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We present a quantum algorithm for digital quantum simulation of theZ2 gauge–Higgs model on a 3 × 3

lattice, which is based on Trotter decomposition, the quantum adiabatic algorithm, and its circuit
realization. Then, we perform a classical demonstration, dubbed a pseudoquantum simulation, on a GPU
simulator. We obtain useful results on this model, which suggest the topological properties of the
deconfined phase and help to clarify the phase diagram. It is suggested that the tricitical point, where the
second-order critical lines of deconfinement-confinement transition and of deconfinement-Higgs transition
meet, seems to be on the first-order critical line of confinement-Higgs transition, at a point other than the
end of this critical line.
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I. INTRODUCTION

Lattice gauge theory is a nonperturbative approach to
gauge theory, especially quantum chromodynamics [1–5].
It is important not only in particle physics, but also in
condensed matter physics and even in topological quantum
computing [6,7]. It is usually implemented in terms of
Monte Carlo simulation, however, which lacks real-time
dynamics and may suffer the well-known fermion sign
problem [8–11].
Recently, it has appeared that these issues may be

resolved in quantum simulation [12–34]. Moreover, as
exemplified in the quantum simulation [31,32] of the pure
Z2 gauge theory [35–38], for quantum simulation involv-
ing only dozens of qubits, it is very useful to make a
classical demonstration on a high-performance platform,
which we call a pseudoquantum simulation [31]. It serves
not only as a benchmark for experimental quantum
simulation, which facilitates the development of quantum
algorithms, but also as a new numerical method for
computational problems.
We now go beyond the pure gauge theory and consider the

Z2 gauge–Higgs model [39], where there exists coupling
betweenmatter and gauge fields, with duality between them.
Thismodel has beenwidely studied analytically [39–43] and
numerically [44–47]. Remarkably, thismodel is equivalent to

the transverse-field toric codemodel [46], which is important
for topological quantum computing.
It has been known that in the Z2 gauge–Higgs model,

there is a deconfined phase, separated from a confined
phase on one hand, and from a so-called Higgs phase on
the other (cf. Fig. 1). The phase transitions between the
deconfined and the confined phases, and between the
deconfined and the Higgs phase, are both second order,
leading to a topological region surrounded by two second-
order lines on the phase diagram. These two lines meet at a
self-dual point. The confined and Higgs phases are sepa-
rated by a finite dual line of a first-order transition, beyond
which the two phases are continuously connected.
However, with strong competition between matter and

gauge fields, questions such as how these critical lines are
connected and where the two second-order lines meet have
not been clearly answered yet, and are under debate. It has
been pointed out that there are three possibilities [46].
A quantum Monte Carlo (QMC) study provides the
evidence that the tricritical point, where the three critical
lines meet, is scale invariant and of second order [47].
In this paper, we report a scheme of the digital quantum

simulation of the Z2 gauge–Higgs model. It is digital in the
sense that it is based on Trotter decomposition of the
unitary evolution [48]. It uses the quantum adiabatic
algorithm [49] and is implemented in terms of quantum
circuits. Given that the ground state of the toric code model
[7] has been experimentally prepared [50], it is hopeful that
our scheme can be realized in future experiments.
Furthermore, we classically demonstrate our quantum
simulation scheme using a GPU simulator called
Quantum Exact Simulation Toolkit (QuEST) [51] in an
NVIDIA GeForce RTX 3090 GPU server. Dubbed
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pseudoquantum simulation, the classical demonstration of
quantum simulation is also a numerical method providing
useful results on this model.
We have investigated the nature of the quantum phase

transitions, the adiabatic evolution along the dual line on the
phase diagram, as well as the behavior near the tricritical
point. Our work suggests that the tricritical point, where the
two second-order lines end, lies on the line of the first-order
transition, but not at the lower end of it (see Fig. 1).
The rest of the paper is arranged as follows: In Sec. II, the

Z2 gauge–Higgs model is briefly introduced. In Sec. III, we
elaborate on the digital quantum adiabatic algorithm and its
realization in terms of quantum circuits. In Sec. IV, we
describe the preparation of the initial state, as well as the
topological phase. In Sec. V, we discuss the critical points
according to the analysis of the density of states (DOS).
The Trotter error is analyzed in Sec. VI, with some details
given in the Appendix. We make a comparison between our
method and exact diagonalization in Sec. VII. A summary
is made in Sec. VIII.

II. MODEL DESCRIPTION

The Hamiltonian of the Z2 gauge–Higgs model is

H ¼ −J
X
v

τxv − h
X
p

Bz
p − g

X
l

σxl − λ
X
hj;ki

τzjσ
z
hj;kiτ

z
k; ð1Þ

where σ denotes the gauge field defined on the links, τ
denotes the Ising matter field defined at the vertices, and

Bz
p ¼

Y
j∈p

σzj ð2Þ

is the tensor product of four σz’s on the sides of a
plaquette p. Gauss’s law requires that the ground state
be invariant under the action of

Qx
v ≡ τxvAx

v; ð3Þ

with Ax
v ≡Q

j∈v σ
x
j .

Under a mathematical mapping, the Z2 gauge–Higgs
model as given in Eq. (1) is equivalent to the toric code
model in two transverse fields [46], which is thus studied in
this paper. We focus on the parameter subspace with
J ¼ h ¼ 1=2. Hence, the Hamiltonian reads

H ¼ −
1

2

X
v

Ax
v −

1

2

X
p

Bz
p − g

X
l

σxl − λ
X
l

σzl : ð4Þ

The total number of qubits is 19, with one for the ancilla
and 18 for a 3 × 3 lattice model on the torus. The size is
small. Unfortunately, it is very difficult to make it larger.
A 4 × 4 lattice would need 33 qubits, which is too large an
increase for both the power of present classical computa-
tion and real quantum simulation in present quantum
hardware, let alone even larger lattice size for the purpose
of finite size scaling.
The main goal of our work is to present and classically

demonstrate the scheme of the digital quantum simulation,
while the calculations are a proof-of-principle demonstra-
tion shedding some light on the nature of the quantum
phase transitions in this model.

III. QUANTUM ALGORITHM

The purpose is to obtain the energy of the system as a
function of the parameters λ and g. Since there exists the
self-duality, we only need to investigate the behavior below
the self-dual line λ ¼ g on the λ-g parameter plane. The g
axis, where λ ¼ 0, represents the pure Z2 gauge theory, for
which we prepare the initial ground state on a point Pðp; 0Þ
on the g axis.
Two paths of parameter variation are used for the

adiabatic algorithm. As shown in Fig. 2, on a path depicted
as a broken red line, the parameters vary first from Pðp; 0Þ
to Rðp; rÞ, then to R0ð0; rÞ. On a path depicted as a solid
blue line, the parameters vary from Pðp; 0Þ to P0ð0; pÞ on
the straight line.
Now, we introduce the algorithm for the digital quantum

simulation, which is implemented in terms of quantum
circuits and uses a quantum adiabatic algorithm to evolve
the ground state along paths in the parameter space. For
convenience, we write the Hamiltonian as

H ¼ H1 þH2 þH3; ð5Þ

FIG. 1. The phase diagram obtained from our calculation. The
red points represent the second-order transitions, and the blue line
represents first-order transitions. The first-order transition line not
only has a part outside the deconfined phase, but also has a small
part within the deconfined phase.

YIMING DING, XIAOPENG CUI, and YU SHI PHYS. REV. D 105, 054508 (2022)

054508-2



where

H1 ¼ −g
X
l

σxl ;

H2 ¼ −
1

2

X
v

Ax
v −

1

2

X
p

Bz
p;

H3 ¼ −λ
X
l

σzl : ð6Þ

We decompose the evolution operator e−iHt by using the
second-order Trotter-Suzuki formula [52],

e−iHt ≈ e−iH1
t
2e−iH2

t
2e−iH3te−iH2

t
2e−iH1

t
2; ð7Þ

where

e−iH1
t
2 ¼

Y
l

eigσ
x
l
t
2;

e−iH2
t
2 ¼

Y
v

ei
1
2
Ax
v
t
2

Y
p

ei
1
2
Bz
p
t
2;

e−iH3t ¼
Y
l

eiλσ
z
l t: ð8Þ

The decompositions in Eq. (8) do not generate errors, since
the summands in Hj commute with each other.
e−iH1

t
2 and e−iH3t can be realized simply by using the

rotation gates Rx and Rz, respectively:

Y
l

eigσ
x
l
t
2 ¼

Y
l

Rl
xð−gtÞ;

Y
l

eiλσ
z
l t ¼

Y
l

Rl
zð−2λtÞ: ð9Þ

By introducing an ancilla a, ei
1
2
Bz
p
t
2 can be realized as

ei
1
2
Bz
p
t
2 ¼ U1

�
Rz

�
−
t
2

��
a
U†

1; ð10Þ

where

U1 ¼
Y
j∈p

CNOTj→a: ð11Þ

ei
1
2
Ax
v
t
2 can be realized similarly, and we only need four

additional Hadamard gates to switch into z basis the four
spins on the sides connected at v—that is,

ei
1
2
Ax
v
t
2 ¼ U2

†
�
Rz

�
−
t
2

��
U2; ð12Þ

where

U2 ¼
�Y
k∈v

CNOTk→a

��Y
k∈v

Hk

�
: ð13Þ

Note that we use the convention for the time order of the
operators—that is, from right to left. We omit drawing the
circuits, which is straightforward.
To ensure adiabaticity in the variation of the parameters,

evolution on each path is divided into numerous tiny steps,
each with the same duration of time.

IV. PREPARATION OF INITIAL STATE

The initial ground state at the parameter point Pðp; 0Þ is
the same as an intermediate state in our previous work on
the pure Z2 gauge theory [31], as the mere addition of Av,
which commutes with Bz

p, does not change the state. As we
have mentioned before, this has been experimentally
realized [50]. In our demonstration in the classical simu-
lator, nevertheless, for convenience, we can simply use
projections to prepare such a state, although it is not
convenient in experiments.
The ground state is prepared from j00…00i, by using

Y
p

��Y
j∈p

CNOTj→a

�
½Pa¼j0i�

�Y
j∈p

CNOTj→a

��Y
l

Hl; ð14Þ

where P represents the projection of the ancilla to be j0i.
The idea is to first generate the equal superposition of all
the computational basis states, by using a Hadamard gate
on each qubit, then for each plaquette, to apply four CNOT
gates to transfer the information of each basis state to an
ancilla [31]. It leads to a superposition of all possible
configurations with Bp ¼ 1 for every p. This is a ground
state at parameter point Oð0; 0Þ on the λ-g plane, denoted
as ψ1.

FIG. 2. Two paths of parameter variation in our simulations.
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Then we adiabatically evolve ψ1 along the g axis toward
Pðp; 0Þ, by using the circuit-based digital quantum adia-
batic algorithm in Sec. III.
If we initially prepare a ground state at P0ð0; p0Þ by

adiabatic evolution from the one at Oð0; 0Þ, the state
prepared at Oð0; 0Þ should be the superposition of all
configurations with Av ¼ 1 for every v.
The quantum circuit for preparing ψ 0

1 is

Y
v

��Y
k∈v

Hk

Y
k∈v

CNOTk→a

�
½Pa¼j0i�

�Y
k∈v

CNOTk→a

Y
k∈v

Hk

��
:

ð15Þ

The ground states can be described with the aid of ’t
Hooft loop operators Vx

μ and noncontractible Wilson loop
operators Wz

ν, and the eigenstates of Vx
μ on the g axis are

dual to the eigenstates of Wz
ν on the λ axis [37]. ψ1,

ψ2 ¼ W1ψ1, ψ3 ¼ W2ψ1, and ψ4 ¼ W1W2ψ1 are different
eigenstates of Vx

1 and Vx
2, with eigenvalues ð�1;�1Þ. As

Vx
1 and Vx

2 are topological, ψ1, ψ2, ψ3, and ψ4 are in
different topological sectors, and a state in one topological
sector cannot evolve into other topological sectors.
Moreover, ψ1, ψ2, ψ3, and ψ4 are four degenerate ground
states at Oð0; 0Þ.
It turns out that ψ 0

1 ¼ ðψ1 þ ψ2 þ ψ3 þ ψ4Þ=2.
Therefore, if the evolution is restricted in a topological
phase, ψ1 and ψ 0

1 cannot evolve to each other, because of
topological protection. Hence, the evolution from Pðp; 0Þ
to P0ð0; p0Þ should be different from the evolution from
P0ð0; p0Þ to Pðp; 0Þ, on the path depicted as a solid blue line
in Fig. 2.

We prepare each of these two ground states on the
corresponding parameter point and evolve it to the other
parameter point along the solid blue path in Fig. 2. The
result shows that in Fig. 3, representing the functions of the
parameter λ, the two curves cross if the path is chosen
within the deconfined phase, and they do not cross if the
path is outside of the deconfined phase. The crossing here is
an indication of topological phase, and it shows the
irreversibility of the adiabatic evolution, which is history
dependent. This feature cannot show up in exact diago-
nalization or QMC, which directly give results at each
parameter point. Note that the crossing here is not the level
crossing in a finite lattice that becomes an avoided level
crossing in an infinite lattice.

V. PHASE DIAGRAM

We now look for the fingerprints of the critical points of
quantum phase transitions as the extremal points in the
second derivatives of the energy.
After numerous trials, we choose p ¼ 0.5 for the path

depicted as the broken red line in Fig. 2, of which the λ
value is denoted as r. The result suggests that for r < 0.19,
the critical value of g is gc ≈ 0.19, while for r > 0.19,
gc ≈ r, as depicted in Fig. 4. In this way, we find that the
two critical lines surrounding the deconfined phase meet at
g ≈ 0.24, as shown in Fig. 1.
As shown in Fig. 5, we analyze the order of the quantum

phase transition by considering DOS (density of states),
where the states refer to the eigenstates of Z̃ ¼ −

P
l σ

z
l , as

in our previous work. When r < 0.16, the DOS of Z̃
exhibits only one maximum in each phase. This is similar to
the case of the pure Z2 gauge theory. Hence, the quantum
phase transition here is of second order when r < 0.16.

(a) (b)

FIG. 3. Energy as a function of λ along the blue path. (a) For p ¼ p0 ¼ 0.12, E ¼ −9.16003, while E0 ¼ −9.15039, where E is the
energy of the state evolved from that prepared at P, while E0 is the energy of the state prepared at P0. Two energy curves cross, indicating
a topological phase. (b) For p ¼ p0 ¼ 0.50, E0 ¼ −14.06550, and E ¼ −14.06553. Two energy curves nearly coincide, and the energy
is symmetric with respect to the center of the blue path, indicating a nontopological phase.
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This verifies that the two critical lines surrounding the
deconfined phase are second order.
DOS becomes more and more disordered when r > 0.16,

which represents the region close to the meeting point T of

the two second-order critical lines. Similar phenomena can
also be observed on the paths in solid blue lines.
A characteristic feature of the first-order phase tran-

sition is the coexistence of different phases. As shown in

(a) (b) (c)

FIG. 4. On the evolution paths in broken red lines, with λ being r ¼ 0.05, 0.15, 0.25 (see Fig. 2), the plots show (a) energy, (b) the first
derivative of the energy, and (c) the second derivative of the energy, as functions of g. The minima in (c) are at g ¼ 0.1920, 0.1916, and
0.2489, respectively.

(a) (b)

(c) (d)

FIG. 5. (a),(b) DOS of Z̃ for g ¼ 0.19 and r ∈ ½0.01; 0.19� on the red paths. (c) DOS of Z̃ for r ¼ 0.14. (d) DOS of Z̃ for r ¼ 0.18.
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Fig. 6, the conversion from single-maximal features to
multimaximal features of the DOS of Z̃ can be regarded as
suggesting the conversion from a second-order phase

transition to a first-order phase transition. However, as
our system is small, although the multimaximal feature
appears in DOS when r > 0.16 in red paths, the first-order

FIG. 6. DOS of Z̃ on the dual line. The disorder recedes as g increases. (a) At g ≈ 0.30, the multimaxima are reduced to two maxima.
(b) At g ≈ 0.65, we detect a single maximum.

FIG. 7. Energy as a function of λ, for blue paths with different values of p: (a) p ¼ 0.36, (b) p ¼ 0.32, (c) p ¼ 0.28, and (d) p ¼ 0.24.
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phase transition does not necessarily appear when
0.16 < g < 0.24. It is likely that it appears only after
the two second-order lines cross at g ≈ 0.24.
Besides, no matter what value p we choose for the path

of the solid blue line, we can always observe an extremal
point of d2E=dg2 right on the dual line, as shown in Fig. 7.
However, an extremal point does not have to be a critical
point. To determine the end of the first-order phase
transition line outside the deconfined phase, we need to
investigate the DOS of Z̃.
Since the Higgs phase and confined phase are continu-

ously connected when g, λ → ∞ [39], the first-order line
should vanish somewhere. Figure 6 shows the variation of
the DOS on the dual line and gives two special points, g1 ¼
0.30 and g2 ¼ 0.65. We consider g1 as the end of the line
because the maximum at Z̃ ¼ −10 suggests that the system
starts to mainly permit the excitation of the smallest loop,
which is composed of four spins, while other possible
configurations are generally disfavored. Consequently, the
fusion of the flux and charge, which is a fermion in this
model, vanishes, and the system turns into confinement [53].
Besides this, Fig. 1 suggests that there seem to be three

extremal points on the paths in solid blue lines when
0.19 < p < 0.48. However, this feature can only be clearly
observedwhenp < 0.28. Forp > 0.28, we observe a single
extremal point on the dual line.We regard this as a finite-size
effect, which makes the extremal point on the dual line
indistinguishable from the two on the second-order lines.
The extremal points on the dual line make it natural for

us to study the energy right on the dual line, so we choose a
new path from (0,0.5) through (0.5,0.5) and to Oð0; 0Þ.
Surprisingly, we find an extremal point at g3 ¼ 0.1798,
which is in the deconfined phase (See Fig. 8). Moreover,
the DOS is also disordered on the part of the dual line

continued from the first-order line into the deconfined
phase; as indicated in Fig. 5, it is likely that the first-order
line extends for a range in the deconfined phase and ends at
g3 (See Fig. 1).
The phase diagram we obtain is similar to the diagram in

Ref. [43], which is derived by using perturbation theory.
The difference lies in the extension of the first-order line in
the deconfined phase. The region near the tricritical point
has not been clear. Our result corresponds to one of the
possibilities proposed in Ref. [46].

VI. ERROR ANALYSIS

As the Trotter-Suzuki decomposition is used in each
step, the upper bound of the total error is a summation of
the errors in each step.
We take the subpath from Rðp; rÞ ¼ ð0.5; 0.05Þ to

R0ð0; rÞ ¼ ð0; 0.05Þ as an example. As derived in the
Appendix, the accumulated Trotter error ϵ is

ϵ≲ ðΔtÞ3Nð13.5pþ 54pr2 þ 54prþ 54r2

þ 9p2 þ 18p2rþ 13.5rÞ; ð16Þ

where Δt is the time for each step of varying the parameter
values, and N is the number of steps.
For variation of g from 0, Δg is the variation in each step;

Δg ∝ Δt. We choose Δg ¼ 10−5 and Δt ¼ 2 × 10−2, giv-
ing ϵ ≈ 4.581, which seems to be too large for us. However,
this error bound is obtained by adding the absolute values
of the errors in all steps, and the actual errors are not always
positive and may cancel each other [54]. We demonstrate
this in the following steps.
RewriteΔg¼ 0.0001=n andΔt¼ 0.2=n, thenn¼ n0¼ 10

under the parameter values above. Define

δn ¼
Xp
g¼0

jEn0ðgÞ − EnðgÞj;

αn ¼ max
g∈½0;p�

jEn0ðgÞ − EnðgÞj; ð17Þ

where δn is a 1-norm of the difference between two energy
functions En0ðgÞ and EnðgÞ, and αn represents the largest
value of the difference. The results in Table I and Fig. 9 show
that even when ε at n0 ¼ 10 is around 6363 times more than
that at n ¼ 800, δn is merely 0.04075, and the maximal
deviation αn is only 0.005%. This is direct evidence that the

FIG. 8. The second derivative of energy on the dual line, with
an extremal point at g ¼ 0.1798 < 0.24.

TABLE I. Different values of δn and αn for n ¼ 10, 200, 500,
800.

n Δg Δt ε δn αn

10 1.00 × 10−5 2.0 × 10−2 4.58100 0 0
200 5.00 × 10−7 1.0 × 10−3 0.01145 0.03982 4.79 × 10−5

500 2.00 × 10−7 4.0 × 10−4 0.00183 0.04009 4.99 × 10−5

800 1.25 × 10−7 2.5 × 10−4 0.00072 0.04075 4.98 × 10−5

DIGITAL QUANTUM SIMULATION AND PSEUDOQUANTUM … PHYS. REV. D 105, 054508 (2022)

054508-7



error at each step cannot always be positive; thus, our choice
of n ¼ 10 is reasonable.
The results also demonstrate that the Trotter steps can

actually be reduced in an actual quantum simulation.

VII. COMPARISON WITH EXACT
DIAGONALIZATION

To verify the validity of our approach, we compare the
results on a 2 × 2 lattice on a torus in both exact
diagonalization and our approach. We do not directly make
exact diagonalization on a 3 × 3 lattice, as it would need
much more computing resources, while the scale of 2 × 2 is
close to 3 × 3.

For this model, exact diagonalization is more time-
consuming than our approach, in which one does parallel
computing with GPU. Specifically, for red paths with
Δg ¼ 10−5, the time in our approach is within 30 minutes
on a single GeForce RTX 3090 for 19 qubits (complex data
composed of a double data type for real components and
imaginary components).
We use the same parameter values as in our 3 × 3

model. For the evolution from Oð0; 0Þ to Pð0.5; 0Þ, the
comparison is shown in Fig. 10. The unavoidable Trotter
error and non-adiabatic error in DOS result in a difference
between EED and EDQS, the values obtained in exact
diagonalization and in our classical demonstration of
digital quantum simulation, dubbed pseudoquantum sim-
ulation, respectively. However, the results on the second
derivatives in the two approaches are very close to each
other. As the quantum phase transition behavior is
largely investigated through the second derivatives of
energy, the comparison confirms the reliability of our
approach.
As shown in Fig. 11, similar results can also be observed

outside the deconfined phase—for example, along a blue
path in blue, with p ¼ 0.4.
If the evolution path passes the deconfined phase, which

is topological, on a blue path with p ¼ 0.1, for example,
the shapes of EED and EDQS are quite different, as shown
in Fig. 12).
For a smaller p, even the shape of EDQS is clearly

asymmetric, which means that the difference of EDQS on P
and P0 is fairly large. The asymmetry cannot be observed in
exact diagonalization or QMC.
On a 2 × 2 lattice, as in the case of a 3 × 3 lattice, the

EDQS curves on the path from P0 to P cross that on the
reverse path from P0 to P.

FIG. 9. The diagram of the difference En0ðgÞ − EnðgÞ for
different values of n.

FIG. 10. The energy and its second-order derivative from (0,0) to (0.5,0) by using ED and pseudoquantum simulation.
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VIII. SUMMARY

We have designed the quantum simulation scheme of the
Z2 gauge–Higgs model. The quantum simulation scheme is
digital, as it is based on Trotter decomposition of the
unitary evolution. It is also based on a quantum adiabatic
algorithm. For each parameter value, which is varied
slowly, the Trotter decomposition is used in executing
the unitary transformation. Within each step in the Trotter
decomposition, the unitary transformations are realized in
terms of simple quantum circuits.
Moreover, as the quantum computers nowadays have not

been capable of such quantum simulations, we make a
thorough classical demonstration by using the QuEST
simulator on an NVIDIA GeForce RTX 3090 GPU server.

This so-called pseudoquantum simulation not only facilitates
the development of algorithms for future real quantum
simulation, but is also a numerical method.
Then, we make a thorough classical demonstration by

using the QuEST simulator in an NVIDIA GeForce RTX
3090 GPU server. Our demonstration is on a 3 × 3 lattice,
as limited by computational time in the pseudoquantum
simulation and the number of qubits that can be realized in
present quantum hardware. However, we have verified the
reliability of our approach by comparing with the exact
diagonalization on a 2 × 2 lattice.
We have obtained some clear results on the topological

properties of the deconfined phase, which appears useful for
the solution of some open questions. In particular, our work
suggests that the two lines of second-order transitions meet
on the line of the first-order transition, but not on its end.

FIG. 11. The energy and its second-order derivative from (0.4,0) to (0,0.4) by using ED and pseudoquantum simulation.

FIG. 12. The energy curve and its second-order derivative from (0.1,0) to (0,0.1) by using ED and pseudoquantum simulation.
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APPENDIX: CALCULATION OF THE
TROTTER ERRORS

It is useful to calculate kHjk and k½Hk;Hl�k in advance,
where k·k denotes the spectral norm of an operator, or the
largest singular value of it. We use the estimation that
kOk ∼ 1, where O is a Pauli operator or a tensor product of
Pauli operators.
For our specific 3 × 3 lattice model (see Fig. 13), we have

kH1k ∼ 18g; kH3k ∼ 18λ;

kH2k ≤
1

2

����
X
p

Bz
p

����þ 1

2

����
X
v

Ax
v

���� ∼ 9 ðA1Þ

and

k½H1; H2�k ¼
����
�
−g

X
l

σxl ;−
1

2

X
p

Bz
p −

1

2

X
v

Ax
v

����� ¼ g
2

����
�X

l

σxl ;
X
p

Bz
p

����� ≤
g
2

X
l

����
�
σxl ;

X
p

Bz
p

����� ¼ 18
g
2

����
�
σx4;

X
p

Bz
p

�����
¼ 18

g
2
k½σx4; σz1σz10σz4σz13� þ ½σx4; σz4σz11σz7σz14�k ∼ 18g; ðA2Þ

where the coefficient 18 comes up due to the symmetry of the lattice. Similarly, we have k½H2; H3�k ∼ 18λ and

k½H1; H3�k ¼
����
�
−g

X
l

σxl ;−λ
X
s

σzs

����� ¼ gλ

����
�X

l

σxl ;
X
s

σzs

����� ¼ gλ

����
X
l

½σxl ; σzl �
���� ∼ 36gλ: ðA3Þ

Multiplying a minus sign does not change the eigenvalues of a matrix; thus, k½H2;H1�k∼18g, k½H3; H1�k ∼ 36gλ,
and k½H3; H2�k ∼ 18λ.
Suppose H ¼ PΓ

γ¼1 Hγ; then, the tight error bound for the second-order decomposition is [55]

kS2ðΔtÞ − e−iðΔtÞHk ≤
ðΔtÞ3
12

XΓ
γ1¼1

����
� XΓ
γ3¼γ1þ1

Hγ3 ;

� XΓ
γ2¼γ1þ1

Hγ2 ; Hγ1

������þ ðΔtÞ3
24

XΓ
γ1¼1

����
�
Hγ1 ;

�
Hγ1 ;

XΓ
γ2¼γ1þ1

Hγ2

������: ðA4Þ

Our Hamiltonian is H ¼ H1 þH2 þH3; thus, the error bound is

kS2ðΔtÞ − e−itHk ≤
ðΔtÞ3
12

X3
l¼1

����
� X3
n¼lþ1

Hn;

� X3
m¼lþ1

Hm;Hl

������þ ðΔtÞ3
24

X3
l¼1

����
�
Hl;

�
Hl;

X3
m¼lþ1

Hm

������

≤
ðΔtÞ3
12

X3
l¼1

X3
n¼lþ1

X3
m¼lþ1

kHn½Hm;Hl� − ½Hm;Hl�Hnk þ
ðΔtÞ3
24

X3
l¼1

X3
m¼lþ1

kHl½Hl;Hm� − ½Hl;Hm�Hlk

≤
ðΔtÞ3
6

X3
l¼1

X3
n¼lþ1

X3
m¼lþ1

kHnkk½Hl;Hm�k þ
ðΔtÞ3
12

X3
l¼1

X3
m¼lþ1

kHlkk½Hl;Hmk

¼ ðΔtÞ3
6

W1 þ
ðΔtÞ3
12

W2; ðA5Þ

FIG. 13. Lattice used in the simulations.
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where

W1 ¼
X3
l¼1

X3
n¼lþ1

X3
m¼lþ1

kHnkk½Hm;Hl�k;

W2 ¼
X3
l¼1

X3
m¼lþ1

kHlkk½Hl;Hm�k: ðA6Þ

According to Eq. (A1), we have

W1 ¼
X3
n¼2

X3
m¼2

kHnkk½Hm;H1�k þ kH3kk½H3; H2�k

¼ kH2kðk½H2; H1�k þ kk½H3; H1�kÞ þ kH3kðk½H2; H1�k þ k½H3; H1�k þ k½H3; H2�kÞ
∼ 9ð18gþ 36gλÞ þ 18λð18gþ 36gλþ 18λÞ
¼ 162ðgþ 2gλÞ þ 324λðgþ 2gλþ λÞ
¼ 162gþ 648gλ2 þ 648gλþ 324λ2 ðA7Þ

and

W2 ¼
X3
m¼2

kH1kk½H1; Hmk þ kH2kk½H2; H3k

¼ kH1kðk½H1; H2k þ k½H1; H3kÞ þ kH2kk½H2; H3k
∼ 18gð18gþ 36gλÞ þ 9ð18λÞ
¼ 324g2 þ 648g2λþ 162λ: ðA8Þ

The evolution in Sec. VI is from ð0; rÞ to ðp; rÞ on l∶λ ¼ r, with g increasing from 0 to p in N ¼ p=Δg steps. Denote
g ¼ nΔg; then the total error is

ϵ ≤
ðΔtÞ3
6

XN
n¼1

W1;n þ
ðΔtÞ3
12

XN
m¼1

ΔmW2;m

∼
ðΔtÞ3
6

XN
n¼1

ð162gþ 648gλ2 þ 648gλþ 324λ2Þ þ ðΔtÞ3
12

XN
m¼1

ð324g2 þ 648g2λþ 162λÞ

¼ ðΔtÞ3
XN
n¼1

ð27gþ 108gλ2 þ 108gλþ 54λ2Þ þ ðΔtÞ3
XN
m¼1

ð27g2 þ 54g2λþ 13.5λÞ

¼ ðΔtÞ3
XN
n¼1

ð27gþ 108gλ2 þ 108gλþ 54λ2 þ 27g2 þ 54g2λþ 13.5λÞ

¼ ðΔtÞ3
XN
n¼1

ð27gþ 108gr2 þ 108grþ 54r2 þ 27g2 þ 54g2rþ 13.5rÞ: ðA9Þ

Besides this, we have

XN
n¼1

g ¼
XN
n¼1

ðnΔgÞ ≈ Δg
N2

2
¼ 1

2
pN;

XN
n¼1

g2 ¼
XN
n¼1

ðnΔgÞ2 ≈ Δg2
N3

3
¼ 1

3
p2N: ðA10Þ
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Rewriting Eq. (A9) with Eq. (A10), we have

ϵ≲ ðΔtÞ3
�
27

1

2
pN þ 108

1

2
pNr2 þ 108

1

2
pNrþ 54r2N þ 54

1

3
p2N þ 54

1

3
p2Nrþ 13.5rN

�

¼ ðΔtÞ3Nð13.5pþ 54pr2 þ 54prþ 54r2 þ 9p2 þ 18p2rþ 13.5rÞ: ðA11Þ
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