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We numerically study the phase structure of the CPð1Þ model in the presence of a topological θ-term, a
regime afflicted by the sign problem for conventional lattice Monte Carlo simulations. Using a bond-
weighted tensor renormalization group method, we compute the free energy for inverse couplings ranging
from 0 ≤ β ≤ 1.1 and find a CP-violating, first-order phase transition at θ ¼ π. In contrast to previous
findings, our numerical results provide no evidence for a critical coupling βc < 1.1 above which a second-
order phase transition emerges at θ ¼ π and/or the first-order transition line bifurcates at θ ≠ π. If such a
critical coupling exists, as suggested by Haldane’s conjecture, our study indicates that is larger than
βc > 1.1.
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I. INTRODUCTION

The CPðN − 1Þ models in 1þ 1 dimensions share
many properties with QCD in 3þ 1 dimensions, among
them confinement, asymptotic freedom, instantons, a 1=N
expansion, a topological charge, and a θ-term. Thus, they
serve as benchmark models for developing and testing both
new numerical techniques and new proposed solutions to
open questions of QCD.
Both the CPðN − 1Þ models and QCD contain many

nonperturbative phenomena, which cannot be addressed
with conventional lattice techniques. One particular exam-
ple is the above-mentioned θ-term, which is the origin of
the strong CP problem in QCD [1,2]. The θ-term gives rise
to an imaginary contribution to the action in the Euclidean
formulation of lattice gauge theories. This complex action
problem, also called the sign problem [3], prevents the
successful application of Markov chain Monte Carlo
(MCMC) methods for large values of the topological
vacuum angle θ. To evade this problem, new numerical
techniques have to be developed.

One particularly promising approach are tensor network
(TN) techniques, which have been successfully employed
to simulate lattice gauge theories in 1þ 1 dimensions
[4–38] and have recently been applied to theories in 2þ
1 [39–44] and 3þ 1 [45] dimensions. In particular, the θ-
dependence of lattice gauge theories has already been
successfully studied using various TN methods, i.e., the
density matrix renormalization group method [36], matrix
product states [14,37], and the tensor renormalization
group (TRG) approach [33–35]. Specifically, TRG has
been used to study the θ-dependence of the CPð1Þ model
[34,35] and the Schwinger model [33].
The phase structure of different CPðN − 1Þ models has

been intensively investigated with different methods in the
past [34,35,46–50]. In particular, the phase diagram of the
CPð1Þ model with a θ-term has been studied with a strong
coupling analysis [48], Monte Carlo simulations [50], and
TRG studies [34,35]. Here, it was shown that a first-order
phase transition occurs at small values of β and θ ¼ π,
where the CP symmetry spontaneously breaks (see Fig. 1).
For larger values of β, corresponding to the weak-coupling
regime, the numerical studies in Refs. [34,35,50] indicated
that the phase transition at θ ¼ π becomes a second-order
transition. Since the CPð1Þ model is equivalent to the O(3)
model [51], these results are in agreement with Haldane’s
conjecture [52,53] that the O(3) model at weak coupling
becomes gapless at θ ¼ π, corresponding to a second-order
phase transition. At the same time, it has also been
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suggested that the first-order transition line bifurcates at
θ ≠ π for large values β, thus exhibiting a non-trivial
dependence on the coupling [34,35,48,50]. However, the
exact value of the critical coupling, βc, remains unknown
for both scenarios. While a strong coupling analysis
suggests a bifurcation at βc ¼ 0.56 [48], Monte Carlo
simulations yield a second-order transition beyond βc ¼
0.5 [50], and the TRG analysis finds that the second-order
phase transition occurs around βc ≈ 0.3–0.4 [34,35].
In the present work, we reanalyze the phase diagram of

the lattice CPð1Þ model in the presence of a θ-term using
high-precision TRG simulations. We provide a detailed
analysis of the different errors contributing to the current
and previous numerical studies. Interestingly, we find no
indication of a bifurcation point or the onset of a second-
order phase transition up to β ¼ 1.1, which is much larger
than suggested by the previous studies. If the bifurcation
point really exists, as suggested by Haldane’s conjecture,
our results indicate it occurs at βc > 1.1.
The paper is organized as follows. In Sec. II, we will

describe the CPð1Þ model and the numerical TRG meth-
ods. In Sec. III, we will present our numerical results. In
Sec. IV, we will summarize and discuss our results.

II. MODEL AND METHODS

In order to study the phase structure of the CPð1Þ model
with the TRG [54–56], we use a Euclidean time lattice

formulation. The discretized action of the model is
given by

Sθ ¼ −2β
X
x;μ

½z�xzxþμ̂Ux;μ þ zxz�xþμU
†
x;μ� − i

θ

2π

X
x

qx; ð1Þ

where β ¼ 1=g2 is the inverse coupling constant and θ ∈
½0; 2π� is the free parameter of the topological θ-term. The
two-component complex scalar fields zx ∈ C2 reside on
the sites x ¼ ðx1; x2Þ of a two-dimensional lattice and are
fixed to unit length, z�xzx ¼ 1∀ x. The gauge variables Ux;μ

reside on the links connecting the lattice sites x and xþ μ̂
along the direction μ (see Fig. 2). They are related to
the components Ax;μ of an auxiliary vector field via
Ux;μ ¼ expðiAx;μÞ. The topological charge qx is defined as

qx ¼ Ax;1 − Axþ1̂−2̂;2 − Ax−2̂;1 þ Ax−2̂;2 mod 2π: ð2Þ

In order to explore the phase diagram of the CPð1Þ model
using TRG, we need to obtain the tensor network repre-
sentation of the partition function

Zθ ¼
Z Y

x

dzx
Y
y;μ

dAy;μ expð−SθÞ; ð3Þ

where we have used a shorthand notation for the integration
measure over the complex scalar fields,

dzx ¼ d2z�xd2zxδðjzxj − 1Þ: ð4Þ

To this end, we first derive an expansion for expð−Sθ¼0Þ
which factors into two parts: a part dependent on the
complex scalar fields zx and a part depending on the vector
fields Ax;μ. Inserting this expansion into Eq. (3) and taking

FIG. 1. Sketch of the phase diagram of the lattice CPð1Þmodel,
where β ¼ 1=g2 is the inverse coupling and θ is the free parameter
of the topological θ-term. The weak-coupling limit β → ∞
corresponds to the continuum limit of the lattice model. For
small values of β, the model undergoes a first-order phase
transition at θ ¼ π (solid gray line), up to a certain critical
coupling βc (yellow shaded region). For β > βc (blue region),
different predictions exist and the phase structure is not entirely
clear. There are hints toward a second-order phase transition at
θ ¼ π (dotted brown line), in agreement with Haldane’s con-
jecture, and toward a bifurcation of the critical first-order line,
such that the model undergoes two first-order transitions in θ ≠ π
(dashed dark purple lines).

FIG. 2. Illustration of the 1þ 1D square lattice showing the
vertices (blue spheres) and the directed links. The complex scalar
fields zx (illustrated in black) are sitting on the vertices x and the
link variables Ux;μ are sitting on the edges connecting sites x and
xþ μ̂ as illustrated in green. The topological charge qx (orange)
corresponds to a product of the sum of the gauge fields around a
plaquette.
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the integral over the scalar fields, we arrive at a tensor
representation of the matter part. Subsequently, we derive a
corresponding representation for the θ-term. The final
tensors for Zθ can then be obtained by multiplying both
tensors for the individual parts together and integrating over
the gauge fields. To obtain a tensor network representation
for θ ¼ 0, we use the characterlike expansion of the
Boltzmann factor [48]

e−Sθ¼0 ¼
Y
x;μ

Z0ðβÞ
X∞
l;m¼0

dl;m exp ½iðm − lÞAx;μ�

× hl;mðβÞfl;mðzx; zxþμ̂Þ; ð5Þ

where dl;m are the expansion dimensions, hl;m are the
expansion coefficients, fl;m are the expansion characters,
and Z0ðβÞ is a normalization factor. The non-negative
integers l and m will become the indices of the tensor
representation after integrating out the degrees of freedom
zx and Aμ. Note that due to the product in front of the right-
hand side of Eq. (5), there are four sets of indices ðl; mÞ
associated with each site. These correspond to the ingoing
and outgoing index for every direction [see Fig. 3(a)].
The expansion coefficients hl;m and the normalization

factor Z0ðβÞ can be expressed through the modified Bessel
functions of the first kind, InðxÞ,

hl;mðβÞ ¼
I1þlþmð4βÞ
I1ð4βÞ

; ð6Þ

Z0ðβÞ ¼
I1ð4βÞ
2β

: ð7Þ

As the explicit form of the dimensions dl;m and the char-
acters fl;m is rather complicated, we refer to Refs. [48,56]
for details and only quote their normalization conditions
here,

Z
dzxfl;mðzx0 ; zxÞf�l0;m0 ðzx00 ; zxÞ ¼

1

dl;m
fl;mðzx0 ; zx00 Þ;

fl;mðzx; zxÞ ¼ dl;m; ð8Þ

In order to construct the tensor representation, we introduce
an additional decomposition of fl;m [see Fig. 3(b)],

fl;mðzx; zx0 Þ ¼
X
fag

Ffag
l;m ðzxÞF̃fag

l;m ðzx0 Þ; ð9Þ

where fag ¼ a1;…; al; a01;…; a0m, and the indices ai (a0i)
range over 1,2 (see Refs. [48,56] for details).
With this expansion, we can divide fl;mðzx; zx0 Þ into a zx-

dependent part Ffag
l;m ðzxÞ and a zx0 -dependent part F̃fag

l;m ðzx0 Þ,
such that we can subsequently integrate out the complex
scalar fields zx site by site. Note that the θ-term does not
depend on zx, which implies that only the first term in
Eq. (1) is relevant for integrating out zx. Finally, we define
the tensor [see Fig. 3(b)] by the integral

FIG. 3. (a) Illustration of the function fl;mðzx; zxþμ̂Þ (indicated by the shaded region behind the gauge links) connecting the complex
scalar field at site x (blue sphere) to its neighboring lattice sites (gray spheres). Note that each site has two ingoing and two outgoing
links, hence there are four pairs of integer indices ðli; miÞ, i ¼ s, t, u, v at each site. (b) Illustration of the situation after using Eq. (8) to
break the function fl;mðzx; zxþμ̂Þ into a contraction of two tensors between neighboring sites. The colored part belongs to site x, the gray
parts belong to the neighboring sites. The gray square illustrates the pieces which form the tensor Wx in Eq. (10) upon integrating over
the scalar field. Panel (c) shows the final rank-4 tensor Tx

stuv sitting at vertex x. The bonds of the tensor are represented as legs sticking
out of the vertex. Each bond corresponds to a multi-index corresponding to a pair of indices ðli; miÞ resulting from the character
expansion (solid black and red lines), two sets of indices fag from the decomposition of the function fli;mi

in Eq. (9) (dashed black and
red lines), and an index from the expansion of topological θ-term (black dotted line).
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Wxðls;ms;fagÞðlt;mt;fbgÞðlu;mu;fcgÞðlv;mv;fdgÞ

≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dls;ms

dlt;mt
dlu;mu

dlv;mv

q

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hls;ms

ðβÞhlt;mt
ðβÞhlu;mu

ðβÞhlv;mv
ðβÞ

q

×
Z

dzxF̃
fag
ls;ms

ðzxÞFfbg
lt;mt

ðzxÞF̃fcg
lu;mu

ðzxÞFfdg
lv;mv

ðzxÞ: ð10Þ

The tensor Wx represents a rank-4 tensor, whose bonds are
given by the four multi indices ðls; ms; fagÞ, ðlt; mt; fbgÞ,
ðlu;mu; fcgÞ, and ðlv; mv; fdgÞ, which allows for repre-
senting expð−Sθ¼0Þ as a tensor network up to the factor
eiðm−lÞAx;μ depending on the gauge field.
Next, we derive a tensor representation of the topological

θ-term starting again from its character expansion, which
reads

ei
θ
2πqx ¼

X
np∈Z

einpqxGnpðθÞ: ð11Þ

In the expression above, np is an integer, and we have
defined

GnpðθÞ ¼
2 sin θþ2πnp

2

θ þ 2πnp
: ð12Þ

In order to take the integral over the gauge field Ax;μ, we
consider the following integrals of Ax;1 and Ax−2̂;2,

Z
π

−π
dAx;1eiðmt−ltÞAx;1eiðtp−vpÞAx;1 ¼ δlt−mt

tp−vp ;
Z

π

−π
dAx−2̂;2e

iðmu−luÞAx−2̂;2eiðsp−tpÞAx−2̂;2 ¼ δlu−mu
sp−tp : ð13Þ

Similarly, the integral over Ax;2 yields δlt−mt
up−vp . Using

δabδbc ¼ δac, we finally get the following tensor represen-
tation,

Tx
stuv ≡ Tx

ðls;ms;fag;spÞðlt;mt;fbg;tpÞðlu;mu;fcg;upÞðlv;mv;fdg;vpÞ

≡Wx
ðls;ms;fagÞðlt;mt;fbgÞðlu;mu;fcgÞðlv;mv;fdgÞ

× δlt−mt
tp−vpδ

lu−mu
sp−tp GtpðθÞδtpup : ð14Þ

The partition function of the system can now be represented
as the contraction of the rank-4 tensors Tx

stuv sitting at the
different lattice sites. Compared to Wx, the multi-index for
each bond of the tensor Tx comprises an additional index
resulting from the character expansion of the topological
term [see also Fig. 3(c)].
Since the indices l,m, and np in the character expansions

in Eq. (1) and Eq. (11) range over a countable infinite set,
the bonds of the tensor Tx are infinite dimensional. Hence,
for numerical calculations we need to truncate the bonds to

a finite dimension. To this end, we limit the number of
terms that we keep in the character expansions. For the
indices l,m we define a cutoff kmax and restrict ourselves to
values fulfilling lþm ≤ kmax. This results in a bond size of
χβ ¼ 1þ kmax2

kmaxþ1 for the tensor representing the parti-
tion function without the θ-term. Similarly, we only keep a
subset of χθ terms in the expansion for the topological term
in Eq. (11). Since our numerical analysis primarily focuses
on the region θ ¼ π, we choose the terms with the largest
absolute value of GnpðπÞ. For example, for χθ ¼ 2, we take
into account np ¼ 0;−1 because the absolute value of
jG0;−1ðπÞj ¼ 2=π is larger than all other values of jGnpðπÞj.
The size of the truncated tensor Tx is thus given by χβ × χθ.
These cutoffs in the tensor Tx introduce systematic

errors. Since hl;m is given by a ratio of the modified
Bessel functions [see Eq. (6)], the cutoff at kmax truncates
only an exponentially small contribution to the tensor
Tx
stuv. The truncation in the expansion for the θ-term leads

to an error of the order Oð1=χθÞ, as shown in Eq. (12). We
will estimate these systematic errors by using different kmax
and χθ our numerical calculations.
In addition, the TRG algorithm introduces another

systematic error. Starting from the initial, finite dimensional
tensor Tx, the coarse-gaining step of the algorithm would
produce a tensor which has the same structure as the
original one, but with a bond size corresponding to the
square of the one of the original tensor. Hence, for
the computation to be sustainable, one has to truncate
the tensor during the coarse-graining step and limit the
bond size to a maximum value D. We will estimate this
additional systematic error by performing calculations for
various values of the bond dimensions D for a fixed set of
parameters. In particular, D should be chosen larger than
the size of the initial tensor χβ × χθ to capture the relevant
physics of the model.

III. RESULTS

In order to explore the phase structure of the model, we
compute the partition function using TRG methods, which
in turn allows us to obtain the free energy density

Fðβ; θÞ ¼ −
1

βV
logZθ; ð15Þ

where V is the dimensionless volume of the lattice.
Moreover, we can also compute the specific heat from
the partition function using the relation

Cðβ; θÞ ¼ β2

V
∂2

∂β2 logZθ: ð16Þ

In particular, studying the free energy will allow us to
determine the phase structure of the model and to detect a
possible phase transition as discontinuities in the deriva-
tives of the free energy.
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As a first step, we focus on the case θ ¼ 0 to explore
systematic errors due to the truncation in kmax over a large
range β. This allows us to identify the range of couplings in
which our TRG computations yield reliable results. As a
second step, we turn to the model in the presence of a
topological θ-term. Using again the TRG approach, we
study the model in a region around θ ¼ π, where we
carefully estimate our systematic errors due to the finite
values of ðD; kmax; χθ; VÞ.

A. CPð1Þ model without θ-term

To begin with, we benchmark the TRG method for θ ¼ 0
and explore the effect of systematic errors due to the
truncation of the expansion in Eq. (5). To this end, we
calculate the free energy and specific heat of the CP(1)
model using the anisotropic TRG (ATRG) method with
randomized singular value decomposition (SVD) [57,58].
In order to avoid errors due to the randomized SVD, we set
the oversampling parameter to the value ofD, meaning that
we compute 2D singular values at each coarse-graining
step and select the D dominant ones from those. This
ATRG method is faster than the usual TRG algorithm,
while the precision is comparable to the one of TRG for
sameD. Since we choose the oversampling parameter large
enough, the systematic error from the randomized SVD is
negligible.
Figure 4 shows our results for the free energy and the

specific heat for D ¼ 80, kmax ¼ 2, 4, and a volume of
V ¼ 240. Focusing on the free energy, we see that the
systematic error due to the finite value of kmax is negligible
in the range of small values of the inverse coupling. In
particular, for β ≤ 1.5 there is essentially no difference
between results with kmax ¼ 2 and 4. Only as we enter the
region of larger β, the curves start to deviate slightly while

the qualitative behavior of the free energy is still the same
for both values of kmax.
Looking at the specific heat, in Fig. 4, we see that

truncation effects due to finite kmax are more pronounced.
This is not too surprising, as the specific heat is obtained via
Eq. (16) by approximating the second derivative with finite
differences,

Cðβ;θ¼ 0Þ≈ β2

V
1

12ðΔβÞ2 f16½logZ0ðβþΔβÞ− 2 logZ0ðβÞ

þ logZ0ðβ−ΔβÞ�− ½logZ0ðβþ 2ΔβÞ
− 2 logZ0ðβÞþ logZ0ðβ− 2ΔβÞ�g; ð17Þ

where we choose Δβ ¼ 0.5 for the data shown in the inset
of Fig. 4. Thus, the systematic errors in logZθ are enhanced
by a factor of ðΔβÞ2 leading to significantly larger devia-
tions in the regime of larger β. Focusing on smaller values
of the inverse coupling, our data show that truncation
effects are nevertheless small despite this effect, and we can
reliably determine the specific heat with kmax ¼ 2 in
regimes β ≤ 1.1. Hence, for all the following we will
solely focus on that region and use kmax ≥ 2, for which
systematic errors due to the truncation of the expansion in
Eq. (5) are very small.
We note that previous work using TRG [35] observed

large fluctuations in the specific heat in the regime of large
β. In contrast, our ATRG results are stable even for large
values of β. While Ref. [35] used a bond dimension
D ¼ 21, our calculations rely on a larger bond dimension
D ¼ 80. Thus, we suspect that these fluctuations were
caused by truncation effects due to the small bond
dimension.

B. CPð1Þ model with θ-term

In order to study the CPð1Þ model in the presence of
a θ-term, we use the bond-weighted TRG method [59] in
conjunction with regular SVD to truncate the tensor at each
coarse-graining step. Compared to the original TRG
method, bond-weighted TRG introduces bond weights
on the edges of the tensor network, allowing for more
precise results within the same calculation time.
Figure 5 shows our results for the free energy as a

function of θ for the volume V ¼ 224, bond dimension
D ¼ 80, kmax ¼ 2, a truncation of the character expan-
sion of the topological term χθ ¼ 2, and three values of
the inverse coupling β ¼ 0.1, 0.6, 1.1. Focusing first on
β ¼ 0.1 in Fig. 5(a), we observe a clear cusp at θ ¼ π.
Hence, the first derivative of Fðβ ¼ 0.1; θÞ with respect
to θ is discontinuous at θ ¼ π, indicating that the model
undergoes a first-order phase transition at this point. This
observation is consistent with previous findings of a first-
order transition for β ¼ 0.1 [34,35,48,50].

FIG. 4. ATRG results for the free energy Fðβ; θ ¼ 0Þ (main
plot) and the specific heat Cðβ; θ ¼ 0Þ (inset) as a function of the
inverse coupling β ¼ 1=g2, with the volume V ¼ 240, bond size
D ¼ 80, and cutoff kmax ¼ 2 (blue dots) and 4 (orange triangles).

PHASE STRUCTURE OF THE CPð1Þ MODEL IN THE … PHYS. REV. D 105, 054507 (2022)

054507-5



For larger inverse couplings of β ¼ 0.6 and β ¼ 1.1, the
absolute values of the free energy change, as Fig. 5(b) and
Fig. 5(c) reveal, respectively. However, for both β ¼ 0.6
and β ¼ 1.1, we still find the same cusp structure as for the
smaller inverse coupling of β ¼ 0.1. Thus, even for these
large values of β, the transition is still of first order. These
results disagree with previous findings [34,35,48,50] that
for βc ≳ 0.4–0.56, the transition at θ ¼ π becomes of
second order and the first-order transition line bifurcates
at θ ≠ π.
In order to ensure that the discrepancies for the phase

structure obtained from our numerical results and previous
studies are not caused by systematic errors due to the choice
of kmax, D, and χθ, we carefully examine the effect of these
parameters. Figure 6 shows the difference in the results for
the free energy,

ΔFðβ; θÞ ¼ jFðβ; θ;D; kmax; χθÞ − Fðβ; θ; 80; 2; 2Þj; ð18Þ

between ðD; kmax; χθÞ ¼ ð80; 2; 2Þ and various larger
choices of kmax, D, and χθ for a fixed volume of
V ¼ 224. Note that changing χθ and kmax affects the size
of the initial tensor as discussed above. While for
ðkmax; χθÞ ¼ ð2; 2Þ the bond size of the initial tensor is
34, for (2, 4) and (3, 2) it grows to 68 and 98 respectively.
SinceD should be chosen well above the initial tensor size,

we do not only increase kmax or χθ, but simultaneously also
the value of D.
Figure 6(a) shows our results for the smallest value of the

inverse coupling corresponding to β ¼ 0.1. In particular, we
observe that increasing the bond dimension while keeping
ðkmax; χθÞ ¼ ð2; 2Þ has an extremely small effect on the
results, with an absolute change in the range below 10−14.
Similarly, increasing kmax does not lead to noticeable devia-
tions and the absolute change is in the same range. Increasing
the value of χθ to 4 yields a slightly larger deviation, which is
still very small and in the range of 10−10. All in all, when we
compare these absolute differences to the values of the free
energy, which are on the order of 10−1 [see Fig. 5(a)], the
systematic errors due to finite D, kmax and χθ are negligible
throughout the entire range of θ we study.
For the larger inverse couplings of β ¼ 0.6 and β ¼ 1.1

in Fig. 6(b) and Fig. 6(c), respectively, we observe a
qualitatively similar picture. While the absolute deviation is
larger than for the case of β ¼ 0.1, these effects are well
below the percentile range even for our largest value of β.
Just as before, increasing D and kmax has the least impact,
whereas increasing χθ to 4 now clearly has a slightly larger
effect on the results. In relation to the values of the free
energy shown in Fig. 5(b) and Fig. 5(c), which are on the
order of 10−1 and 3, respectively, the systematic effects due
to finite ðD; kmax; χθÞ are again negligible.

FIG. 5. TRG results for the free energy as a function of θ, for the volume V ¼ 224, the bond dimension D ¼ 80, and the inverse
couplings (a) β ¼ 0.1, (b) β ¼ 0.6, and (c) β ¼ 1.1. The vertical dashed gray line indicates θ ¼ π, at which we expect the phase
transition to occur.

FIG. 6. TRG results for the systematic errors of computing the free energy as a function of θ, for the inverse couplings of (a) β ¼ 0.1,
(b) β ¼ 0.6, and (c) β ¼ 1.1. The blue dots in panels (a) and (b) show ΔFðβ; θÞ for D ¼ 112, kmax ¼ 2 and χθ ¼ 2, the orange triangles
forD ¼ 144, kmax ¼ 3 and χθ ¼ 2, and the green squares forD ¼ 144, kmax ¼ 2 and χθ ¼ 4. For panel (c), the markers encode the same
values of kmax and χθ, but we keep a fixed value of D ¼ 112 in all cases.
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To further study the possible origin of the discrepancies
between our and previous numerical results, we now
investigate the cusp in the free energy as a function of
the volume V. To this end, we plot a close-up around the
region of θ ¼ π for various volumes and various values of
the inverse coupling in Fig. 7. Looking at our results for
β ¼ 0.1 [see Fig. 7(a)], we observe that for volumes below
214, the free energy is smooth at θ ¼ π. Thus, the first
derivative does not show any discontinuity for small
volumes. Only when increasing V to larger values, the
cusp at θ ¼ π eventually emerges, signaling the onset of the
first-order transition directly in the free energy. For larger
values of the inverse coupling, corresponding to β ¼ 0.6
and 1.1, we see a qualitatively similar behavior, as
Figs. 7(b) and 7(c) reveal. Interestingly, the finite-volume
effects seem to be slightly less pronounced for larger values
of β, as a comparison between Figs. 7(a) and 7(c) shows.
For β ¼ 1.1, we observe that the data for V ¼ 214 already
has a clear signature of a cusp, and increasing the volume
only leads to a slightly sharper peak.
In summary, the analysis of the systematic errors from

finite ðV;D; kmax; χθÞ further supports the reliability of our
findings throughout the entire range of β that we study. We
conclude that the phase transition at θ ¼ π is still of first
order up to an inverse coupling of β ¼ 1.1.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we numerically studied the phase
diagram of the lattice CPð1Þ model with a θ-term. We
observe a CP-violating, first-order phase transition at
θ ¼ π and small β, in agreement with previous findings
[34,35,48,50]. However, our results do not confirm pre-
vious indications for a bifurcation in the first-order tran-
sition line at some critical value of β, ranging from
βc ¼ 0.56 [48] to βc ¼ 0.5 [50] to βc ¼ 0.4 [34,35].
Instead, we find that the first-order transition at θ ¼ π
persists up to β ¼ 1.1 without any bifurcation, and we
observe no indication that the phase transition at θ ¼ π
becomes of second order for β > βc. The existence of a
second-order transition at θ ¼ π and β > βc was suggested
by the previous studies based on a strong coupling analysis

[48], Monte Carlo simulations [50], and first TRG
studies [34,35].
Compared to the strong coupling analysis of the CPð1Þ

model in Ref. [48], our method does not require an
expansion in the inverse coupling β ¼ 1=g2, but instead
performs truncations and character expansions to construct
the tensor representation. Thus, while for small β the results
in [48] may be more accurate than ours, the strong coupling
analysis becomes more challenging for larger values of β.
Since our TRG results clearly show that the effects due to
the truncations of the character expansions are very small
throughout the entire range of β we study, our results
suggest that the strong coupling expansion does not
correctly capture the physics of the model up to β ¼ 1.1.
Similarly, the Monte Carlo studies in Ref. [50] suffer

from the sign problem, which makes it difficult to reliably
examine the phase diagram of the CPð1Þ model for large
values of θ. In particular, the Monte Carlo approach
becomes more challenging when approaching the phase
transition at θ ¼ π, whereas our TRG calculation only
shows small systematic errors, which are essentially inde-
pendent of the value of θ for the parameter range we study.
Compared to previous TRG-based studies of the model,

our approach to determine the phase structure is more
direct. In particular, Refs. [34,35] did not study the free
energy of the model at large volumes, but rather explored
the free energy at small volumes and used finite-size
scaling behavior of the topological susceptibility as an
indicator to determine the order of the phase transition. In
contrast, our computations are performed at a much larger
volume, for which the results are well converged, which
allows us to study the behavior of the free energy without
having to rely on finite-size scaling. Indeed, as we have
shown in Fig. 7, a clear signature of the first-order transition
only occurs at volumes of V > 214. We note that our bond
dimension of D ¼ 80 is only slightly larger than the bond
dimension D ¼ 68 used in Ref. [35], but increasing the
bond dimension only has a minor effect on our results,
see Fig. 6.
To summarize, our results demonstrate that the phase

transition at θ ¼ π is of first order up to β ≤ 1.1, and no

FIG. 7. TRG results for the free energy as a function of θ in a region very close to θ ¼ π (indicated by the vertical gray dashed line), for
the bond dimensionD ¼ 80 and the inverse couplings (a) β ¼ 0.1, (b) β ¼ 0.6, and (c) β ¼ 1.1. The different markers correspond to the
volumes V ¼ 212 (blue dots), 214 (orange triangles), and 224 (green squares).

PHASE STRUCTURE OF THE CPð1Þ MODEL IN THE … PHYS. REV. D 105, 054507 (2022)

054507-7



second-order transition occurs. The discovery of such a
second-order transition would be crucial for confirming
Haldane’s conjecture [52,53] that the O(3) model becomes
gapless at θ ¼ π and weak coupling. As our study reveals,
the possibility of a second-order transition at θ ¼ π and a
bifurcation of the first-order transition line at θ ≠ π is only
given for βc > 1.1. Compared to previous studies, our
method does not suffer from the sign problem as
Monte Carlo simulations, and our results have small
systematic errors of ≲10−3 due to larger volumes than in
earlier TRG studies. Thus, our study reveals that testing
Haldane’s conjecture in the weak-coupling regime requires
both major numerical efforts and detailed systematic error
analysis. In the future, we will extend our study to larger
values of β > 1.1. While this task is more challenging due
to enhanced truncation effects in the weak-coupling regime,
our numerical make us positive that this parameter range
can be reliably accessed with TRG methods.
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APPENDIX: FINITE-SIZE SCALING FOR THE
SUSCEPTIBILITY

In the main text, we focused on the shape of the free
energy and used the emergence of a cusp toward the
thermodynamic limit as an indication for a first-order phase
transition. Alternatively, following Refs. [34,35], we can

also examine the finite-size scaling of the peak value χpeak
of the susceptibility

χ ¼ 1

V
∂2 logZθ

∂θ2 ¼ −β
∂2Fðβ; θÞ

∂θ2 ðA1Þ

at θ ¼ π. For a first-order phase transition, it is expected
that χpeak is proportional to the volume, whereas for a
second-order transition, one expects a scaling of χpeak ∝ Vγ

with γ < 1 [60]. In principle, the susceptibility could
be directly determined from our TRG results for Zθ,
by computing the derivative numerically. However, this
would require a very fine resolution in order to avoid large
errors. Thus, we follow Ref. [35] and approximate our
data for the free energy close to θ ¼ π with a polynomial.
Since finite-size effects round off the peak in the free
energy, we choose the functional form

Fðβ; θÞ ≈ c0 þ c1ðθ − πÞ2 þOððθ − πÞ4Þ; ðA2Þ

where we consider only even powers to ensure the
symmetry around θ ¼ π. An example of this interpolation
is shown in Fig. 8. The peak value of the susceptibility can

FIG. 8. TRG data for the free energy for β ¼ 0.8, V ¼ 28 (blue
dots) and fit to our numerical data according to Eq. (A2) (orange
solid line) around θ ¼ π (vertical gray dashed line).

FIG. 9. Logarithm of the peak value of the susceptibility (blue dots) as a function of the logarithm of the volume for (a) β ¼ 0.6,
(b) β ¼ 0.8 and (c) β ¼ 1.1. The error bars on the data points represent a systematic uncertainty resulting from determining the peak
value of the susceptibility. The orange solid lines correspond to linear fits to the data points, and the boxes in the right lower corner show
the resulting slope of the fit.
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then be obtained from the polynomial interpolation using
Eq. (A1), and is given by χpeak ¼ −2βc1.
In order to determine the volume dependence of χpeak, we

repeat the analysis described above for various volumes.
The values for the volume are chosen such that they are
large enough to avoid excessive finite-size effects and small
enough to avoid a cusp in the free energy, as we observed
for large volumes in the main text. Our results for this
analysis for various values of the coupling are shown in
Fig. 9. Focusing on β ¼ 0.6 first [see Fig. 9(a)], we clearly
observe that χpeak is proportional to the volume and γ is in
good agreement with 1. Increasing the inverse coupling
to β ¼ 0.8, we see a very similar picture, as the data in
Fig. 9(b) reveals. Again, the peak value of the susceptibility
scales linearly with the volume, and the value for γ obtained

from our fit is compatible with 1 within error bars. For
β ¼ 1.1, we observe that it becomes increasingly harder to
find a window where finite-size effects are not excessive
and the free energy is still far enough away from showing a
cusp. As a result, the data points for small values of the
volume in Fig. 9(c) show slightly larger error bars than for
the previous values of β. When determining the volume
dependence of χpeak for this case, we again obtain a value of
γ that agrees with 1 within error bars.
In summary, the finite-size scaling of the peak value χpeak

of the susceptibility indicates that the phase transition is of
first order throughout the entire range of β under consid-
eration. This is consistent with our results in the main text,
as obtained from the direct examination of the free energy
in the limit of large volumes.
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