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We perform a Langevin simulation of theOð4Þ critical point, which lies in the dynamic universality class
of “model G.” This is the dynamic universality class of the chiral phase transition in QCD with two
massless flavors. The axial charge and the order parameter ϕa ¼ ðσ; π⃗Þ exhibit a rich dynamical interplay,
which reflects the qualitative differences in the hydrodynamic effective theories above and below Tc.
From the axial charge correlators on the critical line we extract a dynamical critical exponent of
ζ ¼ 1.47� 0.01ðstat:Þ, which is compatible with the theoretical expectation of ζ ¼ d=2 (with d ¼ 3) when
systematic errors are taken into account. At low temperatures, we quantitatively match the Oð4Þ
simulations to the superfluid effective theory of soft pions.
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I. INTRODUCTION

Chiral symmetry breaking and the chiral phase transition
play a prominent role in QCD at finite temperature. In the
limit of exactly two massless flavors Nf ¼ 2, the transition
from a chirally restored phase T > Tc, to a chirally broken
phase T < Tc, is second order and is in the Oð4Þ univer-
sality class [1,2]. Although the static properties of the Oð4Þ
critical point have been studied in detail both numerically
and theoretically [3–12], the dynamic scaling properties of
the critical region demand additional study, which is the
goal of this work.
This study may appear academic: in the real world the

finite quark mass explicitly breaks chiral symmetry, reduc-
ing the influence of the Oð4Þ critical point on the static and
dynamic correlators of QCD at finite temperature. Further,
the strange quark is fairly light, and the chiral transition in
three-flavor QCD is first order [1]. However, lattice QCD
computations of the chiral condensate as a function of
quark mass show that the qualitative and, to some extent,
even quantitative properties of the chiral crossover can be
understood using static Oð4Þ scaling functions [13,14].

These scaling functions predict the singular behavior of the
chiral condensate near the pseudocritical temperature Tpc

and other static observables. Motivated by the lattice effort,
we will perform the real-time simulations of the Oð4Þ
critical region in a model system, which we hope can
provide an analogous understanding of the scaling of
dynamic correlators in QCD in the crossover region.
The current study is also motivated by experimental

results on the momentum spectra of particles produced
during the collisions of heavy ions at the Relativistic Heavy
Ion Collider and the Large Hadron Collider. In much of the
accessible momentum range these spectra are remarkably
well described by ordinary viscous hydrodynamics [15].
From a theoretical perspective, the relevant symmetry
group of QCD close to the chiral limit is approximately
SULð2Þ × SURð2Þ, leading to the conservation of isovector
charge, and the approximate conservation of the isoaxial
vector charge. The corresponding densities should be
included as additional fields in the hydrodynamic descrip-
tion. When chiral symmetry is spontaneously broken, the
pions π⃗ (which are the associated Goldstone bosons) should
also be added to the hydrodynamic fields, and the appro-
priate hydrodynamics resembles a non-Abelian superfluid
[16,17]. Finally, close to theOð4Þ critical point where the σ
meson is also light, the Oð4Þ order parameter ϕa ∼ ðσ; π⃗Þ
also should be included as an additional hydrodynamic
degree of freedom [2,18]. Current hydrodynamic simula-
tions do not include the isoaxial charge, the pions, or the
order parameter as explicit hydrodynamic variables. By
including these variables as explicit degrees of freedom we
hope to increase the predictive power of hydrodynamic
simulations in the crossover region.
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In fact, there is an excess of soft pions relative to the
predictions of current ordinary hydrodynamic simulations
[19–21]. We have previously suggested that this excess
may reflect the cavalier treatment of chiral symmetry
breaking and the Oð4Þ transition in almost all hydro-
dynamic simulations of heavy-ion collisions to date [18].
To corroborate this suggestion, we will need to simulate the
real-time dynamics of the Oð4Þ phase transition for an
expanding fluid. As discussed in [18], the dynamics of the
order parameter matches smoothly onto a pion-hydro
effective-field theory (EFT) for T ≲ Tc; this pion EFT
subsequently matches onto a kinetic description for soft
pion particles coupled to the background fluid flow [17];
and finally, the kinetics can be used to propagate pions to
freeze-out with definite predictions for soft pions yields and
their correlations. In addition there is an experimental
proposal to measure soft pions and their correlations over
a wide range in rapidity [22], which is ideally suited to
unravel this physics and to probe the (in)applicability of
ordinary hydrodynamics in this regime.
As a first step, we will compute the real-time correlation

functions of a model Oð4Þ critical system with Langevin
simulations and study their scaling properties. There is
considerable theoretical interest in the critical correlators
themselves. Many years ago Rajagopal and Wilczek
determined that the dynamic universality class of QCD
is similar to “model G” of [23], where the order parameter
ϕa ¼ ðσ; π⃗Þ is not conserved, but has a nontrivial Poisson
bracket with vector and axial vector charges [2]. They also
determined dynamical critical exponent to be ζ ¼ d

2
, which

we find in the simulations presented here. Because the
critical theory must transition between ordinary hydro at
high temperatures and a non-Abelian superfluid hydro at
low temperatures, the expected structure of the hydro-
dynamic correlations functions is rich [18]. It would be nice
to see this structure in a simulation.
Earlier numerical studies on the critical dynamics of field

theories [including Oð4Þ symmetric ones] have been per-
formed in the “classical-statistical” framework [24–26].
Given some relativistic quantum-field theory, the high-
temperature spectral functions are saturated by their
classical counterparts close to the critical point. Since
the nonanomalous symmetries and conservation laws of
the classical-field theory are shared with the quantum one,
the classical dynamics belongs to the same dynamic
universality class as the full quantum theory. Of particular
relevance to our work was the study done in [25], which
studied a classical relativistic Oð4Þ model, and determined
the spectral functions of the order parameter. The spectral
functions were shown to display the appropriate behavior
as a function of temperature, and pion quasiparticle poles
were observed in the broken phase. Because the classical
model has Oð4Þ Noether charge densities, nab ∼ ϕ½a∂tϕb�,
which have a nontrivial Poisson bracket with the order
parameter, the dynamics of this model should lie in the

universality class of model G. However, within this setup
studying the model G dynamics is difficult, since rapidly
oscillating UV modes (which build up the charge densities
microscopically) must be carefully evolved. Consequently,
a conclusive extraction of the dynamical critical exponent
was not possible, and the interplay between the order
parameter and the axial charge was not studied. Very
recently [27], the same group adopted an approach for
“model B” and “model D,” which is somewhat closer in
spirit to the one taken here for model G, where the charge
densities are treated as additional slow variables. In their
recent work, Israel-Stewart-like diffusion models belong-
ing to the specified dynamical class (B or D) were
simulated, and a careful study of the dynamical scaling
function and of their momentum dependence was per-
formed. In particular, this work constitutes an important
stepping stone towards the study of “model H,” which is
believed to describe the universality class of the speculated
QCD critical point [28].
An outline of the paper is as follows. In Sec. II we

discuss the model equations we will solve. Of particular
interest is the numerical strategy presented in Sec. II C,
which may be useful for other model systems. In Sec. III A
we will review the thermodynamics of the model and fix
the nonuniversal (thermodynamic) parameters of the
model. Finally in Sec. IV we turn to the dynamical
properties of the model presenting the principal results.
In Sec. IV B we present a qualitative overview of the
phase transition, and examine the dynamics in the chirally
restored limit. Then in Sec. IV C, we examine the low-
temperature limit where the Oð4Þ dynamics should match
with the pion EFT. We examine the Gell-Mann-Oakes-
Renner relation, and the dissipative pion dynamics pro-
posed by Son and Stephanov [29,30]. In the last section,
Sec. IV D, we examine the scaling of correlation functions
along the critical line. We extract the dynamical critical
exponent ζ and find ζ ≃ 1.47� 0.01ðstat:Þ, which is
very close to the predictions of Rajagopal and Wilczek
of ζ ¼ d=2. Finally, a short outlook is presented in
Sec. V.

II. MODEL

A. Model equations

QCD with two degenerate massless quarks is well
known to have a second-order phase transition and is in
the universality class of the Oð4Þ critical point. Dynamical
properties of a theory near a continuous phase transition are
also universal, but theories with the same static properties
can lead to different dynamical universality classes.
Different dynamics arise because of the existence or
nonexistence of conserved charges in the theory [23]. As
pioneered in [2] (see [18] for a recent review) the dynamics
of the QCD Oð4Þ critical point is the one of an Oð4Þ
antiferromagnet, model G of [23].
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Model G consists of an Oð4Þ order parameter1 ϕa ¼
ðσ; π⃗Þ field, and adjoint charge densities nab. The field ϕ is
a proxy for the quark condensate hq̄RqLi, and as a result is
not a conserved quantity. The antisymmetric tensor of
charge densities nab can be decomposed into a vector part,
nsV ¼ 1

2
ϵss1s2ns1s2 , and an axial part, nsA ¼ n0s. They re-

present the original isovector n⃗V ∼ q̄γ0 ⃗tIq and isoaxial n⃗A ∼
q̄γ0γ5 ⃗tIq charge densities. The vector current is exactly
conserved for equal quark masses, while the axial current is
only approximately conserved, since the finite quark
mass explicitly breaks the chiral SULð2Þ × SURð2Þ ∼
Oð4Þ symmetry. The explicit symmetry breaking is
taken into account by adding an external magnetic field
Ha ¼ ðH; 0⃗Þ to the effective action. The equilibrium action

(or effective Hamiltonian) thus takes a Landau-Ginzburg
form:

H≡
Z

d3x

�
n2

4χ0
þ 1

2
∂iϕa∂iϕa þ VðϕÞ −H · ϕ

�
: ð1Þ

Here n2 ¼ nabnab and

VðϕÞ ¼ 1

2
m2

0ϕ
2 þ λ

4
ðϕ · ϕÞ2; ð2Þ

with m2
0 negative. As reviewed below, the relevant hydro-

dynamic equations of motion for these fields are [2]

∂tϕa þ g0μabϕb ¼ −Γ0

δH
δϕa

þ θa; ð3aÞ

¼ Γ0∇2ϕa − Γ0ðm2
0 þ λϕ2Þϕa þ Γ0Ha þ θa; ð3bÞ

∂tnab þ g0∇ · ð∇ϕ½aϕb�Þ þH½aϕb� ¼ σ0∇2
δH
δnab

þ ∂iΞi
ab; ð3cÞ

¼ D0∇2nab þ ∂iΞi
ab: ð3dÞ

Here, for example, H½aϕb� denotes the antisymmetriza-
tion, Haϕb −Hbϕa. χ0 is the isovector and the isoaxial-
vector charge susceptibility; these susceptibilities are equal
and approximately constant near the critical point. μab is the
chemical potential, nab=χ0. The coefficients Γ0 and σ0 are
the bare kinetic coefficients associated with the order
parameter and the charges. The bare diffusion coefficient
of the charges isD0 ¼ σ0=χ0. The constant g0 is a coupling
of the field ϕ, and has the units of ðactionÞ−1 in our
conventions. Finally, θa and Ξab are the appropriate noises,
which are defined through their two-point correlations [23]:

hθaðt; xÞθbðt0; x0Þi ¼ 2TcΓ0δabδðt− t0Þδ3ðx− x0Þ; ð4aÞ

hΞi
abðt; xÞΞj

cdðt0; x0Þi ¼ 2Tcσ0δ
ijðδacδbd − δadδbcÞδðt − t0Þ

× δ3ðx − x0Þ: ð4bÞ

Let us briefly review the equations of motion, referring to
the literature for the general strategy [23,31] and the
specifics of the Oð4Þ model [2,18]. Since the correlation
lengths are long compared to all microscopic lengths,

hydrodynamics is the appropriate framework to describe
the evolution of the order parameter and conserved quan-
tities near the critical point. The hydrodynamic equations
written in (3) naturally break up into an ideal evolution
(the left-hand side of the equations) with viscous damping
(the right-hand side of the equations). Quite generally, the
ideal hydrodynamics follows from the Poisson brackets
and conservation laws of the system, which are dictated
by symmetry [31]. For instance, the conserved charges
Qab ¼

R
x nabðxÞ generateOð4Þ rotations. If this property is

shared by the corresponding classical dynamics, the
Poisson bracket between the charge density and the order
parameter takes a prescribed form:

fnabðxÞ;ϕcðyÞg ¼ g0ðJ abÞcdϕdðyÞδð3Þðx − yÞ; ð5Þ

where g0 is a unit of 1=ðactionÞ, and ðJ abÞcd ¼ δacδbd −
δadδab are the matrices of the Oð4Þ Lie algebra.2 Indeed,
given the Poisson bracket in (5), the ideal part of the
evolution in (3) takes the form

1Here a and b denote Oð4Þ indices; s, s1, s2, etc. denote the
isospin indices, i.e., the components of π⃗; finally, spatial indices are
notated i, j and k. The dot product indicates an appropriate
contraction of indices when clear from context, e.g.,ϕ · ϕ ¼ ϕaϕa,
π⃗ · π⃗ ¼ πsπs, and ∇ ·∇ ¼ ∂i∂i.

2More explicitly, the 4 × 4 infinitesimal Oð4Þ rotations are
parametrized by R ≃ 1þ 1

2
δθ · J . The infinitesimal rotation

generated by Q is ϕ → ϕþ 1
2g0

fδθ ·Q;ϕg leading ultimately
to Eq. (5).
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∂tϕa þ fH;ϕag ¼ 0; ð6aÞ

∂tnab þ fH; nabg ¼ 0: ð6bÞ

It is also easy to verify directly from (3) that the ideal
evolution leavesH ¼ const. The structure of the dissipative
fluxes and corresponding noises are found by expanding
the dissipative flux in terms of the corresponding conjugate
variables and demanding the entropy production be positive
[18,32]. This leads to a simple relaxation equation for the
nonconserved order parameter and a diffusion equation for
the (partial) currents.

∂tϕa þ fH;ϕag ¼ −Γ0

δH
δϕa

þ θa; ð7Þ

∂tnab þ fH; nabg ¼ σ0∇2
δH
δnab

þ ∂iΞi
ab: ð8Þ

A standard set of steps shows that Fokker-Plank evolution
associated with the complete stochastic process of this form
asymptotes to the required equilibrium probability distri-
bution [33]:

Pðϕ; nÞ ¼ Ze−H½ϕ;n�=Tc : ð9Þ

The thermodynamics of this model is recalled in [18] and
we will determine some static properties of relevance in
Sec. III A. The real-time correlation functions we will study
here are

Gσσðt; kÞ≡ 1

V
hσðt;kÞσð0;−kÞic; ð10aÞ

Gππðt; kÞ≡ 1

3V

X
s

hπsðt;kÞπsð0;−kÞic; ð10bÞ

GAAðt; kÞ≡ 1

3V

X
s

hnsAðt;kÞnsAð0;−kÞic; ð10cÞ

where h…ic refers to a connected two-point function. We
will limit this study to k ¼ 0.
Close to the critical point, the dynamics is expected to be

controlled by “dynamic scaling” [23]. In particular, we
expect the time development of our two-point functions to
scale with the correlation length ξ as

Gσσðt; kÞ ¼ χkðkÞYσðΩξ−ζt; ξk; zÞ; ð11aÞ

Gππðt; kÞ ¼ χ⊥ðkÞYπðΩξ−ζt; ξk; zÞ; ð11bÞ

GAAðt; kÞ ¼ χ0YAðΩξ−ζt; ξk; zÞ: ð11cÞ

Here the functions χkðkÞ, χ⊥ðkÞ are the static order
parameter susceptibilities, and depend on k and ξ; χ0 is

corresponding charge susceptibility which lacks these
dependencies; Ω is a nonuniversal constant normalizing
the time; finally, z is the familiar static scaling variable
involving the reduced temperature and magnetic field (see
below). Yσ, Yπ , and YA are universal dynamical scaling
functions and ζ is the corresponding dynamical critical
exponent of the theory. The expected dynamical critical
exponent for model G is ζ ¼ d=2 [2]. The scaling form
(with ζ ¼ d=2) implies that if the correlation length
increases by a factor of 2, then the characteristic relaxation
time increases by a factor of 23=2, thereby exhibiting a
“critical slowing down.”

B. Lattice units and matching the model to QCD

To simulate the model, we begin by taking g0 and Tc as
our microscopic units of ðactionÞ−1 and energy, respec-
tively, setting g0 ¼ Tc ¼ 1 in the computer code. Similarly,
we will choose a microscopic length a as the cutoff in our
problem, setting the lattice spacing to unity in the code.
As a result of these choices, the quantities we measure

directly from our simulations are expressed in lattice units,
and they are dimensionless numbers. To convert these
quantities to physical predictions, we need to assign a
physical value to g0, Tc, and a. The critical temperature Tc
can be matched directly to the QCD critical temperature.
Once Tc is fixed, g0Tc is adjusted so that the model
reproduces the pole frequency of the pion. Lastly, the cutoff
a can be adjusted so that our system reproduces the
correlation length of QCD. The aim of this section is to
explain this procedure in greater detail. Before doing so, let
us note that our set of units, g0 ¼ Tc ¼ a ¼ 1, will be
implicit both in the figures and the text. However in this
section, and if necessary for clarity, we will adopt a “hat”
notation for variables in lattice units, e.g., n̂ ¼ na3 and
χ̂ ¼ Tcχa3 are the dimensionless charge density and charge
susceptibility, respectively.
The model has an Oð4Þ critical point at a critical mass

parameter m̂2
cðλÞ. At infinite volume and close to the critical

point, the dependence of the model condensate (in units offfiffiffiffiffiffiffiffiffiffi
Tc=a

p
) on the mass parameter and magnetic field takes

the conventional scaling form [6]

ˆ̄σ ¼ h1=δfGðzÞ; ð12Þ

where δ is the critical exponent, and fGðzÞ is a universal
function with fGð0Þ ¼ 1. Here h is the reduced magnetic
field and z is the scaling variable,

h≡ Ĥ

Ĥ0

; z≡ t̄rh−1=βδ; with t̄r ≡ m̂2
0 − m̂2

c

m2
; ð13Þ

while m̂2
cðλÞ, Ĥ0ðλÞ, and m2ðλÞ are order-1 nonuniversal

constants that are fit to our numerical data on thermo-
dynamics [see Sec. III A and Eq. (30)]. In physical units,
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ˆ̄σ ¼ σ

BOð4Þ ; with BOð4Þ ¼
ffiffiffiffiffi
Tc

a

r
: ð14Þ

In QCD, the chiral condensate close to the critical point
takes the same form hq̄qi=BQCD ¼ h1=δfGðzÞ, but with
scaling variables

z≡
�
T − Tc

Tc

�
h−1=βδ; h≡ mqc2

HQCD
0

: ð15Þ

Evidently, to match the two systems we are to equate the
scaling variables, h and z, and equate the order parameters:

hq̄qi
BQCD ¼ ˆ̄σ ¼ σ̄

BOð4Þ : ð16Þ

For H small and T < Tc, the universal function fGðzÞ
behaves as zβ, and the model condensate takes the form

ˆ̄σ ¼
�
m̂2

c − m̂2
0

m2

�
β

; ð17Þ

while chiral condensate takes an analogous form at the
corresponding z:

hq̄qi
BQCD ¼

�
T − Tc

Tc

�
β

; ð18Þ

providing an explicit map between ðT − TcÞ=Tc and the
mass parameter of the model.
The constant BQCD has units of ðmetersÞ−3 andHQCD has

unit of energy. They can be chosen arbitrarily, but not
independently, as the parameter

ξQCD1 ¼
�
HQCD

0 BQCD
0

Tc

�−1=d
; ð19Þ

fixes a microscopic unit of length. The diverging
correlation length of QCD near the critical point is a
universal function times this length [34]. As we show in
Appendix A 1, by choosing

a ¼ Ĥ1=d
0 ξQCD1 ; ð20aÞ

g0 ¼
1

ℏ
; ð20bÞ

the model will reproduce both the correlation length and
pole frequency of the pion in QCD.
Having set three of our parameters to unity to fix our

units of space, time, and energy, we are still left with three
more dimensionless parameters which must be specified,
namely

χ̂0≡Tcχ0a3; Γ̂0≡Γ0

�
1

g0Tca2

�
; and D0=Γ0: ð21Þ

The susceptibility χ0 sets the magnitude of charge fluctua-
tions relative to the fluctuations of the order parameter,
while Γ0 and D0 determine the relaxation of the order
parameter and the charge diffusion, respectively.
Switching to the conventional ℏ ¼ c ¼ 1 units for this

paragraph, for the system under study there really is only
one scale Tc ∼ ΛQCD. We expect that the microscopic (i.e.,
cutoff) length and time are both of order ∼1=Tc. The
susceptibility in units of Tc is also of order unity. Indeed,
we expect that all dimensionless constants are of order
unity, and therefore, in this study we will take

χ̂0 ¼ 5; Γ̂0 ¼ 1; and D0=Γ0 ¼
1

3
; ð22Þ

for definiteness. It may be worthwhile to explore the
dependencies on these parameters further, but we have
not done so here.

C. Numerical strategy

To simulate the real-time dynamics, we will discretize
the stochastic evolution equations in (3a) and (3b), placing
the system on a spatial lattice of size L and volume
V ¼ L3. We briefly present our algorithm in this section;
the interested reader can find detailed explanations in
Appendix A.
As the equations naturally separate into an ideal and a

dissipative part, we use an “operator splitting” approach. In
spirit, we first evolve our fields for a short time, neglecting
the dissipative part:

∂tϕa ≈ −μabϕb; ð23aÞ

∂tnab ≈ −∂ið∂iϕ½aϕb�Þ −H½aϕb�; ð23bÞ

where spatial derivatives are discretized appropriately. We
then neglect the ideal part and solve for the dissipative
dynamics:

∂tϕa ≈ −Γ0

δH
δϕa

þ θa; ð24aÞ

∂tnab ≈ σ0∇2
δH
δnab

þ ∂iΞi
ab: ð24bÞ

Decoupling the equations in such a way allows us to use
methods specifically tailored to the two different dynamics.
In particular, we use a symplectic integrator to evolve the
ideal part, preserving in this way the underlying Poisson
bracket structure. To simulate the dissipative Langevin
dynamics, we use a Metropolis algorithm. A similar
strategy to simulate the Langevin dynamics was used
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previously to calculate the sphaleron transition rate in hot
non-Abelian plasmas3 [35]. At every lattice site x, the order
parameter is updated as

ϕaðtþ Δt; xÞ ¼ ϕaðt; xÞ þ Δϕa; ð25Þ

where for each flavor index a the increment is

Δϕa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ΔtΓ0

p
ξ0:

Here ξ0 is a randomnumberwith unit variance hξ20i ¼ 1. The
update proposal is accepted with probability minð1; e−ΔHÞ,
where ΔH is the change in the discretized Hamiltonian.
If the proposal is rejected, then ϕðtþ Δt; xÞ ¼ ϕðt; xÞ. For
small Δϕa

ΔH ≈
δH
δϕa

����
ϕaðx;tÞ

Δϕa; ð26Þ

which can be used to show straightforwardly that the mean
and variance of the accepted proposals reproduce the dis-
sipative and stochastic terms of the Langevin process (see
also Appendix A for more details):

ϕaðtþ Δt; xÞ − ϕaðt; xÞ ≈ −ΔtΓ0

δH
δϕa

; ð27aÞ

ðϕaðtþ Δt; xÞ − ϕaðt; xÞÞ2 ≈ 2Γ0Δt: ð27bÞ

The charges are updated in a similar way, with the extra
difficulty that the noise term generated by the updates must
be a total divergence. This is tackled by updating the lattice
cells in pairs, making a Metropolis proposal for the charge
transfer between two cells—see Appendix A.
Using a Metropolis update to solve for the nonideal part

of the dynamics has several advantages over a direct time
evolution of the Langevin process. For instance, it allows us
to design a scheme whose equilibrium properties are
independent of the time stepping. It also allowed us to
use larger time steps compared to a naive discretization of
the equations of motion. The numerical code is imple-
mented with PETSC and MPI [36,37].

III. STATICS

A. Thermodynamics

Our goal in this section is to fix the static nonuniversal
parameters of the model from its thermodynamics.

The magnetization of the system is an average over the
volume at a given time moment:

MaðtÞ≡ 1

V

X
x

ϕaðt; xÞ; ð28Þ

and its time average, denoted with h…i, determines the
condensate σ̄

σ̄ ≡ hM0i: ð29Þ

At infinite volume, the dependence of the condensate on the
temperature and magnetic field takes the scaling form given
in (12). The nonuniversal constants m2

c, H0, m2 are fit to
our numerical data on σ̄. We first determine m2

c, then we
simulate on the critical line withm2

0 ¼ m2
c to determineH0,

and finally, we simulate at H ¼ 0 to find m2. Anticipating
the results of this section, we obtain with λ ¼ 4

m2
c ¼−4.8110ð4Þ; H0 ¼ 5.15ð5Þ; and

m2

jm2
cj
¼ 1.03ð2Þ:

ð30Þ

Following standard technique [38], we determined the
critical coupling of the model m2

c by measuring Binder
cumulants and determining when they cross a nominal
value, which was taken from previous simulations [39].
Further details are given in Appendix B 1.
To determine H0 we made a scan on the critical line, i.e.,

setting T ¼ Tc and scanning the magnetic field H. The
details are presented in Appendix B 2. The data for σ̄ on
323643 lattices on the critical line are shown in the left
panel of Fig. 1. They were fit to a finite-size functional form
given by Engels and Karsch [6], which fixes the value ofH0

given in (30), and quantifies finite-size corrections. The fit
is reasonable and has χ2=dof ¼ 2. The magnetization at
infinite volume from the results of this fit is shown by the
dashed line. We see that already at L ¼ 64 we are
essentially at infinite volume for the range of H considered
in this work. Our dynamical simulations in Sec. IV are all
done with L3 ¼ 803. This analysis on the critical line
suggests that finite-volume corrections are modest.
In the next step we performed simulations at H ¼ 0 with

T < Tc, in order to fix the nonuniversal constant m2.
Details are presented in Appendix B 3. The infinite-volume
magnetization Σ at zero field is defined as

Σ≡ lim
H→0þ

lim
L→∞

σ̄ : ð31Þ

Extracting the magnetization Σ is difficult as, in any finite
volume,

lim
H→0

σ̄jLfixed ¼ 0: ð32Þ

3In the sphaleron case the timescales between the metropolis
and Langevin times must be carefully matched. In the current
simulations, which are near the critical point of the model, this
matching is unnecessary, as the lattice units and bare parameters
are always adjusted to reproduce the pion pole frequency and
width—see Sec. II B.
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This is because when HΣV ∼ 1, the orientation of mag-
netization vector Ma begins to wander on the group
manifold, averaging to zero in the limit of zero external
magnetic field. One way to extract Σ is to look at the
fluctuations of Ma, evaluating hM2i ¼ hMaMai, which is
approximately Σ2 at large volume. The leading deviation of
hM2i and Σ2 at finite volume comes from the fluctuations
of long-wavelength Goldstone modes, and can be neatly
analyzed with a Euclidean pion EFT [40]. We detail these
corrections, which were essential to a reliable extraction of
ΣðTÞ, in Appendix B 3.
Our results for ΣðTÞ are shown in the right panel of

Fig. 1, and are fit with the functional form

Σ ¼ b1ð−trÞβð1þ ð−trÞωνCTÞ: ð33Þ

with critical exponents β and δ from [6] and ω from [39].
Here we are using

tr ≡m2
0 −m2

c

jmcj2
; ð34Þ

instead of t̄r, and we defined b1 ≡ ðjm2
cj=m2Þβ. The second

term in (33) captures the first subleading correction to
scaling.
Our fit to ΣðTÞ is shown in the right panel of Fig. 1 and

yields b1¼0.544ð4Þ andCT¼0.20ð2Þwith a χ2=dof ¼ 1.4.
We have excluded the largest value of ð−trÞ from the fit. For
comparison, we also show the fit results for the first term
b1ð−trÞβ. Clearly, for precision work the subleading correc-
tions are important in the temperature range we are consid-
ering. The parameter b1 determines the scale m2 described
earlier (i.e., m2 ¼ jm2

cjb−1=β1 ) yielding the results presented
in (30).

To summarize, in this section we have established the
nonuniversal parameters m2

c, H0, and m2 which determine
the map between the model and the conventionally para-
metrized Oð4Þ critical point. The results are given in (30).

B. The static pion EFT and
Gell-Mann-Oakes-Renner

Before turning to the dynamics we will determine the
validity of the Euclidean pion EFT referred to above,
relegating all details to Appendix B 4. At all temperatures,
Oð4Þ symmetry guarantees that the transverse susceptibility
is determined by the condensate σ̄:

χ⊥ ¼ lim
k→0

GππðkÞ ¼
σ̄

H
; ð35Þ

where GππðkÞ is the static correlation function. At low
temperatures the magnitude of the condensate

ffiffiffiffiffi
ϕ2

p
is

approximately frozen to σ̄, and the long-wavelength order
parameter fluctuations are determined by the fluctuations in
the phase φ, πsðxÞ ≃ σ̄φsðxÞ. The static action for the
Gaussian effective theory describing the phase fluctuations
takes the form [29,41]

SE ¼
Z

d3x
1

2
f2∇φ⃗ · ∇φ⃗þ 1

2
f2m2φ⃗2; ð36Þ

and makes a definite prediction for the static correlator:

GππðkÞ ¼
σ̄2

f2
1

k2 þm2
; ð37Þ

where f2 is the decay constant andm is the screening mass.
Comparing the predicted correlator to the susceptibility
yields the Gell-Mann-Oakes-Renner (GOR) relation:
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FIG. 1. (Left) σ̄ on the critical line for L ¼ 32 and L ¼ 64 together with a finite-volume fit to the data, which determines the
nonuniversal parameters H0, L0 and CH . The fit form is taken from Engels and Karsch [6] [see text surrounding Eq. (B6)]. Also shown
are the results of the fit at L ¼ ∞. (Right) Extracted infinite volume expectation value, Σ≡ limH→0þ limL→∞ σ̄, as a function
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0 −m2
cÞ=jm2

cj. The fits and extraction procedure are discussed in the text. Also shown is the fit result without the subleading
correction.

DYNAMICS OF THE Oð4Þ CRITICAL POINT IN QCD PHYS. REV. D 105, 054512 (2022)

054512-7



f2m2 ¼ Hσ̄: ð38Þ

At a finite negative z, the GOR relation is only approxi-
mate, receiving corrections due to fluctuations of the σ
field. We have fit the static ππ correlator to find the decay
constant f2 and the screening massm2 at a nominal point in
the broken phase, z ¼ −2.2011 andH ¼ 0.003 (see Fig. 2).
Comparing f2m2 to Hσ̄ yields

f2m2

Hσ̄
¼ 1.006� 0.007ðstat:Þ: ð39Þ

Evidently, already at z ¼ −2.2, the Euclidean pion EFT
works to better than a percent.

Having studied the statics of the pions, in the next section
we will turn to the dynamics, making use of these results in
Sec. IV C.

IV. DYNAMICS

A. The simulations

To get an overview of the phase diagram, in Fig. 2 we
show the scaling function of the magnetization fGðzÞ and
the corresponding function for longitudinal susceptibility
fχ [6]:

χk ¼
∂σ̄
∂H ¼ h1=δ−1

H0

fχðzÞ: ð40Þ

The susceptibility shows a prominent maximum at the
pseudocritical point with z value of zpc ≃ 1.35. In order to
scan the dynamics of the transition, we have performed
real-time simulations at the black points. We also made a
scan on the critical line z ¼ 0 for various values of the
magnetic field. The dynamical parameters as well as the run
times and other information are gathered in Fig. 3.
Additional details on how the temporal correlations func-
tions are computed and Fourier analyzed are presented in
Appendix A 2 d.

B. Overview

We will start by presenting an overview of the critical
dynamics as the temperature is scanned across the phase
transition. At high temperatures, the order parameter is
small and simply dissipates through the damping term in
the equations of motion. Since there is no preferred
direction, the longitudinal and transverse order parameters
excitations, σ and π⃗, are nearly degenerate. In the vector
channel, the total charge is constant in time and the
dissipation affects only nonzero Fourier modes, which
are not studied here. The situation is different in the axial
channel, since the axial charge is not conserved. However,
the explicit symmetry-breaking term in the action, Hσ, is

FIG. 3. Overview of the different simulations used in this work. In all cases, χ0 ¼ 5, Γ0 ¼ 1, D0 ¼ 1
3
. The simulations are run on a

lattice of volume V ¼ 803 for 106 time steps (see Appendix A for a discussion of the algorithm and the size of the steps). The first 104 are
discarded to ensure the system has thermalized.
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FIG. 2. A parametrization of the longitudinal susceptibility
χk ∝ fχðzÞ and mean magnetization σ̄ ∝ fGðzÞ taken from the
simulations of Engels and Karsch [6]. The black points are the z
values which will be simulated in this work. Further simulation
details are given in Fig. 3.
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tiny, since it is proportional to the magnetic field H (or
quark mass) and the order parameter, which is small at high
temperatures, σ̄ ∝ H. As a result, the axial charge will
dissipate rather slowly over a timescale of order
Hσ̄=χ0 ∝ H2. In this regime, the dynamics of the axial
charge is unrelated to the pions. However, as we lower
the temperature, the order parameter acquires an H-
independent expectation value, and the axial channel gets
modified; the order parameter field and the axial charge are
now entangled. In the deeply broken phase at low temper-
atures, the axial charge and the transverse part of the field
will no longer just dissipate. Indeed, their dynamics
become intrinsically locked, and they acquire the quasi-
particle characteristics of the Goldstone modes associated
with the broken symmetry. By contrast, in this regime the
longitudinal excitation of the order parameter (the σ)

has a large mass and its dynamics remains purely
dissipative.
These qualitative behaviors are precisely observed in our

data. In Fig. 4, we start by showing the results of a
simulation performed in the unbroken phase, z ¼ 3.87.
In the left plot we show the statistical correlator for the σ, π,
and axial channels as a function of time. Noting that the x
axis is on a logarithmic scale, the slow dissipation in the
axial channel is apparent. It is also apparent that the σ and π
channels are almost degenerate and dissipate on a much
shorter timescale. This is also clearly seen in the corre-
sponding Fourier transforms (right), where σ and π corre-
lators appear as a single dissipative peak, which is much
broader than corresponding peak in the axial correlator.
In Fig. 5, we show the behavior of the axial charge

correlator at the pseudocritical and critical temperatures, and
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the σ and π channels become degenerate, and the axial charge is almost conserved. The logarithmic x axis emphasizes that the relaxation
time of the axial charge is orders of magnitude longer than the one of the σ and π. (Right) The corresponding correlators as a function of
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at lower temperatures, in the broken phase. In the left panel,
we show the correlation functions as a function of time,while
in the right panel we show their Fourier transforms. At the
pseudocritical temperature (the red curves), the axial charge
correlator is still purely dissipative, but the peak is much
broader than in Fig. 4, indicating that the charge is no longer
approximately conserved. Aswe lower the temperature toTc
(the blue curves), we start seeing the emergence of propa-
gating pions, which appear as oscillations in the correlator as
a function of time, or equivalently, as quasiparticle peaks in
the Fourier transform. At the critical temperature there are no
drastic changes (this is expected in a finite magnetic field),
and the correlator behaves as it does in the brokenphase,with
propagating pions which are clearly visible in the axial
channel. As one moves further into the broken phase (the
purple curves), the pion peaks become increasingly sepa-
rated, and the real-time pion EFT discussed below becomes
valid (see Sec. IV C).
It seems that around the pseudocritical temperature zpc

(the red curve) the axial charge propagator starts changing
its behavior from purely dissipative to quasiparticlelike.
Indeed, at z ¼ 0.7zpc (the green curve), i.e., slightly below
the pseudocritical point, the dissipative peak is already
quite deformed, which reflects the nascent formation of the
two quasiparticle peaks.
In the left and right panels of Fig. 6, we show the

corresponding statistical correlators for the π and σ fields as
a functions of frequency, with z spanning the phase
transition. In the deeply unbroken phase the two channels
are mostly indistinguishable (the gray bands), as pointed
out before. Lowering the temperature to the pseudocritical
point, the pseudoscalar channel acquires a double-peak
structure, while the scalar channel remains purely dissipa-
tive. Going further down in temperature, the quasiparticle
peaks in the pseudoscalar channel separate. Interestingly at
zpc, the pion correlator already has a quasiparticle peak,

while the axial charge correlator is still dissipative (Fig. 5);
only past the pseudocritical point do their correlation
functions become closely related.

C. Broken phase: Pion EFT

Deep in the broken phase, the fluctuations of the order
parameter are dominated by the phase fluctuations
πsðt; xÞ ≃ σ̄φsðt; xÞ, which are tightly correlated to the
axial charge fluctuations through the Josephson constraint,
∂tφ⃗ ≃ μ⃗A. The dissipative hydrodynamic theory for the
phase fluctuations has been worked out in [16,17,29], and
provides a real time analog of the static Gaussian effective
theory described in Sec. III B.
The linear response of hydrodynamic theory has been

analyzed in [18,29], and the hydrodynamic prediction for
the dynamical correlators in the k ¼ 0 case is

GππðωÞ ¼
2χ⊥Γm2ω2

ð−ω2 þm2
pÞ2 þ ω2ðΓm2Þ2 ; ð41Þ

GAAðωÞ ¼
2χ0Γm2m2

p

ð−ω2 þm2
pÞ2 þ ω2ðΓm2Þ2 : ð42Þ

Here m2
p is the pole mass of the pion excitation, m is the

transverse static screening mass, Γ is a dissipative coef-
ficient correcting the Josephson constraint, and finally χ0
and χ⊥ are the appropriate static susceptibilities, which are
required to normalize these expressions:

Z
dω
2π

GππðωÞ ¼ χ⊥; ð43Þ

Z
dω
2π

GAAðωÞ ¼ χ0: ð44Þ
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The fact that the pions are pseudo-Goldstone bosons, and
correspondingly that the axial current is partially conserved
(PCAC), leads to the well-known and remarkable property
that the dynamical pole mass mp can purely be computed
from the static properties discussed in Sec. III B. In
particular, at low-enough temperatures, we have a finite-
temperature GOR relation [29,30,42]:

m2
p ¼ v2m2 ¼ Hσ̄

χ0
; ð45Þ

where v2 ≡ f2=χ0 is the pion velocity.
Already in Fig. 5 we saw the appearance of pion

excitations. We will now try to assess the validity of the
pion EFT. To do so, we attempt to fit expressions (41) and
(42) from our statistical correlators. To perform these fits,
we first fix the normalizations by extracting from our data
the susceptibilities, χ0 and χ⊥. We then use a two-parameter
model, involvingmp and Γp ¼ Γm2, and simultaneously fit
the statistical correlators in the π and axial channels.
Results of these fits are shown in Fig. 7, yielding

parameters

mp ¼ ð1.4387� 0.0005ðstat:ÞÞ × 10−2; ð46Þ

Γp ¼ ð5.088� 0.005ðstat:ÞÞ × 10−3; ð47Þ

χ2=dof ¼ 1.93: ð48Þ

Although the width is still pretty large, Γp=2mp ≃ 0.17, we
find good agreement between the numerical data and the
pion EFT, with only small noticeable deviations around the
maxima of the two-point functions.
This extraction of the pole mass allows us to verify the

dynamical part of the GOR relation. Referring the reader

again to Sec. III B for the corresponding extraction of the
static quantities, we find

Hσ̄

χ0
·
1

m2
p
¼ 1.011� 0.001ðstat:Þ: ð49Þ

We see again that already at z ¼ −2.2, the deviations from
GOR are remarkably small, of order 1%, which could be
due to corrections of order ∼ðΓp=2mpÞ2. Note also that part
of this 1% deviation could be due to some remaining
systematic errors in our time evolution; see Appendix A 2 a
for more details.

D. Critical line: Dynamical scaling

Moving on to the critical line z ¼ 0, we consider the
scaling of the critical dynamics. Focusing on k⃗ ¼ 0 modes
and recalling that the (e.g., longitudinal) correlation length
scales as

ξ ¼ ξcH−νc ; ð50Þ
on the critical line, the “dynamic scaling hypothesis”
(11a)–(11c) gives us the following scaling forms for the
correlators on the critical line:

Gσσðt; HÞ
χk

¼ Yc
σðHζνc tÞ; ð51Þ

Gππðt; HÞ
χ⊥

¼ Yc
πðHζνc tÞ; ð52Þ

GAAðt; HÞ
χ0

¼ Yc
AðHζνc tÞ; ð53Þ

with for example, Yc
AðHζνc tÞ ¼ YAðΩξ−ζt; 0; 0Þ.
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To verify the validity of the hypothesis and to determine
the dynamical exponent ζ, we studied a set of simulations at
m2

0 ¼ m2
c for H ¼ 0.002, 0.003, 0.004, 0.006, 0.01. We

present the results obtained for the axial-axial channel in
Fig. 8. The left plot shows the time-dependent correlator
GAAðtÞ for the different magnetic fields, while the right
panel displays its corresponding Fourier transformGAAðωÞ.
Qualitatively at least the curves show a scaling behavior.
To quantitatively assess the scaling ansatz (53) and to

extract the exponent ζ from our data, we located the time
when GAAðt; HÞ reaches its first minimum, tminðHÞ, which
can be determined with reasonable accuracy. From the
scaling ansatz, we see that, given two magnetic fields H1,
H2, we expect

tminðH2Þ
tminðH1Þ

¼
�
H1

H2

�
ζνc

: ð54Þ

We show this ratio as a function of H1=H2 in the left panel
of Fig. 9. The data are well described by the power-law
form, and we obtain a nominal value for the dynamical
exponent of

ζfit ¼ 1.47� 0.01; ð55Þ

taking νc ¼ 0.4024 from [6].
With an estimate of the critical exponent in hand, we can

verify the ansatz (53). Indeed by appropriately rescaling
times and frequencies, we expect to see our correlators
GAAðt; HÞ and spectral function

ρAAðω; HÞ ¼ ωGAAðω; HÞ; ð56Þ

collapse to a single curve. The scaling of GAAðt; HÞ is
shown in the right panel of Fig. 9, while the scaling
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ρAAðω; HÞ is shown in Fig. 10. To obtain this data collapse,
we have rescaled the time and inverse frequency by
ðHref=HÞζfitνc with Href ¼ 0.002.
Dynamical scaling is also expected to hold in the other

channels and in particular we expect the same ζfit to govern
the dynamics in the σ channel. This indeed happens, which
we illustrate in Fig. 11 by showing the σσ correlator (left)
and the corresponding collapsed spectral function (right).
Before moving on, let us emphasize that our numerical

estimate of the critical dynamical exponent is close to the
critical scaling prediction [2,23], ζ ¼ d=2. Considering, for
example, the small violations of scaling seen in Fig. 9, we do
not consider the deviation of ζfit from d=2 to be significant.

V. DISCUSSION

In this work, we numerically studied the universal
critical dynamics relevant to two-flavor QCD close to

the chiral phase transition. More precisely, we simulated
the dynamics of an Oð4Þ antiferromagnet, model G of
[2,23]. After reviewing the model and explaining our
conventions in Sec. II, we performed some “scale setting”
in Sec. III, where we studied the thermodynamic properties
of the model and extracted the relevant nonuniversal
constants. We also determined some of the static properties
of pions in the broken phase such as their screening masses
and decay constants.
With these data in hand, we moved on to the main

section of this work, Sec. IV, which studied the dynamics.
Focusing on correlators at zero spatial momentum, we
first performed a scan in temperature across the phase
transition. We qualitatively confirmed that the dynamics
takes place as expected, by studying the real-time corre-
lation functions in the σσ, ππ and axial-axial channels. At
high temperature, the σ and π are degenerate and the axial
charge is almost conserved. In the broken phase, the σ
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remains purely dissipative, while the π propagates and
carries axial charge. In particular, we were able to observe
that the coupling of the π to the axial charge precisely
happens in the vicinity of the pseudocritical point, zpc,
defined as the line in the phase diagram where the static
susceptibility peaks. This observation is yet another link
between the static and dynamical properties of this
critical model.
We also performed a quantitative study of the pion

properties in the broken phase. We were able to fit the
dynamical correlator to a particle resonance ansatz pre-
dicted by the chiral hydrodynamic effective theory, and
extract the pole mass and decay width. Furthermore, we
verified that the Gell-Mann-Oakes-Renner relation, which
relates the dynamical pole mass of the pions to their static
screening mass, holds at the subpercent level. Last but not
least, we performed a set of simulations along the critical
line and extracted the dynamical critical exponent
ζ ¼ 1.47� 0.01ðstat:Þ, very close to the critical scaling
prediction ζ ¼ 1.5 [2].
The numerical determination of ζ can be considered as

a first step towards a complete quantitative characteriza-
tion of the dynamics of the Oð4Þ antiferromagnet. Such a
characterization would include additional studies at finite
spatial momentum as in [27], and a more complete
investigation of the dynamics in the chiral limit at finite
volume with an appropriate real-time EFT. (The corre-
sponding finite volume static EFT was written down
long ago [40], and was helpful in the thermodynamic
analysis in Appendix. B 3.) In order to use the model to
analyze heavy-ion data as discussed in [17,18], it will be
important to analyze the critical Oð4Þ dynamics for an
expanding fluid, which introduces a rich hierarchy of
scales. Finally, it will be interesting to apply the algorithm
presented in Appendix A to other stochastic and critical
systems.
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APPENDIX A: THE MODEL ON THE LATTICE

1. Relating lattice units to QCD

Continuing the discussion of Sec. II B, our goal is to fix
the spatial cutoff a in units of meters, so that the
model will reproduce the physical correlation length.
In the computer code the cutoff is the lattice spacing,
and is set to unity. Similarly the times are measured
in units of 1=ðg0TcÞ, and we will set the g0 in physical
units so that the model reproduces the pion pole fre-
quency. The results of this section are summarized
by Eq. (20).
For any critical system with canonically normalized

magnetic Hamiltonian ΔH ¼ R
d3xHσ, and mean order

parameter of the form σ̄ ¼ Bh1=δfGðzÞ with h ¼ H=H0,
the combination of parameters H0B=Tc has dimensions
ðlengthÞ−d and defines a nonuniversal length:

ðξ1Þ−d ≡H0B
Tc

: ðA1Þ

The longitudinal correlation length of the generic critical
system takes the form

ξ ¼ ξ1h−νcfξðzÞ; ðA2Þ

where fξðzÞ is a universal function, including its
normalization.4

In the Oð4Þ model where

HOð4Þ
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc=adþ2

q
Ĥ0; and BOð4Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc=aðd−2Þ

q
; ðA3Þ

the length scale ξ1 evaluates to

ξOð4Þ
1 ¼ aĤ0

−1=d: ðA4Þ

In QCD we have ξQCD1 ¼ ðHQCD
0 BQCD=TcÞ−1=d, leading to

the identification given in the text:

a ¼ Ĥ1=d
0 ξQCD1 : ðA5Þ

4The function fξðzÞ for the longitudinal correlation length is
proportional to ĝLξ ðzÞ of [41], with the proportionality constant
given by universal amplitude ratios. With some patience, one
finds fξðzÞ ¼ ðQcRχÞ1=dðQL

2 =δRχÞν=γ ĝLξðzÞ.
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Next we discuss the dynamics. There is a timescale set
by the frequency of the pion pole5

ðmQCD
p Þ2 ≡ 1

ℏ2

mqc2hqqi
χ0

; ðA8Þ

¼ HQCD
0

ℏ2

hhq̄qi
χ0

; ðA9Þ

In the Oð4Þ model it is easy that the corresponding
frequency in physical units is

m2
p ¼ g20Hσ̄

χ0
¼ g20TcĤ0

�
h ˆ̄σ=a3

χ0

�
: ðA10Þ

Comparing the two expressions, using hq̄qi ¼ BQCD ˆ̄σ and
the identification

h ¼ mqc2

HQCD ¼ Ĥ

Ĥ0

; ðA11Þ

leads to the result

g20 ¼
1

ℏ2
: ðA12Þ

Equations (A5) and (A12) are presented in the body of the
text in Eq. (20).

2. Overview of the algorithm

In this section we will describe the updated algorithm in
detail. We first discretize the fields on a spatial lattice (with
lattice spacing a ¼ 1) writing the effective Hamiltonian as

H ¼
X
x;ei

1

2
ðϕðt; xþ eiÞ − ϕðt; xÞÞ2 þ

X
x

Vðϕðt; xÞÞ

−Hσðt; xÞ þ
X
x

n2ðt; xÞ
4χ0

: ðA13Þ

Here x ¼ ðx1; x2; x3Þ labels the lattice sites, and ei ¼
e1; e2; e3 is a unit vector in the corresponding direction.
Variational derivatives in the equations of motion get
replaced by ordinary derivatives, δH=δϕ → ∂H=∂ϕ, etc.
The equations of motion forU ∈ ½ϕa; nab� can be written

schematically:

∂tU ¼ OAðUÞ þOBðUÞ þOCðUÞ: ðA14Þ

The first operator describes the evolution under the ideal
equations of motion, while the second two operators
describe the dissipative dynamics of the order parameter
ϕ and the charges nab respectively. We will use operator
splitting to solve for the total time evolution. The most
straightforward procedure is to update the fields sequen-
tially for a small period of time Δt:

U→
A
U→

B
U→

C
U: ðA15Þ

More explicitly we have:
A Stage:

∂tϕa ¼ −μabϕb; ðA16Þ

∂tnab ¼ ∂iðϕa∂iϕb − ϕb∂iϕbÞ − ðHaϕb −HbϕaÞ; ðA17Þ

B Stage:

∂tϕa ¼ −Γ0

δH
δϕa

þ θa; ðA18Þ

∂tnab ¼ 0; ðA19Þ

C Stage:

∂tϕa ¼ 0; ðA20Þ

∂tnab ¼ σ0∇2
δH
δnab

þ ∂iΞi
ab: ðA21Þ

We will view each step as part of a Markov chain.
A technical complication is that the C step takes

approximately six times longer than the B step, because
there are many more random numbers to generate. The
ideal step A also is about twice slower than the B step. So as
a practical matter, for a complete step over a timeΔtwewill
take the following updates:

ABBABBABBC; ðA22Þ

where the time increment for B is ΔtB ¼ Δt=6 while the
time step for A is ΔtA ¼ Δt=3. An optimal time step
thermalizes modes of order of the lattice spacing in a short
period of wall time. We have found Δt ¼ 0.24=Γ0 is
approximately optimal (see below) for the algorithm
discussed here.

a. Ideal step

In order to perform our ideal step, let us first rewrite the
ideal part of our continuous equation as follows:

5This formula assumes that the total charge operators Qab are
unitless and satisfy the Oð4Þ commutation relations:

½Qab;Qcd� ¼ iðδacQbd þ δbdQac − δadQbc − δbcQadÞ: ðA6Þ
The susceptibility is defined by the averages

hQabQcdi ¼ Tχ0Vðδacδbd − δadδbcÞ: ðA7Þ
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∂tϕa ¼ −
nab
χ0

ϕb; ðA23Þ

∂tnsA ¼ ∂iðσ∂iϕs − ϕs∂iσÞ −Hϕs; ðA24Þ

∂tnsV ¼ ϵss1s2∂iðϕs1∂iϕs2Þ: ðA25Þ

Eq. (A23) makes it apparent that the ideal evolution of the
order parameter is simply an Oð4Þ rotation by the currents.
More explicitly, in the Oð4Þ-algebra matrix notation, we
have

∂tϕ ¼ −
i
χ0

Nϕ; ðA26Þ

with

NðtÞ ¼ n⃗AðtÞ · K⃗ þ n⃗VðtÞ · J⃗; ðA27Þ

and K⃗, J⃗ the generators of soð4Þ

K1 ¼ −i

0
BBB@

0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

1
CCCA K2 ¼ −i

0
BBB@

0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

1
CCCA K3 ¼ −i

0
BBB@

0 0 0 1

0 0 0 0

0 0 0 0

−1 0 0 0

1
CCCA; ðA28Þ

J1 ¼ −i

0
BBB@

0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

1
CCCA J2 ¼ −i

0
BBB@

0 0 0 0

0 0 0 −1
0 0 0 0

0 1 0 0

1
CCCA J3 ¼ −i

0
BBB@

0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

1
CCCA: ðA29Þ

In particular, (A26) can be solved as

ϕðtþ δtÞ ¼ exp

�
−

i
χ0

Z
tþδt

t
dt0Nðt0Þ

�
ϕðtÞ: ðA30Þ

With this in mind, before describing our time evolution,
we need to discretize (A24) in space. For f and g functions
evaluated on a discrete lattice, we discretize terms of the
sort ∂xðg∂xfÞ in a straightforward way by integrating over
finite-volume cells, e.g., in one dimension,

1

a

Z
xiþ1

2

xi−1
2

dx∂xðg∂xfÞ

≃
gjxiþ1

2

a2
ðfjxiþ1

− fjxiÞ −
gjxi−1

2

a2
ðfjxi − fjxi−1Þ

≃
1

2a2
½ðgjxiþ1

þ gjxiÞðfjxiþ1
− fjxiÞ

− ðgjxi þ gjxi−1Þðfjxi − fjxi−1Þ�; ðA31Þ

where we have approximated the value gjxiþ1
2

at each

interface as the mean of the central one, gjxiþ1
2

¼
1
2
ðgjxiþ1

þ gjxiÞ. Using the shorthand notation f�i ≡
fðt; x� eiÞ leads us to define the following discrete
evolution kernels:

Ks
V ¼ ϵss1s2

a2
X3
i¼1

ðπs1πs2;þi − πs1;−iπs2Þ; ðA32Þ

Ks
A ¼ −πsH þ 1

a2
X3
i¼1

ðσπs;þi − πsσþi − σ−iπs þ πs;−iσÞ:

ðA33Þ

To evolve this system, we use a “position Verlet”-like
symplectic integration. We start by computing Φ at half-
integer steps, use it to evolve the currents by a time step δt
and finish updating Φ by an extra half-time step, which
gives

ϕ

�
tþ1

2
δt

�
¼ exp

�
−

i
χ0

δt
2
NðtÞ

�
ϕðtÞ; ðA34Þ

nsAðtþ δtÞ ¼ nsAðtÞ þ δtKs
A; ðA35Þ

nsVðtþ δtÞ ¼ nsVðtÞ þ δtKs
V; ðA36Þ

ϕðtþδtÞ¼ exp

�
−

i
χ0

δt
2
NðtþδtÞ

�
ϕ

�
tþδt

2

�
: ðA37Þ

A practical way to perform the rotations in (A34) and (A37)
is to rewrite the Oð4Þ rotation as a direct product of
SULð2Þ × SURð2Þ and to use the explicit form of the
SUð2Þ matrices for a given set of angles.
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The ideal evolution is associated with the conservation of
the discretized energy, H, for δt → 0. Our symplectic
evolution leads to a violation ΔE ¼ Hðtþ δtÞ −HðtÞ∼
Oðδt2Þ. One approach to this violation would be to just
ignore it. Then the equilibrium action will be modified
slightly by terms of orderOðδt2Þ from (A13), shifting Tc by
a small amount. We have seen indications of these shifts but
have not explored this in detail. Instead we have added a
Metropolis “accept-reject” step to the ideal evolution using
min ð1; exp ð−ΔEÞÞ as the accept-reject probability. For our
803 lattices (which represent the majority of the simulations
presented here) the reject probabilities are presented in
Table I. The differences imply that the relative size of the
dissipative and real parameters of the pions will weakly
depend on δt.
The downside of having an acceptance probability p

different from 1 is that it introduces a nontrivial renorm-
alization of our time. Effectively, when the ideal step is
rejected, the next dissipative step should be thought of as a
way to generate a new candidate configuration for the ideal
step; the clock freezes. The leading effect of a nonzero
rejection probability for the ideal step can then be absorbed
by rescaling Δt by the acceptance probability p. As a
result, for all our simulations, the time variable we use is
defined as

t ¼ pnstepsΔt; ðA38Þ

with the corresponding p read from Table I and Δt is the
global time step of our algorithm.
As the results presented through this work support, this

procedure allows us to faithfully correct our time variable.
It is nonetheless true that it introduces some uncontrolled
subleading systematic errors which may impede us from
performing precision measurements in the future. This,
together with the fact that the acceptance rate degrades for
larger lattices, will lead us to use smaller ideal time steps for
future simulations. It may also be worth investigating
higher-order symplectic integrators, which would help to
keep the reject probability small even for large volumes.

b. Viscous steps for ϕ

The spatially discretized equation to be solved is

∂tϕa ¼ −Γ0

∂H
∂ϕa

þ θa; ðA39Þ

where the noise correlator is given by a discretized Eq. (4a).
We will realize the Langevin process with Metropolis

updates. Briefly, an update proposal is made for a lattice
site x,

ϕaðtþ δt; xÞ ¼ ϕaðt; xÞ þ Δϕa; ðA40Þ

where for each flavor index a the increment is

Δϕa ¼
ffiffiffiffiffiffiffiffiffiffiffi
2δtΓ0

p
ξ0;

Here ξ0 is a random number with unit variance hξ20i ¼ 1. In
practice ξ0 is generated from a flat distribution between
½− ffiffiffi

3
p

;
ffiffiffi
3

p �, since this is faster than generating Gaussian
random numbers. The update proposal is accepted with
probability minð1; e−ΔHÞ, where ΔH is the change in the
discretized Hamiltonian. If the proposal is rejected
ϕðtþ δt; xÞ ¼ ϕðt; xÞ. For Δϕ small,

ΔH ≃
δH
δϕ

����
ϕaðx;tÞ

Δϕa; ðA41Þ

and then the mean and variance of the accepted proposals
reproduce the dissipative and stochastic terms of the
Langevin process:

ϕaðtþδt;xÞ−ϕaðt;xÞ¼−δtΓ0

δH
δϕ

þOðδt2Þ; ðA42aÞ

ðϕaðtþ δt; xÞ−ϕaðt; xÞÞ2 ¼ 2δtΓ0 þOðδt2Þ: ðA42bÞ

For the sake of clarity, let us rederive this result. Consider
the Markov process generated by the Metropolis algorithm:
Δϕ is accepted if e−ΔH − 1 is positive; otherwise, it is
accepted only with probability e−ΔH. Employing the step
function θðxÞ, the update rules for each lattice site can be
written as

ϕaðtþ δt; xÞ ¼ ϕaðt; xÞ þ θðe−ΔH − 1ÞΔϕa

þ θð1 − e−ΔHÞe−ΔHΔϕa; ðA43aÞ

¼ ϕaðt; xÞ þ Δϕa

þ θð1 − e−ΔHÞðe−ΔH − 1ÞΔϕa: ðA43bÞ

In the limit of small δt, Δϕa is small, and we can Taylor
expand the energy and the probability, obtaining

TABLE I. Accept-reject probability associated with our ideal
step for different simulations.

z H Ideal accept probability, p

3.86978 0.003 0.958
1.34899 0.003 0.953
0.94429 0.003 0.951
0 0.002 0.948
0 0.003 0.948
0 0.004 0.948
0 0.006 0.947
0 0.01 0.946
−2.2011 0.003 0.940
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ϕaðtþ δt; xÞ ¼ ϕaðt; xÞ þ Δϕa

þ θ

�
δH
δϕ

ffiffiffiffiffiffiffiffiffiffiffi
2δtΓ0

p
ξ0

��
−
δH
δϕ

�
2δtΓ0ξ

2
0:

ðA44Þ

Taking averages and noting that the θ function vanishes
for half of the realizations, one immediately reproduces
Eqs. (A42a) and (A42b).
To iterate over the sites, we loop over the lattice in a

checkerboard pattern, first updating all of the even sites,
and then updating the odd sites. Since the interactions are
nearest neighbors only, the even site updates are indepen-
dent of each other and can be done in any order. In addition,
the checkerboard Metropolis updates maintain the lattice
translational invariance and are easy to implement with
PETSC and MPI [36,37].
Finally we turn to the step size δt. We would like the

computer time required to thermalize modes of wavelength
∼a to be as short as possible. If δt is small, then the steps
are always accepted, but lead only to a small change in ϕ;
equilibration then requires many steps. If δt is large, then
Δϕ is large, but the updates are always rejected, again
requiring many steps. We have found that choosing δt ¼
0.04=Γ0 leads to an accept-reject probability of approx-
imately 0.5, optimizing these considerations.

c. Viscous steps for charges nA and nV
We are considering the evolution equation ∂tU ¼

OCðUÞ. Since each charge in the tensor nab is independent
we will dispense with the flavor indices in the rest of this
section. All the updates described here will be applied in
sequence to the three axial charges nsA and the three vector
charges nsV . The continuum equation to be solved is the
stochastic diffusion equation

∂tnþ ∂iji ¼ 0; ji ¼ −
σ0
χ
∂inþ Ξi; ðA45Þ

and equilibrium effective Hamiltonian is6

H ¼
Z

d3x
n2

2χ0
: ðA47Þ

To generate the Langevin dynamics in (A45) we will
again use Metropolis steps. In order to get the correct
diffusive dynamics at long wavelengths the charge must be

exactly conserved by the update proposals. We therefore
update the cells in pairs by making a Metropolis proposal
for the charge transferred between two cells over a time δt.
The figure below shows a few sites of the lattice, with the

even sites painted gray. Integrating (A45) over the spatial
volume of lattice cell A and time δt, the discretized equation
of motion for the charge takes the form

n̂ðt̂þ δt̂; x̂Þ ¼ n̂ðt̂; x̂Þ − ðQxþ −Qx
−Þ − ðQy

þ −Qy
−Þ

− ðQz
þ −Qz

−Þ; ðA48Þ

where, for example, Qxþ is the charge transfer between A
and B over a time δt. (For clarity below we have restored
the hats to indicate quantities in lattice units, e.g., n̂ ¼ na3):

A B .

The proposed Metropolis flux through the interface is

Qxþ ¼ q ¼
ffiffiffiffiffiffiffiffiffiffiffi
2σ̂0δt̂

p
ξ0; ðA49Þ

where again ξ0 is a uniform random number with unit
variance. Thus the proposed update for cells A and B is

n̂A → n̂A − q; ðA50Þ

n̂B → n̂B þ q; ðA51Þ

and change in action by the proposed change is

ΔĤ ¼ ðn̂B þ qÞ2
2χ̂0

þ ðn̂A − qÞ2
2χ̂0

−
n̂2B
2χ̂0

−
n̂2A
2χ̂0

; ðA52Þ

¼ ðn̂B − n̂AÞ
q
χ̂0

þOðq2Þ: ðA53Þ

The proposed updated is accepted with probability
minð1; expð−ΔĤÞÞ. Then it is easy to see that mean charge
transfer is

q̄ ¼ −ðn̂B − n̂AÞ
σ̂0
χ̂0

δt̂; ðA54Þ

≃ − a2δtD0∂xn; ðA55Þ

which is the expected charge transfer for a diffusive step.
Finally, is easy to show that the flux Ξx ≃ q=ðδta2Þ has the
expected variance. Thus for small δt the Markov updates
produce an equivalent update to the Langevin step.

6Again this action describes only one isospin component of the
isoaxial or isovector charge. In general

H ¼
Z

d3x

�
n⃗A · n⃗A
2χ0

þ n⃗V · n⃗V
2χ0

�
¼ 1

4χ0

Z
d3xnabnab; ðA46Þ

and nabnab is written n2 in the majority of the text.
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To iterate over the faces of the lattice we again divide the
cells into a checkerboard pattern. We first do the Metropolis
updates for all of the xþ interfaces for all of the even cells,
i.e., cell A is even and cell B is odd as shown in the figure
above. These updates are independent of each other and can
be done in any order. This step is followed by Metropolis
updates of the x− interfaces of the even cells, i.e., now cell
A is odd and cell B is even. Then we proceed to update the y
and z directions in a similar manner. To eliminate potential
bias, the order of the ðx; y; zÞ iterations and the ðþ;−Þ
iterations are each randomly shuffled for each iteration of
the C stage of the Markov chain.

d. Real-time correlation functions

In this section we describe how the correlations functions
and their Fourier transforms are computed. The correlation
functions GðtÞ for t > 0 are computed with

GðtÞ ¼ 1

t2 − t1

Xt2
t0¼t1

ΔtpOðt0ÞOðt0 þ tÞ; ðA56Þ

and the error is estimated with simple blocking with 5–10
blocks. Here Δtp ¼ pΔt where p is the accept reject
probability as discussed in Appendix A 2 a. Taking z ¼
0.7zpc with H ¼ 0.003 to give representative numbers (see
Fig. 5), we note that the correlation time of the system is
∼400, while the total evolution time of the simulations is
t2 − t1 ∼ 106. GðtÞ is recorded with t up to tmax ∼ 4000. We
have discarded the first t1 ∼ 10000 simulation steps,
ensuring proper thermalization, and checked that GðtÞ is
insensitive to t1 and t2. Since Gð−tÞ ¼ GðtÞ, the Fourier
transform GðωÞ is computed by

GðωÞ ¼ 2
Xtmax

t¼0

ΔtpGðtÞ cosðωtÞe−t=Λ; ðA57Þ

where Λ ∼ 1200 is a cutoff limiting the contributions of the
late-time noise to the integral. The results were insensitive
to the form of the cutoff and Λ. For different runs the
correlation times can be somewhat longer and Λ and tmax
are increased accordingly.

APPENDIX B: THERMODYNAMICS
AND STATICS OF THE MODEL

1. Fixing the critical temperature

In this appendix we will describe our (conventional)
strategy for locating the critical point of the model, by
adjusting the bare coupling m2

0. A good summary of the
technique is given in [38]. Throughout this section we set
λ ¼ 4 (somewhat arbitrarily) and H ¼ 0. After a prelimi-
nary search in m2

0, we ran a set of long simulations at
m2

0 ¼ −4.812 for N ¼ 16, 24, 32, 48, 64. For each of these
simulations, we used reweighted samples to compute the

Binder cumulant [43] for a range ofm2
0. More explicitly we

computed

hM2i ¼
P

te
−1
2
δm2

0

P
x
ϕ2ðt;xÞMaðtÞ ·MaðtÞP

te
−1
2
δm2

0

P
x
ϕ2ðt;xÞ ; ðB1Þ

hðM2Þ2i ¼
P

te
−1
2
δm2

0

P
x
ϕ2ðt;xÞðMaðtÞ ·MaðtÞÞ2P

te
−1
2
δm2

0

P
x
ϕ2ðt;xÞ ; ðB2Þ

and then determine the Binder cumulant:

U4 ≡ hðM2Þ2i
hM2i2 : ðB3Þ

A plot ofU4 for ourN ¼ 16, 32, 64 samples is shown in the
left panel of Fig. 12.
In the high-temperature phase, the fluctuations of the

order parameter are Gaussian and the Binder cumulant
reaches ðN þ 2Þ=N ¼ 1.5, while in the low-temperature
phase the system is ordered and the Binder cumulant is
unity. In the critical region (where the system size is of
order of the correlation length) the Binder cumulant
transitions between 1 and 1.5, and approaches a universal
value Uc

4 at the critical temperature for large L [44]. From a
precision study by Hasenbusch [39], we have taken this
asymptotic value to be Uc

4 ¼ 1.0945ð1Þ. Now, for each L,
we determined a value of m2

0, denoted m2
×ðLÞ, where the

Binder cumulant reaches Uc
4 (see figure). For large L the

expected scaling of m2
×ðLÞ −m2

c is

m2
×ðLÞ −m2

c ¼
C1

L1=νþω
; ðB4Þ

and this scaling can be used to determine m2
c. Then we fit

m2
×ðLÞ with the functional form in (B4) to find the value of

m2
c quoted in the body of the text in (30). A plot of our fit is

shown in the right panel of Fig. 12 and has χ2=dof ¼ 0.5,
suggesting that the error bars have been slightly
overestimated.

2. Thermodynamics on the critical line

In this section we continue the discussion in Sec. III A,
and determine the nonuniversal parameter H0 by making a
scan on the critical line.
In practice, we made a scan only approximately on the

critical line at m2 ¼ −4.8130, and then used reweighting to
determine σ̄ at our nominal value of m2

c ¼ −4.8110. In the
scaling theory the condensate takes the form

σ̄ ¼ h1=δðfGðz; zLÞ þ hωνcfð1ÞG ðz; zLÞÞ; ðB5Þ

where in addition to the scaling variables h and z, we have
included an additional dependence on the system size L
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through the scaling variable zL ¼ L0=Lhνc , and its asso-
ciated constant L0 [6]. The scaling function fGðz; zLÞ has
been parametrized for zL ¼ ½0; 1.2� by Engels and Karsch
[6] (see their Eq. 29). We have also included a subleading

scaling function, fð1ÞG ðz; zLÞ, which provides a correction to
the leading asymptotics close to Tc. We are working on the
critical line where z ¼ 0, and the dependence on zL is weak
for L large. Thus we will neglect the dependence on zL in
the subleading term and describe our data with the form

σ̄ ¼ h1=δðfGð0; zLÞ þ hωνcCHÞ: ðB6Þ

For the critical exponents here and below we use the results
from [6]:

β ¼ 0.380ð2Þ; δ ¼ 0.4824ð9Þ; ðB7Þ

and then used the hyperscaling relations to determine all
others, e.g., dν ¼ βð1þ δÞ ≃ 2.213. We have taken ω ¼
0.77 for the subleading exponent from [39]. The data for σ̄
on 323 and 643 lattices on the critical line are shown in the
left panel of Fig. 1 in the body of the text. They were fit in
the range zL ¼ ½0; 1.2� with (B6), which fixes the three fit
parameters for H0, L0, and CH:

H0¼5.15ð15Þ; L0¼0.97ð4Þ; and CH¼0.54ð4Þ; ðB8Þ

with χ2=dof ¼ 2.H0 is recorded in Eq. (30). Also shown in
the left panel of Fig. 1 is the predicted magnetization from
the fit at infinite volume (the dashed line). We see that
already at L ¼ 64, we are essentially at infinite volume for
the range of H considered in this work. Indeed a simple
two-parameter fit to our L ¼ 64 results (not shown) with a

simple form, σ̄ ¼ ðH=H0Þ1=δð1þ CHðH=H0ÞωνcÞ, yields
compatible results for H0.

3. Thermodynamics at H = 0

In this section we continue the discussion in Sec. III A,
and determine the nonuniversal parameter m2 (or the
amplitude B) by making a scan at H ¼ 0. By measuring
hM2i we will extract the condensate, Σ, at infinite volume
and zero field defined in (31).
The leading deviation of hM2i from Σ2 at finite volume

comes from the fluctuations of long-wavelength Goldstone
modes, and can be neatly analyzed with a Euclidean pion
effective theory [40], which was briefly discussed in
Appendix B 4. The resulting expansion relating hM2i
and Σ2 is only for f2ðTÞL ≫ 1, and takes the form

hM2i ¼ Σ2

�
ρ21 þ

8ρ2
f4L2

�
þOððf2LÞ−3Þ: ðB9Þ

Here the symmetry group OðNÞ is broken to OðN − 1Þ,
ρ1 and ρ2 are expansions in 1=L∶

ρ1 ¼ 1þ ðN − 1Þβ1
2f2L

−
ðN − 1ÞðN − 3Þ

8f4L2
ðβ21 − 2β2Þ; ðB10Þ

ρ2 ¼
ðN − 1Þβ2

4
; ðB11Þ

with the shape coefficients that record specific sums
over the discretized Fourier modes of a cubic box of
length L:

β1 ¼ 0.225785; β2 ¼ 0.010608: ðB12Þ
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FIG. 12. (Left) The Binder cumulant U4 as a function of m2
0 and L. For clarity, the L ¼ 24 and L ¼ 48 results are not shown. The

asymptotic value of the Binder cumulant Uc
4 is shown as the dotted line, and is taken from [39]. The crossing points, m2

×ðLÞ, are when
bands cross the dotted line. (Right) A fit to the Binder crossing formula in (B4) which determines the critical parameter
m2

c ¼ −4.8110ð4Þ.
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Substituting the shape coefficients, setting N ¼ 4, and
finally expanding in 1=L yields the expansion we will use:

hM2i ¼ Σ2

�
1þ 0.677355

f2L
þ 0.156028

f4L2
þOððf2LÞ−3Þ

�
:

ðB13Þ

To extract ΣðTÞ we performed a sequence of simulations
at L ¼ 16, 24, 32, 48, 64 atH ¼ 0. We then used (B9) with
N ¼ 4 to fit f2ðTÞ and ΣðTÞ using the L ¼ 32, 48, and 64
points (not shown). The difference in the first and second
orders in the expansion was used to estimate the systematic
uncertainty in the extracted values of f2 and Σ. For ΣðTÞ
this is smaller than our statistical uncertainty, which would
not have been the case if only the leading term 1=L term in
the expansion (B13) had been used. We also found that the
quadratic term provides a better description of the data with
no additional parameters, providing credence to the pion
EFT in this range of temperatures and volumes.

4. Extracting the pion’s decay constant
and screening mass

The aim of this section is to verify the static part of the
GOR formula:

f2m2 ¼ Hσ̄; ðB14Þ

which is discussed in Sec. III B. To this end, we return to
our simulation in the broken phase and perform some more
static measurements. The magnetization is straightforward
to measure

σ̄ ¼ 0.34906� 0.00003ðstat:Þ; ðB15Þ

and gives for the right-hand side

Hσ̄ ¼ ð1.04718� 0.00009ðstat:ÞÞ × 10−3: ðB16Þ
To measure the pion decay constant f2 and the screening
mass m, we follow [41] and fit (not shown) the static pion
wall-to-wall static correlator:

DðxÞ≡ 1

3L2

X
s

X
y;y0;z;z0

hπsðt¼0;x;y;zÞπsðt¼0;x¼0;y0;z0Þi

ðB17Þ
to a single-state ansatz in a periodic box of size L:

DðxÞ ¼ σ̄2

2mf2
e−mx þ e−mðL−xÞ

1 − e−mL : ðB18Þ

To reduce the remaining effects of higher states, we reduce
the range of our fit to ½xmin; L − xmin − 1� and study the
dependence of the parameters on xmin. Their nominal value
is then extracted by fitting the resulting plateaus. This
procedure is illustrated in Fig. 13 and leads to the following
determination:

f2

σ̄2
¼ 1.124� 0.006ðstat:Þ; ðB19Þ

m ¼ ð8.77� 0.02ðstat:ÞÞ × 10−2; ðB20Þ

leading to

f2m2 ¼ ð1.053� 0.007ðstat:ÞÞ × 10−3: ðB21Þ

We see that the static GOR relation is satisfied within
statistical errors, as displayed in (39) in the body of the text.
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FIG. 13. Pion decay constant and static screening mass extracted from a single-state fit of the pion wall-to-wall static correlator DðxÞ.
To remove the contamination from higher states, we restrict our fit (not shown) to the range ½xmin; N − xmin − 1�. We plot here the fitted
parameters as a function of xmin. Our nominal values are shown in green and computed by averaging the results for xmin > 15 once the
values have plateaued.
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