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Lattice QCD calculations of scattering phase shifts and resonance parameters in the two-body sector are
becoming precision studies. Early calculations employed Liischer’s formula for extracting these quantities
at lowest order. As the calculations become more ambitious, higher-order relations are required. In this
study we derive higher-order quantization conditions and introduce a method to transparently cross-check
our results. This is an important step given the involved derivations of these formulas. We derive
quantization conditions up to £ = 5 partial waves in both cubic and elongated geometries, and for states
with zero and nonzero total momentum. All 45 quantization conditions we include here (22 in cubic box,

23 in elongated box) pass our cross-check test.
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I. INTRODUCTION

Hadron structure and interactions are controlled by
the quark and gluon dynamics as described by quantum
chromodynamics (QCD). Inside the hadrons the quarks and
gluons interact strongly and nonperturbative methods are
required to describe the interactions. Lattice QCD is used to
study this dynamics in the Euclidean time framework. In
this framework QCD spectrum for one or multiparticle
states can be accessed directly. On the other hand, infor-
mation about hadron interactions, in particular scattering
properties, are accessed indirectly by calculating the energy
of two-hadron states in finite volume. An intuition about
this connection comes from understanding that the finite-
volume energy shift for these states compared to the infinite
volume setup is due to the interactions between the
particles which in finite volume have a non-vanishing
probability of being separated by distances comparable
to the interaction range. The full details for this relation
were worked out by Liischer [1]: he showed that the energy
shifts for two-particle states in finite volume (with periodic
boundary conditions) are directly controlled by the scatter-
ing phase shifts and the relations are model independent.
These relations are exact, up to exponentially small finite-
volume corrections, as long as the energy of the two
particle states is below the inelastic threshold.
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In the field of nuclear and particle physics, the method
has proven especially successful. Various extensions to the
method have since been made to enhance its applicability,
including moving frames [2—8], asymmetric boxes [7,9,10],
multiple partial waves and coupled-channel scattering
[11-21]. The use of asymmetric lattices has proven to
be computationally efficient [7,22-25] so we will include it
in our discussions. The method has been widely applied to
a multitude of meson-meson scattering processes, along
with some meson-baryon and baryon-baryon systems over
the past decade [22-49]. Significant progress towards a
complete three-body scattering quantization condition has
also been made in recent years, though we do not discuss it
here. See Refs. [50-60] for reviews of theoretical develop-
ments, and some first applications to three-pion and kaon
scattering.

The quantization conditions (QCs), that is the equations
connecting the phase shifts to finite volume spectrum, are
rather complex. Early lattice QCD scattering studies have
employed only the lowest-order quantization conditions,
which can be used to directly extract the phase shifts from
finite-volume energies. As these calculations become more
ambitious higher-order conditions, where several partial
waves are involved, are required [20,61-63]. Liischer
worked out these formulas for zero-momentum states of
two equal-mass, spinless particles in cubic box. Further
work extended these relations for different kinematics
[2,4-6,9,10,16-20]. These relations need to take into
account the geometry of the box, the mass and spin of
the hadrons, scattering channels, etc. In this work we
compute the quantization conditions for two spinless
particles in different kinematic situation for partial waves
as high as £ = 5.

We note that the derivation of these formulas is fairly
involved and the quantization conditions are expressed in
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terms of special functions that are nontrivial to calculate.
Furthermore the coefficients appearing in these formulas
depend on the symmetry group and the relevant irreducible
representation. Some of the lower-order quantization con-
ditions have been checked thoroughly, but the ones we
derive in this work, for special cases and higher order,
need to be cross-checked before they are used to extract
scattering information from noisy lattice QCD data. To this
end, we propose a method to check our derivations that is
relatively transparent, especially for lattice QCD practi-
tioners, and we use it to test our results with high accuracy
in all possible channels for two spinless particles.

The paper is organized as follows. In Sec. II we review
how the QC are derived and how they are connected to the
irreducible representations of the symmetry group. We also
discuss moving frames in nonrelativistic kinematics, and
derive all the QCs we will investigate in this work. Then in
Sec. III we discuss the method we used to check our results,
that is our approach to computing the two-particle spectrum
in a finite-volume box by solving the associated
Schrodinger equation. The role of symmetries and their
influence of the spectrum is first discussed here. In Sec. IV,
we detail our numerical checks and compare the QC results
with the spectrum derived in Sec. III. Some examples will
be given. The rest will be available as Supplemental
Material [64]. In Sec. V, we summarize our findings and
give future outlook. All group theory details are collected in
Appendix A and all matrix elements in Appendix B.

II. QUANTIZATION CONDITION

Scattering is omnipresent in understanding the nature
of interactions between particles. In infinite volume, non-
relativistic two-particle scattering can be captured by
solving the Schrodinger equation in the center of mass
(cm) frame,

hZ
VO e =B )

where i = m;m,/(m; +m,) is the reduced mass of
the system. Elastic scattering phase shift is defined as
the change in phase in the scattered wave relative to the
incident wave in the asymptotic region where the inter-
action can be neglected. In the partial-wave expansion, the
wave function satisfies the asymptotic condition,

elkr
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r

where k is the relative cm momentum related to the energy
E = n?k?/(2/m) and

[Se]

= (21 +1)f,Pi(cos0) (3)
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is the scattering amplitude. Phaseshift §; enters via the
partial-wave amplitudes
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where alternative definitions via S matrix, 7 matrix, and K
matrix are also indicated. The phase shift is a real valued
function of the interaction energy and carries information
about the nature of the interaction, such as whether the force
is attractive (6 < 0) or repulsive (0 > 0), whether a reso-
nance is formed in the scattering, etc. In the exterior region
(r > R) where the interaction is vanishing, the Schrodinger
equation has the form of a Helmholtz equation,

(V2 + )y (r) =0. (5)

Its radial wave function can be expressed as a linear
combination of spherical Bessel functions u;(r) « a;j;(kr) -+
b;n;(kr), where the coefficients can be found by matching up
with the wave function in the interior (» < R). The phase shift
can then be computed from the coefficients by

a,(k) + ib,(k)

eZi(Sl(k> = " .
a;(k) —ib;(k)

(6)

In finite volume, a similar procedure can be realized as
detailed by the pioneering work of Liischer [1]. The system
is now confined in a box of size L where we assume its size
is big enough so that the interaction range R < L/2, as
shown in Fig. 1. Periodic boundary conditions are imposed
on the wave function across the box surface,

y(r). (7)

As we will see below, one basically ends up with a new
relation that connects the same infinite-volume phase shifts
with the discrete energies of two-body states in the box, in
the form of a quantization condition

w(r+nlL) =

M(k,L)+i

det | g2i0(0) _
e M(k.L)—i

~0. (8)

FIG. 1. Schematic sketch of the Liischer method. The system is
enclosed in a box of size L. The range of the interaction is R.
Periodic boundary conditions are imposed across the box surfaces.
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Here e = diag{e } is a shorthand for diagonal
matrix of all partial waves. The M(k, L) is a Hermitian
matrix function of cm momentum and box size. It is at the
heart of the entire approach.

The Liischer method is very general, not just limited to
the simple illustration above. It does not matter how the
energy levels are obtained, be it in quantum mechanics,
effective field theories, lattice QCD, or any other method.
The same quantization condition applies and the results are
the same up to exponentially suppressed finite-volume
corrections. For this reason, it has become the method of
choice for studying strongly interacting systems where
traditional methods like perturbation theory do not apply.

The derivation of the QC in Eq. (8) is fairly involved [1].
The basic idea mimics the matching of interior and exterior
wave functions in standard scattering theory. The compli-
cation comes from enclosing the system in a periodic box.
To make the presentation reasonably self-contained, we
outline the essential steps here. A solution to Eq. (5) in the
region r > R that satisfies the periodic boundary conditions
in Eq. (7) is given by the Green’s function,

zpr
L3 Z 2 k2 ’ (9)

where the sum is over quantized momenta in the box. A
complete basis can be generated by taking its derivatives

Gin(r, k%) = Vi (V)G(r, k?), (10)
where V,,,(r) = r'Y,,,(0, ¢) are the homogenous harmonic
polynomials. The expansion of Gy, in terms of n;, j;, and
Y, is needed for the matching. The action of the differ-
ential operator on the singular and regular terms produces
the following identities:

ylm (V)l’lo(kl") = (_k)lnl(kr)ylm (67 ¢)7 (11)

and

ylm (v)]l (kr) Y/s (9’ ¢)
! J+l !
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where the tensor coefficient is given in Wigner 3 symbols,

Clm,js,|l/m’ = (_l)nl/il_j+l,\/(2l + 1)(2] + 1)(21/ + 1)
[ 5 U [ B
x ( / ) ( / ) (13)
0 0 O m s —-m

Applying the identities,
expanded as

the basis functions can be

Glm(r’ kz) - ( j_

17,1+1
ED*T {w(krmm(a »)

+Z Z Myt i (kr)Y e (0, 4) |, (14)

=0 m'=-1'

where matrix M is introduced as a conduit to connect with
the phase shifts. Expanding the wave function in this basis,
and matching it with the interior one in the region between
the sphere and the box (R < r < L/2), one has

V= ZdlmGlm (r.k
Im

By equating the coefficients of n; and j,, the following
condition emerges (eliminate d,,, in favor of c;,)

= chm[aljl + b)Yy, (15)
Im

ch’m’ (brM i — arSyy S| = 0. (16)
I'm’

By requiring nontrial solution of the linear system we get a
determinant condition,

det[BM — A] = 0, (17)

where A and B are diagonal matrices from a; and by,
respectively. Finally, using the matrix version of Eq. (6) to
connect with the phase shifts,

A+ iB
A—iB’

€2i§

(18)

one arrives at the QC introduced in Eq. (8). Note that the
QC is a single condition that connects all partial waves
with all energy levels in the box. At face value, it has very
limited predictive power. Later we will see how the QC can
be reduced into pieces and used to make approximate
predictions.

The explicit form of the matrix is given by

I+ J

3/2 Z Z J+1 ]s(q n)Clm]Sl’m’ (19)

=) s=j 4

Mlm.l’m’ =

where we have adapted it to include z-elongated box
geometry via 77.1 The zeta function is defined by

ety @

Zlm(q27 77)

where the summation index 7 and the dimensionless g are
defined as

'Although we treat the cubic and elongated geometries jointly
via the elongation factor # (setting # = 1 for cubic), they are
handled differently by their group symmetries.
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kL

qg=—. (21)

n= (nmny’nz/’/l)’ 27

We see that the zeta function is a pure, dimensionless
mathematical function with dimensionless variables. The
same is true for the matrix M that appears in the
quantization conditions. The poles of the zeta function
ii?> = ¢ correspond to free-particle energies in the box.
Deviations from the poles due to interactions are connected
to phase shifts. It is customary to introduce the shorthand

)
notation,

Zlm(q2 77)

PYEP (22)

Wim (q2 ’ 77)

so M can be expressed as a linear combination of w;,, with
purely numerical coefficients, and the simplest phase-shift
formula from the QC reads coté = wy,. The M matrix
plays a central role in the methodology and will be
discussed extensively below.

A. Symmetry-adapted quantization conditions

The quantization condition in Eq. (8) must be adapted to
the symmetry under consideration. The issue arises because
symmetries in the infinite volume are reduced to the
symmetries in the box. For example, rotational symmetry
is no longer continuous, but is reduced to a limited number
of possibilities. We start by writing Eq. (8) as

det[e*®(M — i) — (M +i)] =0, (23)
after dropping the nonzero det[M — i|. This is another form
of the QC commonly in use. It can be rearranged into

| ———— || =0. 24
l€2l§_1):| ( )

Dropping the constant factor, we can write the QC in the
form using matrix elements,

det [(ezl'fS -1) (M -

det[MlmJ’m’ - 511’5mm’ cot 51] =0. (25)
The goal is to further reduce the matrix according to the
irreducible representations (irreps) of the symmetry group.
Operationally, it is equivalent to reducing the matrix in the
QC into its block diagonal form with each block represent-
ing an irrep. Then the QC is a product of the determinant of
the blocks. This is achieved by a change of basis, using the
basis vectors of the symmetry group, expressed as

Zcﬂm \Im), (26)

|Caln)

2Another convention in the literature has the factor V2041
dividing this expression.

where I" stands for a given irrep of the group and a runs
from 1 to the dimension of the irrep, n runs from 1 to
n(T, 1), the multiplicity of / in irrep I'. The coefficients are
discussed in Appendix A 5. In the new basis, M is block-
diagonalized by irreps

<Faln|M|F/a/l’ / Z(Cran Cr’dn Mlm I'm's
mm
= 5FI“/5aa’M{n.l’n” (27)

where the orthogonality relation for irreducible represen-
tations (Schur’s lemma) is used in the last step. For
multidimensional irreps, we average over the components
a since they are not observables. The final form for the
symmetry-adapted QC is

[T et = 88, cots] =0. (QC1) (28)
T

The QC can now be investigated irrep by irrep. Since total
angular momentum is the same as orbital angular momen-
tum (J =) for spinless particles, we keep the notation
simple by using only I For particles with spin, one needs to
keep J and [ separate for basis vectors |['a/In), matrix

elements M" Jingry» and phase shifts 5. The corresponding

symmetry-adapted version of the original QC in Eq. (8) can
be written as a matrix equation for each irrep,

det[S—U] =0, (QC2)

. M (kL) + i
S = diag{e?®)}, ﬁ

U=
MT(k.L) -

(29)

We will refer to Eq. (28) as QC1 and Eq. (29) as QC2 as
already indicated. They have the same solutions, but
different features. The determinant in QCI is real valued
and is unbounded due to singularities (free-particle poles).
The one in QC2 is complex valued and bounded. The M — i
in the denominator in QC2 removes the noninteracting
divergences while leaving the zeroes of the determinant
unchanged. Both QCs will be employed in this work.

In the following, we present the matrix elements defined
in Eq. (27) for four different total momenta: rest frame and
three moving frames, in both cubic and elongated boxes.
Some already exist in the literature, but we find it necessary
to extend to higher partial waves. We need up to five partial
waves in each irrep, depending on its angular momentum
content. So we decide to take a fresh look and set out to
derive all the QCs studied in this work. Some are rederived,
some are new.

B. Rest and moving frames

In group theory language, the symmetry group for states
at rest is O, in cubic box, Dy, in z-elongated box. For
moving states, the symmetry is described by the so-called
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TABLE 1. The little groups for moving states in cubic and
elongated boxes. The lowest distinct patterns for the boost vector
d = (n,.n,. n;) are shown, but integer multiples nd with n € Z3
have the same little groups. Furthermore, the momenta related via
a lattice symmetry with the ones below have the same little
groups (this means all permutations for cubic, and permutations
in n, and n,, for z elongated). Additionally, all momenta for C}, in
the z-elongated case can have n, increase independently.

Cubic (0y,) z-elongated (Dy),)

Cy, 0,0, 1) ©,0,1)
Cs, 1,1, 1) None
Cs, (1, 1, 0) (1,0, 0), (1, 1, 0)
Cy, ©,1,2),d,1,2), ©, 1, 1), (1,1, 1),
1, 2,2) (1, 2, 0), (0, 1, 2), (0, 2, 1),

1,2, 1), 2,2, 1)

little groups, depending in which direction the system is
moving in the fixed box. Table I summarizes all the
possibilities. Only the lowest distinct momenta are given,
which should be sufficient in most applications. The
momenta is given in units of lowest nonzero momentum
allowed on periodic lattices P = (2z/L)d. Note that this is
the lowest momentum in the traverse directions, when
considering elongated boxes. If needed, then one can go
higher by following the rules in the table. We will consider
four distinct moving frames, d = (0,0, 1), d = (1, 1,0),
d=(1,1,1), and d = (0,1,2). They correspond to the
lowest momentum square norms |d|*> = 1,2, 3,5 [|d|* = 4
is a multiple of d=(0,0,1)]. In both cubic and
z-elongated boxes, d = (0,0, 1) has Cy, as the little group,
d = (1,1,0) corresponds to C,,, and d = (0, 1,2) corre-
sponds to C;,. However, ford = (1, 1, 1), the little group is
C5, in cubic box and Cy, in z-elongated box.

The derivations for the matrix elements M}"n’ 1 10 the QCs

involve extensive use of group theory. To improve read-
ability, we highlight some important consequences from
symmetries here and relegate the details to Appendix A. All
the tables for M} 1w are placed in Appendix B. To eliminate

typos, we construct the tables in Mathematica and copy and
paste in LaTeX format. The same expressions in the tables
are also used directly in the numerical tests to be dis-
cussed later.

In Table VIII, we give an overview of the total angular
momentum content in each irrep (or QC), as part of a larger
summary. It is important to realize that each QC is a single
condition that couples to an infinite tower of / values; only
the lowest few are shown. The lowest partial wave in each
irrep can be computed using the energy levels in the box
and if the higher partial waves can be neglected.3 In this
sense, the decomposition of angular momentum can be

*We will refer to the lowest-order QC as the “Liischer
formula,” and the general QC as the “Liischer method.”

regarded as a blessing in disguise: it provides means to
predict individual partial waves via the Liischer formula by
picking irreps and dialing the box geometry. In the table for
each geometry going from top to bottom the symmetry is
reduced which leads to more and more mixing of partial
waves. For example, the gap between the two lowest [ in
AjgorApis4in Oy, 2in Dy, 1in C,,,. There are additional
indicators of mixing: appearance of multiplicities, loss of
parity, and lower starting values of [.

In evaluating the matrix elements, a lot of the wy,
functions vanish or satisfy certain constraints due to
symmetry present in the system. This can be traced back
to how the spherical harmonics behave under the group
operations. The following properties apply to both cubic
and z-elongated boxes in the rest frame.

(i) The standard property Y,_,, = (—1)"Y], translates

directly to w;_,, = (—1)"wj,,. This holds in general.

(i) The system is invariant under a mirror reflection
about the xy plane. It leads to Y,,(0,¢) =
Y (= 0,¢) = (1))=Y, (0,$), which means
wp, =0 for [ —m =odd. In particular w;y =0
for [ =1,3,5,.... This is valid for all systems with
inversion symmetry, which leads to a separation into
sectors by parity.

(iii) The system is invariant under a z/2 rotation about
the z axis which leads to the constraint e%/? = 1
due to the e? dependence in Y,,. This means
wy, = 0 for m # 0,4, 8, ..., regardless of /.

(iv) The system is invariant under a mirror reflection
about the xz plane, which leads to Y,,(0,¢) =
Y, (0.27 — ) =Y;,(0.¢). This means all the
wy,, functions are real valued. However, the matrix
elements M can have complex-valued coefficients
depending on basis vectors.

We take advantage of these properties to simplify the
presentation of the QCs. We use the minimum number of
nonzero elements. Moreover, the M matrix is Hermitian so
we only list the upper triangular part of the matrix.

In comparing with literature one needs to pay attention to
different notations and conventions. A feature of a generic
QC is that it is invariant under a change of basis (similarity
transform),

|BMH/B_l — 511/ C0t5| = |B]‘411/B_1 — 3511/3_1 C0t5|,
= |B(Myy — &y cot8)B~'],
= |B|[Myy = 8y cotd||B~'|
= |M”/ - (S”/ C0t5|. (30)

So the same QC can take different analytical forms
depending on the basis vectors and coordinate systems
used, but the physics content is the same. Numerically they
should produce the same determinant.
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So far the discussion is limited to systems that are at rest;
the two particles have back-to-back nonzero momentum,
but the total momentum P = 0. The total energy is the same
in both the lab and cm frames. Now we consider moving
frames, that is, systems with nonzero P in the lab frame,

P=p, +p>. (31)

In relativistic kinematics, moving frames are also known as
Lorentz boosting. In nonrelativistic kinematics we only
have “Galilean boosting,” thus no length contraction in the
direction of motion and no mixing of energy and momen-
tum in the transformation. For this reason, we will remove
all references to the relativistic factor y (or set y =1 in
practice). Although the current formalism uses y = 1 for
our purposes, we note that y is significant larger than 1
in the majority of lattice QCD calculations that employ
moving frames. We should point out that aside from
kinematics, all other ingredients of the Liischer method
remain the same. The momenta are quantized in the box.
We use the notation for lab momenta,

27 ~ 21

P:fd:f(dx’dy’dz/r[)’
21 . 2w

P fnl:f(n]xsnlwnlz/’/])’
21 2w

P> = fnz = f(”zm n2y’n22/77)’

d=(d,.d,d;,) = (n.ny.ny) + (o, nyy, ny,),  (32)

where we distinguish the input vector d from the summa-
tion vectors 7i2. The energy of the system in the lab frame is
given by

2 2

P1 P2
Ep=—+-—". 33
lab 2 | 2 5 ( )

In the cm frame, the energy is given by

k2
Ecm =5~ (34)

2m

where 71 is the reduced mass and k is the relative cm
momentum. The advantage of moving frames is that it can
lower the center-of-mass energy,

PZ

N S F . —
cm lab 2(m1+m2)

(35)

thus providing a dial for wider energy coverage. The
procedure to extract infinite-volume phase shift is to
first measure the interaction energy E,,, in the box, then
determine k via kinematics [Eqs. (34) and (33)], then &(k)
via the QC.

To find out how k is quantized in terms of lab momenta,
we perform Galilean transformations

ny

! P —
’
”ll 212

P m1+m2

Py = —k + P, (36)

where we assume particle 1 has k with the same sign as P.
Solving for k, we have

ny — ny

1
k=-(p, —p,) +-— "2
2 (P1=p2) 2(m; + my)

1 mp — myp

- __P+7P7
P 2ty + my)

= 2L—” <ﬁ - %A(NI), (37)

where in the last step we have inserted the box momenta
and defined the factor

s

my — my

A=1+ (38)

m2+m1

This is to be contrasted with the relativistic version A =
1+ (m? —m3)/W? where W = \/m?+ K>+ /m} + k?
is the invariant energy of the system. Note that if we
assume the other possibility (particle 2 has the same sign as
P) in Eq. (36), the order of m; and m, in A is switched, but
it does not affect the quantization condition as we will see
below. The system is symmetric about A = 1.

Another effect of moving frames is that the periodic
boundary condition in Eq. (7) now picks up a complex
phase factor [2,4-6]:

y(r+nL) = e™mdy(r), (39)

also known as d-periodic boundary condition. The vector n
in this equation should be understood as n = (n,, n,.n,n).
The condition depends on the boost d, as well as the
particle masses m; and m, via the factor A. This condition
is not easy to implement if we work in the cm frame. By
working in the lab frame, standard periodic boundary
conditions can be applied.

The new condition is not invariant under parity, so the
solutions of the Helmholtz equation are a mixture of both
parities. For spinless systems, the irreps now overlap with
both even and odd angular momenta /, not just the even or
odd separately.

Boosting of spinless system in cubic box has been
considered in a well-known study in Ref. [2] and later
extended to unequal masses in Ref. [4]. Boosting of
spin-1/2 system in cubic box has been considered in
Refs. [5,6]. In this work, we reexamine the QCs for cubic
boxes and derive new ones for elongated boxes.

For moving frames, the zeta functions in Eq. (20) need to
be modified to include the boost d,

054517-6
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Zi(qdn) = ) 2}2""_("1.

nePy(n) q

(40)

The summation grid changes to

Py(n) = {n eR3|a=n"" (m —;Ad> ,m e ZS}, (41)

with the projector #~' acting on a vector m to mean

A~'m = (m,,my,m_/n). The evaluation of zeta functions
has been described, for example, in Refs. [5,6,9,23]. We
implemented a high-precision version that can handle
both asymmetric geometry and general moving frames.
Because moving frames single out special directions in
space, symmetry in the system is reduced. This is reflected
in the proliferation of nonzero matrix elements in the QCs,
as summarized in Table II. Due to lack of parity in moving
frames, there is mixing between odd and even [ states
within a given irrep. This means that the phase-shift
formulas are generally more complicated for moving states
than for the ones at rest. One consequence is the appearance
of zeta functions with odd values of [.

Further simplification is possible from the closure
relation on the zeta functions [1],

1
[
Z Dr(nzm ((Z, ﬁv y>Zlm’ = Zlm, (42)

m,:_

where D is the Wigner rotation matrix for a transforma-
tion in the little group. This has its origin in the property
of spherical harmonics under discrete rotations, and holds
for all d possibilities and box geometries. A constraint
among the zeta functions can be obtained from each
group element; not all constraints are independent. These
introduce further relations between w;,, with the same /.
We list these relationships in Table III for d = (0,0,0)
and d = (1,1, 1) in cubic box. They are used to further
simplify the matrix elements in the two cases. For all
other cases, no new relations are generated by these
constraints.

For unequal masses, what happens if the two masses
are switched? This question can be answered by examining
the mass dependence in the zeta function in Eq. (40).
Interchanging m; and m, only affects the A factor in the
summation grid in Eq. (41). The result is a change in sign of
the set of points to be summed over from 72 to —n (the
mirror image grid). It leads to an overall sign change in the
zeta function, which does not affect the QC. So the order of
m; and m, does not matter as far as QC is concerned.
However, the order matters in terms of total energy of the
system: when the higher-mass particle carries more
momentum than the lower-mass particle, the system has
lower total energy. Examples will be given when we discuss
energy spectrum in the box.

III. TWO-PARTICLE ENERGIES
IN A PERIODIC BOX

To check our derivation of the quantization conditions
discussed in the previous section, we want to calculate the
spectrum of the two-particle states in a finite box with
periodic boundary conditions. To make the calculation
transparent we will use a nonrelativistic setup with the
particles’ interaction controlled by a rotationally invariant
potential. We will solve the problem numerically using a
lattice discretization of the Hamiltonian and the associated
Schrodinger equation. The results are extrapolated to the
continuum limit before comparing them to the results of the
quantization conditions.

A. Lattice Hamiltonian

We want to obtain the energy spectrum in a finite box in
order to examine the quantization conditions. We achieve
this by using discretized lattices of finite lattice spacing a,
then extrapolating to a — 0 while keeping the physical box
size fixed. Consider the general case L x L x nL where 77 is
the elongation factor in the z direction. We want to solve
the Schrodinger equation HY = EW¥ in the box frame
(lab frame) with periodic boundary conditions. The
Hamiltonian of the system is

h? h?
——Vi——Vi+ V(i —rf). (43)

H =
2m2

2m1

Here V; 1is periodic version of the infinite-volume
potential V,

Vilr —raf) = ZV(VI +mLl—r,—mLl). (44)

np.n,

Visually, the continuous space gets tiled into an infinite
number of #L> boxes in which the potential is replicated.
Under this scenario, the potential is no longer rotationally
symmetric. Instead, it takes on the symmetry of the box.
The wave functions satisfy periodic boundary conditions

lP(r1+n1L,r2 +n2L) :\P<r1,r2), (45)

where n, = (nlxvnlwnlzr]) and n; = <n2xv nzy’nzﬂl)-
Numerically, the problem can be solved by discretizing
the box into a lattice of NN, N grid points and an isotropic
spacing a, so the physical volume is NN, N .a’. For the
elongated geometry along the z axis we have N, = Ny, = N
and N, = nN. The Laplacian can be approximated by finite
differences on the lattice. However, the dimension of the
Hilbert space for the two-particle states grows with N and
finding the relevant eigenvalues for this Hamiltonian is only
practical for very small lattices. We seek a method that can
reduce it to a N3 problem. The traditional approach is to
separate the problem into the motion of the center of mass
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TABLEII. Nonzero zeta functions for rest frame (up to / = 10), moving frames (up to / = 8), unequal masses, and z-elongated box. In
the case of cubic box, wy and ws, vanish for d = (0,0,0) and d = (1, 1, 1). In the case of equal masses, all odd-/ functions vanish. We
use the notation w,,, = wry,, + Iwi,,. If the function is real, then it is simply represented by w,,, instead of wry,,; if purely imaginary,
then by wi,,,. If the function has both nonzero real and imaginary parts, then expressions such as wiy; — wr3; or wisz — —Wwrs; mean
that they have equal magnitude but may differ by a sign, and the function will be represented by its real part. We did not encounter the
case where nonzero real and imaginary parts have different magnitudes. All matrix elements of the QCs in Appendix B are expressed as
linear combination of these functions with purely numerical coefficients.

d
{0,0,0}

[—

Wim

{Woo}
{way}

{Wag. Was }
{We0. Wea }
{W807 Wg4, Wgs}
{W1007W1045W108}

{Woo}
{Wio}
{wa}
{wso}
{Wa0. Was }
{Ws0, Wsa }
{ W0, Wea }
{w70, Wrs }
{Wso, Ws4, Wes }

{Woo}
{wiy — erl}
{ W20, Wi }
{wiz; = wr3y, Wiz = —wrs3}
{ W40, Wigz, Was }
{wis; — wrs|, Wis; = —Wrs3, Wiss — Wrss}
] ) {Waov wigy, Wg4v Wiss} )
{wiy; = wry, wizz — —Wr73, Wizs — wrys, Wiz — —wry; }
{ W0, Wigy, Wy, Wige, Wgg }

{woo}
{Wig. Wiy = wryy }
{Wag, Wiy — wryy, Wip, }
{ W30, Wiz — Wr3, Wiy, Wiz3 = —wrs3}
{W40v Wigp = WIyp, Wigp, Wigz — —wr43,w44}
{Ws0, Wis; — Wrsy, Wisy, Wis3 = —Wrs3, Wy, Wiss — Wrss |
{We0, Wig1 — Wrg, Wig, Wig3 — —Wrg3, Wy, Wigs — Wrgs, Wigs |
{Wa0, Wizp = gy, Wigy, Wigy = —Wrg3, Way, Wigs = Wiz, Wize, Wig; — —wry7}
{wgo, Wig; — wrg;, Wigy, Wigy — —Wrg3, Wgy, Wigs — Wrgs, Wig, Wigy — —Wrg7, Weg }

{woo}
{Wi0. Wiy }
{ W2, Wiy, W }
{ W30, Wiy, W3y, Wizs }
{Wa0. Wigy, Wap, Wigs, Wag }
{Ws0, Wisy, Ws, Wis3, Wsy, Wiss }
{Wéo, Wig1, We2, Wie3, We4, Wigs, W66}
{w70, Wiy, Wyp, Wiz, Wyg, Wizs, Wre, Wi77}
{WSOv Wig, Wgo, Wigs, Wgg, Wigs, Wgg, Wigy, W88}

—_
o XD O

{0,0,1}

{1,1,0}

{1,1,1}

{0,1,2}

OO UNPHE WD, O ONAAUNEAEWNNFR,O ONAAUNEAEWNDFR,O 0N AW —=O

plus the relative motion in the cm frame with a reduced  the lab frame is so modified in the cm frame that depends
mass. The cm motion is constant and is largely decoupled; on the total cm momentum and the masses of the two
its presence is only felt in the relative motion through  particles, as seen in Eq. (39). The separation of the center-
kinematics. Moreover, the periodic boundary condition in ~ of-mass motion has to be done carefully since we intend to
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TABLE III. Additional relations derived from the closure
condition in Eq. (42) for rest frame d = {0,0,0} and moving
frame d = {1, 1, 1} in cubic box. They are used to further simply
the matrix elements in the two cases.

d ={0,0,0}, group O,

5
Wyq = \/;Ww
7
Wesa = —\/Weo
Wg4 = 3 [ Wgo
Wgg = 3 [ Wgo

Wios = —

65W100

Wios = — mwloo

d={1,1,1}, group Cs,

Wio
Wi = =5

Wl — —WIp
V3w
4

Wr3; —
1
WI33 — -3z \/§W30
Wi42 - 2\/§Wr4 1
WIy3 — \/7wr41

5
Wyq — \/;W4O
Wrs3 = 1/3Wso + 34/
53 7Ws0 1aWTIs1

5, __ 8wrs,
12%Vs0 ~ " 51

S Wso
WrI's5 — \/:ng —7

Wl62 - = ( \/ WI'61 6Wr63)
Wigs = 24 L (2v/55wrg; — 9v/22wry,)

Wea = \/Weo
WIgs — \/erél + \/‘WI‘63

363wizp—32i(V2 w70—\/—wr7|+9\/_wr7;

Wsq = —

Wiz = 33143
2542wy —248v/3wry; +120wr4
W4 = — 66v/11
14v/42w70—94V/3wry; +21wrps
Wi7s = 33V11

Wry7 — —l \/E(z\/_Wm + V21w + 2\/7W1’73)
W182 —) \/ WI'S'; \/ Wrgl)

Wigg — 3\/7wr81 \/7wr83
Wgg = 5 \/%W

Wrgs — 3\/-W1’83 2\/7wr81

Wrg7 — 2\/%wrg3 - \/;wrgl
Wgg = % \/%Wso

use the same formalism both for two-particle states at rest
and for the moving case. We want a formalism that is
inducive to the study of moving frames in a natural fashion.
To this end, we project the problem to a new basis
consisting of total momentum P and relative coordinates
r in the lab frame,

|P,r) = Ze”"m|m,m +r), (46)

m

where |r,n,) is the ket in the position representation for
two particles.

In Cartesian coordinates, using a three-point stencil, the
Laplacian operator is

(r —ajt) — 2y (r)

I‘) ZVI + Cl,u a + (9(612>7

(47)

and the projection leads to the reduced problem
Hy(P,r) = Ey(P,r), where the lattice Hamiltonian is
given by

W -1 e 1
= - —_— _— _— P 0
=53 2[(m m2)| -+ a)

e—iP,,a 1
+< +>|P,r—aﬁ>
my my

# 2ot o IR + v

As expected the Hilbert space for fixed total momentum P
is invariant under the action of the Hamiltonian and the
eigenvalue problem is more tractable. The dimension of the
space is proportional to N3 and the low-lying spectrum can
be obtained quickly for lattices up to 32° on a desktop
computer. For a system at rest (P = 0), it coincides with the
familiar form in the cm frame for relative motion,

=g

+2(0,r)) + V. (r), (49)

,r) + O(a?).

(48)

ft)

T —aft)

with 7 as the reduced mass. To accelerate the convergence
to the continuum we use an improved version with a seven-
point stencil,
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H

h2 -1 e3iP,,a 1
P,r)=—— -2 —
) 2 Z”: 180a? { ( m +m2>

B 2(8_3”)/‘” _’_L)
my nmy

1490 <mi + m%) |P,r>} VL OP.F) + 0(ad).

e—21Pm ua

P,r—3aj) +27<
my

To confirm the correctness of the new formalism in the
|P,r) basis, we performed the following check. We solve
the original problem in Eq. (43) on a 4> lattice to obtain all
4096 eigenvalues and eigenvectors. They contain all
64 sectors of possible discrete total momenta of the system,

2 ]k
P = ﬂ<l J >,Where

@ \Woww

i=0,..,N,—1,

j=0,..,N,—1,

k=0,...N,—1. (51)

Note that due to the smallness of the lattice, there are a lot
of accidental degeneracies in this setup and eigenvectors of
different momentum are mixed since they have the same
energy. To project out the individual momentum sectors,
we lifted the degeneracy by adding random terms to the
Hamiltonian proportional to the momentum operators.
We construct momentum operators on the lattice from
the translation operator T, = e (similar in y and z
directions). The issue is that it is not Hermitian, so we
consider Hermitian alternatives

T, —T}
21

T .+ T
P)Cl: x+ X.

and P, = (52)
It turns out that both the “sine” and “cosine” operators are
needed to remove degeneracies. Using these operators, we
can form a set of commuting Hermitian operators

O={H.P,.Py.Py.PpyP,P,} (53)

yl»
We take a random linear combination of the set and
solve for the eigenfunctions |y). The eigenvalues of the
seven operators in the set can be postcomputed easily:
A = (w|O;|y). Then it is just a matter of comparing the
momentum eigenvalues with the 64 unique sectors in
Eq. (51) to identify the eigenvalues of H belonging to a
certain sector. The 64 groups of energy levels thus obtained
are compared to those computed directly from the projected
Hamiltonian in Eq. (48) on the same lattice sector by sector
where P is an input. Perfect agreement is achieved in all
64 sectors, using both the three-point stencil in Eq. (48) and
seven-point stencil in Eq. (50) version of the Hamiltonian.

e2iP,,a 1
P,r+3aﬁ>+27< +—>
my

+ —) |P,r—2ap) — 270(
my

R eiPﬂa 1 .
P,r+2aj) —270 +— | |P,r+ ap)

ny ny my

e—iP“a

1
n —) Py — ail)
my my

(50)

The same check is carried out for z-elongated lattices
(Ny =N, #N,).

B. Energy spectrum in the box

The spectrum of the Hamiltonian is naturally split into
invariant block with different total momentum P. We need
to further consider the effects of the rotational symmetry
on this spectrum. The relevant symmetry group is reduced
from the infinite volume one to the lattice group.
Furthermore, if we are considering states with P # 0, the
relevant symmetry group is further reduced to the little
group, that is the subgroup of the lattice symmetry group
that leaves the momentum P invariant: a symmetry trans-
formation S, belongs to the little group if S; P = P.

The reduction method we used to project to the total-
momentum blocks can be similarly used to further reduce
the Hamiltonian to the invariant sectors generated by the
rotational symmetry. To generate the eigenvectors accord-
ing to the irreducible representations (irreps) of the relevant
lattice symmetry group we use two different methods. The
first approach is to compute the low-lying spectrum of H
and then determine which irrep the eigenvectors belong to
based on their transformation properties under rotations.
Specifically we build the projection operators

Pl",l

Pr) = LS DLGF ISP S, (54

where I" is a given irrep, 4 the representation row, dr the
dimension of the irrep, g the total number of elements in
the symmetry group, S, the symmetry transformation,
and D'(S,) its representation matrix. If the norm of the
rotated eigenvector Pr|P,r) is nonzero, then the corre-
sponding eigenvalue is classified to belong to the A row of
the irrep I' (we assume no accidental degeneracies). Note
that since Sy is a member of the little group, S, P is P in the
equation above.
The second way is to project the Hamiltonian first,

H" = Pp,HPr,. (55)

The projection matrix for row 4 of irrep I is constructed as
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P = %Z[%(skn*v(sk). (56)
k

Matrix U(S)) represents the action of the symmetry
operation:

Urr’(Sk) = (S(I‘ - Skr/) (57)

Then the spectrum is obtained from the eigenvalues of the
projected Hamiltonian. The two methods produce the same
results and serve as a cross check.

Having obtained the lattice Hamiltonian in the reduced
|P,r) basis, we need to take the continuum limit to obtain
box levels from lattice levels. This is done by increasing the
number of grid points and deceasing the lattice spacing
simultaneously while keeping the box size fixed,

limNa = L. (58)

Since the discretization error is known to behave as O(a®),
we perform a linear extrapolation in a® using three lattices.

In a later section, we will present the results for this
method applied to the cases discussed earlier: rest frame
(P = 0) and four moving frames (P # 0), in both cubic and
elongated boxes. But first we discuss the quantization
conditions.

IV. NUMERICAL CHECKS

In this section, we check our derivation for the QCs in the
various scenarios discussed Sec. II. We seek the simplest
way to accomplish this goal: by solving a Schrodinger
equation with a simple potential in a box with periodic
boundary conditions. We compare this spectrum with the
one derived from the quantization conditions.

A. Infinite volume phase shifts

The first step is to compute the phase shifts for a simple
potential. Consider two particles m; = 0.138 GeV and
my = 0.94 GeV, interacting through a repulsive potential
of Gaussian falloff,

V(r) = Ce 0507k}, (59)

where C = 1.0 GeV and Ry = 1.25 fm. The range of the
potential is about 4 fm. The phase shifts can be obtained
readily by the variable phase method [65]. For partial waves
up to / =5 and momenta up to about 0.2 GeV, they are
shown in Fig. 2. Some numerical values are given in
Table IV. The phase shifts have the expected &;(k) ~ k*+!
asymptotic behavior. The potential is chosen so that in our
tests partial waves up to / =5 can be checked for con-
vergence in the k range we use. The goal is to check our
derivation for the higher order QCs by comparing these

0

-20 — (=0

=1

T /=2

T 60 o

DY =3
-80

— /=4

-100 =5
-120

0.00 0.05 0.10 0.15 0.20
k (GeV)

FIG. 2. Phaseshift of the test potential for the lowest six partial
waves.

energies produced by these phase shifts with the two-
particle spectrum in finite volume.

B. Results and discussion

Since the range of the potential is about 4 fm, a box size
of L = 24 fm is sufficient to make the exponential finite-
volume effects negligible. The large volume is for checking
purposes in the quantum-mechanical model. We note such
a large volume is not accessible in current lattice QCD
simulations, although the recent development of the master-
field paradigm makes an important leap in this direction
[66,67]. To take the continuum limit we use lattices of 203
with a = 1.2 fm, 24° with @ = 1 fm, and 30° with a =
0.8 fm for cubic case. For the elongated case we use the
same three lattice spacings and the same size L = 24 fm in
the x, and y direction but we elongate the z direction by a
factor of # = 1.5. The lowest nonzero momentum in the
spectrum is controlled by the box size k, = 27/(Ln).
For the higher k values the density of states gets higher.
We study states with k < 0.2 GeV. In this k-range only the
phase shifts for £ < 5 are significantly different from zero
(see Fig. 2). Therefore, we expect convergence of the QCs
by [ = 4 or [ = 5. The total number of noninteracting levels
(with or without degeneracies) under the cutoff are sum-
marized in Table V for all the cases considered in this work.
We see the number of levels is still fairly large after the &
cutoff. In such cases, we apply an additional cut of 40
distinct levels to keep the number manageable, which

TABLE IV. Some numerical values of the phase shift (degrees)
at selected values of k (GeV) in Fig. 2.

[ k=0.05 k=0.1 k=0.15 k=02

0 —32.2599 —62.9184 -90.5094  —113.833
1 —3.15552 —16.5361 —35.5349  -54.9107
2 —0.101947 —2.22494 -9.5661 —21.2908
3 —0.00173584 —0.160577 —-1.61377 —6.08421
4 -0.0000210598 —0.00781134  —0.18254  —1.24548
5 —1.817x1077 —=0.000293742 -0.0156874 —0.192916
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TABLE V. Number of distinct and total noninteracting levels
for two spinless particles of unequal masses in a box of geometry
L x L xnL with L =24 fm and cutoff k < 0.2 GeV.

ability to reach lower energy can be regarded as an
advantage of the elongated geometry over the cubic. The
integer indices of lab momentum for each particle along
with their degeneracy are shown. We see how the particles

Cubic (7 = 1) celongated (7 = 1.5) are arranged to have back-to-back momenta so the total
d Distinct Total Distinct Total momentum is zero in both lab and cm frames. Level 9 in
(0, 0, 0) 14 251 36 359 cubic box is a special case with accidental degeneracy of 6
0,0, 1) 54 252 79 367 from (£3,0,0) and 24 from (£2,+2, +1). Its counterpart
1, 1,0 73 245 108 355 in elongated box is level 21, but with a different degeneracy
(1, 1, 1) 54 342 204 363 of 4 from (+£3,0,0) and 16 from (43,42, +1). The one
o, 1,2) 107 240 218 366

implies a smaller k range. Interactions cannot change the
number of levels in our model, only shift them, so the
noninteracting levels serve as a useful guide. We provide all
the noninteracting levels obtained from kinematics in Sec. |
of the Supplemental Material [64]. For the rest frame of
cubic and elongated boxes, we see that the levels are more
packed in elongated box (36 vs 14), which also reaches
lower in the first nonzero level (0.03 vs 0.05 GeV). The

with (£2, 42, +1) is level 20, which has lower energy and
degeneracy 8. These k levels are also free-particle poles in
the zeta functions in Egs. (20) and (40). Interactions will
cause k to deviate from the free levels. The amount of the
deviation is related to phase shifts via the Liischer QC.
Since the QCs are block diagonalized by irreps, the
levels must also be projected into the irreps as discussed
earlier. The interacting levels will be given in numerical
tables when we study the convergence of QCs. In Fig. 3 we
show an example of the projected spectrum for the
rest frame in cubic box (O, group). Note that in the

1=0,4,6 1=9,13,15 1=6,10,12 1=3,7,9 1=2,46 1=5,79 1=46,8 1=135 [=2,46 1=3,5,7
T T T T T T T T T T
0.201 — .
11— 1 11— 1— 4—— 4——— 99— 99— 99— 9——
11— 1 — 4—— 3—— 6——— 33— 6——
11— 11— 3—— 3———
11— {——— 22— 22—+ 3—— 66— f6—— 3F———
1T— 11— 4—=— 3—— 6—— 3— 6———
11— {——— 2—— 2——— 3——— B——— B6—— 33—
0.15F 1— 2—— 3—— 3—— 3— |
11— {—— 2—— 2—— 3———— f—— f—— 3I———
— 11— 4 —— 3—— 66— 33— 66—
% 11— 2—— 3——
¢ 010+ .
x 1— 1 — 3—— 33—
— 2—— 3—— 3——— 3———
0.05]- — — s |
0.00 11— .
1 1 1 1 1 1 1 1 1 1
Alg Alu A2g A2u Eg Eu T1g T1u T2g T2u
Irreps of Oh
FIG. 3. Discrete box levels in the rest frame of cubic box of size L =24 fm up to k = 0.2 GeV. The free-particle (black) and

interacting (red) levels are shown side by side for comparison. The numbers next to free levels indicate degeneracy. The box energies are
obtained in the lab frame from an extrapolation on several lattices, projected into the irreps of O, then converted to cm momentum k.
The top labels show the lowest partial waves in each irrep. Numerical values for both noninteracting and interacting levels can be found
in Secs. 1 and 4 of the Supplemental Material [64].
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noninteracting case levels with the same energy appear in
different irreps. Degeneracies in the noninteracting levels
are removed by the interactions. The strongest interaction is
in the A, channel which is dominated by / = 0. The lowest
level (zero) is shifted up by about 10 MeV. The next
strongest interaction is the 7';,, channel which is dominated
by /=1 where the lowest level is shifted up by about
0.5 MeV. The shift is upwards across the board because the
interaction is repulsive everywhere. The shifts in other
channels are barely visible but can be resolved numerically.
As an additional check we repeated the entire procedure,
including the continuum extrapolations, with the inter-
actions turned off. We compared these results with the
expectation from basic kinematics and found perfect agree-
ment. This also provided us with a straightforward way to
determine the multiplicity for each noninteracting level in
each irrep.

Our objective is to reproduce the finite-volume spectrum
using the QCs and the phase shifts. The matrix elements
needed to construct the QCs are given in Tables XXII and
XXIII in Appendix B. Since the symmetry-adapted QC is a
single condition that couples to all possible partial waves in
a given irrep, we can compute the phase shift from the
spectrum only if the lowest partial wave is retained. As an
example, we show in Fig. 4 the phase-shift prediction for
[ = 0 partial wave in the A;, QC by feeding the interacting
energy levels into the Liischer formula. All other cases can
be found in Sec. II of the Supplemental Material [64]. We
see the reconstruction is excellent up to k = 0.2 GeV, but
with a notable exception point at k = 0.1548 GeV (level 9)
where the box level seems “incompatible” with the lowest-
order Liischer QC. A feature of the exception is that it
happens at a free-particle pole (faint vertical line). We say
the level is “pinched” at the free-particle pole. All other
points are in between free-particle poles. The discrepancy is

0 (deg)

-100

A1g (/=0)

-150 -

1 " " " " 1 " " " " 1

0.05 0.10 0.15 0.20

k (GeV)

FIG. 4. Phaseshifts reconstruction for the lowest partial wave
(I = 0) in the A, irrep of rest frame d = (0,0, 0) in cubic box.
The black points are the predicted phase shift via Liischer
formula. The red curve is the infinite-volume phase shift. The
faint vertical lines correspond to non-interacting levels in the box.

due to the fact that we neglected the higher partial waves in
the QC.

As a general method to assess the effects of higher partial
waves, we investigate the convergence of the QC by
feeding it the infinite-volume phase shifts and comparing
the resulting levels with the box levels. We find it more
convenient to locate the roots of this equation by solving
the real-valued QCI1 rather than the complex-valued QC2.
After the roots are found from QC1, we pass them through
QC2 to double check they are also roots. This is a different
approach to Ref. [68] where QC?2 is solved by eigenvalue
decomposition for coupled channels. We check the con-
vergence order by order: “order 17 has only the lowest
partial wave, “order 2” with the next partial wave added,
and so on. In the limit that all the partial waves are included,
perfect agreement is expected. In practice, we check
convergence for the lowest five partial waves (up to
[ = 4), which is adequate for most applications. In some
cases, we consider / = 5. Once convergence is achieved,
we consider the QC checked at the given order.

The comparison involves very small differences
that are not easily discernible visually. To better gauge
the quality of the convergence, we introduce a numerical
measure

koox — koc)?
2 _ ( box QC 60
o (kbox - kle:lt)2 ' ( )

where ki, 1S the continuum box level extrapolated from the
three lattice spacings, k;,; the level on the lattice with the
finest lattice spacing, and k¢ the solution from the QC at
each order. The extrapolation is a function of a®, the error
present in the Hamiltonian from the seven-point stencil
approximation in Eq. (50). We show an example of the
continuum extrapolation in Fig. 5. For comparison, we also

T T T T T T

0.189 0.18926 - 0.0000252196 a°

0.188

0.187

k (GeV)

0.189236 - 0.00380133 a*
0.185

0.184f ]
0.183f ]
0.0 0.2 0.4 06 0.8 1.0 1.2
a (fm)
FIG. 5. Continuum extrapolation of a level in the A, irrep of

0,,. Three points are obtained on lattices 20 with a = 1.2 fm,
243 with a = 1 fm, and 30° with ¢ = 0.8 fm. The red points are
from the seven-point stencil and the blue points from the three-
point stencil. The fitted curves and forms are also displayed.
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FIG. 6. Phaseshifts reconstruction for the lowest partial wave
(I =1) in the Ty, irrep of rest frame d = (0,0, 0) in cubic box.
The black point are the predicted phase shift via Liischer formula.
The red curve is the infinite-volume phase shift. The faint vertical
lines correspond to noninteracting levels in the box.

show the result from the standard three-point stencil
approximation Eq. (48) which has O(a?) discretization
errors. We see that they converge to the same result but at
different rates. Basically, the convergence is measured
against the tiny difference between the continuum box
levels and those from the largest lattice used in the
extrapolation (about six decimal places, or 1 eV out of
1 MeV). Note that the y? introduced is not in the standard
sense of curve fitting where the best value is around 1. Here
the smaller its value, the better the convergence. This is a
highly sensitive measure: nonconvergence of a single level
will have a large contribution to the total y?. In cases of a
box level coinciding with a free-particle pole, we indicate it
by a red star and replace kg in Eq. (60) by k.

We apply the method to the A;, example in Fig. 4.
The results are given in Table VI. The overall quality of
convergence is measured by the total y? of all the levels. We
see that at order 1 (only [ =0 s wave is included), it is
about 277. The level most responsible for the discrepancy is
level 12, followed by levels 10, 9, 4, 6. We note that level 9
is the one that is obscured by the noninteracting energy
pole, the one that stands out in Fig. 4. At order 2, the QC is
enlarged by adding the next partial wave (I = 4). We see
that the addition of / =4 causes small changes in the k
values that improves the total y>. The exception level,
level 9, is now approximated well by one of the roots of
the QC. The quality is indicated by the small y* value of
0.019. In fact, all the levels at order 2 have small ;(2, leading
to a total of 3.73, much smaller than 277 at order 1. Thisis a
prime example of how the higher partial wave impacts the
QC and how we check convergence.

Another interesting example is the 7', irrep in cubic box,
shown in Fig. 6. It poses two challenges. One is there are
numerous exceptions in this channel. The other is that
some levels are nearly degenerate. The convergence study
is shown in Table VII. This channel is dominated by the p
wave, followed by /=3 and /=15 which also has a
twofold multiplicity. At order 1, the numerous exceptions
are indicated by the red stars. At order 2, most are fixed by
the addition of [ = 3, but two remain pinched (levels 10
and 20). This demonstrates that the neglected [/ = 3 partial
wave is largely responsible for the exceptions observed at
order 1. A closer examination reveals that the two remain-
ing exceptions are part of nearly degenerate pairs. Only one
of the two nearly degenerate points (level 11) is a QC
solution but the other (level 10) is not. A similar situation
holds for another pair of close-by levels: level 21 is a
solution but level 20 is not. This hints at possible influence

TABLE VI.  The companion table to Fig. 4 for A;,, showing convergence of quantization condition by adding higher partial waves.

The k levels in GeV are compared directly order by order, using the y> measure defined in Eq. (60). The red star indicates that the box
level is “pinched” at a free-particle pole.

Level Box L Lattice Order 1 Order 2 2 Order 1 2 Order 2

14 0.18926 0.189253 0.189254 0.18926 0.820197 0.00914913

13 0.181804 0.181799 0.181803 0.181803 0.0205124 0.0146576

12 0.177043 0.177041 0.177007 0.177044 174.698 0.0110595

11 0.167873 0.167867 0.167872 0.167874 0.0419179 0.0215601

10 0.159465 0.159461 0.15944 0.159466 29.8119 0.014445

9 0.154755 0.154749 x(0.154723 0.154755 29.1192 0.0191184

8 0.148467 0.148466 0.148466 0.148467 0.763934 0.000166674

7 0.137488 0.137487 0.137489 0.137489 0.0251408 0.0252861

6 0.120712 0.120711 0.12071 0.120712 16.368 0.0213916

5 0.105257 0.105256 0.105256 0.105257 4.20346 0.017348

4 0.0938371 0.0938369 0.0938362 0.0938372 18.3015 0.130459

3 0.0796177 0.0796176 0.0796178 0.0796178 0.453209 0.453221

2 0.0560702 0.0560701 0.0560702 0.0560701 0.214519 0.623864

1 0.01025 0.01025 0.0102501 0.0102501 2.36538 2.36787
Total y* 277.206 3.7296
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TABLE VIIL.

The companion table to Fig. 6 for T, showing convergence of quantization condition by adding higher partial waves.

The levels are compared directly order by order, using the y> measure defined in Eq. (60). The red star indicates that the box level is
“pinched” at a free-particle pole.

Level Box L Lattice Order 1 Order 2 Order 3 % Order 1 x> Order 2 x* Order 3
22 0.198249 0.198241 0.198146 0.198245 0.19825 167.097 0.249283 0.0101593
21 0.193217 0.193213 x0.192974 0.193209 0.193221 2998.88 3.71223 0.470423
20 0.192982 0.192978 %0.192974 x0.192974 0.192975 3.26057 3.26057 2.49916
19 0.187618 0.187613 0.187614 0.187615 0.187619 0.747838 0.42273 0.00535232
18 0.186043 0.186039 x0.185954 0.186041 0.186045 389.699 0.356124 0.194373
17 0.179522 0.179521 0.179489 0.179517 0.179522 807.378 17.3011 0.0125204
16 0.173768 0.173763 0.173698 0.173767 0.173769 206.536 0.0359251 0.00582583
15 0.171233 0.171228 x0.171053 0.171231 0.171233 1447.64 0.209609 0.00394721
14 0.165438 0.165434 0.165382 0.165438 0.165439 128.455 0.0154137 0.00520841
13 0.163206 0.163201 x0.163093 0.163204 0.163206 526.933 0.147073 0.0123243
12 0.157179 0.157177 0.157134 0.157178 0.157179 551.783 0.156363 0.00460883
11 0.154856 0.154853 x(0.154723 0.154856 0.154857 1267.98 0.0467443 0.00685293
10 0.154726 0.154725 x(0.154723 x(0.154723 0.154726 6.59657 6.59657 0.0176498
9 0.146868 0.146867 0.14686 0.146867 0.146868 172.894 2.71263 0.0020146
8 0.129339 0.129339 0.129335 0.129339 0.129339 58.3417 0.000653416  0.0113939
7 0.126379 0.126379 *0.126331 0.126379 0.126379 30130.9 0.976735 0.00253806
6 0.11756 0.117559 0.117552 0.11756 0.11756 323.653 0.0133041 0.00803915
5 0.115359 0.115359 x0.115324 0.115359 0.115359 13893.6 0.272455 0.002095
4 0.103734 0.103734 0.10372 0.103734 0.103734 1539.04 0.0089603 0.0024343
3 0.0901719  0.0901719 0.0901658 0.0901719  0.0901719  11790.7 0.0587094 0.0204841
2 0.0740985  0.0740985 0.0740982 0.0740985  0.0740985 27.9224 0.011686 0.0285701
1 0.0520501  0.0520501 0.0520494 0.0520501  0.0520501 836.425 0.0286906 0.0308669
Total y* 67276.5 36.5936 3.35684
TABLE VIII.  Summary of the total y> measure showing convergence for all QCs discussed in this work. Here /() indicates the lowest

few partial waves (and multiplicities) that couple to the QC; N is the number of levels under the cutoff of k = 0.2 GeV or 40 levels.
Detailed convergence data for every individual energy level can be found in Sec. IV of the Supplemental Material [64].

Cubic box

No. d Group QC I(n) N Order 1 Order 2 Order 3 Order 4 Order 5
1 0,0,00 0, A, 0,4,.6,.. 14 277.206 3.7296

Ay, 9,13, 15, .

Ay, 6,10, 12,
2 Ay, 3,79, 6 0.0458813
3 E, 2,46, 16 2123.07 5.44639
4 E, 57,9, .. 5 0.0546959
5 Ty, 4,6,8(2),. 9 0.243897
6 Ty, 1,3,5(2),. 22 67276.5 36.5936 3.35684
7 Ty, 2,4,6(2), 16 2485.36 270125
8 Ty, 3,5 7(Q),... 14 4.55575 0.267262
10 (0,0,1) C4 A 0,1,2,3,4(2), 40 4.08008 x 103 1.06106 x 100 10175.7 284.022 6.92792
11 A, 4,56, ... 15 7.46202 0.145375
12 B, 2,3,4,5, .. 34 276889. 402.025 5.9668
13 B, 2,3,4,5, ... 27 350956. 779.183 3.84012
14 E 1,2,3(2),4Q2), ... 40 132751 x 107 72379.5 514.979 8.21687
14 (1,1,00 G, A 0,1,2(2),32),40), ... 40 196654 x 108 477126 x 106 17298.1 190.94  5.34113
15 Ay 2,3,4(2),52), 40 54211.3 2998.61 3.01327
16 B, 1,2,3(2), 4(Q2), 40 2.84806 x 105 47754.8 241.517 4.62961
17 By 1,2,3(2), 42, 40 9.36978 x 10° 88719.7 308.013  6.28652
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TABLE VIIL (Continued)

Cubic box
No. d Group QC I(n) N Order 1 Order 2 Order 3 Order 4 Order 5
18 (I,1,) Gy A 0,1,2,3(Q2),4Q), . 40 9.16556 x 107  1.09895 x 10°  22260. 115412 3.53446
19 A, 3,4,5, 26 111.322 0.44229
20 E 1,22, 3(2) 4(3), . 40  8.06257 x 106 23959. 271.289 4.13508
21 (0,1,2) C,, A, 0,1(2),203),3%), 4(5) ... 40 1.01852x 10°® 993629. 6858.3  17.3429 2.01417
22 Ay 1,2(2),303), 44, . 40 8.98645 x 106 37314.8 293.484 3.18387
Elongated box
No. d Group QC I(n) N Order 1 Order 2 Order 3 Order 4 Order 5
23 (0,0,00 Dy Ay, 0,2,4(2),5, 40  4.06688 x 106 573.449 8.64225
24 A, 5.7,9Q), . 9 0.134224
25 Ay 4,6,8(2), . 3 0.00828583
26 Ay 1,3,5(2), 7(2) 34 131946. 16.2795 10.7998
27 E, 2,4(2),603), 38 2009.93 0.319341
28 E, 1,3(2),53),. 40 221693. 41.2595 8.52709
29 B, 2,4,6(2),80), 27 703.291 11.0395
30 By, 3,5,7(2),90Q), 17 7.07159 0.168506
31 By, 2,4,6(2),8Q), 22 2093.46 0.192
32 B, 3,5,7(2),902), 21 2.06599 0.488025
33 0,0,1) Cy A 0,1,2,3,4(2), 40 570458 x 103 9.64404 x 106 140254  166.777 11.0137
34 A, 4,5,6,. 21 40.092 0.21509
35 B, 2, 3,4, 5, 40  161200. 274.945 5.1077
36 B, 2,3,4,5, ... 39  318459. 845.868 2.82798
37 E 1,2,3(), 4(2), . 40 1.66366 x 107  79648.3 353.966  7.28402
383° (1,1,0) Gy A 0,1,2(2), 32, 403), ... 40 2.19334 x 108 3.60527 x 106 9669.56  99.3024 27.4093
39 A, 2,3,4(2),502), 40 342114 295.311 0.804797
40 B, 1,2,3(2), 4Q2), 40 2.97904 x 106 28179. 115.601  6.80754
41 B, 1,2,3(2),4Q), .. 40  9.05592 x 106 71558.8 146.885  18.7042
42 (1,1,) ¢, A 0,1(Q2),203), 3(4) 4(5), ... 40 5.45564 x 103 2.89417 x 106 15983.3  39.1208 8.00598
43 Ay, 1,2(2),303), 44), . 40 6.85779 x 105 23813.9 69.434  3.24328
4 (0,1,2) C;, A 0,1(2),203), 34), 4(5) 40 3.79138 x 108 3.16621 x 106 6213.69  17.0296 5.34524
45 A, 1,2(2),33), 44), . 40 1.27375 x 107 45256.8 146.374  2.67257

of the next partial wave / = 5. Indeed, at order 3, the two
points are both solutions of the QC and we obtain a
spectrum that is in complete agreement with the box
spectrum. The convergence is confirmed by the total y:
from 67277 at order 1, to 37 at order 2, and to 3.4 at order 3.

We have confirmed the convergence of all 45 cases in the
same manner, as summarized in Table VIII. One point to
emphasize is that to get agreement for certain cases we
needed to consider QC all the way to order 5. The irreps in
question (Nos. 10, 14, 18, 21, 33, 38, 42, 44) are, as
expected, the ones that allow the most mixing between
partial waves.

Finally we want to see that for the “pinched” points if we
can exploit the sensitivity to the second partial wave to
produce predictions for its phase shift based solely on the
energy input. Note that this is not in general possible at
other points since the equation at next order involves two
phase shifts constrained by a single equation. Solving for

the second partial wave from a generic QC at order 2 with
no multiplicities, we have

Mo

COS Ogpng = Moy + T
11

61
COS Ot — (61)

The “pinched” points occur very near the pole where
|M;| > 1 and then we can approximate the equation by
setting cosd;; =0 and solve for &,,4. Using above-
mentioned A, and T, as examples, we plot in Fig. 7
oS 05,4 extracted this way for [ = 4 and / = 3. We see that
the exception points discussed in Figs. 4 and 6 fall on the
curve for the infinite-volume phase shift of the second
partial wave. This suggests that 5,4 (k) and 8,,4(k) can be
separately isolated by considering the QC at orders 1 and 2,
respectively. The values obtained for §,,4(k) can be further
checked by comparing with the predictions from other
irreps which have it as the lowest partial wave. These
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FIG. 7. Second partial wave in A, (top) and 7', (bottom) of

cubic box. The black points are cos d,,q in Eq. (61) with cos d;
neglected, evaluated at the pinched box levels from order 1. The
red curve is the infinite-volume cos d,,4. The faint vertical lines
are the free-particle poles.

results demonstrate that exception points at the free-particle
poles are sensitive to the second partial wave. If such points
are encountered in lattice QCD simulations, then they can
be either neglected in the prediction of the lowest partial
wave, or be utilized to give an estimate for the second
partial wave in the QC. The recipe is not fail proof. We see
that two exception points in 7', do not fall on the curve. It
happens when a nearly degenerate pair (levels 10 and 11, or
levels 20 and 21) is pinched at the free-particle poles. It
indicates the possible influence of the third partial wave
[ =5 in the QC. Similar trends are observed in elongated
box. Additional cases can be found in Sec. III of the
Supplemental Material [64].

V. CONCLUSION AND OUTLOOK

We derived higher-order Liischer QCs for scattering
of two spinless particles of unequal masses. Our results
were checked numerically by comparing the QC predic-
tions with the spectrum of two-particle states in a box
computed by solving the Schrodinger equation. This is
done using a simple potential model in nonrelativistic

quantum mechanics. Both the phase shifts in infinite
volume and energy levels in finite volume are independ-
ently generated in a well-controlled fashion. Here is a
summary of our findings.

(1) We considered a variety of scenarios: rest frame and
four moving frames, cubic and elongated geom-
etries. In total, we examined 22 QCs in the cubic box
and 23 QCs in elongated box. The five lowest partial
waves in each QC are examined. In some cases, up
to [ = 5. Matrix elements for all the QCs are given in
Appendix B. Some of the QCs are rederived to
include higher partial waves, others are new. Generi-
cally, we expect the QCs to be valid up to terms
which vanish exponentially with the box size.

(2) We choose the potential and the box-size so that the
systematics associated with finite-volume are neg-
ligible, on one hand, and on the other the results are
sensitive to partial waves as high as £ = 5. This
allows us to provide very stringent tests for our
results. The numerical checks are done at high
precision (to six decimal digits, or differences of
1 eV resolved out of 1 MeV). Up to cm momentum
k = 0.2 GeV and up to 40 levels are examined for
each of the QCs. All convergence data, along with
noninteracting levels and other information, are
provided in the Supplemental Material [64].

(3) We found sensitivity to the second lowest partial
wave in selected QCs through “pinched” levels
which coincide with free-particle poles. The sensi-
tivity can be used to provide an approximate phase
shift for the second lowest partial wave despite the
presence of the lowest one in a particular channel,
but this must be determined on a case by case basis.
If such levels are encountered in lattice QCD
simulations, they can be either ignored or used to
estimate the second partial wave.

(4) For the most part, we find elongated boxes work just
as well as cubic ones. This bodes well for using
elongated boxes as a cost-effective way of varying
the kinematic range with a modest increase in the
lattice volume.

(5) Boosting of the two-particle system in both cubic
and elongated boxes allows lower energies to be
accessed, thus a wider coverage. We considered four
basic types of moving frames d = (0,0, 1), (1, 1, 0),
(1, 1, 1), and (0, 1, 2). Rules for going higher in
momentum are given in Table I. The trade-off for
lower energy is the loss of parity which means more
mixing of partial waves.

(6) The effort is already paying dividends. For example,
we checked the integer-J QCs in Ref. [6] for d =
(1,1,0) and d = (1, 1, 1) and found agreement with
ours, despite having different forms due to different
basis vectors. Those QCs are only given for up to
[ = 2. Here we extend up to [ = 4. We also checked
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(N

against C3, up to [ = 4 from an independent source
[69] and found agreement. We also found a few
typos in the QCs included in Ref. [10]. We also
checked against all the expressions up to [ = 4 for
spinless particles of equal mass at total zero mo-
mentum in nonelongated boxes given in Ref. [1] by
setting m; = m, in our expressions and found
agreement.

The numerical check is designed to be transparent
and computationally inexpensive. The entire calcu-
lation can be done on a laptop.

For outlook, we envision the following possibilities.

ey

@

(©))

“

The QCs can only be used to extract phase shifts from
energy only for the lowest partial waves in each irrep.
The predictions are affected by cutting off all the
higher partial waves. The severity is notknown a priori
and it depends on the box geometry and the total
momentum of the state. The problem can be turned on
its head: can we extract the higher partial waves by
considering multiple QCs simultaneously? We have
seen in limited cases that higher partial waves can be
isolated in a single QC despite the presence of a lower
one. s there a systematic approach, taking advantage
of multiple irreps, moving frames, and box size? Thus
far this was done using various parametrizations of the
scattering amplitude.

Our results are based on a simple repulsive Gaussian
potential. This was appropriate for our goal here,
which was to check our derivation of the quantiza-
tion conditions. We note that the same methodology
could be easily applied for other potentials, if there is
a physical problem that requires calculation of the
two-particle spectrum in a finite box. Any interac-
tion potential can be used in this approach, including
potentials given in numerical form or nonlocal
potentials V(r,p) where p can be treated as finite
differences on the lattice. We note also that the QCs
are general to any spinless two-body system below
the inelastic threshold in finite volume, not just those
relevant to nuclear and particle physics.

The formalism can be used to study the finite-
volume effects in lattice QCD simulation of physical
systems, such as the magnitude of exponential finite-
volume effects ignored by the QCs by considering a
smaller box (3.5 to 6 fm); the effect of the range of
the model potential; and/or the finite-volume spec-
trum in the presence of shallow bound states. Even
using the naive O(a?) discretization to study the
influence of cutoff effects on the extracted finite-
volume energies could be interesting.

The formalism can be applied with minimal modi-
fication to systems with two integer spins. The same
is true for two spin-1/2 particles, such as nucleon—
nucleon (NN) scattering. There is a plethora of NN
interaction potentials to work with.

(5) Another direction is the extension to systems with
total half-integer J, such as a spin-0 particle and a
spin-1/2 particle. Important physical systems can be
studied, a classic example being the delta resonance
in pion-nucleon scattering. This is more challenging.
Group theory for double-cover groups are involved
for half-integer total angular momentum. The QCs
for half-integer J should also be checked since they
are even more involved than the ones for integer
spin. For this case the Hamiltonian must be modified
to include spin-orbit coupling. The spin-orbit inter-
action has been studied in the continuum but finite-
volume using a Fourier basis approach [70]. A
demonstration on the lattice like the one in this
work would be desirable.
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APPENDIX A: GROUP THEORY DETAILS

The different scenarios discussed in the main text are
classified by their symmetries which can be treated
systematically by group theory. In this Appendix, we
provide a reasonably self-contained description of the
group theoretic ingredients needed in this work.

1. Cubic box

For cubic lattices, the symmetry is depicted in Fig. 8. The
symmetry group is called the octahedral point group O is a

FIG. 8. The 24 symmetry operations that form the octahedral
group O in cubic box. They are divided into five conjugacy
classes: the identity (E); six z/2 rotations about the three axes
(6Cy,); three & rotations about the three axes (3C,); eight 2z/3
rotations about four body diagonals denoted by 1, 2, 3, 4 (8Cy);
and six z rotations about axes parallel to six face diagonals
denoted by a, b, ¢, d, e, f (6C). The operations are performed in
a right-hand way with the thumb pointing from the center to the
various symmetry points.
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finite subgroup of the continuum rotation group SO(3). It
has 24 elements and 5 irreps commonly called A;, A,, E,
T, and T, having the respective dimensonality 1, 1, 2, 3,
and 3. The O group is sufficient in describing integral
angular momentum in cubic box. For half-integral angular
momentum, its double-covered group 20 is needed. It is a
general group property that the number of irreps is equal to
the number of conjugacy classes. Another property is that
the square of irrep dimensions sum to the total number of
elements.

For systems at rest, parity (space inversion) is another
symmetry in the box. In this case we need the symmetry
group O, = O ® {E, I'} which is a direct product with the
inversion group (two elements: identity E and the inversion
operation i). The O, group has 48 elements and 10 irreps
that split into two branches: five with even parity labeled by
a plus sign (or g for gerade), five with odd parity labeled by
a minus sign (or u for ungerade). Full details of the O,
group are given in Table IX. The original O group is
embedded in the upper left quadrant of the table. The table
shows how to construct O, from O. First, double the
number of elements by adding a copy of O to the bottom,
labelling them as /1 to /24 so they have one to one
correspondence with the original. The new elements can
also be named by adding the letter / in front of the original
names. For example, C,, to IC,,, or one can use the
traditional name o, to signify a mirror reflection (rotation
about z axis by z/2 followed by space inversion). Second,
double the number of irrep columns by adding a copy to the
right, rename the original as (Aly, Azg, Ey, Tlg, ng) and the
new ones as (A,, A, E,, T1,, and T,). Third, change the
sign of the rotation matrices S and the representations in
the added rows. The rotations in the added rows are also
known as improper rotations because the operations also
include inversion. One way to tell whether a rotation matrix
is proper or improper is by its determinant: a proper one has
det[S] = 1, an improper one det[S] = —1. The n, w, and
{a,p,y} columns stay the same. This is practically what it
means by 0, = O @ {E,I}.

Operationally, the representations for the O group are
as follows. A; is the trivial representation, that assigns 1 to
every group element. The 7 is the three-dimensional
representation corresponding to the transformations of
vector (x, y, z) under rotations whose matrices are gen-
erated via

ty = e o =124, (A1)
where (Ji);; = i€;j. For the remaining irreps, a sign
change in the character of elements 13 to 24 connects
A, to Ay, Ty to T, respectively. The E is a real-valued, two-
dimensional irrep whose matrices can be obtained from
the fact that it has Cartesian basis vectors v/3(x> — y?) and
27> — x*> — y%. The five distinct matrices in the table are
given by [10]:
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The character table is implied in the table: for one-
dimensional irreps character is simply 1 or -1; for
multidimensional irreps character is the trace of the
representation matrix. Note that the rotation angle o is
defined over 4z and the Euler angles over 0 < a < 2z,
0 <p <7 0 <y <4nr,supplemented by the condition that
a =0 when =0 or z (see [10,71]). This matters when
double groups are involved. For the single groups consid-
ered in this work, they are equivalent to the traditional Euler
angles defined over 2z. For notational purposes, we denote
the operation matrices by S; and the representation matri-
ces by D' (g) for irrep I. Note that S, and DTt«(k) happen
to coincide for the O group. The full content of the table is
used for various aspects to be discussed below.

There are more systematic ways of finding the repre-
sentation matrices for the irreducible representations in a
finite group. One way is to use the multiplication table for
the group (see for example Ref. [72]). Another way is
known as the Dixon method [73]. A complete set of
irreducible unitary representations can be constructed
from a single faithful representation. The method is fairly
general: it can find how many conjugacy classes (irreps)
and with what dimensionality a new group has, along with
its representation matrices. The algorithm is much simpler
if the number of irreps and the dimensionalities are known,
as is the case for the point groups considered in this work.
We applied the simpler version to find the representations
in a few cases, taking the 3 x 3 rotation matrices of group
elements as a faithful representation. After the representa-
tion matrices are found, character tables and multiplication
tables can be constructed and compared with published
versions as a cross check.

w5

Q
[9)
N|& D=
|

=

2. Elongated box

For elongated lattices, the symmetry is depicted in Fig. 9.
The discussion is similar to the cubic case, except that the
symmetry is reduced from the octahedral group O to the
dihedral group D, which has eight elements and five irreps.
As far as group operations are concerned, the D, group is
isomorphic to the symmetry of a square. Including parity
the group is Dy, = D4 ® {E, I'} which has 26 elements and
10 irreps (five even parity, five odd parity) Full details of
the Dy, group are given in Table X. The construction of Dy,
from D, is similar to O; from O. The two-dimensional
irrep E is represented by Pauli matrices. It is interesting to
note from the rotation elements in S that D, is a subgroup
of O, with 16 common elements (1, 15,18,4,2,3, 19,20,
I1,115,118,14,12,13,119, 120).
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TABLE IX. Group table of O, for rest frame in cubic box. The inversion is labeled by preceding with the letter / in the k and O,
columns. The matrices e, t; are discussed in the text.

k Oy, n w Sk {a. vy Ay Ay E; Ty Ty Ay Ay E, Ty Ty
1 E {0,0,1} 4r {0,0,0} 1 1 1 f f 1 1 1 f f
2 C,, {1,0,0} P I {0, 7,7} 1 1 1 I 1 1 1 1 1 1
3 G, {0, 1,0} b2 1 {0,7,0} 1 1 1 I 3 1 1 1 3 3
4 Cs, {0,0,1} T Iy {0.0, n'} 1 1 1 14 Iy 1 1 1 1y 1y
5 Cc; {1,1,1} x ts {0.5.% 2 1 1 e s ts 1 1 e3 s s
6 ¢, {-1L-1L1}p = ts {22 1 1 e; ts ts 1 1 e3 ts ts
7 c; {L-1-1p  ZF t7 {m.2.F 1 1 e3 t7 ty 1 1 es t7 ty
8 ¢y, {-L1-1} = I3 {o,g 72” 1 1 e; fg I3 1 1 e fg I3
9 C5 {1,1,1} 1= to {5.5.3%} 1 1 e ty ty 1 1 ey ty to
10 Cy {-lL-11} 1= to {32,227} 1 1 e, I o 1 1 e to to
11 Cs; {1.-1,-1y 1= ) {2 2,0} 1 1 e, I t 1 1 e 1 )
12 Cu {-1,1,-1} % tn 2 .%.3n} 1 1 ey 12 th 1 1 ey t12 1o
13 Ci. {1,0,0} z t3 {3r.2.m 1 -1 ey ti3  —Ip3 1 -1 ey t3 —1)3
14 Cj(y {0,1,0} z tia {0, . 0} 1 -1 es Hia —1y 1 -1 es 4 —ty
15 Ci. {0,0,1} z tis {0,0,5} 1 -1 e, tis =l 1 -1 e tis —1;5
16 Cy, {1,0,0} Iz tg .2, 1 -1 ey tis  —lie 1 -1 ey t16 —tig
17 Cy, {0,1,0} Iz ti {n.5.37} 1 -1 e tyy =l 1 -1 es tiq —ty7
18 Cs. {0,0,1} Iz tig {0,0,2z} 1 -1 e tig  —lg 1 -1 e, tig —tig
19 Ca, {1,1,0} p 7 to {0.7.5} 1 -1 e tiy  —lg 1 -1 e t1o —t9
20 Cyy, {-1,1,0} T 1o {0, ;r,7—”} 1 -1 ey 1o —Iy 1 -1 e, 1 —ty
21 Cy, {1,0,1} T th {0.5, 7} 1 -1 es fy —1y 1 -1 es th —1y
22 Coy {0,1,1} T 1 5.5.3 1 -1 ey 5% —I 1 -1 ey 1 —1y
23 C,, {-1,0,1} s I {n.5.0} 1 -1 es tyy  —In 1 -1 es I —123
24 Cyy {0,-1,1} r ths 2z 1 -1 ey  ty  —ty 1 -1 ey foy —to
I1 IE {0,0,1} dr -1 {0,0,0} 1 1 1 1 t -1 -1 -1 —t —t
2 IC», {1,0,0} T —t {0, 7, 7} 1 1 1 ty t -1 -1 -1 —1 1
3 IC,, {0,1,0} T - {0,7,0} 1 1 1 3 fy -1 =1 =1 - —n
14 ICy, {0,0,1} T {0,0, 7} 1 1 1 1 t, -1 -1 =1 -t -1
15 1C, {1,1,1} = —1s {0.3. ’2” 1 1 e; s ts -1 -1 —ey  —t5 —t5
16 Ic;, {-L-11} = —tg {n.2 1z 1 1 e3 te ts -1 -1 —e; -1 —Ig
17 Icy;  {1.-1,-1} 23—” -7 {ﬂ,’zf x 1 1 e3 t7 1y -1 -1 -5 -n —1;
I8 cy, {-L1,-1} 2 —g {0,2,1= 1 1 e3 fg fg -1 =1 —e; - —1g
19 IC5, {1,1,1} @ —ty {2 22,327r} 1 1 e ty ty -1 -1 —ey K —Io
no Ic;  A{-l.-11} 10—y, pProzogy | 1 ey 1y to -1 =1  —ey —tp —tp
ni Iy {l-1-1} 10—, {2,5, 0} 1 1 e 1t ty -1 =1 —ey —t;; —ty
n2 Icy  {-1.1,-1} 10—,  pProzozgy | 1 ey tn tp =1 =1 —ey —t;, —ip
113 Ic; {1,0,0} 5 -ty {Zzm 1 -1 ey 13 -3 -1 1 —ey  —113 ti3
na icy, {0.1,0} £ -, {0,2,0} 1 =1 es ty —tg -1 1 —es —fyy Iy
s Ic;, {0,0,1} s {0,0,%} 1 -1 e 15 —ts -1 1 —e; —f15 s
116 ICy, {1,0,0} T~ {z.2,.1} 1 -1 e tig —tg -1 1 —ey, —lig tg
17 IC, {0,1,0} 77” —t17 {n.5.37} 1 -1 es ty, —t; -1 1 —es  —l17 t17
118 ICy, {0,0,1} o - {0,0. % 1 -1 e g —hg -1 1 —e;  —l3 tig
119 ICy, {1,1,0} T =t {0,7.%} 1 -1 e tig —tg -1 1 —e; —lo to
120  ICy, {-1,1,0} T —ly {0,727 1 -1 e by —by -1 1 —e;  —ty th
121  IC,, {1,0,1} T =l {0.5.7} 1 -1 e tyy —ty -1 1 —es  —ly Iy
122 ICy, {0,1,1} r —ty . ’zf 7 1 -1 ey tyy —tpn -1 1 —ey —lxn ty
123 IC,, {-1,0,1} T —Ip {n.5,0} 1 -1 e tyy —ly -1 1 —es  —ixn I
P4 Gy {0.-1.1} oz —ny {3z 1 =1 eyt —hy -~ 1 —ey =ty Iy
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FIG. 9. The eight symmetry operations that form the dihedral
group D, in elongated box whose dimensions are L x L x 5L
where 7 is the elongation factor in the z direction. They are
divided into five conjugacy classes: the identity (E), two z/2
rotations about the z axis (2C,), one x rotation about the z axis
(C,), two 7 rotations about x and y axes (2C), and two z
rotations about the two diagonals in the xy plane denoted by Oa
and Ob (2C%).

3. Moving frames

If the two-particle system has nonzero total momentum
in the box, then we say such systems are in moving frames
or boosted relative to the box frame (lab frame). We use
d = (n,,ny, n;) with n; € Z* to denote the moving frame
in both cubic and elongated boxes, see Eq. (32). A moving
frame singles out a special direction d in space so the group

symmetry is reduced to the so-called little groups C,,.

Their elements S, are derived from those of the O, and Dy,
by the general requirement that they must preserve the
moving direction S;d =d. In this work, we consider
four distinct moving frames: d = (0,0,1), d = (1,1,0),
d=(1,1,1), and d=1(0,1,2), in both cubic and
elongated geometries. The little group tables are given in
Tables XI-XIV. Moving frames with higher total momen-
tum are covered by the four basic types. The allowed
moving frames and the little groups they belong to are
summarized in Table I in the main text. If integer multiples
of the four distinct d are considered, the little group tables
apply without modifications. On the other hand, if permu-
tations are considered, such as d = (0, 1, 1) in cubic box,
the irreps and representations remain the same, but the
elements change to new subsets of O,,. Consequently, basis
vectors change, thus leading to quantization conditions that
look very different. However, physical results (angular
momentum, energy levels, and phase shift) from d =
(0,1,1) and d = (1,1,0) QCs must be the same due to
cubic symmetry, since the two momenta are related by a
change of the coordinate system. This is effectively a
rotation of the zeta functions by the Euler angles (a, f,y) =
(/2, 0, 0). The QC takes a new form, but the roots are the
same as the original one. So the same original QC applies to
all equivalent permutations.

4. Angular momentum decomposition

As an application of the group tables given above, we
discuss how angular momentum quantum number is
affected by the group symmetries. It also serves as a
consistency check of the group properties.

For spherically symmetric interactions the eigenstates of
the Hamiltonian in the infinite volume form multiplets that

TABLE X. Group table of Dy, for rest frame in elongated box. The inversion is labeled by preceding with the letter / in the k and O,
columns. The representations of E are given in terms of Pauli matrices.

k Dy, n @ Sk {a.p.ry Ay Ay By By E, Ay Ay By, By, E,
1 E {0,0,1}y 4z 1 {0,0.0} 1 1 1 1 1 1 1 1 1 1
2 ¢ {001} 2 ns {007 1 1 -1 =1 —io 1 1 -1 -1 —io
3 ¢ {001} I gy {007z 1 1 -1 =1 o 1 1 -1 -1 o
4 ¢, {001} & 1, {00z} 1 1 1 1 -1 1 1 1 1 -1
5 Cy, {1,0,0} z 1 {0, 7, 7} 1 -1 1 -1 03 1 -1 1 -1 03
6 G, {010y z 5 {oxO0} 1 -1 1 -1 o 1 -1 1 -1 -0
7 G,  {LLO} oz 1 {027 1 -1 -1 1 o 1 -1 -1 1 o
8 C2b {—1, 1,0} T 120 {0,7[,7—”} 1 —1 —1 1 —0 1 —1 —1 1 —0
n e {001} 4z -, {000} 1 1 1 1 1 -1 -1 -1 -1 -
2 oIck {001} 2 -5 {0,053 1 1 -1 -1 —iey, -1 -1 1 1 i
13 ICZZ {0,0, 1} 77” —tlg {0,0,77” 1 1 -1 -1 i(72 -1 -1 1 1 —i(72
4 Ic, {001} =z -t {00z} 1 1 1 1 -1 -1 -1 -1 -1 1
I5 1C,, {1,0,0} n -1 {0, 7,7} 1 -1 1 -1 ) -1 1 -1 1 -0
16 I1C, {0,1,0} & -5 {0,m0} 1 -1 1 -1 —a -1 1 -1 1 o
171G, {110} & -1y {0mZ 1 -1 -l 1 o -1 1 1 -1 -0
18 ICZb {—1,1,0} V4 —fzo {07]7,',7—”} 1 —1 —1 1 —0 —1 1 1 —1 (]
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TABLE XI.  Group table of Cy, for moving frame d = (0,0, 1)
in both cubic and elongated boxes. The corresponding elements
in O;, and Dy, that preserve the direction are indicated.

Cyy Oy Dy, n o {a.p.y} Ay A, By B, E

E 1 1 {001} 4z {000} 1 1 1 1 T
C,, 4 4 {001} 7 {00z} 1 1 1 1 -T
c. 15 2 {001} % {005 1 1 -1 -1 is
C,. 18 3 {0,0,1} 77” {0,072} 1 1 -1 -1 —ic
1Cy, 12 15 {1,0,0} 7z {0.zz} 1 -1 1 -1 o
IC,, 3 16 {0,1,0} = {0,z0} 1 —1 1 -1 —o;
ICy, 119 17 {1,1,0} z {0,m% 1 -1 -1 1 —o
ICy, 120 18 {~1,1,0} 7 {0,272} 1 -1 =1 1 o
TABLE XII.  Group table of C3,, for moving frame d = (1,1, 1)

in cubic box only. The corresponding elements in O, that
preserve the direction are indicated. This moving frame is not
allowed in z-elongated box.

C3v Oh n w {a* /}1 }’} Al A2 E
E 1 {0,0,1} 4z {0,0,0} 1 1 7z
ci s {11}z {055 11 YT+ i3y
¢, 9 {LL1} 1% 2,53z 1 1 %( T - iv30,)
ICy, 120 {-1,1,0} = {0,z 22} 1 -1 %(03_\[01)
ICy, 123 {-1,0,1} = {=x,Z%2,0} 1 -1 —03
Isz 124 {0,—1, 1} ¥ 3”,72[,7” 1 -1 %(\/go'l +0'3)
TABLE XIII. Group table of C,, for moving frame d =

(1,1,0) in both cubic and elongated boxes. The corresponding
elements in O, and Dy, that preserve the direction are indicated.

Cyy O Dy, n o {apy} A A B B
E 1 1 {001} 4z {000} 1 1 1 1
Cow 19 7 {110} z {0.z5 1 1 -1 -l
ICy 120 I8 {-1.1.0} z {0.z7% 1 -1 -1 1
IC,, 14 14 10,01} = {00z} 1 -1 1 -1

TABLE XIV. Group table of C;, for moving frame d =
(0,1,2) in cubic and elongated box (top), and d = (1,1,1) in
z-elongated box (bottom). The corresponding elements in O; and
Dy, that preserve the directions are indicated.

Ciy 0,(Dyy) n o  Aaprt A A
E 1(1) {0,0,1} 4z {0,0,0} 1 1
I1C,, 12(I5) {1,0,0} z {0,z =} I -1
Clt‘ D4h n [0 {aa ﬂ’ 7} Al A2
E 1 {0,0,1} 4z  {0,0,0} 1 1
ICy, I8 {-1,1,0} = {0=%Z} 1 -1

furnish bases for the irreps of the rotational group SO(3).
These multiplets are labeled by the angular momentum
[=0,1,2,.... For both cubic and elongated boxes, these
multiplets split into smaller sets that mix under the action of

rotations that leave the box invariant, forming the bases for
one of the irreps of the group. Then the question is this: for
a given [, what irreps are coupled to it? To answer this we
can decompose the irrep [ of the rotation group into a direct
sum of the irreps of the group, [ = @pn(L, )T, where the
coefficient is called the multiplicity, which tells how
many times irrep I' appears in the given /. This can be
calculated by

n(l, 1) (A3)

=kl

k

where k runs through all the elements of the symmetry
group and g is the total number of elements in the group.
Here y(k,T") is the character of element k in irrep I', and
(g, 1) the character of the rotation group for angular
momentum J and rotation angle w;. This can be computed
as follows [74]. Any rotation is characterized by a rotation
axis and the rotation angle w. Since the character (trace) of
the matrix is invariant under similarity transformations the
result will be equal to an equivalent rotation around the z
axis (the similarity matrix in this case is simply a rotation
that takes the rotation axis into the z axis). The character is
then the trace of this diagonal matrix

l .
)((a), l) = Z p—imo — M

sin(w/2) (4)

m=-—

Note that limits must be taken if division by zero is
encountered in evaluating this equation. Finally, because
of mixed parities in the little groups C,,, a factor (—1)’
must be inserted into the sum in Eq. (A3) for elements
that contain inversions (or improper rotations). This
is so because inversion induces (—1)’ on the spherical
harmonics. The decompositions thus obtained for all the
groups considered in this work are summarized in
Table VIIL

5. Basis vectors

The irreps of the continuum rotation group with
[=0,1,2,..., 00 are defined in the (2 + 1)-dimensional
space spanned on the basis vectors |/m), which are the
standard spherical harmonics. These representations are
reducible under the symmetry group into its irreps I'. In
other words, certain subspaces in the space spanned by |/m)
are invariant under the symmetry transformations, furnish-
ing irreps for the symmetry group. We construct the basis
vectors with the following projection operator,

geG

P4 |Tm) (A5)

where g a group element, dr the dimensionality of irrep I,
|G| the order of the group, Dp(g) the irreducible
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TABLE XV. Basis vectors of group O}, in terms of spherical harmonics Y[/, m] up to [ = 5 for rest frame in cubic box. Multiplicities
are indicated by n. Multidimensional components are indicated by a.

r l n a Basis vectors of O,
Ay, 0 1 1 Y[0,0}
Ay 4 ! 4,0] + \/ Y[4, 4] + \/ Y[4,4]
A,, 3 1 1 _ Y2
ﬁ V2
E 2 1 1 YR-2 | Y222
I it
E, 2 1 2 Y[2,0]
E 4 1 1 Y[4-2] | Y[42]
! Vit
E, b v+ \/Y4 4+ \/Y44
E, 5 1 1 Y[5.-2] _ Y[5.2]
vz V2
E, 5 1 2 Y[5.4] _ Y[5.-4]
V2 V2
Ty, 4 1 1 ﬁY£4.—l]+ﬁ4[4l}+ Y[4, 3]+Y[13]
Ty, 4 12 LY@, -1] -1 1fY[4 1] - Y3 Y
Ty, 4 1 3 Y44 _ Y[4—4)
VZ V2
Ty, 1 1 1 Y[1.-1] _ Y[L1]
vz V2
Ty, 1 1 2 iY[l.—l]+iY[l.1]
V2 V2
Ty, 1 1 3 Y[1,0]
T, 3 1 1 _VBYB-1] | V3YR) VEY[3S3] VBY[33)
4 tg Tt 4 4
Ty, 3 1 2 —-1iV3Y[3,-1] - 1iv3Y[3. 1] - Liv5Y[3, -3] - 1iV/5Y[3,3]
T, 3 1 3 Y[3,0]
T, 5 1 1 %Y[S,—l]—l Y[S 1] \/7Y[5 3] Jr3\/’Y[5 3+ \/_Y[S -5 \/_Y[SS]
Tus b 2y Jsyis 1) b SO0 1) 4 30y [5Y1S, 3] + 3y [5Y15. 3] + LiVITY(S 5]+ LiVITYES. 5
Tus b3 ol o)+ L YIS -4 + 554
Tu5 2 b Byl -1 = B )+ Y. -3 - Y. 3)
T, 5 2 2 -\/EY _ +i\ﬁys1 \fY[s 3] \/7Y53
T 5 23 —-fY50+3\fY5 4+3\/>Y54
Ty, 2 1 1 f
Ty, 2 1 2 iy u_zY[z 1
! - 2
Ty, 2 1 3 Y2 _ YP2
vz V2
Ty, 4 1 1 _Y[4,—1] Y[4.1] f?Y[4.—3] ﬁY[4.3]
’ 4
Ty 4 1 2 o) 3 — YA zf 7Y[4,-3] = 1iv/TY[4.3]
Ta, 4 1 3 Y[Lt,f—z]_ [f ]
2
T, 3 1 1 V5Y[3,-1] \/§Y[3,1] \/§Y[3,—3] \/§Y[3,3]
4 4
T, 3 1 2 -1iV/5Y[3, —1}—fsz[3 1]+ i\/§Y[3,—3]+}Ti\/§Y[3,3}
Ty, 3 1 3 Y[ 2] [32}
Ty, 5 1 1

——\/Y ]+ \/YSI \/_Y[S -3 \/_Y[SS] \/"Y[s —5] \/”Y[ss]
Ty 5 12 \/Y[s —1] 41 \/Ys 1]+ Liv3Y[5,-3] + Liv/3Y[5.3] - LiV/I5Y[5. =5] - Liv/I5Y]5.5]
Y[5,

Y[5.-2] _ Y[(5.2
\/5 V2
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TABLE XVI. Basis vectors of group Dy, in terms of spherical
harmonics Y[/, m] up to / =5 for rest frame d = (0,0,0) in z-
elongated box. Multiplicities are indicated by n. Multidimen-
sional components are indicated by a.

TABLE XVII. Basis vectors of group Cy, in terms of spherical
harmonics Y[/, m] up to [ = 5 for for moving frame d = (0,0, 1)
in both cubic and z-elongated boxes. Multiplicities are indicated
by n. Multidimensional components are indicated by a.

r l n a Basis of Dy, r l n a Basis vectors of Cy,
Ay 0 1 1 Y[0, 0] A 0 1 1 Y[0,0]
Ay, 2 1 1 Y[2,0] A 1 1 1 Y[1,0]
Ay, 4 1 1 Y444 A 2 1 1 Y[2,0]
‘ V2 A, 3 1 1 Y([3.0]
Ay 4 2 1 Y[4,0] A 4 1 1 Y4 -4+ Y[44]
Ay, 5 1 1 Y[5.—4]-Y[5.4] V2
V2 A 4 2 1 Y[4,0]
Ay, 4 1 1 Y[4-4-Y[44] A 5 1 1 Y[5.-4]+Y[5.4]
v : —F
Aoy 3 1 1 Y[3,0] A, 4 1 Y[4,-4)-Y[44]
A, 5 1 1 Y[5.-4]+Y[54] V2
V2 A, 5 1 1 Y[5,~4]-Y[5.4]
Ay, 5 2 1 Y[5,0] V2
B, ) 1 1 Y[2,-2]+Y[2,2] B 2 1 1 Y[2.-2]+Y[2.2]
By, 4 1 1 Y[4,-2]+Y[4.2) B 3 1 1 Y[3~—2\]/;Y[3-2]
V2
B, 3 1 1 Y[3.-2]-Y[3.2] B, 4 1 1 Y[4<,—2]¢2Y[4v2]
u T
By, 5 1 1 Y[5.-2]-Y[5.2] B, 5 1 1 Y[5~—2\]/4%Y[5s2]
V2
B, 2 1 1 Y[2.-2]-Y[2.2] B, 2 1 1 Y[2,-2]-Y[2.2]
B, 4 1 1 Y[4,-2]-Y[4.2] B, 3 1 1 Y[3.-2]-Y[3.2]
’ V2 V2
B, 3 1 1 Y[3,-2]+Y[3.2] B, 4 1 1 Y[4,—2£Y[4 2]
! V2
B, 5 1 1 Y[5,-2]4+Y[5,2] B, 5 1 1 Y[5.-2]-Y[5.2]
u \/5 \/5
E 2 1 1 Y2.-1]+Y[2.1] E 1 1 1 Y[L—1+Y[11]
! V2 V2
E, 2 1 2 i(Y2,~1]-Y[2,1)) E 1 1 2 _t(Y[l,—ng[l 1)
! 2
E, 4 1 1 Y[4,—3]§[4,3] E 2 1 1 Y[2~—1\]/;Y[2-1]
E, 4 1 2 i(Y[\f—3]—Y[4 3)) E 2 1 2 i(Y[Z.—i}:YPJ])
! 2
E, 4 2 1 Y[4,—1]+Y\€42_,I] E 3 1 1 Y[3~—3\]/4%Y[3,3]
E, 4 2 2 z(Y[4.—\/1§]—Y[4 1)) E 3 1 2 i(Y[3vf3]\/:Y[3-3]>
¢ 2
E, 1 1 1 Y[l.—l]\—/%[l.l] E 3 2 1 w
E, 1 1 2 z(Y[l,l/li]H[l 1)) E 3 2 2 _ i(Y[3-—igY[3,l])
E, 3 1 1 Y[?.—S]\—/ﬁi{[3.3] E 4 1 1 %\/M
2 2
E, 3 1 2 i(Y[3,-3]+Y[3,3)) E 4 1 2 i(Y[4q—fEY[4-3]>
E 3 2 1 Y[3.—1]—Y[32.1] E 4 2 1 Y[4.-1]+Y[4.1]
u \/E \/E
E, 3 2 2 i(Y[3,~1]+Y[3,1]) E 4 2 2 _ i(Y[4-—\1}§Y[4v1])
E, 5 1 1 Y[ —5]\—/35([5.5] E 5 1 1 Y[5<,—5\]/+.Y[5-5]
2 2
E 5 1 2 z(Y[S,—52]+Y[5 5)) E 5 1 2 _i(Y[5.-5]-Y[5.5])
“ 2
E 5 ) 1 Y[5 —3]\—/\5([5,3] E 5 2 1 Y[S,—i]/gY[ﬂ]
u \/E .
E, 5 2 2 _i(Y[5.-3]+Y[5.3]) E 5 2 2 l(Y[S.—3];Y[5,3]>
E 5 3 1 Y[s,—l]—y\[/si,u E 5 3 1 Y[5~—1\]/tY[5-1]
u 2 } 2
E, 5 3 2 z(Y[S.—%Y[S 1)) E 5 3 2 _ l(Y[S,—\l};Y[SJ])
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representation for irrep I, and D'(g) the Wigner D matrix
evaluated at the Euler angles a, f3, y of each group element.
Note that the projected vector coefficients are on the
columns of (P{*),,,,. If we rotate a projected vector from
row 4, then we get

S(g)PE|im) = Dj,(g)P{*|Im). (A6)
So the procedure to find all the basis vectors is as
follows. For a given [ and irrep I', we construct the
projection matrix for row 1, and then perform a QR
decomposition, Pl = QTR with Q unitary and R upper
triangular. If matrix R is zero, then no basis vectors exist for
this [. Otherwise, the decomposition has the matrix struc-
ture [(21+1)x 21+ 1)]=[(21+ 1) x k] x [kx (21 + 1)],
where the rank k reveals the number of linearly independent
vectors (multiplicity) for this /. The k columns of

TABLE XIX. Basis vectors of little group C,, used for moving
frame d = (1,1,0) in both cubic and z-elongated boxes.

Q" =|I'lin) with n = 1, ..., k are the basis vectors corre-
sponding to row 1. If irrep I" is one dimensional, then this is
the final vector. Otherwise, the basis vectors for the
remaining rows are obtained from the first row by

ITXIn) = (PL'R™HT with V' =2,....dr, (A7)

where R™! is the pseudoinverse of R, that is, RR™! = I,;.

If a group element contains inversion (or improper
rotation), a factor (—1)! must be inserted in front of the
Wigner D function in Eq. (A5) due to the parity of spherical
harmonics |/m). There is freedom to choose the overall
phase factor for each [ in each irrep. The basis vectors
obtained in this procedure are orthonormal,

<F//1/l’n’|r/lln> = 51*!1*51//151/15,1/". (AS)

TABLE XX. Basis vectors of little group Cy, used for moving
frame d = (1,1, 1) in z-elongated box only.

Irrep [ n a Basis vectors of C,, Irrep [ n a Basis vectors of C,
A 0 1 1 Y[0,0] A 0 1 Y[0,0]
Ay 1 1 1 4‘(["“1;”“11 A, 1 1 Y[L—IbrviY[l,l]
2 2
A 2 1 1 YR-2-Y[22] A 1 2 1 Y[1.0]
A 2 2 1 Y[?O] Ay 2 1 1 Y[2,-2]-Y[2.2]
1 s o i 5
Ay 3 1 1 Y[3-—33;Y[3,3] A 2 2 1 Y[l—lz;iY[ll]
2 2
A 3 2 1 YB-1+iY 1] A 2 3 1 Y[2.0]
vz A 3 1 1 Y[3.-3]-iY[3.3]
Ay 4 1 1 Y[4,—4\]/tY[4,4] 1 L
2 =)=
A, 4 2 1 Y[4.-21-Y[4.2] A 3 2 1 %
v2 Y[3.-1]+iY[3.1
A 4 3 1 Y[4.0] Ay 3 3 1 [‘]fi[’]
A, 2 1 1 LR A 3 4 1 Y[3.0]
: 4.—4]+Y[4.
Ay 3 1 1 YB.-2+Y[32) Al 4 1 1 Yieodvie
V2 A 4 2 1 Y[4,-3]-iY[4.3]
Ay 4 1 1 Y[4.—31/+_1Y[4,3] 1 =
2 =)=
Az 4 2 1 Mo ivia A 4 3 1 w
B 1 1 1 Y[L-1]—iY[L1] A 4 4 1 W
V2
B, 2 1 1 Y2.-2+Y[2.2] A 4 5 1 Y[4,0]
vz A, 1 1 1 Y[1,-1]-iY[L.1]
B, 3 1 1 Y[3.-3]+iY[3.3] 7
V2 A, 2 1 1 Y[2.-2+Y[22]
B, 3 2 1 Y[3,-1]-iY[3,1] V2
V2 A, 2 2 1 Y[2,-1]-iY[2.1]
B, 4 1 1 Y[4,-4]-Y[44] V2
V2 A, 3 1 1 Y[3,-3]+iY[3.3]
B 4 2 1 Y[4.-2]+Y[4.2] NG
: V2 A, 3 2 1 Y[z.—z\]/tm 2]
B, 1 1 1 Y[1,0] VI
B, 2 1 1 YR 14iY2.1] Ay 3 3 1 Y[3 13/;{[3 1)
V2 A 4 1 1 Y[4,—4]-Y[4.4]
B, 3 1 1 Y[3.-2]-Y[3.2] 2 S
B, 3 2 1 Y[\3f20] Ay 4 2 1 Y[4,—31;;’Y[43]
B, 4 1 1 Y[4,—3\];iY[4-3] A, 4 3 1 Yi4 _{]/tYH 2)
2 2
B, 4 2 1 Y[4,—11;w[4.1] A, 4 4 1 Y[4‘_13;iy[4 1
2 2
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They also satisfy the following property,

DY, (9) = (TXIn|S(g)[Taln) = [Q4D'(9)Q]),,.  (A9)
for all group elements g, angular momentum /, multiplicity
n, and irrep I'. This relation can serve as a strong
consistency check of both the irrep representation matrices
and the basis vectors.

All the basis vectors used in this work (up to [ = 5) are
listed in Table XV for O, group in cubic box, Table X VI for
Dy, group in elongated box, Table X VII for little group Cy4,
for both box geometries, Table XVIII for the little group
Cj3,, for cubic box only, Table XIX for the little group C,,,
for both geometries, Table XX for the little group C;, in
elongated box only, and Table XXI for the little group C,,
for both geometries. The basis vectors are needed to project
the quantization condition into block-diagonalized sectors
by irrep as explained in Sec. I A.

TABLE XXI. Basis vectors of little group C;, used for moving

frame d = (0, 1,2) in both cubic and z-elongated boxes.

Irrep [ n a Basis vectors of Cy,

A 0 1 1 Y[0,0]

Ay 1 1 1 MIESNER ¢(R)]
V2

Ay 1 2 1 Y[1.0]

A 2 1 1 Y[2.-2]+Y[2.2)
V2

A 2 2 1 Y1 Y]
V2

A 2 3 1 Y[2.0]

A 3 1 1 Y[3.-3]+Y[3.3]
V2

A 3 2 1 YB.-21Y[3.2]
V2

Ay 3 3 1 Y[3,~1+Y[3,1]
V2

A 3 4 1 Y[3,0]

A, 4 1 1 Y[4.—4]+Y[44]
V2

A 4 2 1 Y[4.-3]+Y[4.3]
V2

A, 4 3 1 Y[4.-21+Y[4.2]
V2

Ay 4 4 1 Y[4.-1]4Y[4.1]
V2

4 4 5 1 Y[4.0]

4> 1 1 1 Y1-1-Y[LY

Ay 2 1 1 Y[2.-2)-Y[2.2]
V2

Ay 2 2 1 YR2.~1]-Y[2.1]
V2

A, 3 1 1 Y[3.-3]-Y[3.3]
V2

A, 3 2 1 Y[3.-2]-Y[3.2]
V2

A, 3 3 1 Y[3—1]-Y[3,1]
V2

A, 4 1 1 Y[4,—4]-Y[4.4]
V2

Ay 4 2 1 Y[4,-3]-Y[4,3]
V2

Ay 4 3 1 Y[4,-2]-Y[4.2]
V2

A, 4 4 1 Y[4-1]-Y[4.1]
V2

APPENDIX B: MATRIX ELEMENTS FOR
QUANTIZATION CONDITIONS

Here we collect all matrix elements for the QCs
discussed in the main text. They apply to rest frame and
four moving frames in both cubic and elongated boxes, and
unequal masses. Up to five partial waves (I =4) are
considered in each QC. The only exception is rest frame
in cubic and elongated boxes where up to [ =5 partial
waves are considered. The matrix elements are linear
combinations of nonzero elements given in Table II sup-
plemented by Table III. To construct the QC corresponding
to a particular irrep from a table, we use the following
scheme. Since the QC matrices are Hermitian we only
display the upper triangular elements, in the regular order
of starting at the top left, then zigzagging to the bottom
right. The matrices have varying dimensions depending on
the multiplicity n associated with /. The dimension can be
inferred by adding up the multiplicities partial wave by
partial wave. For example, if a QC has content /(n) =
0(1),1(1),2(2),3(2),4(3), ... (such as the A, irrep of C,,,
see Table VIII), then QC of order 5 includes all partial
waves up to / =4 and its dimension is 9 x 9. One can
reconstruct the full M matrix of 81 elements for the QC by
reading in the 45 ordered upper-triangular elements in
Table XXV. Once the full matrix is recovered, going to
lower orders is a simple matter of keeping the relevant rows
and columns. For example, for order 4, delete the 3 outer
rows and columns to reduce the matrix to 6 x 6. For
order 2, keeping only the lower 2 x 2 of the full matrix.
And so on.

In all the tables, we use

Wim EVVrlm_l_IVVilm’ (Bl)

with the following notation. If the function is real, then we
represent it simply by w;,, (without the r label). If the
function is purely imaginary, we represent it by wiy,,. If the
function has both parts nonzero, then expressions such
as wiy; — Wrz; or wizy — —wrs; mean they have equal
magnitude but may differ by a sign, and we represent the
function by its real part wry,, (with the r label). We did not
encounter the case where nonzero real and imaginary parts
have different magnitudes. Note that due to angular
momentum coupling, w;, functions up to /=38 are
involved for partial waves up to / = 4 in the QC.

Matrix elements for rest frame d = (0, 0, 0) in cubic box
are listed in Table XXII.

Matrix elements for rest frame d = (0, 0, 0) in elongated
box are listed in Tables XXIII.

Matrix elements moving frame d = (0,0,1) in both
cubic and elongated boxes are listed in Tables XXIV.

Matrix elements for moving frame d = (1,1,0) in
both cubic and elongated boxes are listed in
Tables XXV-XXVIIIL.
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TABLE XXII. Matrix elements up to [ = 5 for rest frame d = (0,0, 0) in cubic box (group O,).

! i r
I ! n ! n nd'n
A] g 0 1 0 1 Woo
0 1 4 1 3
2 7W40
4 1 4 1 108w4q 80weg 560wg
Woo T3 T v T iaavis
A 3 1 3 1 _ 12wy 80wgo
2 Woo Tivis
6w,
E, 2 1 2 1 woo -+ 2
2 1 4 1 40 30 /3
— 30 V3wy =32\ /Eweo
4 1 4 1 108w,y _ 64w 392wgq
Woo + 1001~ T1vis T 1a3vi7
E, 5 1 5 1 1152v2Twig0 __ 6wao | 32weo _ 672wg
Woo + 7159 ERRTVE YoV
T 4 1 4 1 S4wsg _ Aweo _ 448wy
19 Woo TE T IV T Vi
Tlu 1 1 1 1 Woo
1 1 3 1 4Wao
1 1 5 1 3 o1
204/ 1355Wa0 + 44/3231We0
1 1 5 2 5
24 /581Wa0 = 244/ 353 We0
3 1 3 1 6wap 100weo
Woo T T 3303
3 1 5 1 _ 60wy A2wg 112wy
13V187 V2431 3911
3 1 5 2 zs 35
12, /13g5Wao0 = 243160
5 1 5 1 336v2Twig | 132wy | 880wey | 280wy
Woo + 3757 T "o T asovis T v
5 1 5 2 _ 88704\/_“’100 424 24 W 4 120 120 5 2800\/‘%%0
71383 221 40 T 289 \/ 13W60 ~ T 12597
5 2 5 2 W — 12096v/2Twg0 _ 132wag 4 352w | 7056w
00 71383 21 T 867v/13 | 419917
T 2 1 2 1 _ 4wy
2g Woo 7
2 1 4 1 20\/§w40 _40 /3. W
77 1)/ 13760
4 1 4 1 _ Sdwy 20wg0
Woo v
T 3 1 3 1 2»1/40 60weo
2u Woo — Y13
1 5 1 20wy 14Wm) _ 112wy
13V/11 + V143 134/187
5 1 5 1 w 432rvv|00 + 4W40 _ 80wgy _ 280wgg
00— 74199 1713 24717
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TABLE XXIII.

Matrix elements of 1D irreps for rest frame in elongated box (group Dy;,) up to [ = 5.

r

~

n

l/

n/

MF

Inl'n'
All] 0 1 0 1 Woo
0 1 2 1 —Wjo
0 1 4 1
0 1 4 2 Wy
2 1 2 1 woo + 2V/5 wm + 6w40
2 1 41 wiwe 15 /1y
1 11 364
201 42w 20w s[5,
7 77 11/ 1360
4 1 4 1 4fw70 54wy 4wgo Twgg
Woo = I T s T 21 s ves
4 1 4 2 54v/2wWyy 12 21 /10
B re el VA T RVA A
4 2 4 2 2of w20 486wy | 20wg | 490wy
Woo + T 001 T vz T iaavir
Ay, 5 1 5 1 30V2Iwin _ 6 /2310 2V5wy 6wy | 32we  217wg 21 110
Woo + 199 9\ 2 WI8 T3 T3 T 3 ey 19\ 221Vss
A, 4 1 4 1 4\f 5w 54w 4w, 7w,
g — 20 40 __ 60 80  __
Woo I T s T s~ 21y e
T
T - \szo iy
1 1 5 1
TiWas + 24/ 25Wes
1 1 5 2 5Wao 3
33 +6 mWa)
3 1 3 1 4wy 6W40 100wgq
Woo + 3\/— -+ + \/—
3 1 5 1
W44 + 14 W64 13 W84
3 1 5 2 60wy 7 56
— 5 \/5Wa0 = 3V 3 W60 — 13 1/ T7Ws0
5 1 1 30v21w00 2310 2v/5wy 6W40 32w _ 27wy 4 21 1o
Woo + 4709 +15 19\ 21 W18 ~ 13— Vi3 " 2avi T 19\ 22 Vss
5 1 5 2 126 6f 2w 10
28\ /BWios + 4 — B 13Wes — 25\ /oW,
5 2 5 2 756v21w 100 10\/_ w20 6w40 80w 490w80
Woo + 409 T 5 tsivs Tave
Big 212 L e \/EWM
2 1 4 1 5 30\/_ 3w
_’ 5wy + Rttt 11 W44 11 W60 11 W64
4 1 4 1 8\/_ w»o 27w40 2w(,0 196wsy |, 42 /14
Woo + i\ W — TR {1\ TWes i 1 T Wa
By, 3 1 3 1 am \/T)w44 10wgo _ 10 /14
Woo =1 — T vis T\ Ve
3 1 5 1 5 10wy _ 2 Tweo Sowsy 12 /14
—\TW20 T3 AT T 13 ﬁw““ REViyri 143 We4 — 137187 T 13 \/ T7Ws4
5 1 5 1 360v21wy 36 /770 wazo Wi VI0wy  24we 28V1wg 42 /154
Woo + 4709 — 323/ 13 Wios + 13T 13 _17\/___ 13Wes = =570 = 55 \/ 5 Waa
By, 2 1 2 1 00— 230 | v _ \@WM
2 1 4 1 30\/‘ 3w 30 5 /3 5[4
3VI5wWy + =570 — F ) [y = 14/ T5Weo + 1T 1/ 5Wes
4 1 4 1

8\/_“’20_%_7 _2“’760_, 196ws) _ 42 /14
Woo + 143 W44 V13 W64 + 14317 13 1g7w84
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TABLE XXIII. (Continued)

r l n 4 n M lrn.z’n’
B2u 3 1 3 1 Woo 7W40 \/_6w44 11?\“;’3 + %(1) \/7w64
3 1 5 1 10wy Tweo 14 56wgo
W20+13\/~+]; 44+\/1—4—— mwm—n\/ﬁ——— W
5 1 5 1
wop + 200y 4 36 770V"104 +20um My VT vy | 8 \/%WM — e 2 g,
Eg 2 1 2 1 Woo + \/_Wzo 4W40
2 1 4 1 2\/; sy \/‘ We,
: : N . _%\/“Wzo 5\/_W4° +1 10 \/_‘WGO
4 1 4 1 Woo — \/_\;Vzo _ 83’340 + 11173@ _ 132“\7&
4 1 4 2
27\{;;W44 + i \/-W64 13 18 W84
4 2 4 2 17V/5: 243 392
Woo + WZO"‘ 10(??0_11W\7)1_3_143:;%
Eu 1 1 1 1 Woo — W—\/ZS9
R
1 1 3 2
\/ FWa0 — 3\/7 3520
1 1 5 1
W44 14 T3 W64
1 1 5 2 w.
3 14 W64 \/%
1 1 5 3
\/:W40 =34 /133W60
3 1 3 1 szo _|_3W40 SWeo
33V13
3 1 3 2 \/T)W64 \/_ w44
3 1 5 1
-14 22 ng
3 1 5 2 30w 4w, 4w,
__\/:WZOJFH\/ﬂ 3]\/%+ 1\/&
3 1 5 3 W,
-1 \/v TiWas + 347“ TWs4
R i
3 2 5 1
123 210W44 14 W64 + 35 3 \/‘W84
3 2 5 2
13 \/‘W44 BoWes — 13 210“’84
3 2 5 3
5\/7W20 5/ 540 + 131/ T Ws0
5 1 5 1 Woo _ 32w sfwzo + 6w40 10w60 35wsg
4199 1713 24717
5 1 5 2 162
101/ 2351W108 = 15 \/ 37 Wss
5 1 5 3
— 35 [W104 + sz“ - \/>W64 + 3\ 1 Was
5 2 5 2 W — 135\/_Wm(1 \/_Wzo _ % _ 58Wso + S11wgg
00 4199 39 13 5113 " 24717
5 2 5 3
LT Bwi0s — NEW“ -2 \/EWM + 557 \/?:;Wm
5 3 5 3 630v/21w 09 + 3[ w20 4 4w40 4 Bwg 98wy

Woo — 4199 17V13 247117
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TABLE XXIV. Matrix elements for moving frame d = (0,0, 1) in both cubic and elongated boxes (group Cy,).
The B, irreps are combined by upper/lower signs.

Irrep l n ll n/ M{;‘«, 'n’
Ay 0 1 0 1 Woo
0 1 1 1 iwig
0 1 2 1 —Wsp
0 1 3 1 —iwsg
0 1 4 1 V2Wa,
0 1 4 2 Wy
1 1 1 1 Woo + 2Wzo
: : 2 : 2'W‘° + 31[W30
1 1 3 1 3\/7W20 4W40
1 1 4 1 \/*
T1Ws4
1 1 4 2 _ 4wy _ Siwsy
V2l V33
2 1 2 1 Woo -+ 25 25 wzo | 6w 6%»
2 1 3 1 31\/‘W10 n 4le Lo 10 \/*WSO
2 1 4 1 44/10w,
o ﬁ \/1:3W64
2 1 4 2 _6“’_20_20\/_W40_ﬁ SW
7 77 11\ 13W60
oL e e
3 1 4 1 5 .
3/ TIW7a = 131/ T1Ws4
3 1 4 2 4\i/\m +6iw30 +?(;i>/;_3+%l\/iw7o
4 1 4 1 w
Woo = 4\/_W20 + 54114340 B IT:J/GL LZ;V\?)" + 214 /35 Wss
4 1 4 2 54\1/_% _ \/’ Wer + 18 W84
4 2 4 2 Woo + 20\/_ wzo + 4?%140 I 12;)\\;% n :1230:;%
A 4 1 4 1 o
2 Yoo = S+ i IA:W\/% * 1Z3W\>0_ = 21y /35w
By 2 1 2 1

Woo — —2\/§w2(, + e 4 \/EWM

2 1 3 1 \/>W]0 Zzww_'_Szws“:I:l\/‘w54
2 1 4 1 1 /_W20+30\/_W40:t2\/>w44 H\ﬂ 6():F11\/>W64

3 1 3 1 Twa 4 VI0wa | 10w 4 10 /14
Woo — e 4 YT + s T/ 13 Wes

3 1 4 1 2i . . . .
lw710 — ﬁ l\/§W30 - E i ;WSO + % @W54 + % 1 \/ W70 + 17—3 1 @W74

4 1 4 1 8\/_w 27w 31 10 2w, 196w, 42 14
Woo + Lty T Ve s T 3Wes + 1 N RS ERATAL

(Table continued)
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TABLE XXV. Matrix elements for moving frame d =

TABLE XXIV. (Continued)

Trrep 1 n v n' M
E 1 1 1 1 Woo — %
1 1 2 1 \/VWIO _ 31w;0
1 1 3 1 2\‘;%4
1 1 3 2
\/%W40 - 3\/%W20
1 1 4 1 .
21 \/%W54
1 1 4 2 . .
l\/EWSO - \/EW30
2 1 2 1 Woo + V5 w,0 4w40
2 1 3 1 21\/7w54
2 1 3 2 .
Zl\/:W10+_ \/:W:;O—%l\/%WSO
2 1 4 1 2\/'w44 +2 20 \/7W64
2 1 4 2 _7 /30 0w, — sfw40 +10 10 fweo
ST R N,
3 1 3 2 \/EWAA 5 \/%
1 1\ 30Ves
3 1 4 1 iw iw
VA —rivTw + g\/ﬁ T3l \/'W70
3 1 4 2 10
ﬁl T1Ws4 _ﬁl ﬁW74
3 2 3 2 Woo + V\V/z_o + W40 1215\\;%
3 2 4 1 .
_l%l %W54 —ﬁl\/%w74
14/5W10 + 771V IOW30 + 314 /55Ws0 — 7431V W7o
COU L et
4 1 4 2 27/10w.
@+ i \/7W64 b \/ 187 187 Wad
4 2 4 2 17\/_w7 243 W, 392
Woo + “ 103140_11\;01‘3_143:;%

(1,1,0) in both cubic and elongated boxes, group C,,, and irrep A;.

I n I o ern.[,n/

0 1 0 1 wy

0 1 1 1 (=1-i)2wrll

0 1 2 1 iV2wip

0 1 2 2 —wy

0 1 3 1 (=1+i)y2wr33

0 1 3 2 (1+4i)V2w3l

0O 1 4 1 \/§W44

0 1 4 2 —i\2wiy

0 1 4 3 wy

brd ! Woo — W—\/ZSQ + \@wizz

11 2 1 _1_i)\@wr11+(l+i)\/%wr3l+w
7

I 1 2 2 (6-6)w3l _ .

%wr] 1

054517-32

(Table continued)



HIGHER ORDER FINITE VOLUME QUANTIZATION ... PHYS. REV. D 105, 054517 (2022)

TABLE XXV. (Continued)

I n ' 7o MY

inJ'n

1 1 3 1 3iwipy _ iwigp _ 2iwgy

1 1 3 2 G
3[W20+[W122+¢'W40 \/W142
1 1 4 1 (2 2\1/)_wr33+( \z/)ﬁrS? (1_1)\/’\“55
L4 2 gy \ﬂwr31+M—(1 i)y BwrsT - 2+ 20), Fwrs3
1 1 4 3 (@2)ws3l 2; wr3] \/7wr51
2o b2 WOO_@‘F%_\/;WM
2 1 2 2 li\/_wi42—gi\/ﬁwi22
21 3 1 <3+3}W‘”+( +9v2widl — (L g)\/gwrsw 5+ 50), [ Zwrss
20032 v+ 2= 20) [Bwst 4 (- Hvaws - O 35, Sas
2 1 4 1 l\/:w122——1[W142+11 \/7w162 IS’W'“
242 _7\/—W20+3o\/‘w40 l\/;w44—ﬁ\/%w60+15—1\/‘1‘:§w64
2 1 4 3 ——i\/_wi22+*7—7i\/_wi42—%i\/%wi62
2 2 2 2 o | 2 | o
223 1 g T)\fwr53 (& = £)\/T0wr33
2 2 3 2 ( \6/)1\"11 (1+i \/Wf3l— 10+\1/07_l;wr51
2 2 4 1 w—ﬂ__\/:w64
2 2 4 2 71\/—W122+77l\/_W142+11 Hw162
20243 e w g [
3oL g - B e S0, [ Twigs
3132 —Liv2wiy, + 2 iv6wiy, +ﬁi\/‘w44—£'\/iwi62—f—l‘\/ﬁwﬁ4
LA T e () VW] = (4 B) RS T + ( i) \fwr71—(7+7l) S wr77
-t (———)\/_wr3l— 15 % \/7wr51+ —180) WSS + (il — 14) | [iwr71 - (4= 1) [awnrs
3oL 43 LAl w4 (940 \f wrs3 — (19 + ) wr73
3232 W00+W2°+2[ W122+\11°+2\/_W'42—12,5L\/ﬂ+%\/zw%2
3.2 4 1 (= + D)vA2wr33 + (& — &), [BwrS3 — (L — &), [20wr55 — (35— 5T)\/ﬁwr73+(15—3—%)\/%wr75
302 4 2 (—-1—1i \/Vwrll (2 +2)V10wr31 + (3 + &L)v/6wr33 — ”+\‘/3—“’r51+(%+%)\/%wr53
(i + IBWITL A+ (5 + 15)V3wrT3
32 4 3 e 2\1/).er] + (& —)v2wrdl + (& — &) [wrSl + ({2 = 10\ /5wr71
4 1 4 1 Wop — 4fw20+54112/%40 1‘;‘\‘70_+]Z;”\;L+21 ST Wss
4 1 4 2 \/7w122+143 \/>W142—— \/7w162+41 T3 w166—§—143 \/7w182 7i 243 3131 WVise
41 4 3 M{%__\Fwéﬁm/%
4 2 4 2 Woo_i_sfwm_%_m\/7W44_2w_m__\/7w64+112363ﬁ 2 [,
4 2 4 3 0 iv6wiy, — 911\/—w142+%431\/;w182
4 3 4 3 Woo +20\/' Wao +4§|3(6)ng + 1210\\;% n ?“9;);%
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TABLE XXVI. Matrix elements for moving frame d = (1, 1,0) in both cubic and elongated boxes, group C,,, and irrep A,.

I nl n M,y

212 L gy 4 Y Tvin g 2T

2131 4y \/Wﬂl ‘*’W‘ — (A 5VEwi33 + (2 + 20)y/2ewrsT — (4 \/>wr53

2141 1\/:W122+ﬁ1\/;w142+ﬁ1\/_5w44—ﬁi\/%wi@—s—ﬁi\/%wm

2142 30w, — \@Wizz—s‘/f;” 4°+9\/:57Wi“+%\/%w60+ﬁ\/§wi62

3131 W00_7W40 _|_\/_0w44 _'_11:)\“//ﬂ +% \/EWM

314l (=1 = iywrll = (£ + 5)vV14wr31 + (5 + &) v55wr51 — \/7wr55 (15 + 25)V35wr71 — (& + 4 /18wr75

3142 o '\)/\—w“-i-(l 4y /2wr3l — (& —45)v/30wr33 + (3 - 2! \/7wr51—|— (-5 \/7wr53 (& - 25/5wr71
(m—%)\/ﬁ‘”lm

414l Woo — ‘/_WZ" 8}2’3“"+1]]7\V;ﬂ+2 5 w166—12i‘:v/"l+28 S Wige

thee — {1 \/‘W122+143 [Wlu 1151V 10wy + 7 \/»Wlez T \/7“’64 i35 \/>W182+13 T Wsa

42 4 2 Woo _|_17f wa 10\/_ Owiny "’2?(3)3140 162}/0;01w142 llw\ﬁ/o_ BT - 13332\‘;& _ [ Byig,

TABLE XXVII. Matrix elements for moving frame d = (1, 1,0) in both cubic and elongated boxes, group C,,, and irrep B;.

l ron M,

: ol wg —2- \/%Wizz

1 LI \/Ewrll—}— 1 i) wia] - B

1 301 i 2y

! 302 3\/‘W20 \/’W122+\/7W40+\/7W142

1 4 1 (2— 2\1/)_wr%%+(1 \l/irsz (1—1)\/7wr55

1 T (1) fwan 1+i)\/;wr51 +(2+20) [wrs3

2 R R Y. SR

2 31 —““}W‘“Jr( +Hvawrd1 - (4 g’)\/zwm— 5+5i \/ZwrSS

2 302 14 \/7wr11+ 2-2 \fwrsl (5~ D)v2wr33 — 5 ———)\/»wr53

2 41 \/—lez 1 \/—Wl42+11 [W162+15’W166

2 42 —*\/_W20+30\/_W4()+11\/‘W44 11\/’W60 11\/‘W64

3 301 woo—%+3‘1”—14°—sgv\v/ﬁ°—+10\/7w166

3 32 —ii\/iwizz—i—%i\/awizu—ﬁi\/_w44—%'\/zwi62+%'\/ﬁw64

3 4 1 %Jr(u )VA2wr31 — \/7wr51+ (i3 + 1) \/7wr71+ (7 + 7i)/135Wr77
3 42 _(lt)_\/z_wlrll (& —3)v6wr3l - 1—: % \/>wr51—( - 13 \/%WI‘SS—F (=13 \ﬁwrﬂ %—%)\/%wr%
3 3

2
woo + 18— 2 BWiny + i — 2\/701%42 - 12 15 \V;% — 11/ BWie

(Table continued)
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TABLE XXVIL. (Continued)

I n I n M
32 4 1 (= + D) VA2wr33 + (& — &) [BwrS3 + (4 — &), /20wrS5 — (35 — 25)V21wr73 — 5—3\/7wr75

(B

302 4 2 (—1—i)\[wr11—ﬁ +20)y/10wr31 — (& + 3L)v/6wr33 — _3%>Wr -G+ —)\/l—jwrS?a

+ (5 H WL = (5 + 1) V3wi73
4 1 4 1 4\f 54 4 7
Woo — WZO + 12/340 11V\V/60_ + ]4;‘/\;0_ =21 2431

4 1 4 2
Pwiny + g iy /[ PWiey — 7y iy /Wi — 41y /133Wiss + G5 i/ 5Wisa + Tiy /73 Wise

4 2 4 2 8\/'w 27w 81 2w 196w 42 /14
Woo + 20— 40 + 1z 143 W44 - —60 + 1 W64 + 14%\/&—0- 131/ 187 V84

7431V8s

TABLE XXVIII. Matrix elements for moving frame d = (1, 1,0) in both cubic and elongated boxes, group C,,, and irrep B,.

i ! T
I nl n Mln,l’n'

FLT T w4 20

1121 1—1\/wr11—4+4z\/—wr31
1131 l\/;w122+21\ﬂw142
113 2 W

_3\/%“/20_4?;’1)

1141 (—1+i)\@wr33—(4—4i)\/%wr53
114 2 (1+ -\/Ewr31+(4+4i)wr51
212 1 WOO+\/7W20+\/_WI72 4W40+2\/§wi42
2131 1—1)\/wr11 (D (g D)VBwi3 o+ (2 + 20) [wrST o+ (44 %)y [Fwrs3
2132 343 \/7wr11+ el (-2, [2wrs1
214l z\fw1 +—z\/:w1 —2ZiV/15w —i'\/T—Owi —E'\/zw
FWi22 11 7 42 11 44 11 62 11 64
214

2 _%\/3—0W20_~_\f5w122_5«/6w40 9\/"w142+10\/7W60 I]\/>w162

3131 W00_7v1vl40_¢—ow44+11?3@__\fwé4

3132 —%i\/iwizz—ﬁifW142+§l\/:W162

3141 (=1 —=i)wrll — (” ll)\/_wr31—|—(]3 13)\/7WT51 \/7"”55 % 12‘1[3)\/7“'”1 (% 4_3) %WHS

3L A2 (ol Bwd ] () v/30wr33 + (2 - %\fwrsl (1= 15)9wrs3 — (25 = 288)v/5wir 71
(%—%)\ﬁwrﬁ

323 2w+ 34 Oy 100v

3241 (- % )\/_WI'33 (% \/’WI’53—|— m—%)\/_wﬁ?)

3242 (—2—2i)\/:wr11— (& ﬁ)\/_wr31—(~— 38 \/-wrSI i)

4141 WOO_\/S_I\;/zo 81I§0+113&_2 lalw166—ligv\v/“”——28 siWise

i __l\/-W122+12473 \/7W142+1431\/_W44+11 \/‘W162+11 \/—WG“ (L \/>W182 RV
4242 g T 10/ 2 160, Ve 2 [0, — S 8 i
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TABLE XXIX. Matrix elements for moving frame d =

(1,1,1) in cubic box only, group Cs,, and irrep A;.

I n ' o My
0 1 0 1 Woo
0O 1 1 1 1 +i \/éwlo
01 2 1 —zx/—wr21
013 1 \/Wgo
0 1 3 2 _Vwiy
0 1 4 1 2\/£W40
0 1 4 2 ( 2 —2i)v/6wrdl
b - 2\/ wi2l
1 1 2 1 +l \/’W]O 3+3l \/7W30+ \/’ngz
b3 b s 61\/%WI‘21 + 41\/;WI'41
1 1 3 2 (373\;)7wr21 (4= 4i)\/§wr41
U b i) fowsg 4 (5 = 5i)y fhwso + (=4 + 4i) [Zwrs1
30 231750 77
I 1 4 2 \/-W30 2\/’Wl32 4\/7W50 8\/7WI'51
2 1 2 1 _ 4wy 2\/_wr21+16\/_wr41
2
2 1 3 1 w 40400y yr5]
3 + 3i \/-WIO + (IJ\r/t)'3o + ( + )ngz +( +7\;%vr
2 1 3 2 Szwm _ 21w30 + 201w50 + 81\/>WI‘51
2 14l —21\/7wr21 +40 \/WMI +8i \/_‘wr61 +3101"\’;ﬁ3
2 b4 2 (*—&)\/‘Wm—(——%)\/;Wm—l—(——f)\/—wﬂl (——@ V30wrd1 — \/7wr61 li 16— [wr63
31 3 1 Woo+6W40+1303(1‘/@+\/‘wr21 Jrz4\fwr41 Jr25 \/‘Wml \/7wr63
313 2 (2+2}wr21 + &+ )fwr4l + (194 18 [wr6l 1(”)\/Ewr63
31 4 1 i
i Gy 083+ B+ 9P
1 \/>Wﬁl + (715 + $719)1/ 371 — (755 + 1575) V35WIT3
301 4 2 . , l i
\/:W”’ = {1iv5wa + qpivwia, +ﬁ’\/%wso ~ (@5~ Ho) \/W70 M
iy oS+ (35— B \ w71 - (3 - 1) vEwrT3
3 2 Woo — 12W4(] + 80\‘;&
1
3 4 1 2\/_ w1;2 4 S60iwy _ 60V 7w _ 80iy/Twr71 | 2400/ ThwiT3
15733 143 1573 1573
32 4 2 o , , ,
I+ \/W1 — Gt _ +3 \/7""50+ (57 +35%) \/?WWWL(% 5 \/7"”51
(2492 | 2490 84i
(557 + T573) \/Wﬂl + (7553 + 155) VoW T3
1 L wyo + 101%:;‘“’ + Isloyﬂ + 1553\‘;&
Dod 2 (a0 10, fwndt 4 (G430 owrdt = B+ 2)[wr61 + (19 + 100 [wre3
+ (198 -+ 168) [33wrs ] — (804 200 [3 w3
4 2 4 2 W00_54W40+12{)\\;%_13\/ﬁwr21 2161\{)_\;vr4l+\/7wr61 + 2 10563 — 3528 /28] 4 36 [2U0yrg3
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TABLE XXX. Matrix elements for moving frame d = (1,1, 1) in cubic box only, group Cs,, and irrep A,.

l n r ! erml'n’

3 1 3 Woo — 2‘]”]4" - 16?\“/@ + \/7wr21 + 8‘/“’”41 +3 \/Ewr61 + 121 /22wr63

oA %"'( + 1) VA2w3 (11 V35wis + (5 + \/7W50 (35 + 7715) V10w
~ (75 + 5 V210wip, + (3 +33) \/7"”51 +(F5+ 3125)‘/—“”71 (755 — 1555) V105wr73

4 1 4 Woo + Sﬂvém _ IAIW\/% _ ;tjf\\;% i \/iv]vr21 216\]/4_3wr41 +1 \/7wr61 +10, /1053163 4 168 \/7wr81 2104183

TABLE XXXI. Matrix elements for moving frame d = (1,1, 1) in cubic box only, group Cs,, and irrep E.

l n U n M};’,,n,

I I I I Woo + \/éwrﬂ

! ! 2 ! (I+ i)\/gwlo -(2- 3i)\/%w30 - 2“\}1;2

bro2 2 - (1 +3i)\/%w30+\/§wi32

11 3 1 —2\/Zw40 — 621 (14 4 187)  /2wrd]

Pl 32 i) [ + B (84 20) [Rwrd

bbb ) O — (44 140) 5% wse + (16 = 28i)  /525wrS]

Lol 2 (33— 17i) fogigewao — 24/ Bywing + (24 = 100), /78wy + EEjenst

1 1 4 3 (4+\§3‘%W3() + (6 \/851_)%112 — (14 - 2i) W50 (Ié_jg‘[)gwm

2 1 2 1 ~ 2y 2 \/‘wr21 16\/_wr41

2 I 2 2 %+ (-2-¢ \/wr21+ *—f)\/“wr4l

2 131 3,y \/:wlo—w——\[wigz— (2+2)y/Fwso + (= 1§ = i) [FHwrS]

: . 2 G-% \/Wlo + (&= fHwsy — [wuz +10% 4 (8200, [Aowrs1

2 1 4 1 ‘1‘(1) 203w40 ?(1) 327 Weo — 61 wr21 - (56 + 104‘) gwr4l + % 375 wr61 + (— - 71—21‘) iwr63

2 I 4 2 _& \ng;)wm + “0(3;%)9)%” +(9- %) w2l — (3 + 280, [ Swrdl — (4 50) [ 1apmwr6] —
(38 + B0) [omwre3

2 1 4 3 (418 \/>w40 (12— 360), [2weo + (2 + 19 \/7wr21 464+648' wedl + (4 4y, [ Bwr6l +
(14 4 480)  /2Lwr63

2 2 2 2 Wop + BW40 11 \/7wr21 8\/'wr41

2 2 3 1 \/Ww i QW.32 2410 10 \/>W50 767161 wrs1

2 2 3 2 1+1) \/>W10 + (3 3 Wm >W132 + (=% 16') FwrS|

2oz — o8 v+ 5+ B R G = 3y B

2 2 4 2 20

30 4 160i 2 640 __ 120i _2;, /145 82 4 930i
11t 77) /30540 = (O = 1)y gaosWeo — 784/ spwi2l + (5 +57) aosWrdl

+ (%0 40i) 19227wr61 (‘1‘— — %) 624100 =2 wWr63

(Table continued)
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TABLE XXXI. (Continued)

I n v n' M,
2 2 4 3 (044 \/>W40 + (G430, /35 Weo 4 Gdiwrt \4/’1”2' + (388 4 18) \/>WI'41 = 2i)y/25wr6] +
6

(& — 80, /75wr63
3 1 3 1 vy _ MOWe /200 _ Gdwrdl 61 —2 63
Woo + 1 ~ 3013 [sWI 11\/‘+|| Jowr Bwr

R s __&\/>W6O+(_%_3§ \/>wr21 8’)wr41 +30)Bwr61 - (& +280) w63

S R 1 [ wiz, — (8 2&) ;f»vso Y
~ (% - [ ww(—M—@) mwr51+(3§?3 m )BT+ (S + 55 | w7
. : 4 2 _(27&%%0 “Vﬁwwm (F + T/ asWia + (5 + 23/ maWso + (o — e/ aaWro
+ = %§Wi72+( 392[) 37961""r5l (5 = A 1w 71 — (1535 + )y /a1 73

3 1 4 3 (A=i)wyo 3wz )War) ”5724 56i 168 561
AR s = (G ) esWin — A+ (GRS + 39/ 5w0 — (155 — 28)/ TWin
S84 4 Lo (184 4 700 336 | 84i
+(=F ) esws - GG+ 143)\/“’"71 + G+ 143)\/7“”73

3 2 3 2 Woo + e — f;)\‘;& - 2\/zwr21 - 116;’“\%1 \/vwr61 -3 \/:wr63

3 2 4 1 (& — 30 16, 121y /3 2632 _ 11691y /5 24 /105
(71 =111/ 35W30 + 17/ 2Wisz + (15 + 53 /315Ws0 — (1533 — T53) 1/ 3W70 + 145 1/ 26 Win2
352 _ 96i _ 1558y /70 (6 21y, /210
+ (3 13)\/ oS 1+ (3555 — 4 1)\/;"”71 (157 T 1573)\/ 29173
3 2 4 2 29 (135+“8‘ Wm 32 (5wso (10808 _ 4760
(L+1)y/35W10 — -G - ) 246 TesWis + 37961 4719 — 4719 147 1479W70

280 | 1064\ /5 192 | 84i 75488 _ 28784i 360 _ 1841y /10
+ (333 T 1a3) \/03Win2 + ( T 13) 27115WrSl + (Fo — 47197 147 wr71 + (3353 — 1579\ amwi 73

3 2 4 3 _(24\;%W10+ i \/_)‘Wzo 361 \/>W132Jr 654)Wso+ (ig%g 54719 12483 211:37)w172
+ (32 - 380, [efwrs1 <f )\ Zwe 71 + (1928 + 1280 f w73

4 1 4 1 Woo +7Z?ZV;()_ 13?1796\7% + :16:78\\;% _4\/; w2l _’_864‘1{; wiil 28 [y61 20 [105y63 672 \/— w8l
+ 355 /w83

b Gy [ - (18- 2, B + (188 — 3900) 2 Twy + (— 18 - 19861), [0

— (lo00s  s6tiy /13 _ (1158 | 294i 732 _ 18120 16086 __ 38262i
(i + 5500/ Trowrd 1 — (573 + 319) /331wr61 + (535 — 1513°)\/557Wr63 — (30458 — Joag9) V42wr81

(2186 _ 183541 10wr83

6409 ~ 6409
4 1 4 3 (L+ ) IS o + (2 4 480, /105 4 (336 4 610y, [105, + 2wl
143 3451740 11 11 sa0oWeo — (337 T 2431 29 80 345
288 _ 48i 480wr63 294 | 1260i
ssvrdl — (37 — 77 6409wr61 116200 (G + 2431) o Wr8l

( 85321)
143 143 345
4326 | 52020y [ 2
+ (551 + 57 /319Wr83

4 2 4 2 273186ws | 6920wg  15680wsg +7233\/W0Wf21 +147744\/§wr41 2685\/2wi6l 6544/ 1Bwr63 4116001/ Zwi81

W00 ~ 7493493 +5423m_70499m 37961 493493 5423 - 5423 70499
7056+/219wr83

6409
4 2 4 3 8748 11664i \/7 5 W0 — & 2?572’)%0_(332? S | (= 83L _ 20773y \/Ewr2l
17017 ~ T7017) 0 /1885 /2465 1300 ~ 130971/ 29
S = (3 0w+ (1 5 3 — CERE - 15 st
+ (5 + B [5155wr83
4 3 4 3 Woo + 3;22/140 _ 12:783% _ 23;;16\\;?1 26\/1?;”21 + 86424\/; vlvr41 % Wr61 _ W 105wr63
eVl LI YA S
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TABLE XXXII.

Matrix elements for moving frame d =

(0,1,2) in both cubic and elongated boxes, group C,,, and irrep A;.

l n l/ I’l, MI; 0
n,I'n
0 1 0 1 Woo
0 1 1 1 —\/EWl] 1
0 1 1 2 iWg
0 1 2 1 —\/§W22
0 1 2 2 —iv2wiy,
0 1 2 3 —Wao
0 1 3 1 V2wiss
0 1 3 2 —iv2w3,
0 1 3 3 \/EWi:;l
0 1 3 4 —iW3g
0 1 4 1 V2Wyy
0 1 4 3 V2w,
0 1 4 4 iv2wiy
0 1 4 5 W40
1 1 1 1
Woo — W_jsg - \/§W22
1 1 2 1 —./wi
5 357 V7
1 1 2 2 . 3iw .
1 1 2 3 wi :
6 N $Wipy
1 1 3 _ 3w W, 2w,
A R
1 1 3 2 —1\/;w121 + ":V/%l + iWig;
1 1 3 3
-3 \/%Wz() — \/%sz + \/%WM) + \/§W42
1 1 3 4 21\/£W141 - 3l\/zW121
1 1 4 1 2W133 _ Wlsw \/7W155
1 1 4 2 —iws + lw‘z et 21\/7W54
1 1 4 3 \/7W131 + WIB \/7W151 2\/‘W153
1 1 4 4 W3
—z\/;w_;o - ’\/37- + l\/;wso + l\/1:1W52
1 1 4 5 2“/% — 1/ BOuig,
1 2 1 2 wop + 22
1 2 2 1 6
1 7W32
1 2 2 2 : ;
— ngM 4 %Wl3l
1 2 2 3 mf;(’ +3iy /2w
1 2 3 2
—\/§W22 2 7W42
1 2 3 3 . : ;
—4i %WIZI l ¥W141
1 2 3 4 4w
3w — e
1 2 4 1 - /6
1 ﬁW54
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TABLE XXXIL. (Continued)

n/

<

l n

MF

In.l'n’
1 2 4 2 \/%wig + 4\/%Wis3
1 2 4 3 —Ziﬁwﬁ - i\/%wsz
1 2 4 4 ﬁwi31 + 4\\/’%1
1 2 4 5 — 1 _
2 1 2 1 woo_z‘/iﬂ—k%—k\/%jwam
2 1 2 2 —1iV30wiy, +1iv5wiy + i\/§Wi43
> 1 2 3 \/3'ow42 _ 2\/Esz
2 1 3 1 %wn.. T \/_wm _ \/7\;;,151 5[w155
2 1 3 3 —\/%wm + 2\/%W131 f;vm - f/v;—% —3y/Twiss
2 1 3 4 Sy [aws —3iv2wy
2 1 4 1 —\/§w22 +% ﬁw4z - \/33W62 - 1\;%
2 1 4 2 _i\/5w121 +4 '\/iwizu i~ Sy 1w
2 1 4 3 ——\/_W20+30\/_W40+11\/7W44 n\/’WéO 11[‘”“
2 1 4 4 —Liv5wiy +18iv/30wiy, +1‘—ll\/;W143 _ﬁl\/%“”él _1‘_11\/§Wi63
) 1 4 5 _1\Bwy + 30\f by _ 10 \/% W
2 2 2 2 Woo +\[W2°—M_m_@
2 2 2 3 —1iv/10wiy; —2iV/15wiy,
2 2 3 1 §,\/_W32_51\/;w52—21\/%ws4
2 2 3 2 —\ﬁwi“—%ﬁ-@‘i‘z %Wi5]+%\/%Wi53
2 2 3 3 20w + iy fwso — 2% = 3 Mgy - 22z
2 2 3 4 3\/7w111 +2W"‘ +2 \/7W151
2 2 4 1 ZiV15wiy; + i \/:Wlm + 51 /133 Wies
2 2 4 2 \/W22—11[W42+2rw“+11[W62+11[W64
2 ) 4 3 ~2i\/T0wiy; — 2 iv/T5wiy, +ﬁl\/:Wl4s + i \/:wm +& '\/%wifﬁ
2 2 4 4 \/“W2 ‘/_WZ“ 5\/_‘"4" + 9\/_W42 +1 2 \/>Wm +17 1 \/;
2 2 4 5 —4iV2wiy, +19iv/3wiy, +ni\£“’i61
2 3 2 3 woo + szz" + 8
2 3 3 1 ‘/_WI“ - \/—ngg
2 3 3 2 \/:Wsz
2 3 3 3 —M—\/wm 10w151
2 3 3 4 31\/'w10 + 4’W3" +12 \/7W50
2 3 4 1

410wy, _
11

i \/%Wm
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TABLE XXXIL. (Continued)

l n U n

2 3 4 2 ﬁ iv/10wiy; — % i\/iwi&

2 3 4 3 ROy — T 4 i

2 3 4 4 —7i\/i§wi21 —ﬁi\/_wi“ —ﬁi\/%wiﬁl

2 3 4 5 o 0S5 \[WGO

3 1 3 1 Wop — @ 4 3w 353w\/60_ 10 W66

3 1 3 2 —Liv5wiy + L iv30wiy — i '\/:Wi61 — 504/ 255Wigs

3 ! 3 3 —*\/_W22+3\/‘W42+ 2“’44—*\/7"‘/62 11\/7W64

3 ! 3 4 1 3 i/ 14wiys — 1 \/%wkﬁ

. ! 4 ! 2y By 2 [ 4ok \/iwiﬂ + 7\ 5wing

3 ! 4 2 ”‘%—Hl\/_w;OJrgl\}véﬂ Rl \ﬂwm 2i

3 ! 4 3 y‘—'l 3‘/_‘““ \/7w151 3 fw155 + 14 5 \/>w171 + 14 ;3 \/>w175
. : 4 4 —ﬁl\/—wszJrﬁl\/;wsz+§1\/;W54—m1\/_w72—ﬁl\/gw74
. : 4 > Wowia _ 30 \/%Wiss +

3 2 3 2 Woo — 7\]v]40 4 @]wu I 11;)3% I % \/%w“

3 2 3 3 —%—%iﬁwiﬂ —I—ﬁi\/_wi“ +]5—1i\/%wiﬁl +%i\/%wi63

’ ’ : ! —3V2wy - \/_w42 +3 [wsz

3 2 4 ! ﬁi\/7_0w32—ﬁi\/:w52+ml\/m—w72+i %w%

3 2 4 2 —wiy; — m + m — 2/ Twiss — 4VBSwin, _ 4 13wiss

. 2 4 . M—ﬁi\/gww—ﬁ'\/:"vso*'ﬁ \/:w54+mi\/—w70+17—3i\/%w74
3 2 4 4 Vi}u n 4fw1;] \/‘Owu; \/7W151 L \/.Wlsz 28\/’wm _ 28\/1353wi73
3 2 4 3 —ﬁl\/iwﬂ—ﬁt\/;wﬁ +mtfw72

3 3 3 3 woo + 1A =2 %szJr%—Nll_#—%%—— W62

3 3 3 4 RN \/’ T i,

3 4 1 ‘/_Wl“ — 5 \/7w153 \/7w155 + 5\/;‘;”” +3 3 \/7w175

3 3 4 2 ﬁl\/_W32+ﬁl\/%W52—ﬁl\/:W54—ml\/_W72—{—gl\/§W74
3 3 4 3 _\/§Will _ 2\/T(lei3l n 3\/]6\]Vi33 _ ﬁ\yﬂ L9 ] [ 7(1\1;71 n 70\1/;:«17;
3 3 4 4 i\/gwlo‘*'ﬁi\/_wm—%i\/_wn + 15 '\/7:7W50—%i\/gwsz—miﬁwm—%i\/gwn
3 3 4 5 2v\;1_|1 1 Vwiy \/'wm +2 \/-Wlsl 70\/'w171

3 4 4 1 %'\/:W74——z\fw54

3 4 4 2 3\/_w133 +6 [Wlss 40\1/;;m73

3 4 4 3 — L ivews, + ﬁl\/;wsz + 1400wy
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TABLE XXXII. (Continued)

' ’ T
l n [ n M Indn
3 4 4 4 _2 w1 \/— wm _ ﬁ ; wis; — 280w,
1= ) VW]
3 4 4 5 4iwyg + 61W30 + 60iwsg 435 35 W
V21 13v77 143 70
4 1 4 1 4\/' w20 Sdwy  4wg Twso
Woo — 9 v Tsyn T 214 /558 Wss
_l . . 27 . _l . g . lWigl
4 1 4 2 iV 15wiy, + =5 iV 10wi i Wig| + 2 4+ 2104 /525Wi
11 21 143 41 T 1 TR L VEN/ T 2431 87
4 1 4 3 2 /fx 81 /10 4 [15 3 21 21
— /W 15/ PWar — 7/ BWer — 44/ T3Wes + a5 \/ TWs2 + Ty /5 Was
4 1 4 4 27 - TOwi 4+ /30 - 7 : /15 21iwigs
ml 10W143 - ﬁl EW163 - 61 mWIGS —+ El legj, =+ \/m
4 1 4 5 54V2wy _ 12 /10 21 /10
TR VRVA A I ERVAT A
4 2 4 2 \/§w20 _ 8lwy | 17weo 56wy
Woo — 1 ZERN 11\/_ = 2/{45Wes — iy 28 Vs
4 2 4 3 5 . : 421w13;
-3 —w121 142 w141 + L 17V 39wig — 3i 14 Tr3Wies — 143 w 81 = " mat
4 2 4 4 3 27\/_W44
11 W22 +i5 143 W42 + 15 +34 11 W62 +3 11 W64 143 W82 13 18 187 V84
4 2 4 5
142 l\/_W143 +10 T w163 131 w183
4 3 4 3 8\/_ W20 27W40 81 2W60 6 /14 196wgo | 42 /14
Woo + + 1z 143 *W44 - + 11 *W64 + 14317 -+ 13 187W84
4 3 4 4 1621\/_w141 294iwig, 14 105
7 IV 15Wip — =601 143 W‘43 11 W‘61 + iy 13 wigs + vy T 1g Ts7Wis3
4 3 4 5 3 27\/" 2w 210
=3 V6w,, — 25 - 18 [Lwg,
4 4 4 4 Wen & 17\/‘ w20 10\/_ Owy | 3wy _ 162VT0wy W 2 105y, _ 392wy w
00 1001 1001 11\/“ Ty B2 T a7 143 82
4 4 4 5 24%1\/_ 2wi 2 105
l\/vW121 1001 e 11 l W161 143 ng]
4 5 4 5 20\/" w20 486wy | 20wg 490w80
Woo + 001 T v T iaavi

TABLE XXXIII.

Matrix elements for moving frame d =

(0,1,2) in both cubic and elongated boxes, group Cy,, and irrep A,.

l n 4 n MELZ,”,
! ! ! ! 00 = W—jgo + \/éwzz

1 1 2 1 —\/éwi“ 4 \/%wiﬂ _ 3wig

1 1 2 2 '\ﬁwlo g i\/§w32

1 1 3 1 3sz + \‘}’g _ 2WT44

1 1 3 2 \/7w121 + 2 — IWiy3

! ! 3 3 -3 \/:Wzo + \/%sz + \ﬁwzto - \éwu
1 1 4 1 i _wiay i

! ! 4 2 —iwy + % lw“ 21\/7w54

! ! 4 3 2wiy; — % - \/1:1w15] + 2\/%wi53

! ! 4 4 —i\/;—-?w,%o + lwﬁ + i\/%%o - i\/%WSZ
2 1 2 1

2V/5w w. 10
Woo — =7+ 5 = \/;W44
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TABLE XXXIII. (Continued)

[ n 14 n Mll:q,z/n'

2 1 2 2 _li\/—wjm +%i\/—wi4l - i\ﬁwi%

2 1 3 2 \/ wyg — 2 +§yﬂ— i/ 71Ws4

2 1 3 3 —\/%Wln + 2\/%W131 - ‘/_2”33 - 5}% +3 \/%WBS

2 1 4 1 —\/§W22 + % \/%szz - ﬁ \/1£W62 + l\;nﬂ

2 1 4 2 —i\/5w121 +%i\/§wi41 — Mg 5j, [ wies

2 1 4 3 /TSy + 000 _ 2 \/igw -3 \/%W()o +3 \/%WM

2 1 4 4 —ivwiy +0iv30wiy, - iy B - 7 i\/%wim +3 i\/Z:ngJi63
2 2 2 2 oo + Y VE0un vy 2/ T0wy

2 2 3 1 i,\fwn _1 \FWSZ + 21\Fw54

2 2 3 2 \/Vwm “\’%‘ - fw‘“ + 24 /55 Wis; — \/EWiSS

2 2 3 3 21\/7W10+ \/Wso-5-”’VJ——I\/7W50‘f‘SIW52

2 2 4 1 —ZiV15wig3 +f—ll\/:W163 — 5iy/133Wies

2 2 4 2 —\/éwzz -2 \/§W42 2\/_w44 + [WGZ iy \/>W64

2 2 4 3 —2iV/10wiy; — 25 iv/15wiyy — ﬁl\/;WLB + ﬁl\/%w%, - %i\/%wi&
2 2 4 4 —%mwzo + ‘/57‘”22 - 5‘/6\”“” - 9\/Ew42 + %) \/%Wso - 147 \/%WGZ

3 1 3 1 Woo‘@*‘m_;;\//w_—i_m 72566

3 1 3 2 —Liv5wiy; + L iv30wiy — % '\/:Wisl + 50y /255Wies

3 1 3 3 __\/_w22+3‘f‘”42—@——\/7wez+”[W64

3 1 4 1 23‘_11 4 \/me ——\/—w151 + 143 \/7W171 7 14 IEWir
LT ke e e

3 1 4 3 —V\V/"—‘ 3\/.“”" - \/’W151 +3 \/7W155 + 14 \/Wlﬂ 13 [W175
3 1 4 4 —11—11\/_W32+§1\/%W52—ﬁl\/;“’54_mlfw72 ‘*‘ﬁ’\/%wﬂ
3 2 3 2 woo — s — YT 4 Tt \/EW64

3 2 3 3 "’“21 - fz\/_w141 o Liv/1dwig + 2 i \/7“’161 11 [W163

3 2 4 : 1’\/ﬁW32 i [WSZ + 1z 1V105W2y — iy /1 Wi

3 2 4 2 —wiyy — \/_wm I \/_w151 15 5 \/’W]55 4\/;;»/17[ L4 4 105W]75

3 2 4 3 2I'M__li\/gwm—Ei\/%WS"_ﬁl\/%wﬂ_’_mi\/ﬁwm_Ei\/%wm
3 2 4 4 iy Ty s | 25 \/EwiSI +L \/%wiﬁ — 28V5winy | 28V T5wi,
3 3 3 3 Woo + 2+ 2\/7W22 T 2\/_0‘”47 - 1215% r \/%W62

3 3 4 1 % - \/7w153 + 21/ Hwiss + 5\/;?172 -5 \/%Wiﬁ

3 3 4 2

1/ i/ S . /42
ﬁl 14 W37 +ﬁl\/l—-]W52+ﬁl\/;W54—ml 21W72+§l\/;W74
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TABLE XXXIII. (Continued)

l n r n' M,
3 3 4 3 —\/Ewi _ 2V/TOwiy, _ 3V6wiss _ 43wis, 9 \/Ewi L T0wizy _ 70V3wigy
FAMY! 11 11 1377 13\ 11753 143 143
3 3 4 4 i\/éwl() + 1riv15ws +%i\/§W32+%i\/l:5W50+%i\/%W52 — &5 iV Twa + 1 1V3wr
4 1 4 1 Woo — 4\/'W70 + 541‘1\’:0 1‘:‘”\/6;)_3 + 1473“/\;0_ —21 243 53TV ss
4 1 4 2 — 2iv/T5wiy, + 2 iv/TOwiy, —f—li\@wim + Ay o1, [5 Wi,
4 ! 4 3 -4 \/3:0W22 i \/IZ)W42 — 17 \/EWGZ + 4 /135Wes + 15 \/1:7W82 —7\/351Ws6
4 1 4 4 143 7 v/ 10wiy; — 11 \/,Wl“ + 61\/;;W165 +13 l\/>W133 2\1/%\%?
4 2 4 2 Woo \/_Wm -8+ 11173ﬂ + 24/ 15 We6 — 142“\//80— + 284 /5257Ws6
4 2 4 3 _E] [wm oy \[W141+ 1 iV39Wigy + 3iy /Wies — 15 fwg,#‘j%“;ﬁ
4 2 4 4 \/—sz + 15 \/—W42 27\{4_2%4 +17 \/:W62 —1 \/:W64 — 15 \/:Wsz + 51/ 157 Wea
4 3 4 3 Woo + 2/5¥ 8\/_W2() _M_m\/—WM 2w6(> \/7W64 n llzgyﬁ_ﬁ ST,
4 3 4 4 _ﬁi\/ﬁwi21 —%_ 2 \/7\;;/143 = \/7w161 —Li 13W163 + 2&431'3@ _%1 {gjwm
4 4 4 4 Woo + 17\[“]20 + 10\/_W22 + 241%3140 + 1621\(/);\”“2 11‘”\7’1—3 +2 T II%SWsz - 13;32\‘;& + % \/%WSZ

TABLE XXXIV. Matrix elements for moving frame d = (1,1, 1) in elongated box only, group C;,, and irrep A;.

I nl n Mﬂ.rn'
0 1 0 1 Woo

01 1 1 (=1=-i)y2wrll

01 1 2 iwg

012 2 (1-i)2wr2l

0 1 2 3 —Wzo

013 1 (=1+4i)v2wr33

013 2 _\/wi,

013 3 (1+i)y2wr3l

0 1 3 4 —iW30

014 1 Vaw,

014 2 (—1-i)2wrd3

0143 _i\2wi,

01 4 4 (—1+i)2wrdl

0 1 4 5 W40

DR Woo V\V/zg‘F ngzz

P20 sy, fowml

1121 . —z)\/wrllJr 1 \/_‘WI.31+(3+3\1/)7wr33
112 2 \/7W10 zlw30+l\/>W132

112

V35

113 1 3iwiyy iWigy  2iwyy

VooVl 3

3 (6-6i)wr3l (-
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TABLE XXXIV. (Continued)

I nl n M};J,n,
132 g \/wrzl U=l (1~ i)wrd3
1133 .

=3 \/;Wzo + \/%lez + \%Wm - \/%letz
P13 g2i) [ywedl - (34 30) [Zwii
1141 (2w | (1= 1wr53 \/’

7 + wr55

P14 152+2\/,W54
1143 .%wr31+<1+l>wr33_ L4 \/Zwr51_(2+2,-)\/%wr53
1144 [W30+1w132+,\/>wso \/>w152
1145 22\1/7wr31 (1= i),/Owrs1
1212wyt 2
1221 6.

7W132
1222 —l—i)\/éwrll—(4+4i)\/%wr3l
1223 21W'°+3l\/7W30
P23 1y, w3
1232 l\/§W122+21 ZWig)
233 (4 —4i)y/2wr2l + (1 — i), /Pwrd]
123 4 W

-3 35W20 4?;?
1241 . /6

W 1rWs4
P24 2 (o) owds - (4 - 40, wis3
1243 . .

—2\/%W132 - \/%Wlsz
124 4 R 10 (4+4i)wr51

(l+l)\/7wr3l+ Nl

4iw Siw.
b2as U
2121 g 2w B,
2122 (—%—%)\/30wr21+(%+§)\/§wr4l+(1+i)\/§wr43
2123 %l‘\/ Wi42—gi\/—vWi22
213 1 Gy (g VIl = (4 )y FwrST+ (5 + 5i) [wss
213 2 \/wlo Z’W’°+§’jﬂ—z\/7w54
2133 sy Bt 4 2= 20) [wdt + (G- Hvawss - B (3-8, [2aas)
213 4 2\/_W13')_ \/7Wl§2
shad \/7“’122 il \/‘W142+11 \/7W162 lsm“
2142 (1—1)\/:WQI 3= 3 [Pwrdl 4 "Wr“ — (5= 50)y/&wr65
2143

7V1 W20+%0\/_W4° “\/:W44—ﬁ\/:weo+ﬁ\/:wé4

2144 (-1 —5)v/5wr21 + (1 +1%)/30wrd 1 + (3 + \/7wr43— &+ —i)\/:wr61—(%+%) Bwr63
2145

-7 i\/ZWIQQ + 77 i\/6W142 - ﬁ i\/%Wlﬁz
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TABLE XXXIV. (Continued)

l/ nl MF

~
N

Inl'n'
2 Woo + \/§wm 4 Y30wiz \/§5wizz _4W4o +2\/’ Wi
3 (————)\/_Wf21— 2 2’)\/_wr41
! %_%\/%Wiﬂ_z %W54
(=1 — i)y fowrt 1 = UFRL (4 ) /5033 4 (24 20), [J0wrs1 + (4 \/>wr53
33 2i\/%w10+%i\/%w30+’“”32——l\/I:OWSO+5i‘/’%2
(=3 +30) [wr1 1 + 2t 3}”31 (-2, [Zws
U (@ 4215wz — (3 + \/7wr63+ (5 + 5i) [ 2ywr65

1 —W122 + 11 1 —Wl42 - ﬁ i \/ W44 - ﬁ —Wl62 - ﬁ _W64

2
2
3
3

NS RN SR ST VN \ "B S )
[\C TR (SR (S B A" S I \S T )
w
N

-3 Lv/30wy0 + \/.;Vln - 5fw4° 9f~w142 +17 10 \/7W60 1 \/>W162

=5Vl e e + 3 st
2szo+6W40

DD YN
O S T N N
N

Woo +

! ———\/7wr53 fwr33

2 \/’
—W152
333 6+6i)wrll (10+10i)wr51
(+twr (1+l\/>Wr31—+Tl7)wr
33 4 31\/7W10+41ww+10 \[WSO
1 4‘/_0“’4“ \/7W64

4
42 (s —\/:wr63— ﬁ+ﬁ)\/ﬁwr43

343 —z\/_W122+77l\/_Wl42+11 B wigy
44 2oy)Tswal + (——m)fwr41+( %\fwr“
45

6wy 20V5wy 15 SW
7 77 11'\/ 1360

W W W

[N N O O L I O e N e O e S S \“ I (ST SR )

313 1 Woo — \/g:;?vzo + 3wy 32"\"/6& — 10

313 (Lo DVBwWRL (4 )VEOwHL — (G + 3B + (5 + 5i) [wres
3133 —li\/EWi22+%i\/_Wi42+ﬁl.v W44_ﬁl\/—1_;W162_ﬁl\/;_;w64
33438 Tawns - ——&)\fwr@

7.
29WV166

2wy 15iwso
B 111\/“W30+H\/— 143 W70 2i 14 W176

4 30wy, 14V5wigy
1 13 W152 H W54+ 143 +ﬁ _W74

S (=3 -3)y/2w33 + (2 ’Of)f wrs3 — (22 + 19)wr73

3232 WOO_7\1?VI40_\/—16I’V44+11?392——\/»W64
3233 —(H%rzl—(ﬁJr%)\/iwréHJr(“ + v/ 14wrd3 + (& + fwr6l + &+ \/»wr63
32

3 4 2 - . 1 - . 40 - .
_El\/EWIZZ - ﬁl\/éWLu + El ]_3W162

1 _(2+2\'/>§W” ( 11)\/_wr31 \/7wr51+ (5 +18) \/7wr71 (74 7i)/5Wr77

4
4
3143 _qa \/)zﬁlr“ + (& - 3)Vewrdl — (B -1 \/7wr51+( %)\/%wrSS—ﬁ-(ll \/Vwr71—
4
4

3 (2—2)V/10wr21 + (% — 2£)v/15wrd1 — ———\/.wr43 (& 5—1\/7wr61 (& - \/—‘WI63

14

3

i) \/%WI'75
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TABLE XXXIV. (Continued)

I nl n MY

InI'n
3241 % & \/>w152+@§”7”— 1Pwizg
3242 (=1 = iywrll = (4 + ) V14wr31 + (& + 5)V55wrs1 + (S + \/7wr55 (14 + 25)V35wrT1 + (& + 4 /108wr75
3243 —li\/§w30—ﬁi\/:w5o—l—3i\/:w54+mi\/_w70—ﬁ \/:Wm
3244

“ Bl (e — ) awrdt + (= ) V/30wr33 + (3 = 20) [ZwiS1 = (5 = ) [Bwrs3
— (B -BhH/5wrTl — (& - 8hH/15wr73

3245 7\/_w132+ [WISZ 70\/_Wl72

333 3 W()()+w2l)+2\/‘WI22+W40+2\/_6W140_1215:;%+{7(1)\/g:gWi62

Zwr
333 4 _(+\/)_ 21 (ko i)y/30wrd] — (2 50’)\/Zwr61
+

3341 (-4 li)\/_wr33—|— ———\/7wr53 (5 =2 /Hwrs5 — (35— 143)\/_wr73—i— S-3 \/>wr75

3342 1;\”32""3\/;“’152_3\/%“’54_m\/;%_ﬁ\/:wﬂ

3343 —l—i)\/gwrll— (& + 2)V10wr31 + (3 + 2)v6wr33 — (& \1/32”51—0—(” \/7wr53+ ({5 + DywrTl
+ (T + 1) V3w 73

3344 \/>W10+“l\/_W30+“l\/-W132+13 \/7w50+ \/7W152 143lfw70+143lfw172

3345 e (w3 (- 3 BwesT o+ (2 - ) V5wiT

S T

344 %i\/:wm—ﬁl\/:wszt

3442 (=3 +3)V/14wr33 - ———\/7wr53+ (2% — 490)\/Twr73

3443 —ﬁ\/EWi32+ﬁ\/;Wlsz+%

3444 (—2—2i)\/%wr11—(ﬁ+ﬁ)\/@wr3l— 3% 4 38 [wrSl—M

3445 4\i/v%]+6i;;;30+?(3)i>v;_3+%i\/§w70

AT g e g T 0 2431W88

P 2Tl + (B BV IO — (4 2) [Awi6] + B (21 421 53 wrs7

4143 \/7W122+143 \/7w142 I \/.W162+4l 53 W166+m \/’ngz 7i 2431w186

414 4 (%_%)\/_ wrd3 — (___)\gwr63+(6—6l)\/;wr65+( \ﬂ;wr% B s

4145 54\1?;/44_7\/7“]64_’_13 W34

. Woo —~ \/_1wzo 813340+1117\‘;ﬂ 2./ fwiss — 132\://& 28, /55 Wise

2403 sy g (24 f}g)\fwr41+ (5 + 1) V/39wWr61 + (3 + 3i) | /;Zwr65 — (2 + 20) \/7wr81+42+42%4’3>wr85

e — iy Fwin + 7 \/7W142+143’\/_W44+11 \/7“’162"'11 \/7W64 5 [WISZ T iy TerWse

T2 (B8 a3+ (13- 1), /w63 — (18- 70) | [3wis3

4343 Woo+8\/_W2°—27ﬂ—m\/7w44—%——\/7W64+llf§y& 3 11847W84

E3 A (g VTSl (f + 18V TOwrA1 + (25 + 2y /wrd3 = (4 30) w61+ (G + 1), 20wr63
I (f33+j§;_7>wr81 + (14 140y 105,83

4345 . . . . . .
—% l\/6W122 - % l\/§W142 + ml\/;—;msz
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TABLE XXXIV. (Continued)

U ! T
I nl n M,

4 4 4 4 |7f wz(, 10\F Owiy | 243wy | 162/10wis Weo 392wg | 84 /35, -
Woo + + + oo T~ 1001 _11\/“+11 13W162_14z\/‘+m 17W1s2

4 4 45 ; ; ;
( 10 10)\/_wr21 (126‘631+f331)fwr41 ( ) 105wr61 (fﬁ;‘+ﬁ‘§ \/%wrSI

45 4 5 20\/_ w,(J 486w, | 20we | 490wsg
Woo + T 001 v T sy

TABLE XXXV. Matrix elements for moving frame d = (1,1, 1) in elongated box only, group C,,, and irrep A,.

[ n o' n M,y
! ! ! ! Woo — % - \/%Wizz

2 1(—1—i)\ﬁwr11+(1+i)\/%wr31—%
2

1 1 2 ] %W]O ﬂ\/‘m -1 nggQ
1 1 3 1 3iwiyy _ iwig 2iwyy
Vi vt

boob 2 o fawnn 0oty (1 a3

1 1 3 3 3\/7W20 \/7W122 + \/7W40 + \/>W142
1 e 2\1/)_wr33 T z)wr5*+ (1—1i) \/;wrSS
—ngz + W152 2\/>W54

4
4 2
b4 3 +i\ﬁwﬁl—%—(l+i)\/%wr51+(2+2i)\/%wr53
4 4
2
2

_i\/gwm - i‘j/i%z + i\/;—éwso + i\/%wiSZ
! Woo—@-l-%—l—\/';owzm
’ (—%—%W@wﬂl + (%+%)x/§wr41 = (1 + i)y 3wrd3

2 1 3 2 \/VW]() 21w10+51w50+l\/7ws4
2 L R \/>wr11—|— 2 - 21)\/7wr31 (- 5)v2wr33 - Sjﬂ'ﬂ-y-(%_%) Zwr53
2 1 4 1 \/:W12 \/7W142+11 \[Wl62+151w166
: 1 4 2 (1—i \/wrZI (& -3 \/»wr41 + i Wr()l + (5 = 5i)/155Wr65
2 1 4 3 15 W
__ W20+30\/_ 40"‘11\/7“’44 11\/>W60 ll\/>w64
2 2 2 2 Wop + o \/_Wm _ \/§6W122 _ M _ 2\/'W142
2 2 3 1 \/_W“z \/7w152+2\/7W54
2 2 3 2 (1+i)wr3l i . 10 4, 4i 5
(=1 = i) [Swrll — S22 — (34 ) V5wWiB3 + (2 + 2i) [ 5ywrS1 — (3 + %) /fwrs3
2 2 3 3 Zi\/gwm I Li\ﬁwm _ iwi32 s '\/Ewso _ Siw152
2 2 4 1
(& + 2)V/15wrd3 — ), /Zwre3 — (5 +51) W65
2 2 4

2 . . .
1 7W122 + ﬁl 7W142 + i i \/ W44 — ﬁl ﬁWlﬁz + ﬁ i ﬁw64
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TABLE XXXV. (Continued)

l n ' n M};l,,
2 2 4 3 2i (3 (3 = 3iy (& _6i)
2 =2)V10wr21 + (3% — 2)V15wrd] + (3 — 24) [Pwrd3 — (3 = 25) [Hwr6] + (& - &), /Bwr63
2 2 4 4 —7\/—W20 \/_w122_5\/_W40+9\/_W142+10\/>W60+“ \/:W162
3 1 3 1 WOO_\/_;’V20+3TV140_353W\/60_+10 Wl66
3o b3 2 Lo Awial 4 (4 11)\/ Owrd1 — \/7wr61 (5 + 5i), [ Lwr6s

W
—
W
W

1 . . . .
-3 l\/inzz -+ % l\/6W142 - T l \/ W44 - ﬁ \/:WIGZ ﬁ \/:W64
1 @+2iwrll

4
=5 -i-(11 11)\/ 2wr31 — ( ﬁ fwrSl—i— 143 143 \/7wr71+ (74 7i) 14wr77
3 1 4 2 i
ﬂ_“z\/_wgo—i-g\‘/@ 143 \/W70+21 3 w176
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TABLE XXXV. (Continued)
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Matrix elements for moving frame d =

Matrix elements for moving frame d =
XXXIIIL.

Matrix elements for moving frame d =

(1,1,1) in cubic box only are listed in Tables XXIX-XXXI.
(0, 1, 2) in both cubic and elongated boxes are listed in Tables XXXII and

(1,1,1) in elongated box only are listed in Tables XXXIV and XXXV.

[1] M. Liischer, Two particle states on a torus and their
relation to the scattering matrix, Nucl. Phys. B354, 531
(1991).

[2] K. Rummukainen and S. A. Gottlieb, Resonance scattering
phase shifts on a nonrest frame lattice, Nucl. Phys. B450,
397 (1995).

[3] C.H. Kim, C.T. Sachrajda, and S. R. Sharpe, Finite-volume
effects for two-hadron states in moving frames, Nucl. Phys.
B727, 218 (2005).

[4] Z. Fu, Rummukainen-Gottlieb’s formula on two-particle
system with different mass, Phys. Rev. D 85, 014506
(2012).

[5] L. Leskovec and S. Prelovsek, Scattering phase shifts
for two particles of different mass and non-zero total
momentum in lattice QCD, Phys. Rev. D 85, 114507
(2012).

[6] M. Gockeler, R. Horsley, M. Lage, U. G. Meissner, P. E. L.
Rakow, A. Rusetsky, G. Schierholz, and J. M. Zanotti,
Scattering phases for meson and baryon resonances on
general moving-frame lattices, Phys. Rev. D 86, 094513
(2012).

[71 Y. Li, J.-j. Wu, D.B. Leinweber, and A.W. Thomas,
Hamiltonian effective field theory in elongated or moving
finite volume, Phys. Rev. D 103, 094518 (2021).

[8] M. Doring, U. G. Meissner, E. Oset, and A. Rusetsky, Scalar
mesons moving in a finite volume and the role of partial
wave mixing, Eur. Phys. J. A 48, 114 (2012).

[9] X. Feng, X. Li, and C. Liu, Two particle states in an
asymmetric box and the elastic scattering phases, Phys. Rev.
D 70, 014505 (2004).

[10] F. X. Lee and A. Alexandru, Scattering phase-shift formulas
for mesons and baryons in elongated boxes, Phys. Rev. D
96, 054508 (2017).

[11] C. Liu, X. Feng, and S. He, Two particle states in a box and
the s-matrix in multi-channel scattering, Int. J. Mod. Phys. A
21, 847 (2006).

[12] M. Lage, U.-G. Meifner, and A. Rusetsky, A method to
measure the antikaon—nucleon scattering length in lattice
qcd, Phys. Lett. B 681, 439 (2009).

[13] V. Bernard, M. Lage, U.-G. Meissner, and A. Rusetsky,
Resonance properties from the finite-volume energy spec-
trum, J. High Energy Phys. 08 (2008) 024.

[14] M. Doring, U.G. Meifiner, E. Oset, and A. Rusetsky,
Unitarized chiral perturbation theory in a finite volume:
Scalar meson sector, Eur. Phys. J. A 47, 139 (2011).

[15] M. T. Hansen and S. R. Sharpe, Multiple-channel generali-
zation of lellouch-liischer formula, Phys. Rev. D 86, 016007
(2012).

[16] T. Luu and M. J. Savage, Extracting scattering phase-shifts
in higher partial-waves from lattice QCD calculations, Phys.
Rev. D 83, 114508 (2011).

[17] N. Li and C. Liu, Generalized Liischer formula in multi-
channel baryon-meson scattering, Phys. Rev. D 87, 014502
(2013).

[18] R. A. Briceno and Z. Davoudi, Moving multichannel
systems in a finite volume with application to proton-proton
fusion, Phys. Rev. D 88, 094507 (2013).

[19] R. A. Briceno, Two-particle multichannel systems in a finite
volume with arbitrary spin, Phys. Rev. D 89, 074507 (2014).

[20] C. Morningstar, J. Bulava, B. Singha, R. Brett, J. Fallica, A.
Hanlon, and B. Horz, Estimating the two-particle K-matrix
for multiple partial waves and decay channels from finite-
volume energies, Nucl. Phys. B924, 477 (2017).

[21] Y. Li, J.-J. Wu, C.D. Abell, D.B. Leinweber, and A. W.
Thomas, Partial wave mixing in Hamiltonian effective field
theory, Phys. Rev. D 101, 114501 (2020).

[22] C. Pelissier and A. Alexandru, Resonance parameters of the
rho-meson from asymmetrical lattices, Phys. Rev. D 87,
014503 (2013).

[23] D. Guo, A. Alexandru, R. Molina, and M. Doéring, Rho
resonance parameters from lattice QCD, Phys. Rev. D 94,
034501 (2016).

054517-50


https://doi.org/10.1016/0550-3213(91)90366-6
https://doi.org/10.1016/0550-3213(91)90366-6
https://doi.org/10.1016/0550-3213(95)00313-H
https://doi.org/10.1016/0550-3213(95)00313-H
https://doi.org/10.1016/j.nuclphysb.2005.08.029
https://doi.org/10.1016/j.nuclphysb.2005.08.029
https://doi.org/10.1103/PhysRevD.85.014506
https://doi.org/10.1103/PhysRevD.85.014506
https://doi.org/10.1103/PhysRevD.85.114507
https://doi.org/10.1103/PhysRevD.85.114507
https://doi.org/10.1103/PhysRevD.86.094513
https://doi.org/10.1103/PhysRevD.86.094513
https://doi.org/10.1103/PhysRevD.103.094518
https://doi.org/10.1140/epja/i2012-12114-6
https://doi.org/10.1103/PhysRevD.70.014505
https://doi.org/10.1103/PhysRevD.70.014505
https://doi.org/10.1103/PhysRevD.96.054508
https://doi.org/10.1103/PhysRevD.96.054508
https://doi.org/10.1142/S0217751X06032150
https://doi.org/10.1142/S0217751X06032150
https://doi.org/10.1016/j.physletb.2009.10.055
https://doi.org/10.1088/1126-6708/2008/08/024
https://doi.org/10.1140/epja/i2011-11139-7
https://doi.org/10.1103/PhysRevD.86.016007
https://doi.org/10.1103/PhysRevD.86.016007
https://doi.org/10.1103/PhysRevD.83.114508
https://doi.org/10.1103/PhysRevD.83.114508
https://doi.org/10.1103/PhysRevD.87.014502
https://doi.org/10.1103/PhysRevD.87.014502
https://doi.org/10.1103/PhysRevD.88.094507
https://doi.org/10.1103/PhysRevD.89.074507
https://doi.org/10.1016/j.nuclphysb.2017.09.014
https://doi.org/10.1103/PhysRevD.101.114501
https://doi.org/10.1103/PhysRevD.87.014503
https://doi.org/10.1103/PhysRevD.87.014503
https://doi.org/10.1103/PhysRevD.94.034501
https://doi.org/10.1103/PhysRevD.94.034501

HIGHER ORDER FINITE VOLUME QUANTIZATION ...

PHYS. REV. D 105, 054517 (2022)

[24] D. Guo, A. Alexandru, R. Molina, M. Mai, and M. Déring,
Extraction of isoscalar zz phase-shifts from lattice QCD,
Phys. Rev. D 98, 014507 (2018).

[25] C. Culver, M. Mai, A. Alexandru, M. Doring, and F. X. Lee,
Pion scattering in the isospin / = 2 channel from elongated
lattices, Phys. Rev. D 100, 034509 (2019).

[26] M. Mai, C. Culver, A. Alexandru, M. Déring, and F. X. Lee,
Cross-channel study of pion scattering from lattice QCD,
Phys. Rev. D 100, 114514 (2019).

[27] J. Bulava, B. Fahy, B. Horz, K. J. Juge, C. Morningstar, and
C.H. Wong, I =1 and [ = 2 = — & scattering phase shifts
from Ny = 2 + 1 lattice QCD, Nucl. Phys. B910, 842 (2016).

[28] R. Brett, J. Bulava, J. Fallica, A. Hanlon, B. Horz, and C.
Morningstar, Determination of s- and p-wave I = 1/2 Kz
scattering amplitudes in Ny =2+ 1 lattice QCD, Nucl.
Phys. B932, 29 (2018).

[29] C. Andersen, J. Bulava, B. Horz, and C. Morningstar, The
I = 1 pion-pion scattering amplitude and timelike pion form
factor from Ny = 2 + 1 lattice QCD, Nucl. Phys. B939, 145
(2019).

[30] C. Alexandrou, L. Leskovec, S. Meinel, J. Negele, S. Paul,
M. Petschlies, A. Pochinsky, G. Rendon, and S. Syritsyn,
P-wave zz scattering and the p resonance from lattice QCD,
Phys. Rev. D 96, 034525 (2017).

[31] G.S. Bali, S. Collins, A. Cox, G. Donald, M. Gockeler,
C.B. Lang, and A. Schifer (RQCD Collaboration), p and
K* resonances on the lattice at nearly physical quark masses
and N; =2, Phys. Rev. D 93, 054509 (2016).

[32] X. Feng, S. Aoki, S. Hashimoto, and T. Kaneko, Timelike
pion form factor in lattice QCD, Phys. Rev. D 91, 054504
(2015).

[33] X. Feng, K. Jansen, and D. B. Renner, Resonance param-
eters of the rho-meson from lattice QCD, Phys. Rev. D 83,
094505 (2011).

[34] K. Orginos, A. Parreno, M.J. Savage, S.R. Beane, E.
Chang, and W. Detmold, Two nucleon systems at m, ~
450 MeV from lattice QCD, Phys. Rev. D 92, 114512
(2015).

[35] S.R. Beane, E. Chang, W. Detmold, H. W. Lin, T. C. Luu,
K. Orginos, A. Parreno, M.J. Savage, A. Torok, and A.
Walker-Loud (NPLQCD Collaboration), The I =2 pipi
S-wave scattering phase shift from lattice QCD, Phys.
Rev. D 85, 034505 (2012).

[36] S. Aoki et al. (CS Collaboration), p meson decay in 2 + 1
flavor lattice QCD, Phys. Rev. D 84, 094505 (2011).

[37] J.J. Dudek, R.G. Edwards, and C.E. Thomas (Hadron
Spectrum Collaboration), Energy dependence of the p
resonance in zz elastic scattering from lattice QCD,
Phys. Rev. D 87, 034505 (2013); Erratum, Phys. Rev. D
90, 099902 (2014).

[38] J.J. Dudek, R.G. Edwards, and C.E. Thomas, S and
D-wave phase shifts in isospin-2 pi pi scattering from lattice
QCD, Phys. Rev. D 86, 034031 (2012).

[39] D. Mohler, C.B. Lang, L. Leskovec, S. Prelovsek, and
R. M. Woloshyn, D%,(2317) Meson and D-Meson-Kaon
Scattering from Lattice QCD, Phys. Rev. Lett. 111, 222001
(2013).

[40] S. Prelovsek, L. Leskovec, C. B. Lang, and Daniel Mohler,
K7 scattering and the K* decay width from Lattice QCD,
Phys. Rev. D 88, 054508 (2013).

[41] D. Mohler, S. Prelovsek, and R. M. Woloshyn, Dz scatter-
ing and D meson resonances from lattice QCD, Phys. Rev.
D 87, 034501 (2013).

[42] C.B. Lang, L. Leskovec, D. Mohler, and S. Prelovsek,
K pi scattering for isospin 1/2 and 3/2 in lattice QCD, Phys.
Rev. D 86, 054508 (2012).

[43] C.B. Lang, D. Mohler, S. Prelovsek, and M. Vidmar,
Coupled channel analysis of the tho meson decay in lattice
QCD, Phys. Rev. D 84, 054503 (2011); Erratum, Phys. Rev.
D 89, 059903 (2014).

[44] C.Helmes, C. Jost, B. Knippschild, B. Kostrzewa, L. Liu, C.
Urbach, and M. Werner, Hadron-hadron interactions from
Ny=2+1+1 lattice QCD: Isospin-1KK scattering
length, Phys. Rev. D 96, 034510 (2017).

[45] L. Liu et al., Isospin-Ozz s-wave scattering length from
twisted mass lattice QCD, Phys. Rev. D 96, 054516
(2017).

[46] C. Helmes, C. Jost, B. Knippschild, C. Liu, J. Liu, L. Liu,
C. Urbach, M. Ueding, Z. Wang, and M. Werner
(ETM Collaboration), Hadron-hadron interactions from
Ny =2+ 1+ 1 lattice QCD: isospin-2zr scattering length,
J. High Energy Phys. 09 (2015) 109.

[47] D.J. Wilson, J. J. Dudek, R. G. Edwards, and C. E. Thomas,
Resonances in coupled 7K, nK scattering from lattice QCD,
Phys. Rev. D 91, 054008 (2015).

[48] D.J. Wilson, R. A. Bricefio, J. J. Dudek, R. G. Edwards, and
C.E. Thomas, Coupled zz, KK scattering in P-wave and
the p resonance from lattice QCD, Phys. Rev. D 92, 094502
(2015).

[49] G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas, and D. J.
Wilson, Coupled-channel Dz, Dy and DK scattering from
lattice QCD, J. High Energy Phys. 10 (2016) O11.

[50] M. Mai, A. Alexandru, R. Brett, C. Culver, M. Déring, F. X.
Lee, and D. Sadasivan, Three-Body Dynamics of the
a,(1260) Resonance From Lattice QCD, Phys. Rev. Lett.
127, 222001 (2021).

[51] M. Mai, M. Déring, and A. Rusetsky, Multi-particle systems
on the lattice and chiral extrapolations: A brief review,
Eur. Phys. J. Special Topics 230, 1623 (2021).

[52] M. Fischer, B. Kostrzewa, L. Liu, F. Romero-Lépez, M.
Ueding, and C. Urbach, Scattering of two and three physical
pions at maximal isospin from lattice QCD, Eur. Phys. J. C
81, 436 (2021).

[53] M. T. Hansen and S.R. Sharpe, Lattice QCD and three-
particle decays of resonances, Annu. Rev. Nucl. Part. Sci.
69, 65 (2019).

[54] A. Rusetsky, Three particles on the lattice, Proc. Sci.,
LATTICE2019 (2019) 281.

[55] C. Culver, M. Mai, R. Brett, A. Alexandru, and M. Déring,
Three pion spectrum in the / = 3 channel from lattice QCD,
Phys. Rev. D 101, 114507 (2020).

[56] T.D. Blanton, F. Romero-Lépez, and S.R. Sharpe, I =3
Three-Pion Scattering Amplitude from Lattice QCD, Phys.
Rev. Lett. 124, 032001 (2020).

[57] A. Alexandru, R. Brett, C. Culver, M. Déring, D. Guo, F. X.
Lee, and M. Mai, Finite-volume energy spectrum of the
K=K~ K~ system, Phys. Rev. D 102, 114523 (2020).

[58] R. Brett, C. Culver, M. Mai, A. Alexandru, M. Doring, and
F. X. Lee, Three-body interactions from the finite-volume
QCD spectrum, Phys. Rev. D 104, 014501 (2021).

054517-51


https://doi.org/10.1103/PhysRevD.98.014507
https://doi.org/10.1103/PhysRevD.100.034509
https://doi.org/10.1103/PhysRevD.100.114514
https://doi.org/10.1016/j.nuclphysb.2016.07.024
https://doi.org/10.1016/j.nuclphysb.2018.05.008
https://doi.org/10.1016/j.nuclphysb.2018.05.008
https://doi.org/10.1016/j.nuclphysb.2018.12.018
https://doi.org/10.1016/j.nuclphysb.2018.12.018
https://doi.org/10.1103/PhysRevD.96.034525
https://doi.org/10.1103/PhysRevD.93.054509
https://doi.org/10.1103/PhysRevD.91.054504
https://doi.org/10.1103/PhysRevD.91.054504
https://doi.org/10.1103/PhysRevD.83.094505
https://doi.org/10.1103/PhysRevD.83.094505
https://doi.org/10.1103/PhysRevD.92.114512
https://doi.org/10.1103/PhysRevD.92.114512
https://doi.org/10.1103/PhysRevD.85.034505
https://doi.org/10.1103/PhysRevD.85.034505
https://doi.org/10.1103/PhysRevD.84.094505
https://doi.org/10.1103/PhysRevD.87.034505
https://doi.org/10.1103/PhysRevD.90.099902
https://doi.org/10.1103/PhysRevD.90.099902
https://doi.org/10.1103/PhysRevD.86.034031
https://doi.org/10.1103/PhysRevLett.111.222001
https://doi.org/10.1103/PhysRevLett.111.222001
https://doi.org/10.1103/PhysRevD.88.054508
https://doi.org/10.1103/PhysRevD.87.034501
https://doi.org/10.1103/PhysRevD.87.034501
https://doi.org/10.1103/PhysRevD.86.054508
https://doi.org/10.1103/PhysRevD.86.054508
https://doi.org/10.1103/PhysRevD.84.054503
https://doi.org/10.1103/PhysRevD.89.059903
https://doi.org/10.1103/PhysRevD.89.059903
https://doi.org/10.1103/PhysRevD.96.034510
https://doi.org/10.1103/PhysRevD.96.054516
https://doi.org/10.1103/PhysRevD.96.054516
https://doi.org/10.1007/JHEP09(2015)109
https://doi.org/10.1103/PhysRevD.91.054008
https://doi.org/10.1103/PhysRevD.92.094502
https://doi.org/10.1103/PhysRevD.92.094502
https://doi.org/10.1007/JHEP10(2016)011
https://doi.org/10.1103/PhysRevLett.127.222001
https://doi.org/10.1103/PhysRevLett.127.222001
https://doi.org/10.1140/epjs/s11734-021-00146-5
https://doi.org/10.1140/epjc/s10052-021-09206-5
https://doi.org/10.1140/epjc/s10052-021-09206-5
https://doi.org/10.1146/annurev-nucl-101918-023723
https://doi.org/10.1146/annurev-nucl-101918-023723
https://doi.org/10.22323/1.363.0281
https://doi.org/10.22323/1.363.0281
https://doi.org/10.1103/PhysRevD.101.114507
https://doi.org/10.1103/PhysRevLett.124.032001
https://doi.org/10.1103/PhysRevLett.124.032001
https://doi.org/10.1103/PhysRevD.102.114523
https://doi.org/10.1103/PhysRevD.104.014501

LEE, ALEXANDRU, and BRETT

PHYS. REV. D 105, 054517 (2022)

[59] M. T. Hansen, R. A. Bricefio, R. G. Edwards, C. E. Thomas,
and D. J. Wilson (Hadron Spectrum Collaboration), Energy-
Dependent z "z 7t Scattering Amplitude from QCD, Phys.
Rev. Lett. 126, 012001 (2021).

[60] T.D. Blanton, A.D. Hanlon, B. Horz, C. Morningstar, F.
Romero-Lépez, and S. R. Sharpe, Interactions of two and
three mesons including higher partial waves from lattice
QCD, J. High Energy Phys. 10 (2021) 023.

[61] J.J. Dudek, R. G. Edwards, and C. E. Thomas, S- and d-
wave phase shifts in isospin-2 pi pi scattering from lattice
QCD, Phys. Rev. D 86, 034031 (2012).

[62] J.J. Dudek, R.G. Edwards, and C.E. Thomas, Energy
dependence of the rho resonance in pi-pi elastic scattering
from lattice QCD, Phys. Rev. D 87, 034505 (2013).

[63] D.J. Wilson, J.J. Dudek, R. G. Edwards, and C. E. Thomas,
Resonances in coupled pi k, eta k scattering from lattice
QCD, Phys. Rev. D 91, 054008 (2015).

[64] See the Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevD.105.054517 for noninter-
acting levels, lowest order phase shift reconstruction,
sensitivity to second partial wave, and convergence data.

[65] F. Calogero, Variable Phase Approach to Potential Scatter-
ing (Academic Press, New York, 1967).

[66] A. Francis, P. Fritzsch, M. Liischer, and A. Rago, Master-
field simulations of o(a)-improved lattice QCD: Algorithms,

stability and exactness, Comput. Phys. Commun. 2585,
107355 (2020).

[67] P. Fritzsch, Master-field simulations of QCD, Proceedings
of the 38th International Symposium on Lattice Field
Theory (POS, 2021).

[68] A.J.Woss, D. J. Wilson, and J. J. Dudek, Efficient solution of
the multichannel liischer determinant condition through
eigenvalue decomposition, Phys. Rev. D 101, 114505 (2020).

[69] C. Morningstar, Box matrix elements for Cjz, (private
communication).

[70] F. X. Lee, C. Morningstar, and A. Alexandru, Energy
spectrum of two-particle scattering in a periodic box,
Int. J. Mod. Phys. C 31, 2050131 (2020).

[71] J. Q. Chen, J. L. Ping, and F. Wang, Group Representation
Theory for Physicists (World Scientific, Singapore,
2002).

[72] C. Morningstar, J. Bulava, B. Fahy, J. Foley, Y. C. Jhang,
K.J. Juge, D. Lenkner, and C. H. Wong, Extended hadron
and two-hadron operators of definite momentum for
spectrum calculations in lattice QCD, Phys. Rev. D 88,
014511 (2013).

[73] J.D. Dixon, Computing irreducible representations of
groups, Math. Comput. 24 (1970).

[74] M. Tinkham, Group Theory and Quantum Mechanics
(Dover, New York, 1964).

054517-52


https://doi.org/10.1103/PhysRevLett.126.012001
https://doi.org/10.1103/PhysRevLett.126.012001
https://doi.org/10.1007/JHEP10(2021)023
https://doi.org/10.1103/PhysRevD.86.034031
https://doi.org/10.1103/PhysRevD.87.034505
https://doi.org/10.1103/PhysRevD.91.054008
http://link.aps.org/supplemental/10.1103/PhysRevD.105.054517
http://link.aps.org/supplemental/10.1103/PhysRevD.105.054517
http://link.aps.org/supplemental/10.1103/PhysRevD.105.054517
http://link.aps.org/supplemental/10.1103/PhysRevD.105.054517
http://link.aps.org/supplemental/10.1103/PhysRevD.105.054517
http://link.aps.org/supplemental/10.1103/PhysRevD.105.054517
http://link.aps.org/supplemental/10.1103/PhysRevD.105.054517
https://doi.org/10.1016/j.cpc.2020.107355
https://doi.org/10.1016/j.cpc.2020.107355
https://doi.org/10.1103/PhysRevD.101.114505
https://doi.org/10.1142/S0129183120501314
https://doi.org/10.1103/PhysRevD.88.014511
https://doi.org/10.1103/PhysRevD.88.014511
https://doi.org/10.1090/S0025-5718-1970-0280611-6

