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We explore if spacetime symmetric lattice field theory models with a finite Hilbert space per lattice site
can reproduce asymptotic freedom in the two-dimensionalOð4Þmodel. We focus on a simple class of such
models with a five-dimensional local Hilbert space. We demonstrate how even the simplest model
reproduces asymptotic freedom within the D-theory formalism but at the cost of increasing the size of the
Hilbert space through coupling several layers of a two-dimensional lattice. We then argue that qubit
regularization can be viewed as an effective field theory (EFT) even if the continuum limit cannot be
reached, as long as we can tune the model close enough to the continuum limit where perturbation theory,
or other analytical techniques, become viable. We construct a simple lattice model on a single layer with a
four-dimensional local Hilbert space that acts like an excellent EFT of the original theory.
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I. INTRODUCTION

Static properties of strongly coupled relativistic quantum
field theories (QFTs) can usually be obtained nonpertur-
batively using a “traditional” spacetime symmetric
Euclidean lattice field theory [1,2]. The lattice acts as an
ultraviolet regulator and continuum QFTs are obtained by
approaching the critical points of the lattice theory. In QFTs
with microscopic bosonic degrees of freedom, the local
Hilbert spaces of these traditional lattice models are always
infinite dimensional. An interesting theoretical question,
motivated by quantum computation of QFTs, is whether
there are spacetime symmetric lattice models with a finite-
dimensional local Hilbert space that can also reproduce a
desired quantum field theory. Such a finite-dimensional
approach to QFTs, especially in the Hamiltonian formu-
lation, has become an active area of research due to the
possibility of studying QFTs using a quantum computer [3–
15]. It can be viewed as a new type of regularization of
QFTs called “qubit regularization” [16].

When qubit regularization of a Lorentz-invariant field
theory is constructed for carrying out quantum evolution, it
seems natural to consider the Hamiltonian formulation, in
which the manifest symmetry between space and time is
lost. One expects that in the Hamiltonian approach, the
spacetime symmetry emerges dynamically at the quantum
critical point. Whether this occurs or not is, in general, a
subtle question. The existence of an explicitly spacetime
symmetric Euclidean approach could alleviate such con-
cerns, and it would be strange if restricting to a finite-
dimensional local Hilbert space allows only a Hamiltonian
approach to a relativistic field theory. Furthermore, rela-
tivistic QFTs are often defined as an analytic continuation
of the well understood Euclidean QFTs from imaginary to
real time. In a spacetime symmetric approach, then, the
Euclidean transfer matrix may motivate quantum circuits
for the discretized time evolution, without recourse to the
usual Trotterization schemes.
Motivated by these points, we look for spacetime

symmetric qubit-regularized asymptotically free field the-
ories. We already know of several examples of such
regularizations of QFTs that emerge at infrared fixed
points. The most well known of these is the Ising model,
which is a spacetime symmetric lattice model with a two-
dimensional local Hilbert space on each lattice site, but can
reproduce the Z2 Wilson-Fisher fixed point in three
dimensions and the Gaussian fixed point in four dimen-
sions. In the continuum, this fixed point is naturally
formulated with an infinite-dimensional local Hilbert space
of a single component real scalar field. Similarly, the
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physics of the Berezinskii-Kosterlitz-Thouless transition
that arises in a two-dimensional1 field theory with a single
complex scalar field can be reproduced using various
spacetime symmetric qubit regularizations [17]. Recently,
OðNÞ symmetric Wilson-Fisher and Gaussian fixed points
have been reproduced with spacetime symmetric loop
models with finite-dimensional Hilbert spaces [16,18].
Hamiltonian approaches to these fixed points in qubit-
regularized models are well known in condensed matter
physics; for example, the Oð3Þ Wilson-Fisher fixed point
was studied in Ref. [19].
Does a spacetime symmetric qubit regularization, i.e., a

theory with a finite local Hilbert space, exist for asymp-
totically free QFTs? Indeed it does within the D-theory
approach [20,21]. In this approach, an extra spatial dimen-
sion is introduced, which plays the role of the inverse
coupling of the theory. As the size of this dimension
increases, the physical correlation length increases expo-
nentially. This suggests that even asymptotic freedom is
recovered exponentially fast in the size of the extra
dimension.
From the perspective of qubit regularization, adding an

extra dimension can be viewed as increasing the size of the
local Hilbert space. Superficially, this seems similar to
other approaches of formulatingOðNÞmodels for quantum
computers in the literature, which start with a truncated
local Hilbert space, including a few lowest-dimensional
OðNÞ irreducible representations (irreps), and then add
higher irreps to reproduce the continuum limit. However, in
the D-theory approach, instead of enlarging the local
Hilbert space directly, a similar effect is achieved through
local, translationally invariant interactions in the extra
dimension. This makes D-theory an attractive solution
for implementation on quantum hardware, since the
Hilbert space on each lattice site is fixed. Several earlier
results already show this feature of D-theory using either a
spacetime asymmetric Hamiltonian formulation [22], or by
using an extra dimension which could be either continuous
[23,24] or discrete. Our goal here is to demonstrate that
D-theory also reproduces asymptotic freedom if we
approach it as several coupled layers of a spacetime
symmetric qubit-regularized model.
We further argue that even when one cannot reach the

continuum limit with a finite number of extra layers, the
resulting constructions can be thought of as useful effective
field theories for the target theory, provided the physics
above the cutoff can be described by perturbation theory or
other controlled techniques. In this paper, we show that by
introducing and tuning an additional coupling even in the
single layer model one can reach such large correlation
lengths. Alternately, if there exists an asymptotically free

critical point in a single-layer spacetime symmetric model
then the need for a D-theory approach is unnecessary unless
it can be simulated with fewer quantum resources. The
search for such a critical point is still ongoing.
In this work, we focus on recovering the asymptotic

freedom of the two-dimensional Oð4Þ model using a finite-
dimensional Hilbert space. Since an Oð4Þ model can be
viewed as an SUð2Þmatrix model, our qubit models may be
extendable to qubit models of SUð2Þ gauge theories
through simple modifications.
This paper is organized as follows. In Sec. II, we

compute the step-scaling function (SSF) of the traditional
Oð4Þ model defined on the infinite-dimensional local
Hilbert space. We then explore if our qubit models can
recover this SSF. In Sec. III, we show how a simple model
on a five-dimensional Hilbert space is able to reproduce the
SSF of the Oð4Þ model through the D-theory approach. In
Sec. IV, we argue that, in the absence of a critical point, we
may be able to view qubit regularization as an effective
field theory. We present our conclusions in Sec. V.

II. STEP SCALING FUNCTION

A reliable way to quantitatively understand if a qubit
model reproduces the asymptotically free QFT of interest,
is to compute the step-scaling function σðs; uÞ that char-
acterizes it [25]. This function is defined in the continuum
through a physical dimensionless coupling uðLÞ defined in
a finite box of size L and describes how it changes when the
size of the box is scaled by a factor s. More precisely, we
define

σðs; uðLÞÞ ¼ uðsLÞ: ð1Þ

The definition of the dimensionless coupling uðLÞ is not
unique. One definition is given by uðLÞ ¼ mðLÞL where
mðLÞ is the finite size mass gap [25]. In this work we will,
instead, use uðLÞ ¼ L=ξðLÞ, where ξðLÞ is the correlation
length. We choose to use the second-moment definition of ξ
introduced long ago [26,27].
Since the focus of our work is the asymptotically free

two-dimensional Oð4Þ QFT, we first compute the step-
scaling function of this model using the traditional lattice
Oð4Þ model, formulated in terms of real unit four-vectors
ϕx at every lattice site x. The Euclidean action of this model
is given by

S ¼ −
1

g

X
hxyi

ϕx · ϕy; ð2Þ

where (g) is the coupling and the sum is over all bonds hxyi
between nearest-neighbor sites x and y. This model was
studied in Ref. [28] from an algorithmic perspective; here
we repeat the calculations using the Wolff cluster algorithm
[29,30] and compute ðξð2LÞ=ξðLÞ ¼ 1=ðσð2; uÞÞ as a

1By abuse of terminology, we refer to both a (1þ 1)-
dimensional Minkowski QFT and the corresponding two-
dimensional Euclidean theory as two-dimensional theories.
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function of ξðLÞ=L ¼ 1=u. In order to compute ξðLÞ using
the second-moment definition, we first compute the
momentum-space two-point correlation function

G̃ðpÞ ¼ 1

ZL2

X
x;y

eip·ðx−yÞ
Z

½dϕ�e−Sϕx · ϕy ð3Þ

where ϕx and ϕy are Oð4Þ vectors at sites x and y, Z ¼R ½dϕ�e−S is the partition function, and L is the size, in
lattice units, of our two-dimensional square lattice. The
second-moment definition of the correlation length is given
by [28],

ξðLÞ ¼ 1

2 sinðπ=LÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
χ

F
− 1

r
ð4Þ

where χ ¼ G̃ðpÞjjpj¼0 and F ¼ G̃ðpÞjjpj¼2π=L.
Our result for the step-scaling function for the Oð4Þ

model is shown in Fig. 1. The calculations were done at
couplings g ¼ 0.22; 0.25; 0.30; 0.35; 0.40, and 0.50 on
lattices ranging from L ¼ 32 up to L ¼ 512. The data
was pieced together using an univariate cubic spline with a
smoothing scale of 0.0003. We did not include data with
L < 32 to avoid discretization errors.

III. QUBIT REGULARIZATION USING D-THEORY

In this section, we focus on reproducing the step-scaling
function in Fig. 1 using a qubit-regularized spacetime
symmetric lattice field theory with a finite Hilbert space
per lattice site. In the traditional model, theOð4Þ vector lies
in an infinite-dimensional Hilbert space V trad, constructed
as a direct sum of a specific set of irreps of the Oð4Þ
symmetry group. A generalOð4Þ irrep can be characterized
by left and right SUð2Þ spin-j irreps and labeled as ðjL; jRÞ.
If we label the corresponding vector space of the irreps as
V jL;jR , then the local Hilbert space of the traditional model
can be decomposed as

V trad ¼ ⨁
j¼0;1=2;1;…

V j;j: ð5Þ

Simple qubit-regularized models emerge from a vector
space where we keep only the leading two irreps,

Vqubit ¼ ⨁
j¼0;1=2

V j;j: ð6Þ

In such models, each site can be either empty (singlet,
j ¼ 0) or filled (vector, j ¼ 1=2). Conservation of Oð4Þ
currents implies that, in the worldline representation, filled
states form closed loops. One of the simplest of these
models is a loop-gas model, whose partition function can
be written as

Z ¼
X
C

UNm½C� ð7Þ

where a configuration C consists of empty sites (monomers)
and closed loops formed by connecting nearest-neighbor
sites (worldlines), and Nm½C� is the number of monomers.
Each loop, corresponding to the vector representation of the
Oð4Þ, can be in one of four states, which we represent by
two colors and two orientations. Such spacetime symmetric
models in this five-dimensional Hilbert space can be
motivated by strongly coupled lattice QED with staggered
fermions [31], except we do not allow worldlines to hop to
a nearest-neighbor site and back immediately since that
does not have a nice interpretation in the Hamiltonian limit.
An illustration of configuration C is shown in the left panel
of Fig. 2.
The simplicity of this simple five-dimensional Hilbert

space model is striking: the only tuning parameter is the
coupling U that controls the number of monomers. It was
not obtained by truncating the Hamiltonian of the tradi-
tional model, nor will we obtain the continuum limit by
modifying the model to include more irreps. Even though
the loop-gas models are very simple, in three dimensions,
they can reproduce the physics of the Oð4Þ Wilson-Fisher
fixed point [18,32]. This, of course, is not surprising since
once we have a model within the right basin of attraction of

FIG. 1. Step-scaling function of the traditional Oð4Þ nonlinear
sigma model, Eq. (2), determined using the Wolff cluster
algorithm with error bars denoting 1σ confidence intervals. A
cubic smoothing spline is used to piece together the data
simulated at a number of values of g to obtain a universal
step-scaling function which is believed to characterize the Oð4Þ
model. This is used to benchmark our calculations of the qubit-
regularized Oð4Þ models.
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the renormalization group flow, the details of the model
should not matter close to second-order critical points.
As we already discussed in the Introduction, there is no

reason for this simple model to be able to reproduce
asymptotic freedom of the traditional two-dimensional
model, especially close to the continuum limit. For a
generic value of U, we expect the model to develop a
mass gap in two dimensions, but it is not clear if there is
a critical couplingUc where this mass gap vanishes. Even if
such a critical point exists, it is not at all obvious that it is
the asymptotically free Oð4Þ model describing physics at
all scales. On the other hand, D-theory suggests that
starting with couplings that put the 3D Oð4Þ model in
the broken phase, asymptotic freedom in the corresponding
two-dimensional model with Ly coupled layers will
improve as Ly is increased [20]. Here, we show results
that confirm this prediction of D-theory.
We consider the model described by Eq. (7), but on Ly

layers of a square lattice of size L and with periodic
boundary conditions in all three dimensions. For simplicity,
we choose U ¼ 0.1, since at that value of the coupling the
three-dimensional Oð4Þ model, obtained by approaching
the thermodynamic limit with Ly ¼ L, is in the broken
phase. In fact, we have evidence that this three-dimensional
model undergoes a phase transition to the symmetric phase
at Uc ≈ 3.85ð5Þ. We find that by increasing Ly at U ¼ 0.1,
but keeping Ly ≪ L, our model describes the asymptoti-
cally free two-dimensional Oð4Þ model. This is shown by
calculating the step-scaling function σð2; uÞ as a function of
u and Ly.
We calculate ξ and compute σ as explained in Sec. II. To

calculate ξ using Eq. (4), we define new configurations Cx;y
with a worldline that contributes to the two-point correla-
tion function G̃ðpÞ in the qubit model by introducing a

creation and annihilation operator placed at two sites x and
y as shown in the right panel of Fig. 2. These correlation-
function configurations are not part of the partition function
Z, which is still given by Eq. (7), but define G̃ðpÞ though
the relation

G̃ðpÞ ¼ 1

ZL2

X
Cx;y

UNm½C�eip·ðx−yÞ: ð8Þ

Monte Carlo methods based on worm updates can naturally
compute this momentum-space correlation function G̃ðpÞ.
Here x and y are the locations of the head and tail of the
worm and, in our method, the worm starts at some random
site x and samples configurationsCx;y with the right weight.
Since we fix U ¼ 0.1 in this study, there are no free

parameters in the model except the number of layers Ly,
which plays the role of the coupling 1=g in the traditional
model. As Ly becomes large, we expect to reach the
continuum limit. We explore Ly between 1 and 6, and
for each Ly compute ξðLÞ using Eq. (4) with L between 4
and 512 or until the correlation length begins to saturate.
Figure 3 shows the step-scaling function of each of these D-
theory models. We display odd Ly (left panel) and even Ly

(right panel) in separate panels since they seem to behave
differently, at least for small values of Ly. For example, data
in Table I show that ξð∞Þ of the Ly ¼ 2 model is roughly 1
in lattice units while that with Ly ¼ 1 is already 12. Though
we have not investigated why this is the case in our model,
we wish to point out that something similar occurs in
quantum spin-half chains versus ladders. In that case, while
the spin-half chain is critical (i.e., has infinite correlation
length), the ladder has a finite correlation length. Studies of
general spin ladders also show that even when the same
continuum limit is reached, the effective couplings are very

x

y

FIG. 2. The left panel shows a configuration of the qubit-regularizedOð4Þ lattice model whose partition function is given in Eq. (7). It
has a five-dimensional Hilbert space at each site which consists of singlets (monomers) represented by blue circles, and worldlines of
Oð4Þ vector particles represented by two flavors (red and green) of oriented loops shown as solid and dotted lines. In the D-theory
extension, configurations have Ly such two-dimensional layers and the particle worldlines can traverse between the layers. The right
panel is an illustration of a configuration Cx;y containing an open Oð4Þ worldline of a particular flavor with a creation and annihilation
operator at lattice sites x and y.
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different between Ly odd and even [33]. This is consistent
with our results, where Ly odd and even behave differently
but the difference becomes smaller for Ly > 2, and the
Oð4Þ universal step-scaling function is reproduced at
increasingly larger values of ξðLÞ=L as Ly is increased.
We observe that the step-scaling function of the qubit-

regularized model falls on the universal curve below a
certain value of ξðLÞ=L that is Ly dependent. For a given
Ly, we denote by La the value of L at which this takes
place. This ξðLaÞ acts like an ultraviolet cutoff for our
target theory in the sense that simulations with ξðLÞ=L ≤
ξðLaÞ=La can be used to find the universal step-scaling
function. Knowing the step-scaling function, any such
simulation can be used to compute the infinite volume
correlation length ξ∞ ¼ ξðL → ∞Þ. For example, let ξðLaÞ
be the finite size correlation length at L ¼ La; then using
the step-scaling function we can compute ξð2LaÞ and
repeat the process to obtain ξð2kLaÞ for arbitrary values

of k. In this iterative process, the new ξð2LÞ=2L lies to the
left of the previous ξðLÞ=L for ξð2LÞ=ξðLÞ < 2, i.e., one
flows to the left along the curve. In Table I, we list the
values of La, ξðLaÞ and ξ∞ for various values of Ly. A
simple quantitative measure of how close a model is to the
continuum limit is provided by the dimensionless ratio
ξðLaÞ=ξ∞ given in the last column of Table I. This ratio is
analogous to the ratio of the mass gap to the ultraviolet cut
off in a model, i.e., the mass gap in lattice units, which goes
to zero in the continuum limit. Similarly, ξðLaÞ=ξ∞ should
approach zero as happens when Ly is increased, while it is
of order one for small Ly, i.e., the region dominated by
lattice artifacts.

IV. QUBIT REGULARIZATION AS AN EFT

As we have demonstrated, D-theory is able to reproduce
asymptotic freedom of the continuum two-dimensional
Oð4Þ model even with a simple spacetime symmetric
qubit-regularized model, but at the cost of increasing Ly

(the number of coupled two-dimensional layers of lattices)
systematically to larger values. An interesting related
question is whether we can reproduce the same continuum
physics with a single layer model by further exploring the
model space. This was realized for the Oð3Þ model where
an interesting critical Hamiltonian model was identified
[35]. Discovering a spacetime symmetric qubit-regularized
model, however, remains an interesting challenge for both
the Oð3Þ and Oð4Þ cases.
Instead of finding a model that has a continuum limit,

one can ask a simpler question. Can a lattice theory be
devised which can be taken sufficiently close to the

FIG. 3. Step-scaling functions of the qubit model described by Eq. (7) with U ¼ 0.1. Results for Ly ¼ 1, 3, 5 are shown in the left
panel, and for Ly ¼ 2, 4, 6 in the right. The universal step-scaling function for the traditionalOð4Þmodel obtained in Sec. II is shown as
the solid line, and the result of two-loop perturbation theory from Ref. [34] is shown as dashed lines in the two panels. Points with
L ¼ 48 are highlighted using filled symbols to display the dependence of ξ(48) on Ly.

TABLE I. Correlation lengths reached in the D-theory approach
at U ¼ 0.1 as we vary the number of layers Ly. We also give La
(the smallest lattice size where the model begins to agree with the
universal step-scaling function) and the corresponding ξðLaÞ.
Ly La ξðLaÞ ξðLaÞ=La ξ∞ ξðLaÞ=ξ∞
1 96 12.52(2) 0.13 12.66(3) 0.99
2 12 1.066(1) 0.09 1.066(1) 1.00
3 12 6.64(1) 0.55 18.45(5) 0.36
4 64 21.67(2) 0.34 24.76(2) 0.87
5 16 12.22(1) 0.76 250(10) 0.048
6 16 13.65(2) 0.85 860(30) 0.015

SPACETIME SYMMETRIC QUBIT REGULARIZATION OF THE … PHYS. REV. D 105, 054510 (2022)

054510-5



continuum limit with just a single layer by tuning the
parameters, and beyond which one can extrapolate to the
continuum limit using certain order perturbation theory? In
that case, qubit regularization can be viewed as finding the
right EFT for the purpose of quantum computation. From
Fig. 1, we observe that for the Oð4Þ case, perturbation
theory begins to work reasonably well when ξðLÞ=L > 0.5.

So if we can find a qubit regularization where ξðLaÞ=La >
0.5 as defined in the previous section, then it would be an
excellent EFT of the Oð4Þ model. This criterion is not
satisfied by the simplest model that we explored in the
previous section. We, therefore, explored an extension of
the Ly ¼ 1 model, where worldlines are allowed to hop to
diagonally opposite sites as illustrated in Fig. 4. These
diagonal bonds are given a tunable weight J. Thus, this
extended model is characterized by two independent free
parameters, U and J.
The results for the step-scaling function for this extended

model are shown in Fig. 5. The values for La, ξðLaÞ and ξ∞
are given in Table II, in analogy with those for the D-theory
in Table I. We find that this one-layer model can be tuned
closer to the continuum limit by decreasing U and
increasing J. In particular when U ¼ 0, J ¼ 5, the corre-
lation length ξ∞ reaches approximately 60 in lattice units.
Although we cannot approach closer and closer to the
continuum limit, i.e., ξðLaÞ=ξ∞ ¼ 0, we reached
ξðLaÞ=ξ∞ ≈ 0.13 at U ¼ 0, J ¼ 5, which overlaps with
the perturbative region. A further advantage of this two-
dimensional model is that since U ¼ 0, the Hilbert space of
the EFT is only four dimensional, and hence needs only two
qubits per site to implement.

V. CONCLUSION

In this work, we explored a spacetime symmetric qubit
regularization of the asymptotically free Oð4Þ QFT. We
showed that we can reproduce the step-scaling function of
the theory using a model with a five-dimensional Hilbert
space per lattice site using the D-theory formalism by
increasing the number of layers of two-dimensional latti-
ces. With Ly layers, this approach can be implemented
using 3Ly qubits per two-dimensional lattice site.
We then argued that it would be useful to view qubit

regularization as constructing an effective field theory
instead. This means that as long as a qubit-regularized
model can be tuned to reach close enough to the continuum
limit for the step-scaling function to make contact with
perturbation theory, it can still be used to extract interesting
physics. Noting that in the case of theOð4Þmodel, the two-
loop perturbation theory matches the nonperturbative step-
scaling function very well in the regime ξðLÞ=L > 0.5, we
constructed a two-coupling model in Sec. IV and showed
that with U ¼ 0, J ¼ 5 one obtains an excellent qubit-
regularized model for the Oð4Þ field theory since it reaches

FIG. 4. Illustration of the configuration of the extended qubit-
regularized Oð4Þ lattice model with couplings U (for vacuum
sites) and J (for diagonal hops). The nearest-neighbor hops have
weights of 1 as before.

FIG. 5. Step-scaling function of the extended model with
U ¼ 0.1, J ¼ 0 (which is the same as the D-theory model),
U ¼ 0, J ¼ 3 and U ¼ 0, J ¼ 5. The solid line is the continuum
curve, while the dashed line is the two-loop result. Points with
L ¼ 48 are highlighted with filled symbols to display the
dependence of ξð48Þ on the parameters U, J.

TABLE II. Correlation lengths achieved via tuning the cou-
plings U and J in the single layer extended model. The various
quantities shown are analogous to those in Table I.

ðU; JÞ La ξðLaÞ ξðLaÞ=La ξ∞ ξðLaÞ=ξ∞
(0.1,0) 96 12.52(2) 0.13 12.66(3) 0.99
(0,3.0) 16 9.53(2) 0.59 37.3(2) 0.25
(0,5.0) 12 7.97(1) 0.66 61(1) 0.13
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ξðLaÞ=La ≈ 0.66. This model can be implemented with
only two qubits per two-dimensional lattice site.
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APPENDIX A: EXACT CALCULATIONS ON
SMALL LATTICES

The exact results for the extended model, whose
configurations are described in Fig. 4, used to check
the Monte Carlo implementation, are presented in
this Appendix. On a 2 × 2 lattice with periodic
boundary conditions, the partition function of the model
and the two observables χ and F defined in Eq. (4), are
given by

0 0.5 1 1.5
J

-0.5

0

0.5

1

1.5

2

(U=0.1)
(U=1.3)

F (U=0.1)
F (U=1.3)

0 0.5 1 1.5
J

-0.5

0

0.5

1

1.5

2

(U=0.1)
(U=1.3)

F (U=0.1)
F (U=1.3)

FIG. 6. Comparison of exact results with Monte Carlo results
for the observables χ (solid lines) and F (dashed lines) atU ¼ 0.1
(circles) and U ¼ 1.3 (squares) as a function of the coupling J.

TABLE III. Results for χ, F and χðLÞ in the simplest qubit model with no diagonal hops, U ¼ 0.1 and for an odd number of layers
Ly ¼ 1; 3; 5.

Ly ¼ 1 Ly ¼ 3 Ly ¼ 5

L χ F ξðLÞ χ F ξðLÞ χ F ξðLÞ
4 4.558(2) 0.7700(7) 1.5684(9) 14.403(6) 0.928(1) 2.699(1) 20.642(9) 0.873(1) 3.380(2)
6 8.619(5) 1.432(1) 2.241(1) 29.62(1) 1.925(2) 3.810(2) 48.57(2) 1.853(3) 5.045(4)
8 13.271(8) 2.183(2) 2.944(2) 47.33(2) 3.258(4) 4.806(2) 82.06(4) 3.154(5) 6.561(4)
10 18.26(1) 3.016(3) 3.638(2) 67.19(3) 4.942(5) 5.757(3) 121.79(6) 4.791(7) 8.021(5)
12 23.53(2) 3.938(4) 4.309(3) 88.85(5) 6.940(8) 6.637(4) 168.07(8) 6.755(9) 9.441(7)
16 34.56(3) 5.977(7) 5.604(5) 135.89(7) 11.90(1) 8.275(5) 277.5(1) 11.70(2) 12.216(9)
20 45.95(5) 8.28(1) 6.818(7) 185.9(1) 18.07(2) 9.740(6) 408.2(2) 17.96(3) 14.90(1)
24 57.04(7) 10.83(2) 7.911(9) 237.2(1) 25.45(3) 11.048(7) 558.9(3) 25.38(4) 17.56(1)
32 77.2(1) 16.83(2) 9.66(1) 336.9(2) 43.59(4) 13.233(8) 912.5(5) 43.94(6) 22.68(2)
40 92.7(2) 23.64(3) 10.89(2) 426.1(3) 66.16(6) 14.865(9) 1330.2(7) 67.30(9) 27.61(2)
48 103.0(2) 31.15(5) 11.61(2) 498.4(4) 91.86(9) 16.08(1) 1805(1) 95.3(1) 32.41(4)
64 112.3(2) 45.96(7) 12.24(2) 593.2(5) 150.7(1) 17.46(1) 2903(2) 165.7(3) 41.46(7)
80 115.3(3) 58.83(9) 12.47(2) 641.4(5) 212.8(2) 18.07(1) 4175(5) 252.4(6) 50.2(1)
96 115.7(3) 69.2(1) 12.52(2) 660.6(6) 271.8(2) 18.28(1) 5593(8) 356(1) 58.6(2)
128 115.8(3) 84.0(2) 12.55(2) 670.8(7) 369.4(3) 18.40(1) 8776(12) 616(2) 74.1(1)
160 116.5(3) 93.5(2) 12.65(2) 673.4(6) 441.3(3) 18.47(2) 12319(17) 940(3) 88.8(2)
192 115.7(3) 98.8(2) 12.64(3) 673.4(6) 493.2(4) 18.47(2) 16184(23) 1323(4) 102.4(3)
256 115.8(3) 105.7(2) 12.62(3) 674(1) 559.6(8) 18.42(3) 24428(51) 2285(10) 126.7(5)
320 115.8(3) 109.0(2) 12.63(3) 674(1) 595.6(8) 18.42(3) 32864(94) 3459(18) 148.6(8)
384 115.9(3) 111.1(2) 12.66(3) 673(1) 616.4(8) 18.48(3) 41596(166) 4932(30) 168(1)
512 116.0(3) 113.3(2) 12.66(3) 674(1) 642(1) 18.45(3) 57344(507) 9395(91) 199(2)
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TABLE IV. Results for χ, F and χðLÞ in the simplest qubit model with no diagonal hops, U ¼ 0.1 and for an even number of layers
Ly ¼ 2; 4; 6.

Ly ¼ 2 Ly ¼ 4 Ly ¼ 6

L χ F ξðLÞ χ F ξðLÞ χ F ξðLÞ
4 3.537(2) 1.065(1) 1.0771(4) 13.703(6) 0.826(1) 2.803(2) 20.19(1) 0.013(1) 3.481(2)
6 3.790(2) 1.766(1) 1.0700(4) 32.29(1) 1.839(2) 4.082(2) 53.40(3) 0.028(3) 5.396(4)
8 3.811(2) 2.284(1) 1.0669(4) 55.03(3) 3.221(4) 5.258(3) 94.09(5) 0.049(5) 7.114(5)
10 3.809(2) 2.655(1) 1.0669(4) 80.26(4) 4.940(6) 6.343(3) 142.34(7) 0.075(8) 8.773(6)
12 3.806(2) 2.917(1) 1.0671(6) 107.60(6) 6.999(9) 7.325(5) 198.7(1) 0.11(2) 10.45(1)
16 3.804(2) 3.243(2) 1.0660(6) 166.85(9) 12.07(1) 9.178(6) 332.6(3) 0.18(3) 13.65(1)
20 3.806(2) 3.425(2) 1.0661(6) 231.3(1) 18.47(2) 10.849(7) 494.7(5) 0.39(6) 16.77(2)
24 3.808(2) 3.534(2) 1.0668(6) 299.4(2) 26.13(3) 12.388(8) 684.0(8) 0.57(9) 19.87(3)
32 3.808(2) 3.649(2) 1.0669(7) 438.0(3) 45.06(5) 15.065(10) 1138(1) 1.0(1) 25.75(3)
40 3.807(2) 3.703(2) 1.0662(7) 574.6(4) 68.83(7) 17.27(1) 1679(2) 1.6(2) 31.58(6)
48 3.808(2) 3.735(2) 1.0663(7) 701.4(5) 96.88(10) 19.10(1) 2313(4) 3.2(5) 37.30(8)
64 3.810(2) 3.769(2) 1.0674(7) 907.4(8) 164.4(2) 21.67(2) 3800(10) 10(1) 48.1(2)
80 3.807(2) 3.781(2) 1.0664(7) 1044(1) 242.9(3) 23.14(2) 5530(20) 17(2) 58.3(2)
96 3.804(2) 3.786(2) 1.0663(7) 1125(1) 325.6(3) 23.94(2) 7640(30) 27(4) 69.5(3)
128 � � � � � � � � � 1191(1) 486.0(5) 24.54(2) 12350(100) 80(10) 89.0(7)
160 � � � � � � � � � 1210(1) 623.2(6) 24.71(2) � � � � � � � � �
192 � � � � � � � � � 1213(1) 732.7(6) 24.75(2) � � � � � � � � �
256 � � � � � � � � � 1215(1) 887.4(8) 24.76(2) � � � � � � � � �
320 � � � � � � � � � 1214(1) 982(1) 24.76(2) � � � � � � � � �
384 � � � � � � � � � 1214(1) 1043(1) 24.76(3) � � � � � � � � �
512 � � � � � � � � � 1217(1) 1114(1) 24.76(3) � � � � � � � � �

TABLE V. Results for χ, F and χðLÞ in the extended qubit model with diagonal hops but only one layer (Ly ¼ 1). The data are for two
values of J ¼ 3 and J ¼ 5 at U ¼ 0.

J ¼ 3 J ¼ 5

L χ F ξðLÞ χ F ξðLÞ
4 1.9733(3) 0.05729(7) 4.089(3) 0.9761(2) 0.01535(4) 5.596(8)
6 4.5949(7) 0.2231(1) 4.427(1) 2.6657(6) 0.1231(1) 4.545(2)
8 7.631(1) 0.4112(2) 5.474(2) 4.657(1) 0.2357(2) 5.658(3)
10 11.139(2) 0.6422(3) 6.542(2) 6.923(2) 0.3667(3) 6.842(3)
12 15.09(2) 0.916(4) 7.61(3) 9.434(7) 0.524(1) 7.97(1)
16 23.94(4) 1.615(8) 9.59(3) 15.23(1) 0.897(2) 10.25(1)
20 34.10(5) 2.46(1) 11.45(3) 21.91(2) 1.379(3) 12.34(2)
24 45.02(8) 3.47(1) 13.17(4) 29.37(3) 1.943(5) 14.39(2)
32 69.2(1) 6.01(2) 16.54(4) 46.29(4) 3.348(8) 18.27(2)
40 94.7(2) 9.12(4) 19.51(6) 65.08(7) 5.10(1) 21.86(3)
48 120.5(2) 12.94(5) 22.06(6) 84.99(9) 7.20(2) 25.14(3)
64 172.0(4) 22.23(8) 26.58(7) 128.0(1) 12.29(3) 31.26(4)
80 217.7(6) 33.6(1) 29.89(8) 172.7(2) 18.73(4) 36.51(5)
96 256.1(8) 46.7(2) 32.28(9) 216.4(3) 26.32(6) 41.06(6)
128 308(2) 76.2(4) 35.2(1) 297.0(4) 44.95(9) 48.25(7)
160 330(2) 108.1(6) 36.4(1) 361.4(6) 67.8(1) 53.00(7)
192 342(2) 138(1) 37.0(1) 407.3(7) 92.7(2) 56.28(8)
256 348(3) 189(1) 37.1(1) 457(1) 146.8(4) 59.2(1)
320 355(6) 231(3) 37.3(1) 475(1) 198.2(4) 60.2(1)
384 349(7) 251(4) 37.3(1) 481(2) 242.7(6) 60.6(1)
512 350(9) 284(6) 36.9(2) 485(2) 311.3(8) 60.8(2)
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Z ¼ U4 þ 16U2 þ 48J2U2 þ 256UJ

þ 576J4 þ 512J2 þ 96; ðA1Þ

χ ¼ 4U3 þ 16U2 þ 16U2J þ 128UJ þ 64U

þ 96UJ2 þ 384J3 þ 256J2 þ 384J þ 128;

ðA2Þ

F ¼ 4U3 − 16U2J þ 96UJ2 − 384J3 þ 128J: ðA3Þ

In Fig. 6 we plot the values of χ and F obtained using the
above relations as a function of J at U ¼ 0.1 and U ¼ 1.3.
For comparison, results obtained from our Monte Carlo
algorithm are given at a few values of J.

APPENDIX B: MONTE CARLO RESULTS

In Tables III–V we give results for our observables χ, F
obtained from our Monte Carlo calculations at various
values of L. We also give results for χðLÞ obtained from χ
and F using Eq. (4).
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