
Lattice QCD calculation of K → lνll0 +l0 − decay width

Xin-Yu Tuo,1 Xu Feng ,1,2,3,* Lu-Chang Jin ,4,5 and Teng Wang1
1School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University,

Beijing 100871, China
2Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
3Center for High Energy Physics, Peking University, Beijing 100871, China

4Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
5RIKEN-BNL Research Center, Brookhaven National Laboratory,

Building 510, Upton, New York 11973, USA

(Received 23 March 2021; accepted 1 March 2022; published 28 March 2022)

We develop a methodology for the computation of the K → lνll0þl0− decay width using lattice QCD
and present an exploratory study here. We use a scalar function method to account for the momentum
dependence of the decay amplitude and adopt the infinite-volume reconstruction method to reduce the
systematic errors such as the temporal truncation effects and the finite-volume effects. We then perform a
four-body phase-space integral to obtain the decay width. The only remaining technical problem is the
possible power-law finite-volume effects associated with the process of K → ππlνl → lνll0þl0−, where
the intermediate state involves multiple hadrons. In this work, we use a gauge ensemble of a twisted-mass
fermion with a pion mass mπ ¼ 352 MeV and a nearly physical kaon mass. At this kinematics, the ππ in
the intermediate state cannot be on shell simultaneously, as 2mπ > mK , and the finite-volume effects
associated with the ππ state are exponentially suppressed. Using the developed methods mentioned above,
we calculate the branching ratios for four channels of K → lνll0þl0−, and obtain the results comparable to
the experimental measurements and ChPT predictions. Our work demonstrates the capability of lattice
QCD to improve the Standard Model prediction in the K → lνll0þl0− decay width.
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I. INTRODUCTION

Kaon decays, especially some rare kaon decays with
ultrasmall branching ratios, play an important role in current
high-precision tests of the Standard Model, and they provide
excellent channels to probe physics beyond the Standard
Model [1]. The experimental and theoretical studies of kaon
decays are believed to be more and more important nowa-
days, because kaon decays have both theoretically clean
branching ratios in experimental searches and gradually
improved Standard Model predictions [2].
As a typical rare decay, K → lνll0þl0− involves the

second-order electroweak interaction, providing a good
place to test Standard Model predictions. In experiments,
three types of K → lνll0þl0− decays have been observed:
K → eνeeþe−, K → μνμeþe−, and K → eνeμþμ−, with
small branching ratios on the order of Oð10−8Þ [3,4].

In theoretical study, the determination of the K →
lνll0þl0− decay width is highly nontrivial due to the
nonperturbative nature of kaon internal structure. Since the
phase space of K → lνll0þl0− allows the virtual photon to
carry relatively large momentum—e.g., the momentum
close to the kaon mass—understanding the momentum
dependence of the decay amplitude is essential in the
theoretical calculation of the K → lνll0þl0− decay width.
To be specific, apart from the decay constant which
describes the pointlike interaction, four form factors are
involved to describe the structure-dependent contribution in
K → lνll0þl0− [5]. The momentum dependence of these
form factors is non-negligible. In experiments, it produces
different results by treating the form factors as constants or
considering the relevant momentum dependence through a
simple vector-meson-dominance model [3]. Therefore,
properly including the momentum dependence of the decay
amplitude is important for both theoretical predictions and
experimental measurements.
Theoretical study of the K → lνll0þl0− amplitude and

form factors has been carried out using chiral perturbation
theory (ChPT) [5], where form factors are estimated at the
next-to-leading order (NLO), and predictions close to
experimental results are obtained. However, one should
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note that the form factors FV and FA are treated as
constants at NLO [5], and the momentum dependence
only appears at next-to-next-to-leading order (NNLO)
[6,7]. Thus, the theoretical uncertainties due to momentum
dependence have not been estimated thoroughly by the past
ChPT studies, which leads to a difficulty to directly
compare the results between experiments and ChPT.
As a generic nonperturbative approach, lattice QCD can

help to improve the SM predictions of K → lνll0þl0−

decay width. In the past few years, some rare kaon decays
have been studied successfully using lattice QCD, such as
Kþ → πþνν̄ [8–12] and K → πlþl− [13,14]. Besides
these, other processes involving both weak and electro-
magnetic interactions—e.g., the radiative corrections to
the leptonic and semileptonic decays—have also been
investigated recently [15–24]. It is interesting to have
the lattice QCD study extend its horizon to include the
K → lνll0þl0− decay, where the final state involves four
daughter particles.
Here we find that a direct lattice QCD calculation of

the K → lνll0þl0− decay width is encountered with the
following technical problems:
(1) General finite-volume effects: In order to calculate the

decay width, one needs to know the arbitrary mo-
mentum dependence of the decay amplitude. How-
ever, through discrete Fourier transformation the
lattice data from a finite-volume box can only access
discrete momenta. This problem appears as finite-
volume effects in the calculation of decay width.

(2) Temporal truncation effects: As is shown in Sec. III,
using the hadronic function in coordinate space, we
perform an integral in Euclidean time to obtain the
hadronic function with an assigned momentum. In
the process of K → K�l0þl0− → lνll0þl0−, the K�
in the intermediate state carries nonzero momentum,
and thus the energy of the intermediate state is larger
than that of the initial/final state. As a result, the time
integral converges when the integral range ap-
proaches to infinity. However, in the soft-photon
region, where the four-momentum of the electro-
magnetic current ðE; P⃗Þ is close to zero, the integral
converges very slowly. Since the lattice temporal
extent T is finite, we find that the temporal trunca-
tion effects are not negligible. An extrapolation to
infinitely large time extent is required to achieve a
precise calculation.

(3) Complex calculation procedures: The calculation
of K → lνll0þl0− decay width is of particular
complication, because it involves several form fac-
tors and four-body phase-space integral. One needs
to construct a reliable and convenient approach to
calculate the decay amplitude at arbitrary momenta
and perform the phase-space integral.

(4) Specific power-law finite-volume effects associated
with K → ππlνl → lνll0þl0−: This subprocess is

essentially a long-distance process involving multi-
hadrons in the intermediate state. When the mo-
mentum of the electromagnetic current is fixed, the
corresponding power-law finite-volume effects have
been studied first by Ref. [25] using the KL − KS
mass difference as an example, and later by Ref. [26]
for more general cases. When calculating the decay
width, the momentum of the electromagnetic current
runs over the whole allowed phase-space region,
while the finite-volume correction becomes more
complicated and still remains an open problem. This
situation also happens for the K → μþμ− decay,
where two off-shell photons are involved [27].

This work is aimed at solving the first three technical
problems, building a convenient calculation procedure,
and presenting the lattice results of K → lνll0þl0− decay
width. The central part of this paper introduces the
following methodologies: (1) a scalar function method to
compute the hadronic function, (2) an infinite-volume
reconstruction (IVR) method [28] to reduce the unphysical
temporal truncation and finite-volume effects, and (3) a
convenient phase-space integration method to obtain the
decay width.
With these developed methods, we calculate K →

lνll0þl0− decay width using a gauge ensemble of
Nf ¼ 2þ 1þ 1-flavor twisted-mass fermion at the
unphysical pion mass mπ ¼ 0.3515ð15Þ GeV. The valance
strange quark mass is tuned to make the kaon mass
mK ¼ 0.5057ð13Þ GeV close to its physical value. The
lattice results of the branching ratios are summarized in
Table I and are found to be comparable to experimental
measurements and ChPT predictions. Systematic errors of
our lattice calculation mainly come from unphysical quark
mass, nonzero lattice spacing, and residual finite-volume
effects. Calculation at the physical quark mass together
with the continuum extrapolation will be included in our
future work.1

In this paper, we will first introduce in Sec. II the decay
amplitude of K → lνll0þl0− in Minkowski space. This
part follows Refs. [5,30] and is also a necessary part of
lattice calculation. In Sec. III, we will establish a con-
nection between the Minkowski hadronic function and the
Euclidean one, and we will give a more detailed description
of the computational techniques mentioned above, which
is the most central part of this paper. Finally, we present
the numerical results in Sec. IV and reach a conclusion
in Sec. V.

II. DECAY WIDTH OF K → lνll0 +l0 −

Our program aims at the calculation of the branching
ratios of K → lνll0þl0− via

1As this paper is under peer review, a parallel lattice study is
being performed to compute the decay width based on the
extraction of the form factors [29].
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Br½K → lνll0þl0−�

¼ 1

2mKΓK

Z
dΦ4jMðK → lνll0þl0−Þj2; ð1Þ

where ΓK ¼ 5.3168ð86Þ × 10−14 MeV is the kaon decay
width from the Particle Data Group [31].2 MðK →
lνll0þl0−Þ is the decay amplitude, and

R
dΦ4 indicates

a four-body phase-space integral.
Our approach to calculating the K → lνll0þl0− decay

width includes three major steps. The first step is to
determine the Minkowski hadronic functions

Hν
MðqÞ ¼ h0jJνW;Mð0ÞjKðqÞi;

Hμν
M ðp; qÞ ¼

Z
d4xeip·xh0jTfJμem;MðxÞJνW;Mð0ÞgjKðqÞi;

ð2Þ

where the electromagnetic and weak currents in Minkowski
space are defined as Jμem;M ¼ 2

3
ūγμu − 1

3
d̄γμd − 1

3
s̄γμs and

JνW;M ¼ s̄γνð1 − γ5Þu. p ¼ ðE; p⃗Þ and q ¼ ðmK; 0⃗Þ are the
Minkowski four-momenta of the electromagnetic current
and initial kaon state. We define the parameters ρ1 and ρ2 as

p2 ¼ ρ1m2
K; ðq − pÞ2 ¼ ρ2m2

K: ð3Þ

In a lattice QCD study, the hadronic functions are generally
calculated in Euclidean space. The connection between
Minkowski and Euclidean hadronic functions is established
in Sec. III.
As a second step, the decay amplitude MðK →

lνll0þl0−Þ is constructed by combining the hadronic
function Hμν

M ðp; qÞ with the leptonic factor [5]. Here we
target on the determination of the amplitude M with
arbitrary momentum dependence.
As a last step, the decay amplitude is used as an input

in the integral [Eq. (1)] to obtain the decay width. The
definition of the four-body phase-space integral is provided
in Ref. [30], which is originally used for the process of
K → ll̄l0l̄0. We use the Monte Carlo method to perform
the phase-space integration.

A. Hadronic function in Minkowski space

In the continuum theory, the hadronic functionHμν
M ðp; qÞ

satisfies the Ward identity [5]

pμH
μν
M ðp; qÞ ¼ fKqν; ð4Þ

with fK being the kaon decay constant. Using the
Ward identity, Hμν

M ðp; qÞ can be written in terms of form
factors [21] as

Hμν
M ðp; qÞ ¼ H1½p2gμν − pμpν� þH2½ðp · q − p2Þpμ − p2ðq − pÞμ�ðq − pÞν − i

FV

mK
εμναβpαqβ

þ FA

mK
½ðq · p − p2Þgμν − ðq − pÞμpν� þ fK

�
gμν þ ð2q − pÞμðq − pÞν

2q · p − p2

�
: ð5Þ

Using the hadronic function Hν
MðqÞ, one can construct

the amplitude for the subprocess of K→lνl→lνll0þl0−,
as shown in Fig. 1. Using the hadronic function Hμν

M ðp; qÞ,

the remaining contribution to the decay amplitude of K →
lνll0þl0− can be constructed. For the case of l0 ¼ l, the
decay amplitude consists of two parts, shown as the
“Direct” and “Exchange” diagrams in Fig. 2. For l ≠ l0,
only the “Direct” diagram contributes.
Here we use the case of l0 ¼ l to introduce the

expressions for the decay amplitudes. The four-momenta

TABLE I. Comparison of branching ratios of Br½K → lνll0þl0−� among our lattice-QCD calculation (atmπ ¼ 352 MeV), ChPT and
experiments. In order to compare results with ChPT, we choose the same cuts mee > 140 MeV as those in Ref. [5], where mee is the
invariant mass of the eþe− pair. For decays with eeþe−, the cuts are applied to both invariant masses. (The kaon mass mK used in the
lattice calculation is slightly different from the physical kaon mass mK;phy. For the lattice results, we rescale the cuts for mee as
mee
mK

> 140 MeV
mK;phy

.) The experimental results of K → eνeeþe− and K → μνμeþe− are the extrapolated values from mee > 150 MeV and

145 MeV to mee > 140 MeV. The extrapolation formulas are given in Ref. [3].

Channels mee cuts Lattice (mπ ¼ 352 MeV) ChPT [5] Experiments

Br½K → eνeeþe−� 140 MeV 1.77ð16Þ × 10−8 3.39 × 10−8 2.91ð23Þ × 10−8 [3]
Br½K → μνμeþe−� 140 MeV 10.59ð33Þ × 10−8 8.51 × 10−8 7.93ð33Þ × 10−8 [3]
Br½K → eνeμþμ−� � � � 0.72ð5Þ × 10−8 1.12 × 10−8 1.72ð45Þ × 10−8 [4]
Br½K → μνμμ

þμ−� � � � 1.45ð6Þ × 10−8 1.35 × 10−8 � � �

2Note that we do not calculate the total kaon decay width from
the lattice.
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of the final-state leptons are defined as pi with i¼1, 2, 3, 4,
as shown in Fig. 2. The decay amplitudes are given as

iMD ¼ −i
GFe2V�

usffiffiffi
2

p
s12

½fKLμðp1; p2; p3; p4Þ

−Hμν
M ðp12; qÞlνðp3; p4Þ�½ūðp1Þγμvðp2Þ�;

iME ¼ þi
GFe2V�

usffiffiffi
2

p
s14

½fKLμðp1; p4; p3; p2Þ

−Hμν
M ðp14; qÞlνðp3; p2Þ�½ūðp1Þγμvðp4Þ�; ð6Þ

where the terms with a factor of fK arise from Fig. 1, which
has both the “Direct” and the “Exchange” contribution if
l ¼ l0, and the terms with a factor of Hμν

M come from
Fig. 2. Here, MD and ME stand for the amplitudes from
the “Direct” and “Exchange” diagrams, respectively. The
photon momentum is given by pij ≡ pi þ pj, and sij ≡ p2

ij

is the momentum squared. The leptonic factors Lμ and lμ

are defined as

lμðp3; p4Þ ¼ ūðp3Þγμð1 − γ5Þvðp4Þ;
Lμðp1; p2; p3; p4Þ ¼ lμðp3; p4Þ þ L0μðp1; p2; p3; p4Þ;

ð7Þ

with

L0μðp1; p2; p3; p4Þ

¼ mlūðp3Þð1þ γ5Þ
2pμ

4 þ =p12γ
μ

m2
l − ðp4 þ p12Þ2

vðp4Þ: ð8Þ

Note that ū and v in Eqs. (7) and (8) stand for the spinors of
l and νl, which form a charged weak current, while ū and v
in Eq. (6) stand for the spinors of lþ and l− from an
electromagnetic current. Finally, V�

us is the CKM matrix
element, and GF is the Fermi constant.
It should be noticed that, the term fKgμν in Eq. (5) can

produce a contribution proportional to fKlμ, which exactly
cancels the fKlμ term contained by fKLμ in Eq. (6). We
find that the fKlμ term from Fig. 1 would be IR-divergent in
the limit of vanishing lepton mass. In order to maintain the
exact cancellation in the large IR contribution and reduce
the statistical uncertainty, we replace Hμν

M with H0μν
M in

Eq. (6), where H0μν
M is defined as

H0μν
M ðp; qÞ≡Hμν

M ðp; qÞ − fKgμν

¼ Hμν
M ðp; qÞ − pρH

ρ0
M ðp; qÞ
mK

gμν: ð9Þ

In this way, the amplitudes MD and ME can be written as

FIG. 2. Contribution of off-shell photon radiation from quarks in K → lνllþl−. The hadronic part is described by Hμν
M ðp; qÞ.

FIG. 1. Contribution of off-shell photon radiation from the
final-state lepton in K → lνll0þl0−. The hadronic part is
described by Hν

MðqÞ.
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iMD ¼ −i
GFe2V�

usffiffiffi
2

p
s12

½fKL0μðp1; p2; p3; p4Þ

−H0μν
M ðp12; qÞlνðp3; p4Þ�½ūðp1Þγμvðp2Þ�;

iME ¼ þi
GFe2V�

usffiffiffi
2

p
s14

½fKL0μðp1; p4; p3; p2Þ

−H0μν
M ðp14; qÞlνðp3; p2Þ�½ūðp1Þγμvðp4Þ�: ð10Þ

Using MD and ME as input, the branching ratio of
K → lνll0þl0− for l ¼ l0 can be calculated through

Br½K → lνllþl−�

¼ 1

2mKΓK

Z
dΦ4ðjMDj2 þ jMEj2 þ 2Re½MDM�

E�Þ:

ð11Þ

For l ≠ l0, we only have the jMDj2 term in the above
equation:

Br½K → lνll0þl0−� ¼ 1

2mKΓK

Z
dΦ4jMDj2: ð12Þ

B. Phase-space integral

The definition of the four-body phase-space integral
follows Ref. [30]. In Ref. [30], the formulas are simplified
for the case of the daughter particles with the same masses.
Here, we generalize the formulas to the case in which the
daughter particles have different masses.
The four-body phase space dΦ4 is defined as

dΦ4 ¼
Sλm4

K

214π6
dx12dx34dy12dy34dϕ: ð13Þ

Here, S is a symmetry factor with S ¼ 1 for the case of
l ≠ l0, and S ¼ 1

2
for l ¼ l0. The phase-space variables

x12, x34, y12, y34, and ϕ are five independent Lorentz-
invariant quantities, with xij and yij defined as

x12 ¼
s12
m2

K
; x34 ¼

s34
m2

K
;

y12 ¼
2p̄12 · p34 − 2p12 · p34δ12

λm2
K

;

y34 ¼
2p̄34 · p12 − 2p12 · p34δ34

λm2
K

; ð14Þ

where p̄ij ≡ pi − pj, λ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x12 − x34Þ2 − 4x12x34

p
,

and δij ≡ m2
i−m

2
j

sij
. The indices 1,2,3,4 specify the particles

in the final state. The quantity ϕ can be expressed as

εμνρσp
μ
1p

ν
2p

ρ
3p

σ
4 ¼ −

λm4
Kω

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ212 − y212Þðλ234 − y234Þ

q
sinϕ;

ð15Þ

with

λij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

m2
i

sij
−
m2

j

sij

�2

− 4
m2

i m
2
j

s2ij

s
; ω ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
x12x34

p
:

ð16Þ

To create a Monte Carlo generator, it is useful to assign
each particle a four-momentum in the rest frame of the kaon
in terms of the phase-space variables as

E1ð2Þ ¼ mK
ð1þ δÞð1� δ12Þ � λy12

4
;

E3ð4Þ ¼ mK
ð1 − δÞð1� δ34Þ � λy34

4
;

p⃗1ð2Þ ¼ ∓mK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x12
4

ðλ212 − y212Þ
r

x̂

þmK
λð1� δ12Þ � ð1þ δÞy12

4
ŷ;

p⃗3ð4Þ ¼ mK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x34
4

ðλ234 − y234Þ
r

ð∓ cosϕx̂� sinϕẑÞ

−mK
λð1� δ34Þ � ð1 − δÞy34

4
ŷ; ð17Þ

with δ≡ x12 − x34. The range of the phase-space variables
are adjusted as

�
m1 þm2

mK

�
2

≤ x12 ≤
�
1 −

m3 þm4

mK

�
2

;�
m3 þm4

mK

�
2

≤ x34 ≤ ð1 − ffiffiffiffiffiffi
x12

p Þ2;

− λij ≤ yij ≤ λij; 0 ≤ ϕ ≤ 2π: ð18Þ

III. METHODOLOGIES OF LATTICE
CALCULATION

The K → lνll0þl0− decay involves several form fac-
tors, as given in Eq. (5). The classification of these form
factors requires the constraint from the Ward identity. In the
lattice calculation, the Ward identity can be easily violated
either by the lattice artifacts (e.g., due to the usage of local
vector current) or by the finite-volume effects (e.g., due to
the usage of the arbitrary momentum). These systematic
effects significantly affect the precise determination of the
form factors from lattice QCD. Note that our target is to
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calculate the total decay width, and the determination of
each individual form factor is not a necessary step. In this
work, we develop an approach called the scalar function
method, which provides a convenient way to represent
the lattice results for coordinate space matrix elements.
Momentum-space matrix elements can be obtained from
the scalar function representation with automatic rotational
averaging. The IVR method is then applied to make the
corrections of the temporal truncation effects and finite-
volume effects for the decay amplitude. More details of the
methodologies are given as follows.

A. Construction of Minkowski hadronic function
using lattice data

In order to reproduce the Minkowski hadronic function
using Euclidean lattice data, we shall first establish the
relation between the hadronic functions in Euclidean and
Minkowski spacetime.
In Euclidean spacetime, the hadronic function is

defined as

Hμν
E ðxÞ ¼ h0jTfJμemðxÞJνWð0ÞgjKðQÞi; ð19Þ

where Q ¼ ðimK; 0⃗Þ is the Euclidean four-momentum of
the initial kaon state. Hμν

E ðxÞ can be extracted from a three-
point correlation function, Cμνðx⃗; t;ΔTÞ:

Cμνðx⃗; t;ΔTÞ ¼
� hJμemðx⃗; tÞJνWð0⃗; 0Þϕ†

Kð−ΔTÞi; t ≥ 0;

hJμWð0⃗; 0ÞJνemðx⃗; tÞϕ†
Kðt − ΔTÞi; t < 0:

ð20Þ

We choose sufficiently large ΔT to guarantee kaon
ground-state dominance. Then the hadronic function
Hμν

E ðx⃗; tÞ can be determined through

HðLÞ;μν
E;A=Vðx⃗;tÞ¼

�N−1
K ZVZA=VemKΔTCμν

A=Vðx⃗;t;ΔTÞ; t≥0;

N−1
K ZVZA=VemKðΔT−tÞCμν

A=Vðx⃗;t;ΔTÞ; t<0:

ð21Þ
In Eq. (21), we have separated the weak current into
axial-vector-current and vector-current parts by using the
subscript A=V. ZA and ZV are the corresponding renorm-
alization factors. We use the superscript (L) to emphasize
that this hadronic function is calculated in the finite volume.
The normalization factor NK ¼ hKjϕ†

Kð0Þj0i=ð2mKÞ and
the kaon mass mK can be calculated from the lattice two-
point functions.
For simplicity, let us first consider the infinite-volume

Euclidean hadronic function Hμν
E ðxÞ. In momentum space,

it is given by

Hμν
E ðP;QÞ ¼ −i

Z
T=2

−T=2
dt

Z
d3x⃗eEt−ip⃗·x⃗Hμν

E ðxÞ ð22Þ

with the Euclidean momenta

P¼ðiE;p⃗Þ; −P2¼ρ1m2
K; −ðQ−PÞ2¼ρ2m2

K: ð23Þ
In order to calculate decay width, the Euclidean function

Hμν
E ðP;QÞ should be related to the Minkowski one

Hμν
M ðp; qÞ, which is defined in Sec. II. This relation can

be established by inserting the complete set of intermediate
states into Hμν

M ðp; qÞ through

Hμν
M ðp; qÞ ¼

Z
∞

0

dt
X
n

h0jJμem;Mð0Þjnðp⃗ÞiMhnðp⃗ÞjJνW;Mð0ÞjKðqÞiMeiðE−EnþiϵÞt

þ
Z

0

−∞
dt
X
ns

h0jJνW;Mð0Þjnsð−p⃗ÞiMhnsð−p⃗ÞjJμem;Mð0ÞjKðqÞiMeiðEþEns−mK−iϵÞt

¼ i
X
n

1

E − En þ iϵ
h0jJμem;Mð0Þjnðp⃗ÞiMhnðp⃗ÞjJνW;Mð0ÞjKðqÞiM

− i
X
ns

1

Eþ Ens −mK − iϵ
h0jJνW;Mð0Þjnsð−p⃗ÞiMhnsð−p⃗ÞjJμem;Mð0ÞjKðqÞiM: ð24Þ

For t > 0 and t < 0, the intermediate states are denoted as the state jni with strangeness S ¼ 0 and the state jnsi
with S ¼ 1, respectively. The matrix elements h� � �iM carry a subscript M, which reminds us that they are defined
in Minkowski space. The low-lying states for jni are given by the p-wave ππ states, which couple to the ρ
resonance. The lowest state for jnsi is given by the jKi state. The relevant diagrams for these low-lying states are
shown in Figs. 3 and 4.
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When inserting the complete set of intermediate states into the Euclidean function Hμν
E ðP;QÞ, we have

Hμν
E ðP;QÞ ¼ −i

Z
T=2

0

dt
X
n

h0jJμemð0ÞjniEhnjJνWð0ÞjKðQÞiEeðE−EnÞt

− i
Z

0

−T=2
dt
X
ns

h0jJνWð0ÞjnsiEhnsjJμemð0ÞjKðQÞiEeðEþEns−mKÞt

¼ i
X
n

1 − e−ðEn−EÞT=2

E − En
h0jJμemð0ÞjniEhnjJνWð0ÞjKðQÞiE

− i
X
ns

1 − e−ðEþEns−mKÞT=2

Eþ Ens −mK
h0jJνWð0ÞjnsiEhnsjJμemð0ÞjKðQÞiE: ð25Þ

Differently from the Minkowski expression, we have
introduced a time integral range ½−T=2; T=2� to define
the Euclidean hadronic function. This is because the state n
consists of a continuous set of ππ states. When
En ¼ Eππ < E, the factor e−ðEn−EÞT=2 exponentially grows
as T increases. In this case, one needs to use the finite-

volume hadronic function HðLÞ;μν
E ðP;QÞ, where the low-

lying ππ states are discrete. When a spatial momentum p⃗
is assigned, one can remove the exponential factor of
e−ðEn−EÞT=2 by isolating each low-lying ππ state. After that,

the difference between HðLÞ;μν
E ðP;QÞ and the real part of

Hμν
M ðp; qÞ can be taken into account by the finite-volume

correction formula developed in Refs. [25,26]. The imagi-
nary part ofHμν

M ðp; qÞ can be reproduced by calculating the
on-shell decay amplitudes K → ππlν and γ� → ππ, where
the finite-volume technique is mature [32,33]. The timelike
pion form factor from γ� → ππ has been calculated on
lattice since 2014 [34–36].
In this study, we perform the calculation at the unphys-

ical pion massmπ ¼ 0.3515ð15Þ GeV. As a result, Eππ − E

is always larger than zero. In this case, one could take the

limit of T → ∞ and establish the relation between

FIG. 4. Low-lying-state dominance for t < 0: kaon states.

FIG. 3. Low-lying-state dominance for t > 0: ππ or ρ states.

LATTICE QCD CALCULATION OF K → lνll0þl0− … PHYS. REV. D 105, 054518 (2022)

054518-7



Euclidean and Minkowski matrix elements. Due to the
different convention for the Jμ operator,

hAjJμð0ÞjBiM ∝ ðpμ
A � pμ

BÞ; pμ ¼ ðp0; p⃗Þ;
hAjJμð0ÞjBiE ∝ ðPμ

A � Pμ
BÞ; Pμ ¼ ðip0; p⃗Þ; ð26Þ

where Jμ can be either electromagnetic or weak current,
one can verify that

Hμν
E ðP;QÞjT→∞ ¼ cμνHμν

M ðp; qÞ ð27Þ

with c00 ¼ −1, c0i ¼ ci0 ¼ i, and cij ¼ 1. Thus, we have
shown that the Minkowski hadronic function can be
calculated by Euclidean lattice data.

B. Scalar function method

In the following part of the paper, for simplicity we will
omit the subscript E in the Euclidean hadronic function and
use HμνðxÞ and HμνðP;QÞ to replace Hμν

E ðxÞ, Hμν
E ðP;QÞ. It

is straightforward to compute HμνðP;QÞ using the 4 × 4
Lorentz tensor HμνðxÞ as input:

HμνðP;QÞ ¼ −i
Z

T=2

−T=2
dt

Z
d3x⃗eEt−ip⃗·x⃗HμνðxÞ: ð28Þ

We call this the direct method.
In a realistic lattice calculation, HμνðxÞ is given by the

finite-volume lattice data HðLÞ;μνðxÞ. The data depend on
L3 × T spacetime coordinates, 4 × 4 Lorentz indices, and
two types of current insertions (V=A). Taking a 243 × 48
lattice as an example, the data size is about 650 MB per
configuration, as shown in Table II. The computation of the
decay width requires integration using HðLÞ;μνðxÞ as input
and is thus quite complicated.
In this work, we propose to use the scalar function

method, which could significantly reduce the size of
data input and provide automatic rotational averaging.

This simplification can be achieved by converting
HμνðP;QÞ and HμνðxÞ into the Lorentz scalar functions.
For example, HμνðP;QÞ can be used to construct the
following Lorentz-invariant quantities:

Ĩ1ðρ1; ρ2Þ ¼ −δμνm2
KH

μνðP;QÞ;
Ĩ2ðρ1; ρ2Þ ¼ QμQνHμνðP;QÞ;
Ĩ3ðρ1; ρ2Þ ¼ PμQνHμνðP;QÞ;
Ĩ4ðρ1; ρ2Þ ¼ QμPνHμνðP;QÞ;
Ĩ5ðρ1; ρ2Þ ¼ PμPνHμνðP;QÞ;
Ĩ6ðρ1; ρ2Þ ¼ εμναβPαQβHμνðP;QÞ: ð29Þ

Since the momentum Q satisfies the on-shell condition
Q2 ¼ −m2

K, the quantities Ĩiðρ1; ρ2Þ only depend on two
variables ρ1 and ρ2, which are defined in Eq. (23). Then we
can write HμνðP;QÞ as a combination of

HμνðP;QÞ ¼
X6
i¼1

w̃μν
i ðP;QÞĨiðρ1; ρ2Þ; ð30Þ

where w̃μν
i ðP;QÞ are analytically known Lorentz factors.

The way to obtain w̃μν
i ðP;QÞ has been discussed in

Appendix A.
For HμνðxÞ, we can also write them in terms of Lorentz-

invariant quantities through

HμνðxÞ ¼
X6
i¼1

wμν
i ðxÞIiðjx⃗j2; tÞ; ð31Þ

where the Ii’s are defined as

I1ðjx⃗j2; tÞ ¼ δμνHμνðxÞ;

I2ðjx⃗j2; tÞ ¼ −
QμQν

m2
K

HμνðxÞ ¼ H00ðxÞ;

I3ðjx⃗j2; tÞ ¼
xμQν

imK
HμνðxÞ − x ·Q

imK
I2 ¼ xiHi0ðxÞ;

I4ðjx⃗j2; tÞ ¼ xiH0iðxÞ;

I5ðjx⃗j2; tÞ ¼ xμxνHμνðxÞ − x ·Q
imK

ðI3 þ I4Þ −
�
x ·Q
imK

�
2

I2

¼ xixjHijðxÞ;
I6ðjx⃗j2; tÞ ¼ εμνα0xαHμνðxÞ: ð32Þ

It is more convenient to write Ii as the functions of the
variables ðjx⃗j2; tÞ ¼ ðx2 − ðx ·QÞ2=ðimKÞ2; ðx ·QÞ=ðimKÞÞ.
Again, wμν

i ðxÞ are also the known factors. The choice of the
scalar functions is not unique. Here, we design the scalar
functions using the simple combination of xμ and HμνðxÞ.
We then put Eqs. (29) and (32) into Eq. (28) and obtain a

relation between Ijðjx⃗j2; tÞ and Ĩiðρ1; ρ2Þ:

TABLE II. Comparison of the size of input data required by the
scalar function method and the direct method. By using the scalar
function method, the hadronic function HμνðxÞ is converted into
six scalar functions Iiðjx⃗j2; tÞ. The former requires the total data
size of L3 × T × 4 × 4 × 2, while the latter only requires
r2max × T × 6, with r2max ≡ 3ðL=2Þ2. As the lattice size L in-
creases, the scalar function method becomes more efficient
compared the direct method.

Method Direct method
Scalar function

method

Stored data HðLÞ;μνðxÞ IðLÞi ðjx⃗j2; tÞ
Space-time
dimensions

ðL; L; L; TÞ∶243 × 48 ðr2max; TÞ∶432 × 48

Other dimensions ðμ; ν; V=AÞ∶4 × 4 × 2 6
Data size ≈650 MB=conf ≈2 MB=conf
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Ĩiðρ1; ρ2Þ ¼
Z

d4xϕijðρ1; ρ2; jx⃗j2; tÞIjðjx⃗j2; tÞ: ð33Þ

The detailed expressions for ϕijðρ1; ρ2; jx⃗j2; tÞ are given in
Appendix A. Note that in Ijðjx⃗j2; tÞ, the index j belongs to
1 ≤ j ≤ 6, jx⃗j2 takes values from ½0; r2max ≡ 3ðL=2Þ2�, and t
has the range ½−T=2; T=2�. Thus, the total data size for
Ijðjx⃗j2; tÞ is accounted as ∼6 × r2max × T, which is signifi-
cantly smaller than the size of HμνðxÞ. A comparison is
made in Table II to demonstrate the efficiency of the scalar
function method.
Using Ijðjx⃗j2; tÞ as input and adopting Eqs. (33) and

(30), the hadronic function HμνðP;QÞ can be constructed
for arbitrary momentum P. Then the decay amplitude
MðK → lνl0þl0−Þ can be determined. Although
Ijðjx⃗j2; tÞ is calculated within a finite-volume and fixed-
boundary condition, it only causes the exponentially sup-
pressed finite-volume effects to Ĩiðρ1; ρ2Þ due to the cluster
decomposition property of QCD.
In the continuum theory Ĩiðρ1; ρ2Þ for i ¼ 1;…6 are not

fully independent due to the constraint from the Ward
identity [Eq. (4)]. As a result, the scalar functions Ĩ3ðρ1; ρ2Þ
and Ĩ5ðρ1; ρ2Þ are both proportional to the decay constant
fK as

Ĩ3ðρ1; ρ2Þ ¼ PμQνHμνðP;QÞ ¼ m2
KfK;

Ĩ5ðρ1; ρ2Þ ¼ PμPνHμνðP;QÞ ¼ 1þ ρ1 − ρ2
2

m2
KfK: ð34Þ

One can either use both Ĩ3ðρ1; ρ2Þ and Ĩ5ðρ1; ρ2Þ in the
calculation, or use one of them by treating the other one as
the dependent quantity. [In practice, we replace Ĩ5ðρ1; ρ2Þ
with Ĩ3ðρ1; ρ2Þ.] In the continuum theory with an infinite
volume, the two setups are equivalent. On the lattice, the
results may disagree due to the violation of the Ward
identity by both lattice artifacts and finite-volume effects.
In Sec. IV B, we calculate the branching ratios using both
setups (denoted as “not using Ward-identity constraint”
and “using Ward-identity constraint,” respectively) and get
consistent results.

C. IVR method

When utilizing Eq. (28) to calculateHμνðP;QÞ on lattice,
it shall be pointed out that HμνðxÞ needs to be replaced
by the finite-volume lattice data HðLÞ;μνðxÞ. As the lattice
simulation is performed with a finite temporal extent T and
spatial extent L, the replacement will cause temporal
truncation effects and finite-volume effects.
In this section, we will use the IVR method [28,37] to

perform the correction for both temporal truncation and
finite-volume effects. The idea of the IVR method is that
“infinite-volume data” HμνðxÞ can be reconstructed from
the finite-volume lattice data HðLÞ;μνðxÞ. This method has

been successfully applied to various calculations such as
neutrinoless double beta decay [38], pion charge radius
[39], radiative decays [40], and two-photon exchange
contributions [41]. In this work, the IVR method is
separated into two steps, namely IVR and δIVR. The former
mainly corrects the temporal truncation effects, and the
latter focuses on the finite-volume effects.
For simplicity, we will discuss IVR techniques using

HμνðxÞ and HμνðP;QÞ, and leave IVR formulas for the
scalar functions Iiðjx⃗j2; tÞ and Ĩiðρ1; ρ2Þ in Appendix A. It
should be noted that the formulas in Appendix A are what
we have actually used in the numerical calculation.

1. Temporal truncation effects

We start the discussion with the temporal truncation
effects. As shown in Eq. (25), when the temporal extent T
increases, the unphysical terms either exponentially
decrease or increase depending on the energy difference
between the intermediate states and the initial/final state.
Since these unphysical effects are dominated by the
ground-state contributions as shown in Figs. 3 and 4, here
we only consider the low-lying states jni¼ jππðI¼L¼1Þi
for t > 0 and jnsi ¼ jKi for t < 0.
For t > 0, since we use the gauge ensemble with

mπ ¼ 0.3515ð15Þ GeV and mK ¼ 0.5057ð13Þ GeV, ππ
states are always heavier than the kaon state. In our
numerical study, we do not observe any statistically
significant temporal truncation effects, and the unphysical
contribution from e−ðEππ−EÞT=2 can be safely neglected.
For t < 0, the temporal truncation effects are not

negligible, especially in the soft photon region, where
the electromagnetic current carries vanishing momentum
P ¼ ðiE; p⃗Þ ≈ ð0; 0⃗Þ. As a result, the intermediate kaon
state has an energy EK very close to the energy of the initial
state mK . A very large T is required to make the factor
e−ðEþEK−mKÞT=2 sufficiently small. Unfortunately, this
requirement is not satisfied by a typical lattice temporal
extent of a few femtometers. Thus, the exponential term
e−ðEþEK−mKÞT=2 is far from convergence, leading to a large
temporal truncation effect.
In our numerical calculation, we find that even beyond

the soft photon region, the temporal truncation effects are
generally not negligible. This means that we need a
systematic improved method to reduce the unphysical
contamination from e−ðEþEK−mKÞT=2.

2. Finite-volume effects

As explained in Ref. [28], the size of the hadronic
functionHμνðxÞ is exponentially suppressed at large spatial
separation jx⃗j. The rate of suppression depends on the
energy difference between the intermediate state and
the initial state. If HμνðxÞ does not decrease to zero at
the boundary of the lattice, then the finite-volume effects
are expected to be non-negligible. In other words, the lattice
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data HðLÞ;μνðxÞ could deviate from the infinite-volume
HμνðxÞ by a sizable difference. These finite-volume effects
propagate intoHμνðP;QÞ and are more enhanced when P is
a nonlattice momentum.
After this explanation of the origin of both temporal

truncation and finite-volume effects, we will start to
describe the IVR method to reduce these unphysical
systematic effects.

3. Step 1: IVR

In the t < 0 region, the hadronic function Hμνðx⃗; tÞ is
saturated by the single-particle states at sufficiently
large jtj. We indicate such time separation as jtj > ts.
For t ≤ −ts, the hadronic function can be given by

Hμνðx⃗; tÞjt≤−ts ¼ h0jJνAð0⃗; 0ÞJμemðx⃗; tÞjKi

¼
Z

d3pK

ð2πÞ32EK
h0jJνAð0⃗; 0ÞjKðpKÞi

× hKðpKÞjJμemð0⃗; 0ÞjKie−ip⃗K ·x⃗eðEK−mKÞt

¼
Z

d3pK

ð2πÞ3 H̃
μνðp⃗K; EKÞe−ip⃗K ·x⃗eðEK−mKÞt;

ð35Þ

with H̃μνðp⃗K; EKÞ defined as

H̃μνðp⃗K; EKÞ ¼
1

2EK
h0jJνAð0⃗; 0ÞjKðpKÞi

× hKðpKÞjJμemð0⃗; 0ÞjKi: ð36Þ

We can determine H̃μνðp⃗K; EKÞ using Hμνðx⃗; tÞ at t ¼ −ts
as an input:

H̃μνðp⃗K; EKÞ ¼
Z

d3x0Hμνðx⃗0;−tsÞeip⃗K ·x⃗0eðEK−mKÞts : ð37Þ

Using the expression of H̃μνðp⃗K; EKÞ in Eq. (37), the
entire hadronic function Hμνðx⃗; tÞ with t < −ts can be
reconstructed via

Hμνðx⃗; tÞjt≤−ts
¼

Z
d3pK

ð2πÞ3 H̃
μνðp⃗K; EKÞe−ip⃗K ·x⃗eðEK−mKÞt

¼
Z

d3pK

ð2πÞ3
Z

d3x0Hμνðx⃗0;−tsÞeip⃗K ·ðx⃗0−x⃗ÞeðEK−mKÞðtþtsÞ:

ð38Þ

As a next step, the time integral [Eq. (28)] with the range
−T=2 < t < 0 can be separated into two parts: −ts < t < 0

and−T=2 < t < −ts. We can extend the lower bound of the
integral from −T=2 to −∞. By putting Eq. (38) into the
integral, we have

Z
0

−∞
dt

Z
d3x⃗eEt−ip⃗·x⃗Hμνðx⃗; tÞ

¼
Z

0

−ts
dt

Z
d3x⃗eEt−ip⃗·x⃗Hμνðx⃗; tÞ

þ
Z

−ts

−∞
dt

Z
d3x⃗eEt−ip⃗·x⃗Hμνðx⃗; tÞ

¼
Z

0

−ts
dt

Z
d3x⃗eEt−ip⃗·x⃗Hμνðx⃗; tÞ

þ
Z

d3x⃗e−ip⃗·x⃗Hμνðx⃗;−tsÞ
e−Ets

Eþ EK −mK
: ð39Þ

From the second to the third line, the hadronic function
Hμνðx⃗; tÞ with t < −ts is reconstructed using Eq. (38).
Using the hadronic function at some modest value of ts
allows us to perform the time integral analytically in the
whole region of −∞ < t < −ts. Thus, the temporal trun-
cation effects naturally disappear.
In the practical calculation, we use the IVR method to

reconstruct the scalar functions Ĩiðρ1; ρ2Þ. The treatment is
very similar to that described above. We separate the time
integral into a short-distance part with t > −ts and a long-

distance part with t < −ts, and we obtain ĨðsÞi ðρ1; ρ2Þ and
ĨðlÞi ðρ1; ρ2Þ correspondingly. The total contribution is a
combination of

ĨIVRi ðρ1; ρ2Þ ¼ ĨðsÞi ðρ1; ρ2Þ þ ĨðlÞi ðρ1; ρ2Þ; i ¼ 1;…; 6:

ð40Þ

The detailed expressions for ĨðsÞi and ĨðlÞi are given in
Appendix A.

4. Step 2: δIVR
After making correction to the temporal truncation

effects, the lattice results are still affected by the finite-
volume effects, which are denoted as δIVR here. In
Ref. [28], such correction has been demonstrated to
be exponentially suppressed as the lattice size L
increases. This exponential behavior is also confirmed
by our numerical analysis in Sec. IV. We can calculate
and correct the leading effect of this already exponen-
tially suppressed finite-volume error. Although exponen-
tially suppressed, δIVR can still be very large if a
relatively small lattice (e.g., La ¼ 2.2 fm in this calcu-
lation) is used.
We first introduce the definition of the correction term

δIVR as follows. The hadronic function HμνðP;QÞ is
calculated using HðLÞ;μνðxÞ as an input:
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HμνðP;QÞ ¼
Z

d4xeEt−ip⃗·x⃗HμνðxÞ

¼
Z
V
d4xeEt−ip⃗·x⃗HðLÞ;μνðxÞ

þ
Z
V
d4xeEt−ip⃗·x⃗ðHμνðxÞ −HðLÞ;μνðxÞÞ

þ
Z
>V

d4xeEt−ip⃗·x⃗HμνðxÞ: ð41Þ

In the above equation,
R
V d

4x indicates that the integral is
carried out within a finite spatial volume, while

R
>V d

4x
means that the integral is performed outside the lattice
box in the spatial directions. The second line of Eq. (41)
shows the contribution from lattice data HðLÞ;μνðxÞ. The
remaining contributions are given by the third and fourth

lines in Eq. (41) and denoted as δð1ÞIVR and δð2ÞIVR, respectively.

Combining δð1ÞIVR and δð2ÞIVR together yields the so-called
correction δIVR.
Combining the corrections to the temporal truncation

effects and finite-volume effects, the main idea of the IVR
method is summarized in Fig. 5.
For sufficiently large time separation, HðLÞ;μνðxÞ is

saturated by the ground-state contribution:

FIG. 6. The comparison between lattice data I1ðjx⃗j2; tÞ ¼ δμνHμνðxÞ and the ground-state contribution. At large jx⃗j, the lattice data at
t ¼ −12 and 12 are well dominated by the kaon and ρ states, respectively.

FIG. 5. The main idea of the IVR method. In the temporal
direction, HμνðxÞjt<−ts is reconstructed by using HμνðxÞ at
t ¼ −ts. In the spatial direction, the finite-volume effects are

corrected by calculating δð1ÞIVR and δð2ÞIVR via the ground-state
dominance.

FIG. 7. Lattice calculation procedures of the decay width.
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HðLÞ;μνðx⃗; t < −tsÞ ¼ HðLÞ;μν
K ðx⃗; tÞ ¼ 1

L3

X
p⃗

Hμν
K ðp⃗; tÞeip⃗·x⃗;

HðLÞ;μνðx⃗; t > t0sÞ ¼ HðLÞ;μν
ρ ðx⃗; tÞ ¼ 1

L3

X
p⃗

Hμν
ρ ðp⃗; tÞeip⃗·x⃗:

ð42Þ

Here, the hadronic kernels Hμν
K;ρðp⃗; tÞ can be written in

terms of form factors, whose explicit forms are determined
from lattice data HðLÞ;μνðx⃗; tÞ. For more detailed discus-
sions, we refer the reader to Appendix B. In Fig. 6, we show
the scalar function I1ðjx⃗j2; tÞ ¼ δμνHμνðxÞ at t ¼ �12 as an
example that the lattice data are well dominated by the kaon
and ρ states. The consistency between lattice data and the
ground-state contribution at long distance has also been
checked for other scalar functions. As a next step, we
reconstruct the infinite-volume hadronic function Hμν

K;ρðxÞ
and calculate the correction δIVR through

δIVR ≈ δIVR;K þ δIVR;ρ;

δIVR;K ¼
Z
V
d4xeEt−ip⃗·x⃗ðHμν

K ðxÞ −HðLÞ;μν
K ðxÞÞ

þ
Z
>V

d4xeEt−ip⃗·x⃗Hμν
K ðxÞ;

δIVR;ρ ¼
Z
V
d4xeEt−ip⃗·x⃗ðHμν

ρ ðxÞ −HðLÞ;μν
ρ ðxÞÞ

þ
Z
>V

d4xeEt−ip⃗·x⃗Hμν
ρ ðxÞ: ð43Þ

Using the approach described above, we can also apply the
finite-volume correction to the scalar functions and obtain

δIVRi ðLÞ ≈ δIVRi;K ðLÞ þ δIVRi;ρ ðLÞ ð44Þ

with

δIVRi;K=ρðLÞ ¼ ĨIVRi;K=ρðρ1; ρ2Þ − ĨIVRi;K=ρðρ1; ρ2;LÞ; ð45Þ

TABLE III. Information of lattice setup.

Label L3 × T a−1 Nconf mπ mK ΔT

cA211b.53.24 243 × 48 2.12 GeV 51 0.3515(15) GeV 0.5057(13) GeV 10

FIG. 8. IVR results for K → eνeeþe− (L∞ ¼ 72). The constraint from the Ward identity is not used here. In the left-hand panel, the

data points marked with black squares are compiled using the short-distance contribution ĨðsÞi , while the ones marked with blue triangles

use both short-distance and long-distance contributions, namely ĨðsÞi þ ĨðlÞi . The right-hand panel shows that the results shift due to
corrections from the kaon state δIVRi;K and the ρ state δIVRi;ρ .
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FIG. 9. Similar to Fig. 8, but utilizing the constraint from the Ward identity.

FIG. 10. Examination of L∞ dependence in the δIVRi corrections. Here we use the K → eνeeþe− decay as an example. In the left-hand
panel, we show the finite-volume correction δIVRi;K as a function of L∞. In the right-hand panel, we fix δIVRi;K at L∞ ¼ 72 and show the
correction δIVRi;ρ as a function of L∞. When L∞ ¼ L ¼ 24 (corresponding to 2.2 fm), no correction is made, and δIVR ¼ 0. With
increasing L∞, δIVRi exponentially converges, and L∞ ¼ 72 (corresponding to 6.7 fm) is a sufficiently large lattice size to approximate an
infinite one.
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where the subscript K or ρ is used to indicate the scalar
functions compiled from the ground-state contribution.
A parameter L is introduced to specify the scalar functions
in the finite volume. For scalar functions in the infinite
volume, ĨIVRi;K=ρðρ1; ρ2Þ, it can be approximated by

ĨIVRi;K=ρðρ1; ρ2;L∞Þ with a sufficiently large L∞.

D. Computation of the decay width

In this section, we summarize the procedure to compute
the decay width of K → lνl0þl0−. The outline of the main
steps is shown in Fig. 7.
In our calculation, the kaon mass mK;lat ¼

0.5057ð13Þ GeV is slightly larger than its physical value
mK;phy ¼ 0.493677ð16Þ GeV [42]. This affects the decay
width in two ways: (1) the mK dependence of hadronic
function, and (2) the change of phase space. In order to
reduce the latter, for any dimensional quantities O½n� with
dimension n, we rescale them as

Ō½n� ¼ O½n�ξnK; ξK ≡mK;phy

mK;lat
: ð46Þ

For example, the decay constant and the hadronic function
are rescaled as

f̄K ¼ ξKfK; H̄μν
M ðp; qÞ ¼ ξKH

μν
M ðp; qÞ; ð47Þ

and the decay amplitudes originally defined in Eq. (10) are
rescaled as

M̄D ¼ ξKMD; M̄E ¼ ξKME: ð48Þ

As the Fermi constant GF is a fixed coefficient, MD;E

are considered here as the dimension-one quantities. If
there exists a phase-space integral, then O½n�

mn
K;lat

relies on the

dimensionless variables P2

m2
K;lat

and P·Q
m2

K;lat
. These variables take

the same integral range as the ones in the physical case.
We then multiply O½n�

mn
K;lat

by a factor of mn
K;phy to obtain a

dimensional quantity.
For the lattice calculation of Br½K → lνll0þl0−� with

l ¼ l0, we use the Monte Carlo integration. Within
the allowed phase-space range, the five parameters,
ðx12; x34; y12; y34;ϕÞ, are randomly generated NMC times.

FIG. 11. IVR results for four channels ofK → lνll0þl0−. We do not utilize the Ward identity constraint here. The upper-left figure for
K → eνeeþe− has been shown in the right-hand panel of Fig. 8. We include it here for the sake of an easier comparison with other three
channels. Through this comparison, we find that the δIVRi;K corrections are important for all the channels. The corrections from δIVRi;ρ are
less significant but still comparable to the size of the statistical errors.
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Given each momentum setup, H̄μν
M ðp12; qÞ and H̄μν

M ðp14; qÞ
are calculated using the IVR method. In order to get the
decay amplitude in Eq. (48), numerical realization of the
spinor products is utilized. The branching ratio is calculated
as follows:

Br½K → lνllþl−�

¼ 1

2mKΓK

Z
dΦ4ðjM̄Dj2 þ jM̄Ej2 þ 2Re½M̄DM̄

�
E�Þ

¼ 1

2mKΓK

S
NMC

×
XNMC

i¼1

Sλm4
K

214π6
ðjM̄Dj2 þ jM̄Ej2 þ 2Re½M̄DM̄�

E�Þi; ð49Þ

where S is the hypervolume of the integration range
and mK ¼ mK;phy.
In the practical calculation, we choose NMC ¼ 10 000,

and we confirm that the Monte Carlo error is much less than
the statistical error. Considering the fact that the construc-
tion of the scalar functions is nontrivial, the Monte Carlo
integration thus provides an easily implemented approach
to determining the decay width.

IV. NUMERICAL RESULTS

A. Lattice setup

In the lattice calculation, we use a gauge ensemble with
an Nf ¼ 2þ 1þ 1-flavor twisted-mass fermion generated
by the ETM Collaboration [43]. The light quark mass is
unphysical, with mπ ¼ 352 MeV. We tune the valence
strange quark mass to have the kaon mass close to its
physical value. Parameters of the gauge ensemble are listed
in Table III together with the information of ΔT, whose
value shall be set sufficiently large to suppress the excited-
state contamination.
In order to calculate the hadronic functions, three-point

correlation functions are calculated on the lattice. The
initial kaon state is created using a Coulomb gauge-fixed
wall-source operator. We place two point-source propaga-
tors and one wall-source propagator at each time slice and
perform a time translation average over all time slices to
obtain the three-point function.

B. Results

In Figs. 8 and 9, we take K → eνeeþe− as an example
to show the results of the branching ratio as a function
of ts. In the left-hand panels, the black square data points

are compiled using the short-distance contribution ĨðsÞi ,

FIG. 12. Similar to Fig. 11, but utilizing the constraint from the Ward identity.

LATTICE QCD CALCULATION OF K → lνll0þl0− … PHYS. REV. D 105, 054518 (2022)

054518-15



while the blue triangular ones use both short-distance
and long-distance contributions. A significant temporal
truncation effect is found, demonstrating the impor-
tance of the IVR correction. The time ts needs to be
sufficiently large to guarantee the ground-intermediate-
state dominance. The figure shows that starting from
ts ≈ 12, the branching ratio is independent from the
choice of ts.
In the right-hand panels of Figs. 8 and 9, the effects of

δIVRi;K and δIVRi;ρ are shown. These corrections are made with
the choice of L∞ ¼ 72. We find a large correction from the
kaon state and a relatively smaller correction from the ρ
state. Given the L ¼ 2.2 fm lattice used in our calculation,
it is essential to include both corrections.
For the results shown in Figs. 8 and 9, the parameter L∞

is chosen as L∞ ¼ 72. In Fig. 10, we examine the L∞
dependence of the results. The left-hand panel shows that
the corrections of δIVRi;K become much smaller when using
the constraint from the Ward identity. The right-hand panel
shows that by including the corrections of δIVRi;ρ , the lattice
results, whether using or not using the Ward identity
constraint, start to converge at large L∞. We also confirm
that as L∞ increases, the finite-volume effects exponen-
tially suppress, and L∞ ¼ 72 is an appropriate choice to
approximate the infinitely large spatial extent.
In Figs. 11 and 12, IVR results for all four channels of

K → lνll0þl0− are shown. The final results of the branch-
ing ratio are summarized in Table IV, where we make a
comparison between using and not using the constraint
from the Ward identity. The results are very consistent. As
the former suffers from much smaller finite-volume effects
in the K → eνeeþe− decay, we quote the corresponding
results in Table I for a comparison with ChPT and experi-
ments. All the lattice results are compiled using the fitting
range ts ∈ ½12; 17� and including the corrections from both
δIVRi;K and δIVRi;ρ . We find that the lattice results are compa-
rable to experimental or ChPT ones. The systematic errors
of our results mainly come from unphysical quark masses,
lattice artifacts, and residual finite-volume effects, which
are left for a future study.

V. CONCLUSION

In this work, we build a lattice calculation procedure to
determine the K → lνll0þl0− decay width by solving a

series of technical problems. The IVR method is used to
reduce temporal truncation effects and finite-volume
effects. Other approaches, such as the scalar function
method and Monte Carlo phase-space integration, are
proposed to simplify the calculation. Using these tech-
niques, a practical methodology is developed to compute
the decay width with four daughter particles in the final
state, as summarized in Fig. 7.
Using this methodology, we perform a realistic lattice

calculation of the K → lνll0þl0− decay width using an
ensemble with pion mass 352 MeV and kaon mass
506 MeV, and we obtain branching ratios comparable to
ChPT or experimental results. Through this calculation, we
demonstrate the capability of lattice QCD to improve the
Standard Model prediction of K → lνll0þl0− decay
width. By examining the ts dependence and L∞ depend-
ence of the decay width, we show that the IVR method
is a vital approach to reducing the systematic effects.
Future work is still required to address the power-law
finite-volume effects in the subprocess of K → ππlνl →
lνll0þl0− and make a full control of various systematic
effects.
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APPENDIX A: FORMULAS IN THE SCALAR
FUNCTION METHOD

1. Infinite-volume case

In Sec. III, the scalar function method is described by
Eqs. (30) and (33). In this section, we will give the detailed
expression to calculate Ĩiðρ1; ρ2Þ and then discuss the
approach to constructHμνðP;QÞ using the scalar functions.
We start with the relation

HμνðP;QÞ ¼ −i
Z

d4xeEt−ip⃗·x⃗HμνðxÞ: ðA1Þ

TABLE IV. A comparison of the lattice results when using or
not using the constraint from the Ward identity.

Channel
Using Ward

identity constraint
Not using Ward
identity constraint

Br½K → eνeeþe−� 1.77ð16Þ × 10−8 2.18ð27Þ × 10−8

Br½K → μνμeþe−� 10.59ð33Þ × 10−8 10.68ð36Þ × 10−8

Br½K → eνeμþμ−� 0.72ð5Þ × 10−8 0.80ð7Þ × 10−8

Br½K → μνμμ
þμ−� 1.45ð6Þ × 10−8 1.47ð7Þ × 10−8
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Combining Eq. (A1) with the Lorentz factors given in Eq. (29), we can obtain the relation between Ĩiðρ1; ρ2Þ and Iiðjx⃗j2; tÞ.
Here we give the detailed expressions of Ĩiðρ1; ρ2Þ as

Ĩ1ðρ1; ρ2Þ ¼ im2
K

Z
d4xeEtj0ðφÞI1ðjx⃗j2; tÞ; ðA2aÞ

Ĩ2ðρ1; ρ2Þ ¼ im2
K

Z
d4xeEtj0ðφÞI2ðjx⃗j2; tÞ; ðA2bÞ

Ĩ3ðρ1; ρ2Þ ¼ imKE
Z

d4xeEtj0ðφÞI2ðjx⃗j2; tÞ − imKjp⃗j
Z

d4xeEt
j1ðφÞ
jx⃗j I3ðjx⃗j2; tÞ; ðA2cÞ

Ĩ4ðρ1; ρ2Þ ¼ imKE
Z

d4xeEtj0ðφÞI2ðjx⃗j2; tÞ − imKjp⃗j
Z

d4xeEt
j1ðφÞ
jx⃗j I4ðjx⃗j2; tÞ; ðA2dÞ

Ĩ5ðρ1; ρ2Þ ¼ iE2

Z
d4xeEtj0ðφÞI2ðjx⃗j2; tÞ þ ijp⃗j2

Z
d4xeEt

j2ðφÞ
jx⃗j2 I5ðjx⃗j2; tÞ

− ijp⃗j
Z

d4xeEt
j1ðφÞ
jx⃗j ½EI3ðjx⃗j2; tÞ þ EI4ðjx⃗j2; tÞ þ I1ðjx⃗j2; tÞ − I2ðjx⃗j2; tÞ�; ðA2eÞ

Ĩ6ðρ1; ρ2Þ ¼ −imKjp⃗j
Z

d4xeEt
j1ðφÞ
jx⃗j I6ðjx⃗j2; tÞ: ðA2fÞ

Note that in the continuum theory, the scalar functions
Ĩiðρ1; ρ2Þ do not depend on the direction of p⃗. Thus, in the
derivation of the above equations we have performed an
average over the solid angle of p⃗. After the average, the
factor e−ip⃗·x⃗ is converted into a spherical Bessel function
j0ðφÞ, with φ ¼ jp⃗jjx⃗j. In total, three spherical Bessel
functions appear in Eqs. (A2a)–(A2f). They take the
standard definition as

j0ðφÞ≡ sinφ
φ

; j1ðφÞ≡ sinφ − φ cosφ
φ2

;

j2ðφÞ≡ ð3 − φ2Þ sinφ − 3φ cosφ
φ3

: ðA3Þ

In the numerical calculation, when the variables ρ1 and ρ2
are given, the values of jp⃗j and E can be determined
through

jp⃗j ¼ 1

2
mK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ρ1 − ρ2Þ2 − 4ρ1

q
;

E ¼ 1

2
mKð1þ ρ1 − ρ2Þ: ðA4Þ

Once these scalar functions Ĩiðρ1; ρ2Þ are available,
HμνðP;QÞ can be easily constructed using Eq. (30). In
the numerical calculation, wiðP;QÞ in Eq. (30) is implicitly
derived using following procedures:

(1) A general factorization of HμνðP;QÞ is used with

HμνðP;QÞ ¼ aðρ1; ρ2ÞPμQν þ bðρ1; ρ2ÞPνQμ

þ cðρ1; ρ2ÞPμPν þ dðρ1; ρ2ÞQμQν

þ eðρ1; ρ2Þδμνm2
K

þ fðρ1; ρ2ÞεμναβPαQβ: ðA5Þ

(2) Ĩiðρ1; ρ2Þði ¼ 1…6Þ and aðρ1; ρ2Þ;…; fðρ1; ρ2Þ are
related by a simple linear transformation. We can
then solve the solution for aðρ1; ρ2Þ;…; fðρ1; ρ2Þ
and construct HμνðP;QÞ using Eq. (A5).

2. Scalar functions with the IVR corrections

In Sec. III, IVR method is proposed to correct the
temporal truncation effects and the finite-volume effects
for the hadronic functions HμνðP;QÞ. In this section, we
show how to apply the IVR method to the scalar functions.
We shall point out first that the calculation of Ĩ6ðρ1; ρ2Þ

does not require the IVR correction. It is because Ĩ6ðρ1; ρ2Þ
is projected out by using the Lorentz factor of εμναβPαQβ.
In this quantity, the intermediate states are given by
the states heavier than initial kaon state, and thus the
temporal truncation effects and finite-volume effects can be
neglected.
In the calculation of Ĩiðρ1; ρ2Þ, with i ¼ 1;…; 5, we also

use t ¼ −ts to separate the time integral into a short-
distance part and a long-distance part:
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Ĩiðρ1; ρ2Þ ¼ ĨðsÞi ðρ1; ρ2Þ þ ĨðlÞi ðρ1; ρ2Þ: ðA6Þ

For the short-distance part, we replace ĨðsÞi ðρ1; ρ2Þwith the lattice data ĨðsÞi ðρ1; ρ2; LÞ. For the long-distance part, we use the
lattice data of IðLÞi ðjx⃗j2; tÞ at t ¼ −ts as input. Through the kaon-intermediate-state dominance, ĨðlÞi ðρ1; ρ2; LÞ can be
reconstructed. The detailed expressions are given as

ĨðlÞ1 ðρ1; ρ2;LÞ ¼
im2

K

Eþ EK −mK

Z
d3x⃗e−Etsj0ðφÞIðLÞ1 ðjx⃗j2; tsÞ; ðA7aÞ

ĨðlÞ2 ðρ1; ρ2;LÞ ¼
im2

K

Eþ EK −mK

Z
d3x⃗e−Etsj0ðφÞIðLÞ2 ðjx⃗j2; tsÞ; ðA7bÞ

ĨðlÞ3 ðρ1; ρ2;LÞ ¼
imK

Eþ EK −mK

�
E
Z

d3x⃗e−Etsj0ðφÞIðLÞ2 ðjx⃗j2; tsÞ þ jp⃗j
Z

d3x⃗e−Ets
j1ðφÞ
jx⃗j IðLÞ3 ðjx⃗j2; tsÞ

�
; ðA7cÞ

ĨðlÞ4 ðρ1; ρ2;LÞ ¼
imK

Eþ EK −mK

�
E
Z

d3x⃗e−Etsj0ðφÞIðLÞ2 ðjx⃗j2; tsÞ þ jp⃗j
Z

d3x⃗e−Ets
j1ðφÞ
jx⃗j IðLÞ4 ðjx⃗j2; tsÞ

�
; ðA7dÞ

ĨðlÞ5 ðρ1; ρ2;LÞ ¼
imK

MðEþ EK −mKÞ
�
E2

Z
d3x⃗e−Etsj0ðφÞIðLÞ2 ðjx⃗j2; tsÞ

þ jp⃗j
Z

d3x⃗e−Ets
j1ðφÞ
jx⃗j ×

h
EIðLÞ3 ðjx⃗j2; tsÞ þ EIðLÞ4 ðjx⃗j2; tsÞ þ IðLÞ1 ðjx⃗j2; tsÞ − IðLÞ2 ðjx⃗j2; tsÞ

i

− jp⃗j2
Z

d3x⃗e−Ets
j2ðφÞ
jx⃗j2 IðLÞ5 ðjx⃗j2; tsÞ

�
: ðA7eÞ

The scalar functions calculated through the IVR method are given by

ĨIVRi ðρ1; ρ2;LÞ ¼ ĨðsÞi ðρ1; ρ2;LÞ þ ĨðlÞi ðρ1; ρ2;LÞ; for i ¼ 1;…; 5: ðA8Þ
As a next step, we perform the finite-volume correction by introducing δIVRi ðLÞ for each scalar function:

Ĩiðρ1; ρ2Þ ¼ ĨIVRi ðρ1; ρ2;LÞ þ δIVRi ðLÞ: ðA9Þ

Here, δIVRi ðLÞ can be approximated by the kaon- and ρ-state contributions:

δIVRi ðLÞ ≈ ĨIVRi;K ðρ1; ρ2Þ − ĨIVRi;K ðρ1; ρ2;LÞĨIVRi;ρ ðρ1; ρ2Þ − ĨIVRi;ρ ðρ1; ρ2;LÞ: ðA10Þ

In practice, ĨIVRi;K ðρ1; ρ2Þ and ĨIVRi;ρ ðρ1; ρ2Þ in the infinite volume can be replaced by ĨIVRi;K ðρ1; ρ2;L∞Þ and ĨIVRi;ρ ðρ1; ρ2;L∞Þ,
with L∞ ≫ L.

APPENDIX B: ESTIMATING THE FINITE-VOLUME CORRECTION FROM THE KAON AND ρ STATES

In Eq. (42), the hadronic kernels are defined as

Hμν
K ðp⃗; tÞ ¼ eðEK−mKÞt

2EK
h0jJνWð0ÞjKðpKÞihKðpKÞjJμemð0ÞjKi;

Hμν
ρ ðp⃗; tÞ ¼ e−Eρt

2Eρ

X
λ

h0jJμemð0Þjρðpρ; λÞihρðpρ; λÞjJνWð0ÞjKi; ðB1Þ

where λ is the polarized direction for the vector meson. pK ¼ ðiEK;−p⃗Þ and pρ ¼ ðiEρ; p⃗Þ are the four-momenta for

intermediate stateswith the energiesEK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

K

p
,Eρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

ρ

q
.Wedefine themomentum transfer between the initial

kaon and intermediate particles as qK ¼ Q − pK and qρ ¼ Q − pρ. The relevant hadronic matrix elements are given by
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h0jJμWð0ÞjKðpKÞi ¼ fKp
μ
K;

h0jJμemð0Þjρðpρ; λÞi ¼ fρϵμðpρ; λÞ;
hKðpKÞjJμemð0ÞjKi ¼ FðKÞðq2KÞðQþ pKÞμ;

hρðpρ; λÞjJμWð0ÞjKi ¼ 2Vðq2ρÞ
mK þmρ

εμναβϵνðpρ; λÞpα
ρQβ − ðmK þmρÞA1ðq2ρÞϵμðpρ; λÞ

þ A2ðq2ρÞðϵ ·QÞ
mK þmρ

ðQþ pρÞμ þ
2mρAðq2ρÞðϵ ·QÞ

q2ρ
ðQ − pρÞμ; ðB2Þ

where fK and fρ are decay constants forK and ρ. ϵμðpρ; λÞ is the polarizationvector.FðKÞðq2Þ is the kaon electromagnetic form
factor. Vðq2Þ, A1ðq2Þ, A2ðq2Þ, and Aðq2Þ are the form factors for the semileptonic decays, with the convention adopted from
Refs. [44,45]. The form factor Aðq2Þ approaches zero at the limit of q2 → 0 [44].

TABLE V. Momenta used in the determination of the form factors.

L
2π p⃗ (0,0,0) (0,0,1) (0,1,1) (1,1,1) (0,0,2)

q2K [GeV2] 0 0.055 0.096 0.131 0.161
q2ρ [GeV2] −0.129 0.036 0.178 0.305 0.421

TABLE VI. Determination of the parameters for the form factors.

hr2Ki v v0 a1 a01 a2 a0 a00

0.32ð2Þ fm2 0.58(2) 2.1(2) 0.482(5) 0.30(7) −0.09ð2Þ 2.2(1) 5.3(4)

FIG. 13. The lattice results of the form factors together with the fitting curve.
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We use the simple parametrization for the above form
factors:

FðKÞðq2Þ ¼ 1

1þ hr2Ki
6
q2

; Vðq2Þ ¼ v

1þ v0 q2

ðmρþmKÞ2
;

A1ðq2Þ ¼
a1

1þ a01
q2

ðmρþmKÞ2
; A2ðq2Þ ¼

a2
1þ a02

q2

ðmρþmKÞ2
;

Aðq2Þ ¼
a0 q2

ðmρþmKÞ2

1þ a00 q2

ðmρþmKÞ2
; ðB3Þ

with hr2Ki being the square of kaon charge radius and v, v0,
a1, a01, a2, a

0
2, a

0, and a00 as the free parameters.
We calculate the hadronic matrix elements at discrete

lattice momenta listed in Table V. Through the fit to the
forms [Eq. (B3)], we extract the parameters shown in
Table VI. The lattice data together with the fitting curves
are plotted in Fig. 13. Once Hμν

K=ρðp⃗; tÞ are determined, we

can estimate the finite-volume corrections δIVRi;K=ρ. Note that
the parametrization in Eq. (B3) does bring in the model
dependence, but it only affects δIVRi;K=ρ. As long as the lattice

size is sufficiently large, δIVRi;K=ρ will vanish exponentially.
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