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The gravitational form factors (GFFs) of hadrons encode the matrix elements of the energy-momentum
tensor of QCD. These quantities describe how energy, spin, and various mechanical properties of hadrons
are carried by their quark and gluon constituents. We present the gluon GFFs of the pion, nucleon, ρmeson,
and Δ baryon as functions of the squared momentum transfer t in the region 0 ≤ −t < 2 GeV2, as
determined in a lattice QCD study with pion mass mπ ¼ 450ð5Þ MeV. By fitting the extracted GFFs using
multipole and z-parameter expansion functional forms, we extract various gluon contributions to the
energy, pressure, and shear force distributions of the hadrons in the 3D and 2D Breit frames as well as in
the infinite momentum frame. We also obtain estimates for the corresponding gluon mechanical and mass
radii, as well as the forward-limit gluon contributions to the momentum fraction and angular momentum of
the hadrons.
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I. INTRODUCTION

Understanding the internal dynamics of hadrons in terms
of their fundamental quark and gluon constituents has
been a goal of particle and nuclear physics since the first
experimental probe of proton substructure at SLAC [1] and
the subsequent development of the theory of quantum
chromodynamics (QCD) [2–4]. However, many aspects of
hadron structure have not yet been fully constrained from
theory or experiment, including the gravitational form
factors (GFFs) [5] of hadrons, defined from matrix ele-
ments of the QCD energy-momentum tensor (EMT). These
form factors describe how energy, spin, pressure, and shear
forces are distributed within hadrons [6]; therefore, their
determination is of fundamental significance.
The off-forward hadron matrix elements of the sym-

metric1 EMT Tμν
i , with i ∈ fq; gg indexing the gluon or

quark component, can generically be decomposed into Nh
terms with distinct Lorentz structures as

hhðp; sÞjTμν
i jhðp0; s0Þi ¼

XNh

j¼1

Kfμνg;h;j
ss0 ðP;ΔÞGh;j

i ðtÞ; ð1Þ

where jhðp; sÞi denotes a hadronic state with four-

momentum p and polarization s, and Kfμνg;h;j
ss0 are

kinematic coefficients symmetrized over their Lorentz
indices as afμbνg ¼ ðaμbν þ bμaνÞ=2, written in terms of

P ¼ ðpþ p0Þ=2 and Δ ¼ p0 − p. The GFFs Gh;j
i ðtÞ are

functions of the Mandelstam variable t ¼ Δ2, and j indexes
the different GFFs in the decomposition for hadron h.
An analogous decomposition of the total conserved
EMT Tμν ¼ P

q T
μν
q þ Tμν

g yields the total GFFs

Gh;jðtÞ ¼ P
q G

h;j
q ðtÞ þGh;j

g ðtÞ.
The GFFs associated with the symmetric traceless part of

the EMT correspond to the second Mellin moments of
the corresponding generalized parton distributions (GPDs)
[8–10], which allows them to be constrained by experimental
data from deeply virtual Compton scattering (DVCS)
[11–13] and meson production [14,15]. For example, data
from the Belle experiment at KEKB [16,17] has been used to
constrain the pion quark GFFs [18], while the nucleon quark
GFFs have been studied fromDVCSwith the CLAS detector

]19–22 ] at the Thomas Jefferson National Accelerator
Facility (JLab). The PANDA experiment at the Facility
for Antiproton and Ion Research (FAIR) [23], as well as
future experiments at SuperKEKB, the International Linear
Collider (ILC), the Japan proton accelerator complex
(J-PARC) [24] and the nuclotron-based ion collider facility
(NICA) [25] will further constrain the quark GPDs and thus
GFFs of various hadrons.
There has also been significant progress in the theoretical

determination of quark and total GFFs, in particular
through lattice QCD, phenomenology, and models. For
example, the total and quark GFFs of the pion [26] and the
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1In general the QCD EMT does not need to be symmetric, and
its matrix elements for hadrons of spin > 0 include additional
GFFs associated with antisymmetric Lorentz structures [7]. Here
we only consider the symmetric part.
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nucleon [27–31] have been studied via chiral perturbation
theory, chiral quark models like the spectral quark model
and the Nambu-Jona-Lasinio (NJL) model have been used
to constrain the pion [32,33] and the ρ GFFs [33], the bag
model to investigate those of the nucleon, ρ meson, and Δ
baryon [34], the Skyrme model those of the nucleon
[35,36] and Δ baryon [37], the chiral quark-soliton model
[38–45] instanton model [46] and light-cone QCD sum rule
formalism [47] those of the nucleon, and the light-cone
constituent quark model [48] and AdS/QCD model [49]
those of the ρ meson. Lattice QCD has also been used to
study the quark GFFs of the pion [50,51] and nucleon
[52–56], and these quantities have been studied within the
large-Nc approach [57].
The gluon contributions to the GFFs, on the other hand,

are far less well constrained and have so far only been
studied in an extended holographic light-front QCD frame-
work for the pion and nucleon [58], in lattice QCD
calculations for the pion [59], nucleon [52,56,59–62],
and ϕ meson [63], in almost all cases at larger-than-
physical values of the quark masses. While no experimental
constraints on the gluon GFFs of any hadron have been
achieved to date, the gluon GFFs of the nucleon are
accessible via photo- or leptoproduction of J=ψ and ϒ
[64–66]; J=ψ production is studied in experiments that are
ongoing at JLab [67], while ϒ production studies are
planned at the electron-ion collider (EIC) [68]. Improved
QCD constraints on the gluon GFFs of the nucleon and
other hadrons are particularly valuable at the current time as
they can inform the target kinematics for these experiments
and provide theory predictions to test against future
experimental results.
In this work, we present a lattice QCD calculation of

gluon GFFs of the pion and nucleon at unphysically
heavy quark masses, incorporating additional data cor-
responding to spin-nonconserving channels and an
improved statistical analysis compared with the previous
study of Ref. [59]. We further undertake a first study of
the complete set of gluon GFFs of the ρ meson and Δ
baryon, which are stable at these quark masses, to
investigate the gluon radii and gluon energy, pressure,
and shear force distributions of hadrons of higher spin.
In Sec. II we outline the lattice QCD calculation and
analysis, discussed more extensively in Appendix A, and
show the extracted renormalized GFFs for all hadrons
considered. In Sec. III, we present our results for the radii
and densities in different frames. In Sec. IV, we provide a
summary and outlook.

II. GRAVITATIONAL FORM FACTORS
FROM LATTICE QCD

In this section we discuss the decompositions of had-
ronic matrix elements of the gluon EMT into gluon GFFs
for the pion, nucleon, ρ meson, and Δ baryon, and present
the results of our lattice QCD extraction of these quantities.
We use a single ensemble of 2820 configurations of lattice
volume 323 × 96 with Nf ¼ 2þ 1 quark flavors, with a
heavier-than-physical pion mass ofmπ ¼ 450ð5Þ MeV and
lattice spacing a ¼ 0.1167ð16Þ fm [69]. The ensemble was
generated using the Lüscher-Weisz gauge action [70] and
clover-improved Wilson quarks [71] with clover coefficient
set to the tree-level tadpole-improved value and constructed
using stout-smeared links [72]. The specifics of the
ensemble are summarized in Table I [73,74]. Our results
for the nucleon and pion GFFs are consistent with but more
precise than those of Ref. [59], which studied those states
on a subset of the data used in this work, including only
spin-conserving channels.
Our methods are similar to those of Ref. [59], but with an

improved statistical analysis and with the necessary exten-
sions to treat hadrons of higher spin. The calculation
proceeds independently but analogously for each hadron,
in several stages detailed in Appendix A:

(i) Compute (hadron-independent) measurements of
the symmetric traceless gluon EMT, discretized
and projected to irreducible representations (irreps)
of the hypercubic group that are protected
from mixing with lower-dimensional operators
(Appendix A 1).

(ii) Compute hadronic two-point correlation functions
(Appendix A 2) and three-point correlation functions
(Appendix A 3) including insertions of the
gluon EMT.

(iii) Extract hadronic matrix elements of the gluon EMT
by fitting ratios of three- and two-point correlation
functions (Appendix A 4).

(iv) Extract the renormalized gluon GFFs by fitting the
constraints defined by the measured matrix elements
and Eq. (1) (Appendices A 5, A 6), incorporating the
renormalization factors for the different irreps com-
puted using a nonperturbative RI-MOM prescription
and a one-loop perturbative matching to MS at
μ ¼ 2 GeV. We neglect effects due to mixing with
the quark GFFs under renormalization, which are
expected to be Oð10%Þ [56,75] and thus small
compared with the statistical uncertainty of the
calculation.

TABLE I. Specifics of the ensemble used for the lattice QCD calculation. An average of N̄meas sources are measured on each of Ncfgs
configurations. For more information see Ref. [73].

L=a T=a β aml ams a (fm) L (fm) T (fm) mπ (MeV) mK (MeV) mπL mπT Ncfgs N̄meas

32 96 6.1 −0.2800 −0.2450 0.1167(16) 3.7 11.2 450(5) 596(6) 8.5 25.6 2820 235
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Our lattice calculation yields the GFFs at a set of discrete
values of the squared momentum transfer t but, as dis-
cussed in Sec. III, subsequent extrapolations to the forward
limit and derivations of densities and radii require models
of the t dependence of the GFFs. We consider two different
ansätze, a multipole and a modification of the z-parameter
expansion or “z-expansion” [76,77]. The multipole form is
defined as

GnðtÞ ¼
α

ð1 − t=Λ2Þn ; ð2Þ

where α and Λ are free parameters and we set n ¼ 3
(tripole) in order for all the integrals that define the energy,
pressure, and shear force densities discussed in Sec. III
to converge. As introduced in Ref. [77], the modified
z-expansion we consider is

Gz;nðtÞ ¼
1

ð1 − t=Λ2Þn
Xkmax

k¼0

αk½zðtÞ�k; ð3Þ

where

zðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t0

pffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t0

p ; ð4Þ

αk are free parameters, and Λ is constrained as described
below. This functional form can be interpreted as a series of
corrections to the envelope defined by the multipole form,
which coincides with Eq. (3) when kmax ¼ 0. The multipole
envelope is necessary for convergence of the density integrals
discussed in Sec. III. Following Ref. [77], we set kmax ¼ 2,
t0 ¼ tcutð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2 GeVÞ2=tcut

p
Þ, and tcut ¼ 4m2

π , using
mπ ¼ 450 MeV. For each GFF, we use Λ obtained from the
multipole fit to the sameGFF as a prior for the parameterΛ in
the z-expansion, retaining correlations between the prior and
the data,2 thereby reducing the number of free parameters
to prevent overfitting and explicitly enforcing the notion of
the modified z-expansion as a correction to the multipole
envelope. As detailed in Appendix A, we fit the models to
bare GFFs and renormalize afterwards to circumvent the
d’Agostini bias [79]; in this section we present the resulting
renormalized parameters α and αk.

A. Pion

The pion matrix element of the symmetric gluon or
quark contribution to the energy-momentum tensor can be
decomposed as

(a) (b)

FIG. 1. Aπ
gðtÞ (a) and Dπ

gðtÞ (b), renormalized at μ ¼ 2 GeV in the MS scheme. The bands correspond to the multipole form [Eq. (2)]
with n ¼ 3 and the modified z-expansion [Eq. (3)] with kmax ¼ 2, with fit parameters shown in Table II.

TABLE III. The forward-limit values of the gluon momentum
fraction and the gluon D-term, obtained from the tripole and
modified z-expansion fits to the pion GFFs, renormalized at μ ¼
2 GeV in the MS scheme, with parameters shown in Table II.

Tripole z-expansion

Aπ
gð0Þ 0.537(45) 0.544(46)

Dπ
gð0Þ −0.793ð84Þ −0.74ð21Þ

TABLE II. Fit parameters of the multipole [Eq. (2)] with n ¼ 3
and the modified z-expansion [Eq. (3)] with kmax ¼ 2 and n ¼ 3
models for the t dependence of the renormalized pion GFFs. For
all GFFs, the parameter Λ of the z-expansion fit is consistent with
the prior provided by the tripole fit and is thus not shown. The
parameters α and αk are renormalized at μ ¼ 2 GeV after fitting
the bare GFFs as described in Appendix A 5.

Tripole α Λ (GeV) χ2=d:o:f:

Aπ
gðtÞ 0.537(45) 2.561(43) 0.9

Dπ
gðtÞ −0.793ð84Þ 1.90(11) 1.3

z-expansion α0 α1 α2 χ2=d:o:f:

Aπ
gðtÞ 0.540(45) 0.14(10) 0.70(52) 0.8

Dπ
gðtÞ −0.793ð70Þ 0.21(75) 2.0(7.3) 1.1

2Compare with the discussion of “chained fitting” in Ref. [78].
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hπðp0ÞjTμν
i jπðpÞi ¼ 2PμPνAπ

i ðtÞ þ 2m2
π c̄πi ðtÞgμν

þ 1

2
ðΔμΔν − gμνΔ2ÞDπ

i ðtÞ
≡Oμν

ðπÞ½Aπ
i ðtÞ; Dπ

i ðtÞ� þ trace; ð5Þ

where i ∈ fq; gg, gμν is the Minkowski space-time metric,
and we have defined the traceless piece Oμν

ðπÞ for later

convenience. Aπ
i ð0Þ is the traceless contribution to the

momentum fraction carried by the quarks or gluons and
must satisfy Aπð0Þ ¼ P

i A
π
i ð0Þ ¼ 1 because of Poincaré

symmetry. Dπ
i ðtÞ is related to the mechanical properties of

the pion. In the forward and chiral limits, the total Dπð0Þ,
also called the D-term or Druck term, is predicted to be −1
up to chiral-symmetry breaking effects [26,80,81]. c̄πi ðtÞ
appears due to the nonconservation of the separate quark
and gluon contributions and vanishes for the total EMT,
i.e., c̄πðtÞ ¼ c̄πgðtÞ þ

P
q c̄

π
qðtÞ ¼ 0.

Our results for the two renormalized traceless gluon
GFFs of the pion, Aπ

gðtÞ and Dπ
gðtÞ, are shown in Fig. 1.

The fit parameters for the two ansätze, Eqs. (2) and (3), are
shown in Table II, and the predicted forward-limit gluon

momentum fraction and D-term are shown in Table III.
We note that the sum of our gluon D-term with the value
Dπ

uþdð0Þ ¼ −0.264ð32Þ (extrapolated to the physical pion
mass) from Ref. [51] is statistically consistent with the
chiral prediction, although this may be a coincidence that
does not survive a chiral and continuum limit extrapolation.

B. Nucleon

For the nucleon, the GFFs of the symmetric gluon or
quark parts of the EMT are defined by

hNðp0; σ0ÞjTμν
i jNðp; σÞi

¼ ūðp0; σ0Þ
�
γfμPνgAN

i ðtÞ þ
iPfμσνgρΔρ

2mN
BN
i ðtÞ

þmNgμνc̄Ni ðtÞ þ
ΔμΔν − gμνΔ2

4mN
DN

i ðtÞ
�
uðp; σÞ

≡ ūðp0; σ0ÞOμν
ðNÞ½AN

i ðtÞ;…�uðp; σÞ þ trace; ð6Þ

where mN denotes the nucleon mass, σμν ¼ i
2
½γμ; γν�, and

uðp; σÞ is the Dirac spinor, which satisfies

(a) (b)

(c)

FIG. 2. AN
g ðtÞ (a), DN

g ðtÞ (b), and BN
g ðtÞ (c), renormalized at μ ¼ 2 GeV in the MS scheme. The bands correspond to the multipole

form [Eq. (2)] with n ¼ 3 and the modified z-expansion [Eq. (3)] with kmax ¼ 2, with fit parameters shown in Table IV.
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X
σ

uðp; σÞūðp; σÞ ¼ =pþmN; ð7Þ

where σ ∈ f−1=2;þ1=2g. Equation (6) is often expressed
in terms of the form factor JNi ðtÞ ¼ ðAN

i ðtÞ þ BN
i ðtÞÞ=2

instead of BN
i ðtÞ, where the total JNð0Þ ¼ 1=2 is the spin of

the nucleon. As for the total GFFs for spin-0 states,
ANð0Þ ¼ 1 and c̄NðtÞ ¼ 0 for the GFFs of spin-1=2 states.
The new form factor BNðtÞ that appears for hadrons of
spin > 0 must obey BNð0Þ ¼ 0 due to the vanishing of
the anomalous gravitomagnetic moment of spin-1=2 fer-
mions [5,11,82–88]. The are no a priori restrictions on the
D-term of a spin-1=2 hadron, but for a free fermion
DNð0Þ ¼ 0 [89].
Our results for the three renormalized traceless gluon

GFFs of the nucleon are shown in Fig. 2, the tripole
and modified z-expansion fit parameters are shown in
Table IV, and the predictions for the forward-limit gluon
contributions to the momentum fraction, D-term, and
angular momentum are shown in Table V. Note that the
increase order-by-order of the parameters in the modified
z-expansion fit for the D-term are not of concern, as we
consider here a modification of the standard z-expansion
for which the guarantees of convergence for the standard
form do not apply.
These results are based on a superset of the data

presented in Ref. [59], including a larger number of
sources per configuration and all four nucleon

polarization channels, rather than only the two spin-
conserving ones. The additional data allows a nonzero
functional fit for BN

g ðtÞ to be resolved. Additionally, the
behavior of AN

g ðtÞ and DN
g ðtÞ in the lower half of the −t

region studied is shifted slightly compared to what was
found in Ref. [59]. These updated results show a quali-
tative difference between the low-jtj behavior of the model
obtained forDN

g ðtÞ with the tripole functional form (that is
by definition monotonic), and the modified z-expansion
fit (that is allowed to be nonmonotonic). In general,
monotonically increasing behavior is universally expected
for the total D-term of any stable mechanical system [90];
however, no such prediction exists for the individual quark
and gluon contributions. It is not clear whether the
suppression of the lowest-jtj point of DN

g ðtÞ is physical
or due to a statistical fluctuation or unquantified system-
atic uncertainty. If physical, it would imply a qualitatively
different t dependence of the gluon GFFs compared with
that typically assumed for the quark GFFs, and suggest
that the multipole functional form often used by default
for these quantities is not a good model at low jtj. If the
first data point is considered an outlier and excluded from
the z-expansion fit, the resulting error bands do not
exclude nonmonotonicity but encompass both monotonic
and nonmonotonic forms.
Our predictions for AN

g ð0Þ and JNg ð0Þ are statistically
consistent with the equivalent quantities found in a lattice
QCD calculation at quark masses corresponding to the
physical value of the pion mass [56].

C. ρ meson

Following the conventions of Ref. [91], the matrix
elements of the gluon or quark contribution to the sym-
metric EMT for the ρ meson can be decomposed as

TABLE V. The forward-limit values of the gluon contributions
to the momentum fraction,D-term, and angular momentum of the
nucleon, obtained from the tripole and modified z-expansion fits
of the nucleon GFFs renormalized at μ ¼ 2 GeV in the MS
scheme, with parameters shown in Table IV.

Tripole z-expansion

AN
g ð0Þ 0.429(39) 0.414(40)

DN
g ð0Þ −1.93ð53Þ 0.4(1.2)

JNg ð0Þ 0.263(26) 0.211(57)

TABLE IV. Fit parameters of the multipole [Eq. (2)] with n ¼ 3
and the modified z-expansion [Eq. (3)] with kmax ¼ 2 and n ¼ 3
models for the t dependence of the renormalized nucleon GFFs.
For all GFFs, the parameter Λ of the z-expansion fit is consistent
with the prior provided by the tripole fit and is thus not shown.
The parameters α and αk are renormalized at μ ¼ 2 GeV after
fitting the bare GFFs as described in Appendix A 5.

Tripole α Λ (GeV) χ2=d:o:f:

AN
g ðtÞ 0.429(39) 1.641(43) 1.1

BN
g ðtÞ 0.097(26) 4.0(2.5) 1.4

DN
g ðtÞ −1.93ð53Þ 1.07(12) 2.0

z-expansion α0 α1 α2 χ2=d:o:f:

AN
g ðtÞ 0.426(38) −0.22ð22Þ −1.2ð1.2Þ 0.9

BN
g ðtÞ 0.108(16) −0.19ð20Þ −2.9ð3.2Þ 1.1

DN
g ðtÞ −2.09ð35Þ 18.0(7.9) 132(58) 1.0
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(a) (b)

(c) (d)

(e) (f)

(g)

FIG. 3. Aρ
0;gðtÞ (a), Aρ

1;gðtÞ (b),Dρ
0;gðtÞ (c),Dρ

1;gðtÞ (d), JρgðtÞ (e), Eρ
gðtÞ (f), and f̄ρgðtÞ (g), renormalized at μ ¼ 2 GeV in the MS scheme.

The bands correspond to the multipole form [Eq. (2)] with n ¼ 3 and the modified z-expansion [Eq. (3)] with kmax ¼ 2, with fit
parameters shown in Table VI. No fit is shown forDg

1ðtÞ because the corresponding data is not well described by either functional form.
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hρðp0; λ0ÞjTμν
i jρðp; λÞi ¼ ϵ�α0 ðp0; λ0Þϵαðp; λÞ

�
2PμPν

�
−gαα0Aρ

0;iðtÞ þ
PαPα0

m2
ρ

Aρ
1;iðtÞ

�
þ 1

2
ðΔμΔν − gμνΔ2Þ

�
gαα

0
Dρ

0;iðtÞ þ
PαPα0

m2
ρ

Dρ
1;iðtÞ

�
þ 4½Pfμgνgα0Pα þ PfμgνgαPα0 �Jρi ðtÞ

þ ½gαfμgνgα0Δ2 − 2gα
0fμΔνgPα þ 2gαfμΔνgPα0 − 4gμνPαPα0 �Eρ

i ðtÞ

þ
�
2gαfμgνgα0 −

1

2
gαα

0
gμν

�
m2

ρf̄
ρ
i ðtÞ þ gμν½gαα0m2

ρc̄
0;ρ
i ðtÞ þ PαPα0 c̄1;ρi ðtÞ�

�
≡ ϵ�α0 ðp0; λ0Þϵαðp; λÞOαμνα0

ðρÞ ½Aρ
0;iðtÞ; Aρ

1;iðtÞ; Dρ
0;iðtÞ; Dρ

1;iðtÞ; Jρi ðtÞ; Eρ
i ðtÞ; f̄ρi ðtÞ� þ trace; ð8Þ

where mρ denotes the mass of the ρ meson, and ϵαðp; λÞ is
the polarization 4-vector for a massive spin-1 particle,
which satisfiesX

λ

ϵαðp; λÞϵβðp; λÞ ¼ −gαβ þ
pαpβ

m2
ρ

≡ ΛðρÞ
αβ ðpÞ ð9Þ

with λ ∈ f1; 0;−1g. Note that the subscript ρ in mρ and the
superscript ρ in the GFFs such as Aρ

0;iðtÞ is a label for the
ρ meson and not a Lorentz index.
The momentum sum rule constrains the total momentum

fraction to be Aρð0Þ≡ Aρ
0ð0Þ ¼ 1, and the forward-limit

angular momentum must be equal to the spin of the hadron,
i.e., Jρð0Þ ¼ 1. The interpretation of the D-term of the ρ
meson is more complicated than those of the pion and the

nucleon, since there are three such terms [48,91], one of
monopole and two of quadrupole order, corresponding to
frame-dependent linear combinations of Dρ

0ð0Þ, Dρ
1ð0Þ, and

Eρð0Þ. Here we focus on the forward limit of the form
factor that is the coefficient of the same Lorentz structure
corresponding to the D-term GFFs of the nucleon and
pion, namely Dρð0Þ≡ −Dρ

0ð0Þ, which is unconstrained
from theory. There are two GFFs that arise from the trace
of the EMT, c̄1;ρi ðtÞ and c̄2;ρi ðtÞ, and their contribution to the
total EMT must be equal to zero. In contrast to the pion and
the nucleon GFF decompositions, the traceless piece of
the EMT matrix element for hadrons of spin-1 gives rise to
a nonconserved GFF, f̄ρi ðtÞ, which we can access in our
calculation and vanishes when summed over the quark and
gluon contributions.
Our results for the seven renormalized traceless gluon

GFFs are shown in Fig. 3. Model fit parameters are
tabulated in Table VI, excluding for the GFF Dρ

1;gðtÞ,
which is not well described by either model ansatz. The
conserved gluon predictions of these quantities are pre-
sented in Table VII.
We find that approximately half of the angular momen-

tum of the ρ meson is carried by gluons. Interestingly, the
NJL model [33] predicts that half is carried by the quark
spin. Just as in the nucleon case, we find a significant
difference between the forward limit of the D form factor
resulting from the tripole fit and the z-expansion (see
Table VI) which can be traced to the difference of the
two fits in the low momentum region of Dρ

0;gðtÞ as seen in

TABLE VI. Fit parameters of the multipole [Eq. (2)] with n ¼ 3
and the modified z-expansion [Eq. (3)] with kmax ¼ 2 and n ¼ 3
models for the t dependence of the renormalized ρ GFFs. The
signal for Dρ

1;gðtÞ is not well described by either functional form
and therefore no fit is shown. For all GFFs that have been fit, the
parameter Λ of the z-expansion fit is consistent with the prior
provided by the tripole fit and is thus not shown. The parameters
α and αk are renormalized at μ ¼ 2 GeV after fitting the bare
GFFs as described in Appendix A 5.

Tripole α Λ (GeV) χ2=d:o:f:

Aρ
0;gðtÞ 0.485(41) 2.205(41) 0.8

Aρ
1;gðtÞ −0.281ð84Þ 1.97(43) 0.5

Dρ
0;gðtÞ 1.16(14) 2.01(14) 1.9

JρgðtÞ 0.491(42) 2.327(44) 0.6
Eρ
gðtÞ 0.295(41) 2.33(25) 0.7

f̄ρgðtÞ −0.178ð15Þ 3.63(22) 0.8

z-expansion α0 α1 α2 χ2=d:o:f:

Aρ
0;gðtÞ 0.485(41) −0.04ð11Þ −0.23ð66Þ 0.7

Aρ
1;gðtÞ −0.276ð42Þ −0.10ð71Þ −2ð11Þ 0.5

Dρ
0;gðtÞ 1.19(11) −0.86ð85Þ −12ð12Þ 1.6

JρgðtÞ 0.494(42) −0.105ð69Þ −1.01ð66Þ 0.4
Eρ
gðtÞ 0.301(29) −0.11ð24Þ −1.7ð3.8Þ 0.6

f̄ρgðtÞ −0.179ð15Þ 0.005(54) 0.04(37) 0.7

TABLE VII. The forward-limit values of the conserved gluon
contribution to the momentum fraction, D form factor, and
angular momentum of the ρ meson, with definitions provided
in the text. The values are obtained from the tripole and modified
z-expansion fits of the ρ GFFs, renormalized at μ ¼ 2 GeV in the
MS scheme, with parameters shown in Table VI.

Tripole z-expansion

Aρ
gð0Þ 0.485(41) 0.482(42)

Dρ
gð0Þ −1.16ð14Þ −0.81ð38Þ

Jρgð0Þ 0.491(42) 0.469(42)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 4. FΔ;g
10 ðtÞ (a), FΔ;g

11 ðtÞ (b), FΔ;g
20 ðtÞ (c), FΔ;g

21 ðtÞ (d), FΔ;g
40 ðtÞ (e), FΔ;g

41 ðtÞ (f), FΔ;g
50 ðtÞ (g), and FΔ;g

60 ðtÞ (h), renormalized at μ ¼ 2 GeV
in the MS scheme. The bands correspond to the multipole form [Eq. (2)] with n ¼ 3 and the modified z-expansion [Eq. (3)] with
kmax ¼ 2, with fit parameters shown in Table VIII. No fit is shown for the four GFFs that are not resolved from zero.
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Fig. 3(c). Here the first data point again suggests non-
monotonic behavior that cannot be captured by a multipole
form, but it is unclear whether this is a physical effect or
due to a statistical fluctuation or underestimated systematic
uncertainty. In Ref. [48], the totalDρ

0ðtÞ from the light-front
constituent quark model was found to be nonmonotonic, in
contrast with the prediction from the NJL model [33].

D. Δ baryon

For the Δ baryon, the matrix element of the quark or
gluon symmetric EMT can be decomposed as [37]

hΔðp0; ξ0ÞjTμν
i jΔðp; ξÞi

¼ ūα0 ðp0; ξ0Þ
�
PμPν

mΔ

�
−gαα0FΔ;i

10 ðtÞ þ
ΔαΔα0

2m2
Δ

FΔ;i
11 ðtÞ

�
þ ΔμΔν − gμνΔ2

4mΔ

�
−gαα0FΔ;i

20 ðtÞ þ
ΔαΔα0

2m2
Δ

FΔ;i
21 ðtÞ

�
þmΔgμν

�
−gαα0FΔ;i

30 ðtÞ þ
ΔαΔα0

2m2
Δ

FΔ;i
31 ðtÞ

�
þ iPfμσνgρΔρ

mΔ

�
−gα0αFΔ;i

40 ðtÞ þ
Δα0Δα

2m2
Δ

FΔ;i
41 ðtÞ

�
þ 2

mΔ
ðΔfμgνgfα0Δαg − gμνΔαΔα0 − gα

0fμgνgαΔ2ÞFΔ;i
50 ðtÞ − 2gα

0fμgνgαmΔF
Δ;i
60 ðtÞ

�
uαðp; ξÞ

≡ ūα0 ðp0; ξ0ÞOαμνα0
ðΔÞ ½FΔ;i

10 ðtÞ; FΔ;i
11 ðtÞ; FΔ;i

20 ðtÞ; FΔ;i
21 ðtÞ; FΔ;i

40 ðtÞ; FΔ;i
41 ðtÞ; FΔ;i

50 ðtÞ; FΔ;i
60 ðtÞ�uαðp; ξÞ þ trace; ð10Þ

wheremΔ denotes the mass of theΔ baryon, and uαðp; ξÞ is
the Rarita-Schwinger spin-vector satisfyingX
ξ

uσðp; ξÞūτðp; ξÞ

¼ −
=pþmΔ

2mΔ

�
gστ −

1

2
γσγτ −

2pσpτ

3m2
Δ

þ pσγτ − pτγσ
3mΔ

�
≡ ΛðΔÞ

στ ðpÞ ð11Þ

with ξ ∈ f3=2; 1=2;−1=2;−3=2g.
The total momentum fraction AΔð0Þ≡ FΔ

10ð0Þ is con-
strained to equal 1. As with the ρ, there are three total
D-terms of different order and we again focus our dis-
cussion on the form factor that is the coefficient of the
same Lorentz structure as the nucleon and pion D-terms,
namely DΔð0Þ≡ FΔ

20ð0Þ. The total forward-limit angular

momentum, JΔð0Þ ¼ FΔ
40ð0Þ, is constrained to be equal to

3=2 [37]. Just as in the case of the ρ meson, there are
nonconserved GFFs related to the trace piece, FΔ;i

30 ðtÞ and
FΔ;i
31 ðtÞ, that we do not have access to in this calculation,

and one nonconserved GFF FΔ;i
60 ðtÞ, that arises from the

traceless EMT and that we are able to constrain.
Our results for the eight renormalized traceless gluon

GFFs of the Δ baryon are shown in Fig. 4. Only four of
them are resolved from zero, and their fit parameters are
shown in Table VIII. The conserved gluon contributions to
the forward limit quantities obtained from the tripole and
z-expansion fits are shown in Table IX.

III. DENSITIES AND RADII FROM GFFs

In the decomposition of the matrix element
hhðp0; s0ÞjTμν

i jhðp; sÞi, the GFFs are Lorentz scalars but

TABLE VIII. Fit parameters of the multipole [Eq. (2)] with
n ¼ 3 and the modified z-expansion [Eq. (3)] with kmax ¼ 2
and n ¼ 3 models for the t dependence of the renormalized Δ
GFFs. Only four of the eight GFFs are fit, as the others are
not resolved from zero as seen in Fig. 4. For all GFFs that
have been fit, the parameter Λ of the z-expansion fit is
consistent with the prior provided by the tripole fit and is
thus not shown. The parameters α and αk are renormalized at
μ ¼ 2 GeV after fitting the bare GFFs as described in
Appendix A 5.

Tripole α Λ (GeV) χ2=d:o:f:

FΔ;g
10 ðtÞ 0.393(36) 1.788(66) 1.2

FΔ;g
20 ðtÞ −1.80ð69Þ 1.10(17) 2.3

FΔ;g
40 ðtÞ 0.587(78) 1.421(78) 2.0

FΔ;g
60 ðtÞ 0.0492(89) 2.26(38) 2.1

z-expansion α0 α1 α2 χ2=d:o:f:

FΔ;g
10 ðtÞ 0.395(35) −0.19ð21Þ −1.2ð1.4Þ 1.0

FΔ;g
20 ðtÞ −2.36ð42Þ 18.8(8.4) 153(68) 1.3

FΔ;g
40 ðtÞ 0.623(62) −0.56ð49Þ −7.0ð6.0Þ 1.6

FΔ;g
60 ðtÞ 0.0554(69) −0.154ð97Þ −1.49ð93Þ 1.5

TABLE IX. The forward-limit values of the conserved gluon
contribution to the momentum fraction,D form factor, and angular
momentum of the Δ baryon, obtained from the tripole and
modified z-expansion fits of the Δ GFFs, renormalized at μ ¼
2 GeV in the MS scheme, with parameters shown in Table VIII.

Tripole z-expansion

AΔ
g ð0Þ 0.393(36) 0.378(38)

DΔ
g ð0Þ −1.80ð69Þ 0.9(1.5)

JΔg ð0Þ 0.588(78) 0.41(18)
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their coefficients depend on the reference frame. The spatial
energy, pressure, and shear force densities of hadrons are
related to Fourier transforms of the momentum space
matrix elements, and therefore are also frame dependent.
In this work we consider these densities in two frames,
namely the Breit frame and the infinite momentum frame.
Breit frame (BF).—The “brick-wall” frame in which

there is no energy transfer to the system, Δ0 ¼ 0, and
additionally P ¼ 0. This is the frame traditionally used to
define spatial distributions, such as the charge distribution

in terms of the electromagnetic form factors [92]. The
equivalent 3D density for the EMT in the BF (the BF3
density) is

Tμν
i;BF3ðrÞ ¼

Z
d3Δe−iΔ·r

2P0ð2πÞ3 hhðp
0; s0ÞjTμν

i jhðp; sÞijP¼0;

ð12Þ

where P0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

h þ Δ2=4
p

, while in a 2D plane, the (BF2)
density is equal to

(a) (b)

(c) (d)

(e) (f)

FIG. 5. Traceless gluon contributions to the pressure (a-b), shear force (c-d), and energy (e-f) distributions of the pion in the 3D BF, 2D
BF, and in the IMF. The figures in the left (right) column correspond to densities computed from the tripole (modified
z-expansion) fits, with fit parameters given in Table II.
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Tμν
i;BF2ðrÞ ¼

Z
d2Δ⊥e−iΔ⊥·r

2P0ð2πÞ2 hhðp0; s0ÞjTμν
i jhðp; sijP¼0:

ð13Þ

It is known that the Fourier transform of a form factor in
the BF is not a relativistically correct way to define the
corresponding spatial distributions [93,94] since one is free
to multiply the distribution by a boost factor that cannot
be uniquely defined in relativistic quantum field theory.
However, following the phase-space approach introduced
in Refs. [95,96], Eqs. (12) and (13) can be interpreted as
quasidistributions instead of densities, and there is no
ambiguity with respect to the boost factor.
Infinite momentum frame (IMF).—The elastic frame in

which Δ · P ¼ 0 and Pz → ∞. In this frame there is
Galilean symmetry in the transverse plane and thus 2D
Fourier transforms of the momentum tensor matrix ele-
ments can be interpreted as spatial densities.3 The expres-
sion for the EMT density in this frame is

Tμν
i;IMFðrÞ ¼

Z
d2Δ⊥e−iΔ⊥·r

2P0ð2πÞ2 hhðp0; s0ÞjTμν
i jhðp; sÞijPz→∞

P·Δ¼0;

ð14Þ

where P0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

h þ Δ2=4þ P2
z

p
. We note that for the case

of the pressure and shear forces of spherically symmetric
hadrons, it was recently shown that the densities in the two
frames are related by Abel transformations [101].

A. Pion

The expressions for the various EMT distributions of
the pion in terms of the corresponding GFFs are listed in
Appendix B 1. In Fig. 5, we present our results for the
gluon contribution to the energy density εðrÞ, the pressure
pðrÞ, and the shear forces sðrÞ in the 3D and 2D BF, and
in the IMF. The definitions of the energy and pressure
densities of the individual constituents include the non-
conserved GFF c̄ðtÞ, which cancels between the quark and
gluon contributions. Since we cannot constrain this term
from our calculations, the results shown in Fig. 5, and for
the rest of the hadrons in the sections below, include only
the traceless gluon contribution to the densities.

From the pressure density, it is interesting to test whether
the 3D and 2D von Laue stability conditions [102] for the
total pressure of a composite particleZ

∞

0

drr2pBF3ðrÞ ¼ 0;
Z

∞

0

dr⊥r⊥pBF2=IMFðr⊥Þ ¼ 0

ð15Þ

hold for the traceless gluon piece alone. Indeed, by
numerical integration we find that the pressures are con-
sistent with the von Laue condition in all frames and using
both multipole and z-expansion functional forms to model
the t dependence of the GFFs. Another important stability
condition first shown in Ref. [88] and recently extended in
Ref. [98] is that for the total D-term

Dð0Þ ≤ 0; ð16Þ

which is satisfied by the gluon contribution to the pion
D-term in Table II. We also find that the hadron stability
conditions [88,99]

pBF3ðrÞ þ
2

3
sBF3ðrÞ > 0

pBF2=IMFðr⊥Þ þ
1

2
sBF2=IMFðr⊥Þ > 0 ð17Þ

hold for the traceless gluon piece of the pion pressure
and shear force, which allows us to define a partial gluon

TABLE X. Conserved gluon contributions to the mechanical
and mass radii of the four hadrons, as defined in Eq. (B5) and
Appendix B. For the Δ and ρ, the contributions from GFFs that
were not fit in Sec. II are neglected. Only the mechanical radii
corresponding to frames and models for which the mechanical
stability requirement of Eq. (17) is satisfied are shown.ffiffiffiffiffiffiffiffiffiffiffi

hr2π;gi
q

[fm] BF3 BF2 IMF

Mechanical tripole 0.465(19) 0.380(16) 0.294(16)
Mechanical z-expansion 0.42(36) 0.34(29) 0.305(30)
Mass tripole 0.435(25) 0.355(20) 0.1594(74)
Mass z-expansion 0.452(68) 0.369(56) 0.215(17)ffiffiffiffiffiffiffiffiffiffiffiffi

hr2N;gi
q

[fm]

Mechanical tripole 0.631(68) 0.517(57) 0.517(57)
Mass tripole 0.382(33) 0.312(27) 0.213(14)
Mass z-expansion 0.27(11) 0.217(91) 0.238(38)ffiffiffiffiffiffiffiffiffiffiffi

hr2Δ;gi
q

[fm]

Mechanical tripole 0.588(96) 0.471(81) 0.503(77)
Mass tripole 0.387(33) 0.289(28) 0.239(16)
Mass z-expansion 0.20(15) 0.16(23) 0.235(12)

3Another frame that can be considered is the front-form Drell-
Yan frame, in which Δ− ¼ 0 and Δþ ¼ 0. 2D Fourier transforms
in the Drell-Yan frame can be correctly interpreted as spatial
distributions [33,95,97–99], since in the light-cone transverse
boosts are Galilean [100]. We choose not to discuss this frame
here, since the energy density corresponds to a different compo-
nent of the energy momentum tensor and is thus not directly
comparable with the instant-form energy density. The pressure
and shear forces for the pion and the nucleon are identical in the
infinite momentum frame and the Drell-Yan frame.
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mechanical mean square radius for the pion hr2π;gi [see
Eq. (B5)]. Our results for the mechanical radii as well as the
mass radii, defined in Appendix B 1 as appropriate aver-
ages of the distance from the center of the hadron weighted
by the energy density, are presented in Table X.

B. Nucleon

The BF and IMF densities of the nucleon EMT have
been studied previously [19,77,88,95] and are defined in

Appendix B 2. We note that the 2D Breit frame pressure
and shear force coincide with their IMF equivalents. Our
results for the symmetric traceless gluon contributions to
the densities are shown in Fig. 6. The difference between
the results based on tripole and z-expansion fits to the GFFs
is due to the difference between the two fits of DN

g ðtÞ in the
low −t region, as discussed in Sec. II B. A nonmonotonic
gluon DN

g ðtÞ causes the traceless gluon pressure to have
two nodes, which is different than the form of the quark

(a) (b)

(c) (d)

(e) (f)

FIG. 6. Traceless gluon contributions to the pressure (a-b), shear force (c-d), and energy (e-f) distributions of the nucleon in the 3D BF,
2D BF, and in the IMF. The figures in the left (right) column correspond to the tripole (z-expansion) fits, with fit parameters in Table IV.
The expressions for the pressure and shear force are identical in the 2D BF and the IMF.
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pressure distribution as found in Ref. [19]. Future lattice,
experimental, and phenomenological extractions of DN

g ðtÞ
and DN

q ðtÞ will help to clarify the picture.
From the nucleon density results, we find that the

pressures in all frames and models are consistent with
the von Laue condition (15); however, Eq. (17) is only
satisfied for the tripole fit. Moreover, the D-term fit by the
z-expansion is not strictly positive within uncertainty, and
thus we only present the mechanical radius of Eq. (B5) for

the tripole fit. The mass radii definitions are shown in
Appendix B 2, and the corresponding numerical results of
all radii are presented in Table X.

C. ρ meson

Beyond the lowest-order energy, pressure, and shear
force densities of the pion and the nucleon, the structure of
hadrons of spin ¼ 1 or higher depends on additional
quadrupole densities. The BF3 densities and mass radii

(a) (b)

(c) (d)

(e) (f)

FIG. 7. Traceless (partial) gluon contributions to the lowest-order pressure (a-b), shear force (c-d), and energy (e-f) distributions of the
ρ meson in the 3D BF, 2D BF, and in the IMF. The figures in the left (right) column correspond to the tripole (z-expansion) fits, with fit
parameters in Table VI. The BF2 contribution to the energy density is not constrained within the range of the figure axes.
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of the ρ meson were derived in Refs. [48,91] and are listed
in Appendix B 3. We also derive expressions for the lowest-
order BF2 and IMF distributions.
Our numerical results for the lowest-order (Fig. 7) and

higher-order densities (Fig. 8) are partial and exclude terms
depending on Dρ;g

1 ðtÞ, since its signal is not well modeled
by the ansätze considered here, as discussed in Sec. II C.
We note that almost all of the quadrupole densities are
poorly constrained, and therefore we only consider the
mechanical stability conditions for the lowest-order

densities. In particular, Eq. (17) only holds for the BF3
and BF2 from the tripole GFFs fits. The corresponding
mechanical radii of Eq. (B5) and the mass radii are shown
in Table X.

D. Δ baryon

The BF3 distributions for the Δ baryon were first
presented in Ref. [103] and extended in Ref. [36],
and are listed in Appendix B 4, along with our derived

(a) (b)

(c) (d)

(e) (f)

FIG. 8. Traceless (partial) gluon contributions to the quadrupole order pressure (a-b), shear force (c-d), and energy (e-f) distributions of
the ρ meson in the 3D BF. The figures in the left (right) column correspond to the tripole (z-expansion) fits, with fit parameters in
Table VI.
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lowest-order BF2 and IMF contributions to the densities.
The higher-order densities are not well constrained, and we
limit our mechanical stability check to the lowest-order
densities only. We find that Eq. (17) only holds for the
tripole fits to the GFFs. Our estimates for the accessible
gluon mechanical and mass radii are shown in Table X.
As discussed in Sec. II D, we were able to model only four
of the Δ gluon GFFs with the tripole and z-expansion fits,

and therefore our results for the gluon densities shown in
Figs. 9 and 10 and the radii in Table X are partial.

IV. SUMMARY AND CONCLUSION

In this work, we present a lattice QCD extraction of the
gluon GFFs of the pion, nucleon, ρ meson, and Δ baryon
at quark masses corresponding to a pion mass mπ ¼
450ð5Þ MeV in the range 0 ≤ −t < 2 GeV2. All of the

(a) (b)

(c) (d)

(e) (f)

FIG. 9. Traceless (partial) gluon contributions to the lowest-order pressure (a-b), shear force (c-d), and energy (e-f) distributions of the
Δ baryon in the 3D BF, 2D BF, and in the IMF. The figures in the left (right) column correspond to the tripole
(z-expansion) fits, with fit parameters in Table VIII.
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pion and nucleon GFFs, along with six of seven of the ρ
and four of eight of the Δ GFFs, are fit using the
multipole and modified z-expansion models of Eqs. (2)
and (3). Most of the GFF fits are consistent between
the two models considered, with the most significant
exception being the nucleon DN

g ðtÞ which, while consis-
tent within error, shows a qualitative difference in
behavior between the (monotonic) tripole fit and (non-
monotonic) z-expansion fit. Further calculations with
different ensembles are needed in order to determine

whether this nonmonotonicity is physical, or the result of
poorly quantified systematic uncertainties or a statistical
fluctuation in the data. This inconsistency, however,
brings to attention the importance of considering a variety
of models when studying the GFFs of hadrons at different
values of the energy transfer.
In Figs. 12, 13, and 14 we provide a summary of the

gluon contributions to the momentum fraction form factor
AhðtÞ, angular momentum form factor JhðtÞ, and the DhðtÞ
form factor. In all cases, the meson GFFs fall off more

(a) (b)

(c) (d)

(e) (f)

FIG. 10. Traceless (partial) gluon contributions to the lowest-order pressure (a-b), shear force (c-d), and energy (e-f) distributions of
the Δ baryon in the 3D BF. The figures in the left (right) column correspond to the tripole (z-expansion) fits, with fit parameters in
Table VIII.
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slowly as functions of −t than the baryon GFFs. It will be
important for future work to study them at higher magni-
tudes of energy transfer in order to fully quantify their
behavior. In Fig. 11, we summarize the forward limit results
for the gluon momentum and spin fractions, with the gluon
spin fraction defined as the ratio Jhgð0Þ=Jhð0Þ of the gluon
contribution to the forward-limit angular momentum Jhgð0Þ
and the total spins Jhð0Þ of the corresponding hadrons.
The gluon momentum fraction is larger for the mesons
and smaller for the baryons, decreasing with increasing
hadron mass.
Additionally, for each model of the t dependence of the

GFFs we compute the gluon contributions to the hadron
energy, pressure, and shear force spatial densities and mass
radii, as well as their mechanical radii given stability
conditions are satisfied. We consider both the Breit frame
and the infinite momentum frame of the densities and the
radii. The estimates made using each model are consistent
with each other, with the exception of a discrepancy in the

nucleon gluonD-term and energy, pressure, and shear force
densities between the two ansätze, that can be traced to the
nonmonotonicity of the DN

g ðtÞ z-expansion fit.4

For the aforementioned hadronic quantities that addi-
tionally depend on trace or antisymmetric GFFs, or on the ρ
and Δ GFFs that are not consistent with our fit models, we
provide partial contributions from only the GFFs that we
have constrained. In order to better understand in what
ways the gluons and quarks separately contribute to the
gravitational structure of hadrons, it will be important to
constrain all of the GFFs in future studies. Moreover, our
renormalization procedure for the gluon EMT does not
include mixing with quark operators. Due to the small
magnitude of the mixing renormalization coefficient
[56,75], the effect is expected to contribute at the level
of a few percent, which is negligible compared to the
current statistical uncertainties of the calculation.
This study uses heavier-than-physical quark masses at a

single lattice spacing andvolume, and therefore our results are
subject to unquantified systematic uncertainties that need to
be addressed in future studies. For the pion and nucleon,
repeating the calculation of the gluon GFFs using different
ensembles is critical in order to control the effect of systematic
uncertainties for comparisons with future experimental data
from J=ψ andϒ production processes. For unstable hadrons
like ρ andΔ, lattice QCDmethods are the only knownway to
access their gluon GFFs; studying them at lighter quark
masses, where they are not stable, will requiremore computa-
tionally involved Lüscher method analyses [104–107].

(a)

(b)

FIG. 11. Results for the gluon momentum (a) and spin (b)
fractions of the pion, ρ meson, nucleon, and Δ baryon as listed in
Tables III, V, VII, and IX.

FIG. 12. Tripole fits to the Ah
gðtÞ form factor, corresponding in

the forward limit to the gluon contribution to the momentum
fraction, for the four hadrons, with fit parameters shown in
Tables II, IV, VI, and VIII. The equivalent figure showing
z-expansion fits is indistinguishable.

4The IMF energy density does not depend on DN
g ðtÞ and is

consistent between the tripole and the modified z-expansion fits.
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FIG. 13. Tripole (z-expansion) fits in the left (right) panel to the JhgðtÞ form factor, corresponding in the forward limit to the gluon
contribution to the angular momentum, for the three hadrons, with fit parameters shown in Tables IV, VI, and VIII.

FIG. 14. Tripole (z-expansion) fits in the left (right) panel to the Dh
gðtÞ form factor for the four hadrons, with fit parameters shown in

Tables II, IV, VI, and VIII.
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APPENDIX A: NUMERICAL AND
ANALYSIS DETAILS

1. Symmetric traceless gluon EMT
and renormalization

The symmetric traceless part of the EMT, T̂μν, can
be obtained via the Belinfante-Rosenfeld process5 [125]
and can be decomposed into gluon and quark terms,
T̂μν ¼ T̂μν

g þP
q T̂

μν
q , where

T̂μν
g ¼ 2tr

�
FμαFα

ν þ 1

4
gμνFαβFαβ

�
;

T̂μν
q ¼ iψ̄qD

↔fμγνgψq − igμνψ̄qD
↔
ψq; ðA1Þ

where Fμν is the gluon field-strength tensor of QCD, Dμ is

the covariant derivative, D
↔μ ¼ ðD⃗μ − D⃖μÞ=2, γμ are the

Dirac matrices, the repeated indices are contracted with
the Minkowski space-time metric gμν, and the trace is over
the color indices.
The gluon field-strength tensor Fμν can be defined up to

finite lattice spacing corrections on a Euclidean spacetime
lattice as

FE
μνðxÞ ¼

i
8g0

ðPμνðxÞ − P†
μνðxÞÞ; ðA2Þ

where g0 is the bare gauge coupling, the label E denotes
Euclidean spacetime, and PμνðxÞ is the clover term defined
in terms of gauge links UμðxÞ as

PμνðxÞ ¼UμðxÞUνðxþ μ̂ÞU†
μðxþ ν̂ÞU†

νðxÞ
þUνðxÞU†

μðx− μ̂− ν̂ÞU†
νðx− μ̂ÞUμðx− μ̂Þ

þU†
μðx− μ̂ÞU†

νðx− μ̂− ν̂ÞUμðx− μ̂− ν̂ÞUνðx− ν̂Þ
þU†

νðx− ν̂ÞUμðx− ν̂ÞUνðx− ν̂þ μ̂ÞU†
μðxÞ:

ðA3Þ
The momentum-projected traceless symmetric piece of the
gluon EMT in Euclidean space can be defined as

T̂gE
μν ðΔ; τ0Þ ¼

X
x

e−iΔ·xT̂gE
μν ðx; τ0Þ

¼
X
x

e−iΔ·x2tr

�
FE
αμðx; τ0ÞFE

ανðx; τ0Þ

−
1

4
δμνFE

αβF
E
αβ

�
; ðA4Þ

where the repeated indices are contracted with the
Euclidean metric δμν (i.e., the Kronecker delta in four
dimensions) and the trace is over the color indices. In

continuous spacetime, a traceless symmetric tensor trans-
forms in the (1, 1) representation of the Lorentz group.
However, Lorentz symmetry is reduced to hypercubic
symmetry on the lattice and therefore lattice operators
transform in irreps of the symmetry group Hð4Þ. There are
two choices of irreps that are safe from power-divergent

mixing with lower-dimensional operators, namely τð3Þ1 and

τð6Þ3 [126]. We thus project all operator measurements of
T̂gE
μν to particular bases for these two irreps,

T̂gE

τð3Þ
1;1

¼ 1

2
ðT̂gE

xx þ T̂gE
yy − T̂gE

zz − T̂gE
tt Þ;

T̂gE

τð3Þ
1;2

¼ 1ffiffiffi
2

p ðT̂gE
zz − T̂gE

tt Þ; T̂gE

τð3Þ
1;2

¼ 1ffiffiffi
2

p ðT̂gE
xx − T̂gE

yy Þ;

T̂gE

τð6Þ
3;i¼f1;…;6g

¼ 1ffiffiffi
2

p ðT̂gE
μν þ T̂gE

νμ Þ; μν ∈ fxy; xz; xt; yz; yt; ztg:

ðA5Þ

We compute all operators in the τð3Þ1 and τð6Þ3 irreps for all
lattice momenta satisfying jΔj2 ≤ 18ð2π=LÞ2. To suppress
gauge noise, we improve the operators by constructing
them from gauge links that have been subjected to Wilson
flow [127–129] to flow time t=a2 ¼ 1 (with integrator step
size ϵ ¼ 0.01). Different choices of flow time, as well as
use of hypercubic smearing instead of Wilson flow, have
been shown to give consistent results [63,130].

At finite lattice spacing, the two irreps τð3Þ1 and τð6Þ3

renormalize differently and only coincide in the con-
tinuum limit, but all operators within each irrep share the
same renormalization factor by symmetry. Reference [59]
carried out a nonperturbative RI-MOM calculation
[131,132] of the renormalization factors of these operators
on a smaller-volume ensemble for the same parameters
as those used in this work. With a one-loop perturbative
matching to the MS scheme [133], this yielded the
renormalization coefficients6

ZMS
τð3Þ
1

ðμ ¼ 2 GeVÞ ¼ 0.9ð2Þ;

ZMS
τð6Þ
3

ðμ ¼ 2 GeVÞ ¼ 0.78ð7Þ; ðA6Þ

which renormalize the lattice operators multiplicatively

as ½T̂gE�MS ¼ ZR½T̂gE
R �latt where R indexes the irrep. The

renormalization factors were computed for the same
flowed definition as used in this calculation [59]. The

5See e.g., the Appendix E of Ref. [124] for a review.

6Note that these values correspond to 1=g20 ¼ β=4Nc with
β ¼ 6.1, corresponding to the bare lattice operator definition used
in this work. For the tadpole-improved Lüscher-Weisz gauge
action, this differs from the continuum normalization which is
βð1 − 2=5u20Þ=2Nc, where u0 is the tadpole factor. The renor-
malized operator is independent of this choice.
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uncertainties on these quantities are dominantly system-
atic and, because they were computed on a different
ensemble, uncorrelated with the rest of the data. We
choose to model their distribution as uncorrelated
Gaussians. As in Ref. [59], we neglect mixing with the
quark operators under renormalization, which is expected
to contribute at the few-percent level [56,75].

2. Two-point correlation functions

As detailed in the main text, we use a single lattice
ensemble in this work; parameters for this ensemble are
listed in Table I. Using matching valence and sea quark
actions, we compute two-point functions for varying
numbers of light-quark sources on each configuration,
using an average of 235 randomly chosen locations
(240 for 80% of the configurations, ≳200 for 90%). As
described below, our analysis accounts for differing
numbers of sources by weighting configurations propor-
tionately when drawing bootstrap ensembles. For each
source position, we invert from a smeared source (S) and
construct propagators for both a point (P) and smeared
sink (S), with matching source and sink smearing for
the SS propagators, using APE smearing [134] with 35
steps of gauge-invariant Gaussian smearing with width
ρ ¼ 4.7. From each propagator we construct two-point
correlation functions for each hadron using the interpolat-
ing operators

χπðxÞ ¼ ψ̄uðxÞγ5ψdðxÞ;
χNðxÞ ¼ ½ψuðxÞCγ5ψdðxÞ�ψuðxÞ;
χρμðxÞ ¼ ψ̄uðxÞγμψdðxÞ;
χΔμ ðxÞ ¼ ½ψuðxÞCγμψuðxÞ�ψuðxÞ; ðA7Þ

where all gamma matrices are Euclidean, C is the charge
conjugation matrix, and color and spinor indices are left
implicit.
The interpolating operators overlap with the lowest-lying

hadronic states as

h0jχπðxÞjπðpÞi ¼ Zπ
peip·x;

h0jχNðxÞjNðp; σÞi ¼ ZN
p uðp; σÞeip·x;

h0jχρaðxÞjρðp; λÞi ¼ Zρ
pϵaðp; λÞeip·x;

h0jχΔa ðxÞjΔðp; ξÞi ¼ ZΔ
puaðp; ξÞeip·x; ðA8Þ

where Zp is an overlap factor, ϵaðp; λÞ is a spin-1
polarization vector with λ ∈ f1; 0;−1g and in a spherical
basis a ∈ fþ;−; 0g such that

ϵaðp; λÞ ¼
(

1ffiffi
2

p ½ϵxðp; λÞ � iϵyðp; λÞ�; a ¼ �
ϵzðp; λÞ; a ¼ 0;

ðA9Þ

uðp; σÞwith σ ∈ f1
2
;− 1

2
g is a Dirac spinor, and uaðp; ξÞ is a

Rarita-Schwinger spin vector with ξ ∈ f3
2
; 1
2
;− 1

2
;− 3

2
g,

written in the same spherical basis as ϵaðp; λÞ in Eq. (A9).
The momentum projected two-point correlation function

of the pion can be expressed as

Cπ;2ptðp; t0;x0; t0Þ

¼
X
x

e−ip·ðx−x0Þhχπðx; t0Þχπ†ðx0; t0Þi ⟶t
0→∞ e−E

π
pt

0

2Eπ
p
Z̃pZp;

ðA10Þ

where Eπ
p is the energy of the lowest-lying state with

momentum p, and Z̃p ≠ Zp when the source and sink are
smeared differently. The two-point correlation function of
the nucleon for spin channel σ → σ0 is

CN;2pt
σσ0 ðp; t0;x0; t0Þ
¼

X
x

e−ip·ðx−x0Þtr½Γσ0σhχNðx; t0Þχ̄Nðx0; t0Þi�

⟶
t0→∞ e−E

N
p t

0

2EN
p

Z̃pZptr½Γσ0σð=pþmNÞ�; ðA11Þ

where χ̄ ¼ χ†γt, traces are over Dirac indices, and Γσ0σ is a
2 × 2 block matrix that projects the four different spin
channels of the nucleon [135], i.e.,

Γσ0σ ¼
�

Pþð1þ γxγyÞ Pþγzðγx þ iγyÞ
Pþγzðγx − iγyÞ Pþð1 − γxγyÞ

�
σ0σ
; ðA12Þ

where Pþ ≡ 1
2
ð1þ γtÞ is a positive-energy projector. We

use all four possible channels σ; σ0 ∈ fþ1=2;−1=2g, add-
ing significant additional data over the analysis in Ref. [59]
where only the two spin-conserving channels were used.
The two-point correlation function of the ρ meson, in the
spherical basis of one of the 9 spin channels a → a0, can be
expressed as

Cρ;2pt
aa0 ðp; t0;x0; t0Þ
¼

X
x

e−ip·ðx−x0Þhχρa0 ðx; t0Þχρ†a ðx0; t0Þi

⟶
t0→∞ e−E

ρ
pt

0

2Eρ
p
Z̃pZpΛ

ðρÞ
a0aðpÞ; ðA13Þ

where ΛðρÞ
a0aðpÞ≡

P
λ ϵa0 ðp; λÞϵ�aðp; λÞ [cf. Eq. (9)]. Finally,

we compute the two-point correlator of theΔ baryon for the
10 spin channels ξ → ξ0 where ξ ≥ ξ0,
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CΔ;2pt
ξξ0 ðp; t0;x0; t0Þ
¼

X
x

e−ip·ðx−x0Þtr½Dξ
σ;aD

ξ0
σ0;a0Γσ0σhχΔa0 ðx; t0Þχ̄Δa ðx0; t0Þi�

⟶
t0→∞ e−E

Δ
p t

0

2EΔ
p

Z̃pZptr½Dξ
σ;aD

ξ0
σ0;a0Γσ0σΛ

ðΔÞ
a0a ðpÞ�; ðA14Þ

where repeated indices are summed over, ΛðΔÞ
a0a ðpÞ≡P

ξ ua0 ðp; ξÞūaðp; ξÞ [cf. Eq. (11)], and the coefficients

Dξ
σ;a are defined such that

D3=2
1=2;þ ¼ D−3=2

−1=2;− ¼ D1=2
1=2;0 ¼ D−1=2

−1=2;0 ¼ 1; ðA15Þ

and Dξ
σ;a ¼ 0 for all other choices of fξ; σ; ag.7

We average over sources to obtain per-configuration
measurements Ch;2pt

ss0 ðp; tf ¼ t0 − t0Þ for each hadron h,

weighting this average by the number of sources on each
configuration when forming bootstrap ensembles as dis-
cussed below. The effective mass for each hadron h is
defined as

meff
h ðtfÞ ¼ log

� P
sC

h;2pt
ss ð0; tfÞP

sC
h;2pt
ss ð0; tf þ 1Þ

�
ðA16Þ

and constructed from the spin-averaged (over diagonal spin
channels for states with spin ≠ 0) two-point functions.
The results for each hadron are shown in Fig. 15, along with
the numerical values that we use for the hadron masses mh
throughout this work, which are obtained via single-state
correlated fits to Eq. (A16), in regions in which the excited-
state contamination is smaller than the statistical uncer-
tainties of the effective mass function. The numerical
values are given in Table XI.

3. Three-point correlation functions and ratios

We construct hadronic three-point functions of the gluon
EMT operator, which are defined as

Cπ;3pt
R;i ðp;p0; t0; τ;x0; t0Þ ¼

X
x;y

e−ip
0·ðx−x0ÞeiΔ·ðy−x0Þhχπðx; t0ÞT̂gE

R;iðy; τ þ t0Þχπ†ðx0; t0Þi; ðA17Þ

CN;3pt
σσ0;R;iðp;p0; t0; τ;x0; t0Þ ¼

X
x;y

e−ip
0·ðx−x0ÞeiΔ·ðy−x0Þtr½ΓN

σ0σhχNðx; t0ÞT̂gE
R;iðy; τ þ t0Þχ̄Nðx0; t0Þi�; ðA18Þ

Cρ;3pt
aa0;R;iðp;p0; t0; τ;x0; t0Þ ¼

X
x;y

e−ip
0·ðx−x0ÞeiΔ·ðy−x0Þhχρa0 ðx; t0ÞT̂gE

R;iðy; τ þ t0Þχρ†a ðx0; t0Þi; ðA19Þ

CΔ;3pt
ξξ0;R;iðp;p0; t0; τ;x0; t0Þ ¼

X
x;y

e−ip
0·ðx−x0ÞeiΔ·ðy−x0Þtr½Dξ

σ;aD
ξ0
σ0;a0Γ

Δ
σ0σhχΔa0 ðx; t0ÞT̂gE

R;iðy; τ þ t0Þχ̄Δa ðx0; t0Þi�; ðA20Þ

TABLE XI. For each hadron: the mass used to calculate the
kinematic coefficients of theGFFs in latticeunits, thenumberof spin
channels incorporated, the number of squared momentum transfer
bins (t bins), and the number of ratios before and after combining
ratios with kinematic coefficients related by an overall sign.

State amh

Number spin
channels

Number
Rss0;R;iðPμ;ΔμÞ

Number
t bins

Number
R̄Rtc

π 0.266 1 24086 26 672
N 0.724 4 175244 17 1940
ρ 0.534 9 385182 22 8084
Δ 0.878 10 453868 17 17839

FIG. 15. Effective mass functions for all four hadrons, with the
results obtained using the SP (SS) correlation functions shown in
solid (translucent) color. The dashed line indicates the numerical
values used to compute kinematic coefficients, as listed in
Table XI.

7For the þ3=2 → −1=2 channel we instead computed correlation functions corresponding to D3=2
1=2;þ ¼ D−1=2

1=2;− ¼ 1.
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where repeated indices are summed over, ðx0; t0Þ and ðx; t0Þ
are the source and sink positions, ðy; τÞ is the operator
insertion position, p and p0 are the three-momenta of the
hadron at the source and sink, Δ ¼ p0 − p is the three-
momentum injected by the operator, and T̂gE

R;i is a gluon
EMT operator projected to irrep R and basis element i as
defined in Eq. (A5). These three-point functions are
entirely disconnected and so may be computed by correlat-
ing two-point functions with measurements of the gluon
EMT, i.e., by computing

Ch;3pt
ss0;R;iðp;p0; t0; τ;x0; t0Þ
¼ e−iΔ·x0Ch;2pt

ss0 ðp0; t0;x0; t0ÞT̂gE
R;iðΔ; τ þ t0Þ; ðA21Þ

where T̂gE
R;iðΔ; τÞ is the gluon EMT operator projected to

momentum Δ as in Eq. (A4). We average measurements
of the three-point correlation functions over sources
(translating appropriately) to obtain per-configuration mea-
surements, denoted by Ch;3pt

ss0;R;iðp;p0; tf ¼ t0 − t0; τÞ. Given
per-configuration measurements of the two- and three-point
functions, we draw 1000 bootstrap ensembles, weighting
the probability of drawing each configuration by the
number of sources measured on that configuration. To
improve signal-to-noise as discussed in Ref. [63], we
perform a vacuum subtraction of each three-point correla-
tion function

hC̃h;3pt
ss0;R;iðp;p0; tf; τÞi ¼ hCh;3pt

ss0;R;iðp;p0; tf; τÞi − hCh;2pt
ss0 ðp0; tfÞi

�
1

Nsrc

X
ðx0;t0Þ

e−iΔ·x0 T̂gE
R;iðΔ; τ þ t0Þ

�
ðA22Þ

within each bootstrap ensemble, where h…i indicates an ensemble average and the explicit sum is an average over sources.
We form ratios of two- and three-point functions to isolate the matrix elements of interest. For all hadrons the appropriate
ratio is the same, and is constructed as

Rss0;R;iðp;p0; tf; τÞ ¼
hC̃3pt

ss0;R;iðp;p0; tf; τÞi
hC2pt

s0s0 ðp0; tfÞi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hC2pt

ss ðp; tf − τÞihC2pt
s0s0 ðp0; tfÞihC2pt

s0s0 ðp0; τÞi
hC2pt

s0s0 ðp0; tf − τÞihC2pt
ss ðp; tfÞihC2pt

ss ðp; τÞi

vuut ðA23Þ

within each bootstrap ensemble. We have suppressed dependence on the source and sink smearing, but we carry out this
computation separately using correlation functions constructed fromSS- and SP-smeared propagators, yielding separate SS and
SP measurements of each ratio.

4. Coefficients, binning, and ratio fits

The ratio in Eq. (A23) is chosen such that the leading-order tf; τ dependence and the overlap factors between the hadronic
ground state and the interpolating operator cancel. Thus, for sufficiently large separation between the source, sink,
and operator insertion times, the ratio asymptotically approaches a value proportional to the matrix element
hhðp0; s0ÞjT̂g

μνjhðp; sÞi with exponentially suppressed excited state contamination. Specifically, for the four states of
interest h ∈ fπ; N; ρ;Δg, the computed ratios are related to the matrix elements of interest as

RðπÞ
R;iðp;p0; tf; τÞ ⟶

tf≫τ≫0
RðπÞ
R;iðPμ;ΔμÞ≡ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
Eπ
pEπ

p0
q OEðπÞ

R;i ; ðA24Þ

RðNÞ
σσ0;R;iðp;p0; tf; τÞ ⟶

tf≫τ≫0
RðNÞ
σσ0;R;iðPμ;ΔμÞ≡ tr½ΓN

σ0σð=p0 þmNÞOEðNÞ
R;i ð=pþmNÞ�

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EN
pEN

p0 ðEN
p þmNÞðEN

p0 þmNÞ
q

;
ðA25Þ

RðρÞ
aa0;R;iðp;p0; tf; τÞ ⟶

tf≫τ≫0
RðρÞ
aa0;R;iðPμ;ΔμÞ≡ ΛðρÞ

a0α0 ðp0ÞOEðρÞαα0
R;i ΛðρÞ

αa ðpÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eρ
pE

ρ
p0ΛðρÞ

aa ðpÞΛðρÞ
a0a0 ðp0Þ;

q ðA26Þ

RðΔÞ
ξξ0;R;iðp;p0; tf; τÞ ⟶

tf≫τ≫0
RðΔÞ
ξξ0;R;iðPμ;ΔμÞ≡ tr½Dξ

σ;aD
ξ0
σ0;a0Γ

Δ
σ0σΛ

ðΔÞ
a0α0 ðp0ÞOEðΔÞαα0

R;i ΛðΔÞ
αa ðpÞ�

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EΔ
pEΔ

p0 tr½Dξ
κ;bD

ξ
κ0;b0Γ

Δ
κ0κΛ

ðΔÞ
b0b ðp0Þ�tr½Dξ0

λ;cD
ξ0
λ0;c0Γ

Δ
λ0λΛ

ðΔÞ
c0c ðpÞ�

q ; ðA27Þ
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where P ¼ ðpþ p0Þ=2, Δ ¼ p0 − p, the repeated Lorentz
indices α and α0 are contracted with the Minkowski metric,
and other repeated indices are summed over besides the
external spin indices σ; σ0 in Eq. (A25), a, a0 in Eq. (A26),
and ξ; ξ0 in Eq. (A27).

The matrix elements OEðhÞ
R;i are constructed as the

Euclidean analogs of the decompositions of OðhÞ
μν ¼

OMðhÞ
μν into GFFs in Eqs. (5), (6), (8), and (10), projected

to the hypercubic irrep bases R, i defined in Eq. (A5). The

free Lorentz indices on OMðhÞ
μν are Euclideanized using the

Euclidean-to-Minkowski matching relation

½xM�μ ¼ iδμt ½xE�μ; ½∂M�μ ¼ ð−iÞδμt ½∂E�μ; ðA28Þ

where iδμt generates a factor of i on the temporal compo-
nent. It follows directly from Fμν ∝ ½Dμ;Dν� that the
Euclidean and Minkowski matrix elements of the gluon
EMT are related as

OMðhÞ
μν ¼ −iδμt iδνtOEðhÞ

μν : ðA29Þ

Each ratio is associated with a different set of momenta
Δμ and Pμ, operator basis element R, i, and spin channel
s → s0, all of which define a set of kinematic coefficients
Kh;j

ss0;R;iðPμ;ΔμÞ for the bare GFFs for irrep R in the
decomposition

RðhÞ
ss0;R;iðPμ;ΔμÞ ¼

X
j

Kh;j
ss0;R;iðPμ;ΔμÞGh;j

R ðtÞ: ðA30Þ

The GFFs are real, but the kinematic coefficients and
ratio measurements are generically complex, so the real
and imaginary parts of each ratio measurement provide
independent constraints on the GFFs; we thus treat each
part as a separate real-valued ratio associated with
real coefficients. We discard any ratio for which all
kinematic coefficients are zero. Energies appearing in
the expressions for the kinematic coefficients of each
hadron and t ¼ Δ2 are set using the dispersion relation
Eh
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

h þ p2
p

. Although the kinematic coefficients and
values of t ¼ Δ2 associated with each ratio are functions
of the hadron mass mh and lattice spacing a and so in
principle are only known up to some uncertainty (corre-
lated with the ratios), these errors are subdominant, so we
neglect them and evaluate the coefficients using a ¼
0.1167 fm and the numerical values of mh listed in
Table XI, obtained from single-state fits to the effective
mass as shown in Fig. 15.
We associate each ratio with a “t bin” so that we can

estimate model-independent values of the GFFs at discrete
values of t. Bins are defined by grouping together any two
ratios associated with values of t that differ by less than
0.03 GeV2, with no additional restriction on the maximum

width of each bin.8 We define the value of t for each bin
as the average over t for all ratios in the bin. Figure 16
illustrates the resulting associations for each hadron. There is
a one-to-one correspondence between t bins and values of
jΔj2 in the case of the baryons, but not in that of the mesons,
which is due to the smaller masses of ρ and π compared to N
and Δ. Within each t bin, we average any ratios associated
with kinematic coefficients related by an overall sign within
each bootstrap draw, with each ratio multiplied by the
appropriate sign. We do not combine ratios from different
irreps, as they are renormalized differently, and we continue
to keep SS and SP ratios separate. This additional averaging
helps to compensate for gauge noise, providing clearer
signals for subsequent fitting. The resulting averaged ratios
R̄Rtcðtf; τÞ in momentum bin t for irrep R are no longer
associated with specific momenta, irrep basis elements, spin
channels, or real/imaginary parts, and are instead associated
simply with some particular set of kinematic coefficients
indexed by c. The resulting reduction in data volume is
significant, as tabulated in Table XI.
To extract the tf ≫ τ ≫ 0 asymptotic values of the ratios

R̄Rtcðtf; τÞ, which we denote by R̄Rtc with no argument, we
perform correlated χ2 fits of a constant to each ratio for
every triangular connected region in the ðtf; τÞ plane that
satisfies tf < 25, τ > 4, and tf − τ > 4. The minimum cuts
on τ and tf − τ guarantee a transfer matrix exists between
the source and operator insertion, and the insertion and
sink. tf ≈ 8 is the approximate time after which the
effective masses are consistent with a single state for all
hadrons, momenta, and smearings, and the upper bound
tf ≈ 25 removes the bulk of the noise-dominated region.
To combine the separate SS and SP ratios, we simulta-
neously fit the same region in each to a single value of R̄Rtc.
We combine the results of fits to different regions of ðtf; τÞ
using a scheme inspired by Bayesian model averaging
[136]. Denoting by rm the values of R̄ found by fits to each
region m, we associate each fit with a weight [137]

wm ∝ pmðδrstatm Þ−2; ðA31Þ

where for the fit to region m, δrstatm is the statistical
error found by the fit and pm ¼ Probðχ2Nd:o:f:

< χ2mÞ ¼ 1 −
CDFχ2jNd:o:f:

ðχ2mÞ is the p-value of the fit. Normalizing the
weights such that

P
m wm ¼ 1, we obtain the mean value as

R̂ ¼ P
m wmrm and the total variance ðδR̂Þ2 as the sum of

statistical and systematic contributions defined as [136]

ðδR̂statÞ2 ¼
X
m

wmðδrstatm Þ2 and

ðδR̂systÞ2 ¼
X
m

wmðrm − R̂Þ2: ðA32Þ

8This binning algorithm is identical to the one used in Ref. [59].
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We find that typically δR̂stat ≈ δR̂syst. In practice, we
perform “central-value fits” to the median of R̄ðtf; τÞ over
bootstraps, from which we compute a set of weightsw�

m and
averaged error δR̂�. For subsequent error propagation, we
compute bootstrapped fit results by averaging over fits
within bootstraps b using the central-value weights w�

m,
then rescaling to obtain a set of results whose spread
reproduces δR̂�. In detail, we fit all R̄bðtf; τÞ to obtain rbm
for only the subset of highest-weight regions making up
99% of the total weight, which reduces the computational
cost by excluding the bulk of fit regions. We then average to
obtain R̂b ¼

P
m w�

mrbm, with w�
m suitably re-normalized

to account for the exclusion of low-weight fits. The spread
in R̂b obtained in this way only reproduces δR̂�

stat, so we
rescale each set of R̂b around their mean by δR̂�=δR̂�

stat.

Note that we use the same covariance matrix for both
the central-value fits and bootstrap fits, computed over
R̄bðtf; τÞ using an outlier-robust �1σ percentile definition
of the error.9 As shown in Figs. 17 and 18, the ratios
typically exhibit plateaus in tf, suggesting that excited-state
contamination will not significantly affect the results. To
check this, we perform a simplified version of this analysis
for the pion, nucleon, and rho using a two-state ansatz

(a) (b)

(c) (d)

FIG. 16. For each of the states π, N, ρ, and Δ, the figure shows how different combinations of the discretized momenta p, p0, and
Δ ¼ p0 − p used in this calculation are associated with discrete t bins as described in the text. Each marker represents a collection of
different momentum combinations that result in the same value of −t. Colors correspond to different values of jΔj2. The area of each
marker is proportional to the number of associated momentum combinations. Gray bands indicate each t bin, and markers are associated
with the band that contains their central point. Table XI lists the number of bins for each state.

9Based on the percentile method for confidence intervals
[138,139] and as implemented in the GVAR package [120], this
procedure computes the error for each dimension as the maxi-
mum of the differences between the median and the percentiles
corresponding to�1σ in a Gaussian distribution, then rescales the
(Pearson) correlation matrix by these errors to construct the
covariance matrix.
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FIG. 17. Examples of averaged ratios R̄ðhÞ
Rtc as a function of operator insertion time τ, with one binned ratio at two different sink

times per figure, along with the p-value-averaged fit bands. In the left (right) column are examples of ratios at squared
momentum transfer −t ¼ 0 GeV2 (−t ¼ 2 GeV2). The solid (translucent) points correspond to results computed with SP (SS)
smeared propagators.
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FIG. 18. Examples of averaged ratios R̄ðhÞ
Rtc as a function of sink-operator separation tf − τ, with one binned ratio at two different

operator insertion times τ per figure, along with the p-value-averaged fit bands. In the left (right) column are examples of ratios at
squared momentum transfer −t ¼ 0 GeV2 (−t ¼ 2 GeV2). The solid (translucent) points correspond to results computed with SP (SS)
smeared propagators.
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and only bootstraps from the highest-weight fits; the
resulting GFFs are consistent within uncertainties in all
cases. The precision of the ratio data for the delta baryon
does not admit two-state fits.
The results of this fitting and averaging procedure are

generically robust against varying the lower bounds on fit
regions, but increasing the upper bound on tf results in
sudden catastrophic increases in error and destabilization
of central values. This effect can be traced back to fits to
pure-noise regions which are excluded by the tf cut. These
fits are apparently good, as measured by their χ2=d:o:f: or
p-values, but the loss of Gaussianity in noise regions (the
onset of which occurs at tf ≈ 25 in the nucleon two-point
correlator as diagnosed using both cumulant expansions
[140] and Shapiro-Wilk testing [141]) renders these
metrics of fit quality meaningless. Noisy regions must
thus be excluded using a tf cut to prevent them from
dominating the averages. We chose to use the ad hoc
weight definition described above because we found it to
be practically more robust against this effect (due to the
inverse variance factor) than the better-motivated AIC
weighting of Ref. [136].
In the analysis described above, the choice to rescale

the bootstraps around their means amounts to an
assumption that systematic errors due to the choice of
fit range have the same correlation structure as the
statistical errors. This is different from the typical
assumption of uncorrelated systematics [59], but both
are strong assumptions. To check that this choice does not
bias our results, we applied the subsequent analysis to the
nucleon data with all correlations between ratios either
artificially scaled down by overall factors or completely
neglected, as well as using best fits or fits to a fiducial
ðtf; τÞ region rather than averaging, and found no sys-
tematic shift in the results. Further work is needed to more
gracefully reconcile frequentist resampling techniques
with Bayesian model averaging methods and avoid the
need for such ad hoc constructions. For further analysis,
we take the median over (rescaled) bootstraps for the
central value of each R̄Rtc and construct their covariance
matrix using the outlier-robust estimator noted above.
Parametrizing the fit results as central values and a
covariance matrix amounts to modeling their distribution
as a multivariate Gaussian. We check this assumption by
examining the bootstrap distribution of fit results, and find
that histograms of marginal distributions are either con-
sistent with or contained in their Gaussian approxima-
tions. We have also checked that bootstrapping through
the further analysis detailed below produces marginal
distributions consistent with or narrower than the ones

presented in the main text, which are obtained using linear
error propagation from this Gaussian model.

5. Constraint fitting

To compactify notation, throughout this section we use 1

for τð3Þ1 and 2 for τð6Þ1 whenever an irrep label appears in a
subscript, and switch to vector notation for the kinematic
coefficients and GFFs, i.e., Kj;Gj ⇔ K;G.
The procedure described in the previous section yields a

set of measurements which constrain the bare GFFs of each

irrep R ∈ fτð3Þ1 ; τð6Þ3 g separately as

KRtc ·GRt ¼ R̄Rtc; ðA33Þ

where K and G are Nh-element vectors over the set of
different GFFs, t indexes the discrete t bin, and c indexes
the different combined ratios with shared kinematic
factors as described in Sec. A 4. Extracting the renormal-
ized GFFs from these constraints, as well as subsequent
model fitting of the GFFs, requires careful treatment to
avoid the d’Agostini bias [79]. This bias is an effect
caused by violation of implicit Gaussianity assumptions in
correlated χ2 fitting by non-Gaussianity arising from
multiplication by the renormalization factors. To circum-
vent it, we use a Bayesian version of the “penalty trick”
[79], performing combined fits of data from both irreps to
estimate the bare GFFs G1t and update the renormaliza-
tion factors Z1; Z2 → Z0

1; Z
0
2. The updated renormalization

may be applied immediately to obtain the renormalized
GFFs Gt ¼ Z0

1G1t, or deferred until after subsequent
model fitting to again circumvent the bias as discussed
below. We defer detailed discussion of the bias and the
derivation of the fitting procedure presented here to
Sec. A 6.
Our procedure estimates a Gaussian approximation of

the posterior distribution

pðG1t; Z0
1; Z

0
2jR̄1; R̄2Þ

¼ 1

pðR̄1; R̄2Þ
L

�
R̄1; R̄2

				G1t;
Z0
1

Z0
2

�
pðZ0

1; Z
0
2Þ; ðA34Þ

where G1t are the t-bin-dependent bare GFFs for irrep τð3Þ1 ,
Z0
1 and Z0

2 are the updated renormalization factors which
are shared across all t bins, R̄1 and R̄2 represent the full set
of ratio fit results R̄Rtc, the factor pðR̄1; R̄2Þ is the usual
uninteresting data normalization factor in Bayes’s theorem,
the prior pðZ0

1; Z
0
2Þ is the multivariate Gaussian defined by

Eq. (A6), and the likelihood L is multivariate Gaussian,
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L

�
R̄1; R̄2

				G1t;
Z0
1

Z0
2

�
∝ exp

� X
RtcR0t0c0

ΔRcðG1t; Z0
1=Z

0
2ÞTΣ−1

Rtc;R0t0c0ΔR0c0 ðG1t0 ; Z0
1=Z

0
2Þ
�
;

ΔRcðG1t; Z0
1=Z

0
2Þ ¼



R̂Rtc −KRtc ·G1t; R ¼ τð3Þ1

R̂Rtc − ðZ0
1=Z

0
2ÞKRtc · g1t; R ¼ τð6Þ3

; ðA35Þ

defined in terms of the measured means R̂Rtc and covari-
ance matrix Σ−1

Rtc;R0t0c0 of the ratio fit results R̄Rtc. Equa-
tion (A34) should be read as one overall distribution for all t
bins and not a set of separate equations for each bin.
The data only constrain the ratio of the Z0 factors and not
their overall magnitude, which corresponds to a flat
direction in the likelihood function that is only regulated
in the posterior by pðZ0

1; Z
0
2Þ. Note that we have left implicit

the uniform prior over G1t to emphasize that, although our
analysis is phrased in Bayesian language, it involves no
informative priors.

We estimate the parameters of the posterior distribution
using two stages of fitting. In the first stage, we introduce a
separate ratio ðZ0

1=Z
0
2Þt for each t bin, defining an extended

version of the likelihood which we approximate as a
Gaussian distribution around the maximum likelihood
parameters G�

1t and ðZ0
1=Z

0
2Þ�t . We obtain these parameters

by fitting each t bin separately, using linear error propa-
gation to obtain covariances between the parameters (both
within and between t bins). The posterior of interest
can then be written in terms of this extended likelihood
function as

Z �Y
t

dðZ0
1=Z

0
2ÞtδððZ0

1=Z
0
2Þt − ðZ0

1=Z
0
2ÞÞ

�
LðR1t; R2tjG1t; ðZ0

1=Z
0
2ÞtÞpðZ0

1; Z
0
2Þ ðA36Þ

which, after evaluating the δ functions, provides a new
merit function which we can refit (i.e. minimize and expand
about) to estimate the parameters of the Gaussian posterior.
This second stage of fitting incorporates the measured
distribution of Z factors [Eq. (A6)] and the constraint that
the ratio Z0

1=Z
0
2 is the same for all t bins. We again estimate

the covariances of this distribution using linear error
propagation.
For the pion and nucleon, χ2=d:o:f: ≈ 1 and p > 0.1 for

all first-stage fits to individual t bins; for most t bins, p ≈ 1.
The second-stage fits are of similarly high quality.
However, for the ρ and Δ, we observe that p ≪ 1 in fits
to t bins with more than ≈600 constraints. We trace the
source of this effect to finite-statistics limitations, which we
circumvent by combining constraints. When more than 600
constraints are present in a t bin, we apply a “pair binning”
procedure to that bin to reduce the number of constraints
before fitting. To choose which pairs of constraints are
binned together in a way that heuristically minimizes loss
of orthogonality in the set of constraints, we use a greedy
algorithm which repeatedly associates the two unpaired
constraints K and K0 with the least angle cos−1ðK ·K0=
jKjjK0jÞ between them until all constraints are paired (with
possibly one left unpaired, which is retained). Paired
constraints are combined by taking weighted averages at
the per-bootstrap level, using weights proportional to the
number of ratio measurements averaged into each con-
straint. For the ρ, no t bin requires more than one
application of this procedure, while for the Δ, some bins
require two applications. After applying this procedure,

first-stage fits to the pair-binned constraints for the ρ and Δ
satisfy p > 0.1 for all bins, with p ≈ 1 for most; second-
stage fits are also of high quality. This procedure could have
instead been applied to combine the ðtf; τÞ-dependent ratios
before fitting, and less naive clustering algorithms than the
one used here may allow more effective use of the data;
we did not explore either direction in this study, but they
are interesting topics for future work. To check that pair
binning does not bias the results, we instead discard
random subsets of the data to equivalently reduce the
number of constraints and find consistent but noisier
results. The statistical limitations addressed by pair binning
may be artificial and due to the limited number (B ¼ 1000)
of bootstraps, as we observe similar failures in the fits for
the pion and nucleon when using B ¼ 200 that are resolved
when using more10; however, we find that our results do not
depend significantly on the number of bootstraps B, after
pair binning or discarding constraints to ensure all first-
stage fits are of good quality.
The renormalized GFFs are distributed as the product

under the posterior distribution of the bare GFFs G1t and

10The simple solution of drawing more bootstraps is not
guaranteed to solve this problem: regardless of the number of
bootstrap draws B taken of an N-sample dataset, one needs ∼N2

independent samples to estimate an N × N covariance matrix
[142] and N ∼Oð103Þ for this study, insufficient for the larger t
bins. It is also logistically prohibitive as, before sign-averaging,
the ratios occupy Oð10sÞ of TBs of storage with B ¼ 1000, and
storage as well as the computational cost of fitting the ratios
scales linearly in the number of bootstraps.
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renormalization factor Z0
1 for irrep τð3Þ1 . Starting from the

Gaussian approximation of the posterior computed using
the procedure described above, we obtain the uncertainties
of the renormalized GFFs presented in the main text using
linear error propagation; we find this approximation to be
consistent with the spreads in Z0

1G1t computed over
samples drawn from the Gaussian posterior. However, as
discussed in Appendix A 6, the renormalized GFFs are
sufficiently non-Gaussian that subsequent fits of the models
of Eqs. (2) and (3) to them would again be victim to the
d’Agostini bias. We instead fit the models to the bare GFFs
G1t, then renormalize afterwards by multiplying with Z0

1.
Due to the structure of the model functions, the factor of Z0

1

may be absorbed into the parameters α and αk, defining
the renormalized fit parameters presented throughout
this work.
Reference [59] instead circumvented the d’Agostini

bias by neglecting additional correlations between renor-
malized constraints induced by common factors of Z. The
results obtained using the method presented here are
consistent with the ones from that study, but with narrower
and more correlated uncertainties on the GFF estimates
and wider ones on the model fits and densities. For all
GFFs, the results of this sampling procedure are consistent
within error with the results of the procedure used here.
Employing the sampling procedure while accounting
for correlations induced by shared Z factors would
require performing the entire analysis for each sample
from the Z distribution, including the expensive density
estimations, which would require significant additional
computational effort.
As mentioned throughout the discussion above, starting

from the model of the ratio distribution as Gaussian, we use
linear error propagation to propagate uncertainty through
the rest of the analysis and obtain the presented results,
amounting to repeatedly approximating intermediate dis-
tributions as Gaussian. Other than the checks of these
approximations described above, we have also checked that
bootstrapping through the entire analysis, as well as just
through the first stage of fitting and using the bootstrap
results to construct a covariance matrix before the second
stage, produces marginal distributions of GFFs consistent
with or contained within the marginal distributions
obtained with linear error propagation.

6. Gaussianity and the d’Agostini bias

In this section we discuss the d’Agostini bias, identify
where the non-Gaussianities that trigger it arise in our
analysis, introduce and discuss the penalty trick fitting
procedure in a Bayesian framework, and motivate and
derive the modified version described in Sec. A 5.
In its simplest form, the d’Agostini bias occurs when

performing a correlated χ2 fit of some linear model [or a
nonlinear model whose form accommodates arbitrary

rescaling, like the model ansatzë Eqs. (2) and (3)] to
some data which has been multiplied by an overall
normalization factor with a large relative uncertainty;
the result is different than what is obtained by first fitting
then normalizing after, and thus obviously incorrect. This
occurs because the χ2 fitting procedure takes the covari-
ance matrix of the data as input, and thus implicitly
truncates the data distribution to Gaussian; products of
Gaussian-distributed variables are not Gaussian distrib-
uted, and the bias occurs when this truncation yields a
poor approximation of the true product distribution. While
resampling through a fit allows for treatment of non-
Gaussianity in distributions of fit parameters due to
nonlinear model functions, it cannot correct for the
d’Agostini bias, which occurs because the fit assumes
an inaccurate representation of the data.
Given our multivariate Gaussian models of the distribu-

tions of the bare ratios and renormalization factors, the bare
GFFs are Gaussian but the renormalized ratios and GFFs
are not. The bare ratios are Gaussian by assumption and
constrain the bare GFFs linearly per Eq. (A33), so the bare
GFFs inherit the Gaussianity of the ratios. However, the
renormalized ratios ZRRRtc are non-Gaussian, as shown in
Fig. 19(a) and discussed in the caption. It follows that the
renormalized GFFs, which are linearly constrained by the
renormalized ratios, are also non-Gaussian, intrinsically
and independently of how we extract them, as shown in
Figs. 19(b) and 19(c). These non-Gaussianities trigger the
d’Agostini bias both when fitting ratios to extract GFFs, as
demonstrated in Fig 19(a), as well as subsequently when
fitting the GFFs to model functions, as shown in Figs. 19(b)
and 19(c). The fitting procedure described in Sec. A 5
circumvents the bias in the former case using the penalty
trick, and in the latter case by extracting the Gaussian-
distributed bare GFFs for one irrep and allowing the
problematic multiplication by a Z factor to be deferred until
after fitting models to the bare GFFs. Note that while the
histograms of marginal distributions shown in Fig. 19
naively appear close enough to Gaussian to justify approxi-
mation as Gaussian, inspection of the joint histograms
reveals the asymmetry of the distribution that leads to
the bias.
The penalty trick is a common prescription for circum-

venting the d’Agostini bias [79]. Our choice to phrase the
fitting problem as an estimation of a posterior distribution
(as described in Sec. A 5), with the measured distribution
of the renormalization factors entering as a prior to be
updated, amounts to a Bayesian reframing of this
technique. Generally, for a fit of a model function fðθÞ
to some data y times a normalization factor Z, where
y ∼N ðŷ;ΣyÞ and Z ∼N ðẐ; σ2ZÞ are Gaussian, but a

Gaussian N ðcyZ;ΣyZÞ is a poor approximation of the
distribution of the product yZ, the penalty trick prescribes
the replacement
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Δ ¼ fðθÞ − cyZ Δ0 ¼ fðθÞ=z − ŷ;

⟶
Penalty trick

χ2ðθÞ ¼ ΔTΣ−1
yZΔ χ2ðθ; zÞ ¼ Δ0TΣ−1

y Δ0 þ ðz − ẐÞ2=σ2Z;
ðA37Þ

allowing a fit using the original covariance matrix Σy ,
assumed to be a good description of the data. This
comes at the cost of replacing the fixed normalization
Z with an additional nuisance parameter z which is
constrained to be consistent with the provided Z and
discarded after fitting. In the limit σZ → 0 the two fit
procedures are equivalent.
While usually motivated as an ad hoc frequentist

procedure, the penalty trick can be more naturally under-
stood in a Bayesian context, wherein it is structurally
equivalent to updating a prior for Z with the data then
marginalizing over it, assuming a Gaussian posterior. The
right-hand side of Eq. (A37) can be interpreted as a log-
likelihood and log-prior for the data and z, defining a
posterior distribution via Bayes’s theorem as

pðθ; zjyÞ ¼ Lðyjθ; zÞpðzÞpðθÞ=pðyÞ
−2 logLðyjθ; zÞ ¼ Δ0TΣ−1

y Δ0

−2 logpðzÞ ¼ ðz − ẐÞ2=σ2Z; ðA38Þ

where pðyÞ is the data normalization and pðθÞ is a trivial
factor of the uniform distribution added as a prior for the fit
parameters. Fitting the penalty trick χ2 to obtain the best-fit
θ� andz� and fit parameter covariancematrixΣ�

θ;z corresponds
to approximating the posterior distribution as Gaussian, i.e.,

pðθ; zjyÞ ∝ exp

�
−
1

2
χ2ðθ; zÞ

�
≈ exp

�
−
1

2
ΔT

θzΣ�
θ;zΔθz

�
ΔT

θz ≡ ½ θ − θ�; z − z� � ðA39Þ

(a) (b)

(c)

FIG. 19. Examples of non-Gaussianities in various distributions in the analysis of the nucleon data (left panels), and the resulting
effects of d’Agostini bias (right panels). Note: these plots are an illustration of the bias and are not the final results of our calculation. In
left panels, the orange features show the Gaussian approximations to these distributions obtained with linear error propagation. In the
joint histograms, the ellipses denote the 3σ contour and the dot denotes the mean. In right panels, blue bands show results obtained by
fitting a bare quantity first then renormalizing afterwards to circumvent the bias, whereas orange bands are biased fits to data

renormalized before fitting. (a) For irrep τð3Þ1 , example of a joint distribution of two different renormalized ratio fit results Z1R̄Rtc in the

t ¼ 1 bin for the nucleon, and the renormalized GFF AðtÞ ¼ Z1A1ðtÞ obtained by fitting irrep τð3Þ1 constraints. (b) For renormalized GFFs

obtained by fitting the bare constraints from irrep τð3Þ1 only to obtain A1 then renormalizing afterwards, example of a joint distribution of
the renormalized GFF AðtÞ ¼ Z1A1ðtÞ in two different t bins, and fits of a tripole model to these GFFs. (c) For renormalized GFFs
obtained using the fitting procedure described in Sec. A 5 incorporating data from both irreps, joint distribution of the same renormalized
GFFs as in (c), and fits of a tripole model to these GFFs.
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suppressing normalization factors. Discarding z after fitting
corresponds to marginalizing over z in the posterior, as
marginalizing over a dimension of a multivariate Gaussian
is equivalent to dropping it. The generalization to the case of
multipledifferentnormalizationfactors fordifferent subsetsof
the data is straightforward: the prior pðzÞ becomes multidi-
mensional, and now

Δ0
i ¼ fðθÞ=zi − ŷi ðA40Þ

where i indexes different subsets of the data.
We modify the penalty trick procedure to estimate the

bare GFFs G1t (corresponding to θ=z1) instead of the non-
Gaussian renormalized GFFs Gt (corresponding to θ). The
modification singles out one particular normalization as
special, multiplying it onto the model function f so that the
data are modeled as

Δ0
i ¼


 fðθ0Þ − ŷ1; i ¼ 1
z1
zi
fðθ0Þ − ŷi; i ≠ 1

: ðA41Þ

If the model function f is linear in the parameters (e.g.,
K ·G is linear in the GFFs G), then this procedure extracts
θ0 ¼ θ=z1 (corresponding toG1t) rather than θ (correspond-
ing to Gt). In this modified form one still (trivially)
marginalizes over all zi for i ≠ 1, but z1 must be retained
to examine θ ¼ z1θ0 (corresponding to renormalizing the
bare GFFs as GR ¼ Z0

1G1).
While fitting procedures exist for treating the d’Agostini

bias other than the penalty trick [143], a model function
and a data distribution define a distribution of model
parameters (e.g., GFFs) independent of the choice of
bias-circumventing fitting procedure. The Bayesian frame-
work makes clear that the renormalized GFFs extracted by
this procedure may themselves be non-Gaussian, such that
subsequent fits are also vulnerable to the bias. This will
hold independent of the fitting procedure used.

APPENDIX B: DENSITY DEFINITIONS

This section lists the expressions for the energy, pressure,
and shear force distributions in the 3D Breit frame (BF3),
2D Breit frame (BF2), and infinite momentum frame (IMF)
used to generate the results of Sec. III. To simplify the
expressions below, we define bracket notation for the
relevant integrals,

½I �BF2ðrÞ ¼
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·rIðtÞ
				
P¼0

¼
Z

djΔ⊥jjΔ⊥j
2π

J0ðjΔ⊥jrÞIðtÞ
				
P¼0

;

½I �BF3ðrÞ ¼
Z

d3Δ
ð2πÞ3 e

−iΔ·rIðtÞ
				
P¼0

¼
Z

djΔjjΔj
2π2r

sin ðjΔjrÞIðtÞ
				
P¼0

;

½I �IMFðrÞ ¼
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·rIðtÞ
				Pz→∞

P·Δ¼0

¼
Z

djΔ⊥jjΔ⊥j
2π

J0ðjΔ⊥jrÞIðtÞ
				Pz→∞

P·Δ¼0

; ðB1Þ

where I is a generic integrand and J0 is a Bessel function of
the first kind.
We compute the presented densities, defined by Eq. (B1)

and the expressions below, using numerical integration.
The analysis of Ref. [59] propagated uncertainty on model
parameters into the densities by sampling from the multi-
variate Gaussian distribution of the model parameters,
evaluating the integrals for each draw. The large number
of densities considered in the present study make this
approach impractical. We instead used linearized error
propagation: by differentiating under the integral sign with
respect to model parameters θ, we obtain the Jacobian
Jðr; θÞi ¼ ∂Iðr; θÞ=∂θi, where Iðr; θÞ is an integral evalu-
ated to obtain a density at radius r, as a matrix of integrals
that can each be evaluated numerically. The covariance
matrix for the r-dependent density is then obtained as
Cov½ρðrÞ; ρðr0Þ� ¼ P

ij Jðr; θÞiCov½θi; θj�Jðr0; θÞj where
Cov½θi; θj� is the covariance matrix of the parameters of
the model integrated to obtain the density.
The model functions are linear in some parameters (α for

the multipole and αk for the modified z-expansion) but not
others (multipole masses), so this approach is approximate.
However, for all densities for the nucleon and pion, as
well as for the monopole densities for the ρ meson, we
found consistent results for all r by computing integrals
for samples from the distribution of renormalized model
parameters. For tripole models of the nucleon GFFs in the
3D Breit frame, we also checked our numerically integrated
density results against ones derived from the closed-form
solutionZ

d3Δ
ð2πÞ3 e

−iΔ·r α

ð1þ Δ2

Λ2Þ3
¼ αð1þ ΛrÞ Λ3

32π
e−Λr ðB2Þ

using linear error propagation from the tripole model
parameters α and Λ, and found indistinguishable results.
The uncertainties on the densities presented in the main

text are derived from the distribution of renormalized
model parameters, obtained by combining the uncertainties
of the bare α and αk parameters and fitted values of Z0

1

using linear error propagation as described in Sec. A 5. We
found consistent results by computing densities from bare
model parameters, using linear error propagation to obtain
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correlations between Z0
1 and the resulting bare densities,

then applying the renormalization factor Z0
1 and propagat-

ing uncertainities either linearly or by drawing correlated
samples of Z0

1 and the bare densities and multiplying within
samples.
The mass mean square radii are defined identically for all

hadrons as

hr2i ih;mass
BF3 ¼

R
d3rr2εh;iBF3ðrÞR
d3rεh;iBF3ðrÞ

; ðB3Þ

hr2i ih;mass
BF2=IMF ¼

R
d2r⊥r2⊥ε

h;i
BF2=IMFðr⊥ÞR

d2r⊥εh;iBF2=IMFðr⊥Þ
; ðB4Þ

while the mechanical mean square radii are defined as

hr2i ih;mech
BF3 ¼

R
d3rr2ðph;i

BF3ðrÞ þ 2
3
sh;iBF3ðrÞÞR

d3rðph;i
BF3ðrÞ þ 2

3
sh;iBF3ðrÞÞ

; ðB5Þ

hr2i ih;mech
BF2=IMF ¼

R
d2r⊥r2⊥ðph;i

BF2=IMFðr⊥Þ þ 1
2
sh;iBF2=IMFðr⊥ÞÞR

d2r⊥ðph;i
BF2=IMFðr⊥Þ þ 1

2
sh;iBF2=IMFðr⊥ÞÞ

:

ðB6Þ

The mechanical radius results presented throughout this
work are computed by numerically approximating the
integrals with the trapezoidal rule, evaluated at 500 values
of the integrands evenly spaced in 0 ≤ r ≤ 2 fm. We obtain
error estimates using linear error propagation from the
values of pðrÞ and sðrÞ at each r, computed as described

above, and corresponding to the results presented in
Table X. To check discretization errors, we instead use
simple Riemann sums and obtain results which are con-
sistent within uncertainty. To check the error induced by
truncating the range of integration from ½0;∞� to [0, 2 fm],
we derive the exact expression for ½0;∞� in the tripole case
as hr2i iN;mech

BF3 ¼ 12=Λ2 from Eq. (B2) and find it yields
results consistent within uncertainty. The shear and pres-
sure densities for other models, frames, and hadrons are
comparably small by r ¼ 2 fm, so we expect this quality of
approximation to hold generally.
The subsection below lists the various densities com-

puted for each hadron. In all expressions for the densities
and radii, we use the definitions ∂2 ¼ 1

r2
d
dr r

2 d
dr and

∂2⊥ ¼ 1
r⊥

d
dr⊥ r⊥

d
dr⊥, and the ≈ symbol in the IMF definitions

when suppressing higher-order terms inOðP−1
z Þ. Moreover,

the symbol X is defined such that

X ¼


6 for BF3

8 for BF2=IMF
: ðB7Þ

1. Pion

Below we list expressions for the BF energy (ϵ), pressure
(p), and shear force (s) densities, and the mass radii of the
pion [33,88], as well as the contributions to the IMF
densities and radii at lowest order in Oð1=PzÞ. The IMF
densities are derived by considering the matrix elements
γhπðp0ÞjT00

g jπðpÞi and hπðp0ÞjTij
g jπðpÞi=γ, where γ is the

relativistic boost factor.

επ;iBF3ð2Þðrð⊥ÞÞ ¼ m2
π

"
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
π − t=4

p �
Aπ
i ðtÞ þ c̄πi ðtÞ −

t
4m2

π
ðAπ

i ðtÞ þDπ
i ðtÞÞ

�#
BF3ð2Þ

; ðB8Þ

pπ;i
BF3ð2Þðrð⊥ÞÞ ¼

1

X
∂2
ð⊥Þ

"
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
π − t=4

p Dπ
i ðtÞ

#
BF3ð2Þ

−m2
π

"
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
π − t=4

p c̄πi ðtÞ
#
BF3ð2Þ

; ðB9Þ

sπ;iBF3ð2Þðrð⊥ÞÞ ¼ −
1

4
rð⊥Þ

d
drð⊥Þ

1

rð⊥Þ

d
drð⊥Þ

"
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
π − t=4

p Dπ
i ðtÞ

#
BF3ð2Þ

; ðB10Þ

επ;iIMFðr⊥Þ ≈m½Aπ
i ðtÞ�IMF; ðB11Þ

pi
IMFðr⊥Þ ≈

1

8mπ

1

r⊥
d

dr⊥
r⊥

d
dr⊥

½Dπ
i ðtÞ�IMF −mπ½c̄πi ðtÞ�IMF; ðB12Þ

siIMFðr⊥Þ ≈ −
1

4mπ
r⊥

d
dr⊥

1

r⊥
d

dr⊥
½Dπ

i ðtÞ�IMF; ðB13Þ
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hr2i iπ;mass
BF3 ¼ lim

Δ→0
−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π − t=4
p ∇2

Δ

"
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π − t=4
p hπðp0ÞjT00

i jπðpÞijΔ0¼0

#

¼ 6
dAπ

i ðtÞ
dt

				
t¼0

−
3

4m2
π
ðAπ

i ð0Þ þ 2Dπ
i ð0ÞÞ; ðB14Þ

hr2i iπ;mass
BF2 ¼ 4

dAπ
i ðtÞ
dt

				
t¼0

−
1

2m2
π
ðAπ

i ð0Þ þ 2Dπ
i ð0ÞÞ ¼

2

3
hr2i iπ;mass

BF3 ; ðB15Þ

hr2i iπ;mass
IMF ¼

R
dr⊥r2⊥ε

π;i
IMFðrÞR

dr⊥επ;iIMFðrÞ
¼ 4

dAπ
i ðtÞ
dt

				
t¼0

: ðB16Þ

2. Nucleon

The BF [88] and lowest-order IMF [95] densities and mass radii of the nucleon can be expressed as

εN;i
BF3ð2Þðrð⊥ÞÞ ¼ mN

�
AN
i ðtÞ −

t
4m2

N
ðDN

i ðtÞ − BN
i ðtÞÞ þ c̄Ni ðtÞ

�
BF3ð2Þ

; ðB17Þ

εN;i
IMFðr⊥Þ ¼ mN ½AN

i ðtÞ�IMF; ðB18Þ

pN;i
BF3ð2Þ=ðIMFÞðrð⊥ÞÞ ¼

1

XmN
∂2
ð⊥Þ½DN

i ðtÞ�BF3ð2Þ=ðIMFÞ −m½c̄Ni ðtÞ�BF3ð2Þ=ðIMFÞ; ðB19Þ

sN;i
BF3ð2=IMFÞðrð⊥ÞÞ ¼ −

1

4mN
rð⊥Þ

d
drð⊥Þ

1

rð⊥Þ

d
drð⊥Þ

½DN
i ðtÞ�BF3ð2=IMFÞ; ðB20Þ

hr2i iN;mass
BF3 ¼ 6

dAN
i ðtÞ
dt

				
t¼0

þ 3

2m2
N
ðBN

i ð0Þ −DN
i ð0ÞÞ; ðB21Þ

hr2i iN;mass
BF2 ¼ 2

3
hr2i iN;mass

BF3 ; ðB22Þ

hr2i iN;mass
IMF ¼ 4

dAN
i ðtÞ
dt

				
t¼0

: ðB23Þ

3. ρ meson

The BF3 densities of the ρ meson were derived in Refs. [48,91] and can be expressed as

ερ;i0;BF3ðrÞ ¼m2
ρ

264 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ − t=4
q �

Aρ;i
0 ðtÞ þ 1

4
f̄ρ;iðtÞ− 1

2
c̄ρ;i0 ðtÞ

þ t
12m2

ρ

�
−5Aρ;i

0 ðtÞ þ 3Dρ;i
0 ðtÞ þ 4Jρ;iðtÞ− 2Eρ;iðtÞ þAρ;i

1 ðtÞ þ 1

2
f̄ρ;iðtÞ þ c̄ρ;i0 ðtÞ þ 1

2
c̄ρ;i1 ðtÞ

�

−
t2

24m4
ρ

�
−Aρ;i

0 ðtÞ þDρ;i
0 ðtÞ þ 2Jρ;iðtÞ− 2Eρ;iðtÞ þAρ;i

1 ðtÞ þ 1

2
Dρ;i

1 ðtÞ þ 1

4
c̄ρ;i1

�
þ t3

192m6
ρ
½Aρ;i

1 ðtÞ þDρ;i
1 ðtÞ�

�375
BF3

;

ðB24Þ
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ερ;i2;BF3ðrÞ ¼ −
r
2

d
dr

1

r
d
dr

264 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ − t=4
q �

−Aρ;i
0 ðtÞ þ 2Jρ;iðtÞ−Eρ;iðtÞ þ 1

2
Aρ;i
1 ðtÞ þ 1

4
f̄ρ;iðtÞ þ 1

2
c̄ρ;i0 ðtÞ þ 1

4
c̄ρ;i1 ðtÞ

−
t

4m2
ρ

�
−Aρ;i

0 ðtÞ þDρ;i
0 ðtÞ þ 2Jρ;iðtÞ− 2Eρ;iðtÞ þAρ;i

1 ðtÞ þ 1

2
Dρ;i

1 ðtÞ þ 1

4
c̄ρ;i1 ðtÞ

�
þ t2

32m4
ρ
½Aρ;i

1 ðtÞ þDρ;i
1 ðtÞ�

�375
BF3

;

ðB25Þ

pρ;i
0;BF3ðrÞ ¼

1

6
∂2

264 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ − t=4
q �

−Dρ;i
0 ðtÞ þ 4

3
Eρ;iðtÞ þ t

12m2
ρ
½2Dρ;i

0 ðtÞ − 2Eρ;iðtÞ þDρ;i
1 ðtÞ� − t2

48m4
ρ
Dρ;i

1 ðtÞ
�375

BF3

; ðB26Þ

pρ;i
2;BF3ðrÞ ¼

1

6
∂2

264 −Eρ;iðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ − t=4
q

375
BF3

þ 1

6mρ
∂2

�
d
dr

d
dr

−
2

r
d
dr

�264 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ − t=4
q �

1

2
Dρ;i

0 ðtÞ − 1

2
Eρ;iðtÞ þ 1

4
Dρ;i

1 ðtÞ − t
16m2

ρ
Dρ;i

1 ðtÞ
�375

BF3

; ðB27Þ

pρ;i
3;BF3ðrÞ ¼ −

2

6mρ
∂2

�
d
dr

d
dr

−
3

r
d
dr

�264 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ − t=4
q �

1

2
Dρ;i

0 ðtÞ − 1

2
Eρ;iðtÞ þ 1

4
Dρ;i

1 ðtÞ − t
16m2

ρ
Dρ;i

1 ðtÞ
�375

BF3

; ðB28Þ

sρ;i0;BF3ðtÞ ¼ −
1

4
r
d
dr

1

r
d
dr

264 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ − t=4
q �

−Dρ;i
0 ðtÞ þ 4

3
Eρ;iðtÞ þ t

12m2
ρ
½2Dρ;i

0 ðtÞ − 2Eρ;iðtÞ þDρ;i
1 ðtÞ� − t2

48m4
ρ
Dρ;i

1 ðtÞ
�375

BF3

;

ðB29Þ

sρ;i2;BF3ðrÞ ¼ −
1

4
r
d
dr

1

r
d
dr

264 −Eρ;iðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ − t=4
q

375
BF3

−
1

4mρ
r
d
dr

1

r
d
dr

�
d
dr

d
dr

−
2

r
d
dr

�264 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ − t=4
q �

1

2
Dρ;i

0 ðtÞ − 1

2
Eρ;iðtÞ þ 1

4
Dρ;i

1 ðtÞ − t
16m2

ρ
Dρ;i

1 ðtÞ
�375

BF3

; ðB30Þ

sρ;i3;BF3ðrÞ ¼
1

2mρ
r
d
dr

1

r
d
dr

�
d
dr

d
dr

−
3

r
d
dr

�264 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ − t=4
q �

1

2
Dρ;i

0 ðtÞ − 1

2
Eρ;iðtÞ þ 1

4
Dρ;i

1 ðtÞ − t
16m2

ρ
Dρ;i

1 ðtÞ
�375

BF3

: ðB31Þ

Using the same methods but restricting the analysis to a two-dimensional plane, we obtain the following expressions for the
BF2 leading-order contributions to the EMT monopole densities:
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ερ;i0;BF2ðr⊥Þ¼m2
ρ

264 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ− t=4
q �

Aρ;i
0 ðtÞþ1

4
f̄ρ;iðtÞ−1

2
c̄ρ;i0 ðtÞ

þ t
8m2

ρ

�
−4Aρ;i

0 ðtÞþ2Dρ;i
0 ðtÞþ4Jρ;iðtÞ−2Eρ;iðtÞþAρ;i

1 ðtÞþ1

2
f̄ρ;iðtÞþ c̄ρ;i0 ðtÞþ1

2
c̄ρ;i1 ðtÞ

�

þ t2

16m4
ρ

�
Aρ;i
0 ðtÞ−Dρ;i

0 ðtÞ−2Jρ;iðtÞþ2Eρ;iðtÞ−Aρ;i
1 ðtÞ−1

2
Dρ;i

1 ðtÞ−1

4
c̄ρ;i1 ðtÞ

�
þ t3

128m6
ρ
½Aρ;i

1 ðtÞþDρ;i
1 ðtÞ�

�375
BF2

;

ðB32Þ

sρ;i0;BF2ðr⊥Þ ¼ −
1

4
r⊥

d
dr⊥

1

r⊥
d

dr⊥

×

264 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ − t=4
q �

−Dρ;i
0 ðtÞ þ 2Eρ;iðtÞ þ t

4m2
ρ

�
Dρ;i

0 ðtÞ þ 1

2
Dρ;i

1 ðtÞ − Eρ;iðtÞ
�
−

t2

32m4
ρ
Dρ;i

1 ðtÞ
�375

BF2

; ðB33Þ

pρ;i
0;BF2ðr⊥Þ ¼

1

8
∂2⊥

264 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ − t=4
q �

−Dρ;i
0 ðtÞ þ 2Eρ;iðtÞ þ t

4m2
ρ

�
Dρ;i

0 ðtÞ þ 1

2
Dρ;i

1 ðtÞ − Eρ;iðtÞ
�
−

t2

32m4
ρ
Dρ;i

1 ðtÞ
�375

BF2

: ðB34Þ

By considering the matrix elements γhρðp0; s0ÞjT00
g jρðp; sÞi and hρðp0; s0ÞjTij

g jρðp; sÞi=γ, we obtain the lowest-order
contributions to the monopole densities in the IMF as

ερ;i0;IMFðr⊥Þ ≈mρ½Aρ;i
0 ðtÞ�IMF; ðB35Þ

sρ;i0;IMFðr⊥Þ ≈ −
1

4mρ
r⊥

d
dr⊥

1

r⊥
d

dr⊥
½−Dρ;i

0 ðtÞ þ 2Eρ;iðtÞ�IMF; ðB36Þ

pρ;i
0;IMFðr⊥Þ ≈

1

8mρ
∂2⊥½−Dρ;i

0 ðtÞ þ 2Eρ;iðtÞ�IMF: ðB37Þ

The corresponding conserved mass radii are

hr2i iρ;mass
BF3 ¼ 6

dAρ;i
0 ðtÞ
dt

				
t¼0

þ 1

m2
ρ

�
−
7

4
Aρ;i
0 ð0Þ þ 1

2
Aρ;i
1 ð0Þ þ 3

2
Dρ;i

0 ðtÞ þ 2Jρ;ið0Þ − Eρ;ið0Þ
�
; ðB38Þ

hr2i iρ;mass
BF2 ¼ 4

dAρ;i
0 ðtÞ
dt

				
t¼0

þ 1

2m2
ρ
ð−4Aρ;i

0 ð0Þ þ Aρ;i
1 ð0Þ þ 2Dρ;i

0 ð0Þ − 2Eρ;ið0Þ þ 4Jρ;ið0ÞÞ; ðB39Þ

hr2i iρ;mass
IMF ¼ 4

dAρ;i
0 ðtÞ
dt

				
t¼0

: ðB40Þ

Note that the IMF energy density corresponds to a different component of the EMT than the Drell-Yan frame (DYF) energy,
as discussed in Ref. [95] for the case of the nucleon, and therefore the IMF mass radius is different than the DYF radius
found in Ref. [33].
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4. Δ baryon

The BF3 densities of the Δ baryon were derived in Ref. [37] and are

εΔ;i0;BF3ðrÞ ¼ mΔ

�
FΔ;i
10 ðtÞ þ FΔ;i

30 ðtÞ

þ t
6m2

Δ

�
−
5

2
FΔ;i
10 ðtÞ − FΔ;i

11 ðtÞ −
3

2
FΔ;i
20 ðtÞ þ 4FΔ;i

50 ðtÞ þ 3FΔ;i
40 ðtÞ − FΔ;i

30 ðtÞ − FΔ;i
31 ðtÞ − FΔ;i

60 ðtÞ
�

þ t2

12m4
Δ

�
1

2
FΔ;i
10 ðtÞ þ FΔ;i

11 ðtÞ þ
1

2
FΔ;i
20 ðtÞ þ

1

2
FΔ;i
21 ðtÞ − 4FΔ;i

50 ðtÞ − FΔ;i
40 ðtÞ − FΔ;i
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We obtain the following expressions for the BF2 and IMF leading-order contributions to the EMT monopole densities:
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The corresponding conserved mass radii formulas are
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