the sources interact-
ing only with the monopole field Umon

μ ðxÞ and the potential
VmodðrÞ between the sources interacting only with the
modified (monopoleless) field Umod

μ ðxÞ.
We fitted all static potentials to the fit function

VðrÞ ¼ V0 þ α=rþ σr: ð13Þ

The results for the Coulomb coefficient α, the string
tension σa2 in units of lattice spacing a as well as the values

FIG. 1. Comparison of the non-Abelian potential VðrÞ (filled squares) with the sum VmodðrÞ þ VmonðrÞ (filled circles) for β ¼ 2.4 (left
upper panel), β ¼ 2.5 (right upper panel), β ¼ 2.6 (lower panel). VmodðrÞ (empty squares) and VmonðrÞ (empty circles) are also depicted.
The solid curve shows the fit to Eq. (13). Two dashed curves show its Coulomb and linear terms with adjusted constant terms.
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of a in physical units are presented in Table I. The self energy
V0 is not important and is not shown. The values of a in
physical units are obtained from the lattice data on σa2

reported in Ref. [23] with the use of the phenomenological
value σ ¼ 0.89 GeV=fm. It should be noted that our data on
σa2 are in general consistent with those presented in [23].
One can see from Fig. 1 that the agreement between

VmonðrÞ þ VmodðrÞ and VðrÞ improves with decreasing
lattice spacing. This is the main result of this paper. To
make it more explicit we show in Fig. 2 the relative
deviation determined as follows:

ΔðrÞ ¼ VðrÞ − ðVmonðrÞ þ VmodðrÞÞ
VðrÞ : ð14Þ

More extended study with increased precision and an
enlarged set of lattices is needed to make final conclusion
about the continuum limit.
In Fig. 1 we also show the monopole VmonðrÞ and the

modified field VmodðrÞ potentials separately. We find that
VmonðrÞ is linear at large distances and has small curvature

TABLE I. Parameters of the potentials obtained by fits to the function (13).

β ¼ 2.4, a ¼ 0.12 fm β ¼ 2.5, a ¼ 0.09 fm β ¼ 2.6, a ¼ 0.06 fm β ¼ 3.4, a ¼ 0.09 fm

Potential σa2 α σa2 α σa2 α σa2 α

V 0.067(1) −0.31ð1Þ 0.033(1) −0.290ð4Þ 0.0184(5) −0.25ð1Þ 0.032(1) −0.26ð1Þ
Vmon þ Vmod 0.058(1) −0.27ð1Þ 0.030(1) −0.27ð1Þ 0.0175(4) −0.25ð1Þ 0.029(1) −0.25ð1Þ
Vmon 0.060(1) −0.002ð1Þ 0.030(1) 0.015(3) 0.0167(6) 0.06(2) 0.028(1) 0.034(5)
Vmod � � � −0.25ð1Þ � � � −0.27ð1Þ 0.002(1) −0.27ð1Þ � � � −0.30ð1Þ

FIG. 2. The relative deviation ΔðrÞ defined in Eq. (14) vs
distance r for three values of β.

FIG. 3. Comparison of the non-Abelian potential VðrÞ (filled squares) with the sum VmodðrÞ þ VmonðrÞ (filled circles) for improved
action at β ¼ 3.4 (left) and for QC2D (right). VmodðrÞ (empty squares) and VmonðrÞ (empty circles) are also shown. The solid curve and
dashed curves carry the same meaning as in Fig. 1.
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at small distances, which can be well fitted by the Coulomb
behavior with small positive coefficient. The slope of
VmonðrÞ at large distances agrees better and better with
that of VðrÞ with decreasing lattice spacing. We shall note
that increasing of the ratio σmon=σ with decreasing lattice
spacing was reported before in [5].
It can be seen that VmodðrÞ is of Coulombic form. Indeed

it can be very well fitted by the fitting function Vmod
0 −

αmod=r with αmod ¼ 0.27ð1Þ for β ¼ 2.5 and similar values
for β ¼ 2.4, 2.6. One can see from Fig. 1 that VmodðrÞ is in
a very good agreement with the Coulombic part of VðrÞ.
Thus removing the monopole contribution from the Wilson

loop operator leaves Wilson loop which has no area law,
i.e., the confinement property is lost. This result is similar
to that obtained in [18] after removing P-vortices.
Apart from the approach to the continuum limit we

studied the question of universality of the decompo-
sition Eq. (12). The simulations were made with the
tadpole improved action at β ¼ 3.4. The lattice spacing
at this β is approximately equal to that of the Wilson action
at β ¼ 2.5. The results are presented in Fig. 3 (left) and
in Table I. One can see that agreement between VðrÞ
and VmodðrÞ þ VmonðrÞ is nearly as good as in Fig. 1
for β ¼ 2.5.

FIG. 4. Comparison of the adjoint non-Abelian potential VadjðrÞ (filled squares) with the sum Vmod;adjðrÞ þ Vmon;q2ðrÞ (filled circles)
for Wilson action at β ¼ 2.4 (left, upper panel), β ¼ 2.5 (right, upper panel), β ¼ 2.6 (left, lower panel) and for improved action at
β ¼ 3.4 (right, lower panel). Vmod;adjðrÞ (empty squares) and Vmon;q2ðrÞ (empty circles) are also shown. The solid curve and dashed
curves carry same meaning as in Fig. 1.
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Furthermore, we did the same study in QC2D on 324

lattices with small lattice spacing a ¼ 0.044 fm. The lattice
field configurations were generated at pion mass mπ ¼
740 MeV with the rooted staggered fermion action corre-
sponding in the continuum limit to Nf ¼ 2 quark flavors
and Symanzik improved gauge action (for details of
simulations see, e.g., [22]). The results are presented in
Fig. 3 (right). One can see clearly that approximate
decomposition is fulfilled with rather high precision in
this case as well.
Next we come to the static potential in the adjoint

representation. It is well known that in the adjoint case the
static quarks are screened at large distances by the gluons
[24]. Still, the overlap of the adjoint Wilson loop computed
here with the broken string state is known to be so tiny that
the string breaking cannot be observed without adding
explicitly the glue-lump state to the space of trial states
[25]. Moreover, the adjoint string breaking distance [25] is
beyond the range of the distances considered here. The
Abelian projection for the adjoint representation was
studied in [26]. In the adjoint representation case we check
the validity of the relation

VadjðrÞ ≈ Vadj;modðrÞ þ Vmon;q2ðrÞ: ð15Þ

Here Vmon;q2ðrÞ is the static potential computed with the
use of the lattice gauge field umon;q2

μ ðxÞ ¼ ðumon
μ ðxÞÞ2. Our

numerical results for three lattice spacings for the Wilson
action and for one lattice spacing for the improved action
are presented in Fig. 4. The results of the fits to Eq. (13) are
presented in Table II where notations σadj and αadj were
used for the linear and Coulomb terms coefficients. We
show χ2=Ndof in this Table to demonstrate the fit quality.
One can see that in the adjoint case the precision of our

results is lower than for the fundamental representation
case. Still it is seen that the relation (15) is satisfied quite
well. The signature of improving agreement between lhs
and rhs in (15) with decreasing lattice spacing is also
seen although this should be checked in more precise
measurements.

IV. CONCLUSIONS

We studied the decomposition of the static potential in
the fundamental and adjoint representations into the linear
term produced by the monopole (Abelian) gauge field
UmonðxÞ and the Coulomb term produced by the monop-
oleless non-Abelian gauge field UmodðxÞ. We confirm the
results of Ref. [1] and improve them in a few respects. First,
we made computations with varying lattice spacing and
found that in both representations the agreement becomes
better with decreasing lattice spacing. Our results suggest
that the relations (12) and (15) become exact in the
continuum limit. Further work is needed to provide more
evidence for this conclusion. Second, we checked that the
decomposition is valid also in the case of improved lattice
action and in the theory with quarks. These results make it
even more interesting to check this decomposition in the
case of SUð3Þ gauge group.
There are few conclusions to be drawn from the

decomposition (12). It suggests that the monopole part
UmonðxÞ is responsible for the classical part of the hadronic
string energy while the monopoleless part UmodðxÞ pro-
duces the fluctuating part of that energy, i.e., while at small
distancesUmodðxÞ should reproduce the perturbative results
at large distances it contributes to the nonperturbative
physics.
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TABLE II. Parameters of the adjoint potentials obtained by fits to the function (13). In the columns for χ2=Ndof the number in
parenthesis shows Ndof .

β ¼ 2.4, a ¼ 0.12 fm β ¼ 2.5, a ¼ 0.09 fm β ¼ 2.6, a ¼ 0.06 fm

Potential σadj=σ αadj χ2=NdofðNdofÞ σadj=σ αadj χ2=NdofðNdofÞ σadj=σ αadj χ2=NdofðNdofÞ
Vadj 2.8(2) −0.61ð4Þ 0.28 (5) 2.3(2) −0.80ð5Þ 0.20 (6) 2.1(2) −0.74ð4Þ 0.66 (10)
Vmon;q2 þ Vadj;mod 1.6(1) −0.66ð3Þ 0.56 (4) 1.8(1) −0.67ð5Þ 0.34 (7) 1.85(4) −0.68ð2Þ 0.30 (10)
Vmon;q2 1.9(1) −0.010ð4Þ 0.72 (5) 1.85(5) 0.006(4) 0.06 (7) 1.67(3) 0.001(1) 1.2 (11)
Vadj;mod � � � −0.49ð8Þ 2.2 (5) � � � −0.65ð1Þ 1.1 (8) � � � −0.74ð1Þ 0.86 (11)
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