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Using lattice QCD, we calculate the twist-2 contribution a2 to the third Mellin moment of the spin
structure functions g1 and g2 in the nucleon. In addition we evaluate the twist-3 contribution d2. Our
computations make use of Nf ¼ 2þ 1 gauge field ensembles generated by the Coordinated Lattice
Simulations effort. Neglecting quark-line disconnected contributions we obtain as our best estimates

aðpÞ2 ¼ 0.069ð17Þ, dðpÞ2 ¼ 0.0105ð68Þ and aðnÞ2 ¼ 0.0068ð88Þ, dðnÞ2 ¼ −0.0009ð70Þ for the proton and the
neutron, respectively, where we use the normalizations given in Eqs. (58) and (59). While the a2 results
have been converted to the MS scheme using three-loop perturbation theory, the numbers for d2 are given in
the regularization independent momentum subtraction scheme, i.e., the conversion has been performed
only in tree-level perturbation theory. The d2 results can be interpreted as corresponding to a transverse
color Lorentz force on a quark in a transversely polarized proton of size FðuÞ ¼ 116ð61Þ and FðdÞ ¼
−38ð66Þ MeV=fm for u and d quarks, respectively. The error estimates quoted include statistical and
systematic uncertainties added in quadrature.
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I. INTRODUCTION

For a number of reasons hadron spin structure has attracted
intense interest for more than two decades with no sign of
attenuation. Quite to the contrary, CEBAF@12 GeV [1] and
the EIC [2] promise to bring such investigations to a higher
level both with respect to the precision and the variety of
observables investigated. This provides a strong motivation
also to update theory predictions for the relevant spin-
dependent quantities. The central goal of the JLAB and
BNL programs is to better understand the structure of
hadrons. This includes multiparton correlations, which are
parametrized by higher-twist coefficients.
Themost prominent such example is thematrixelementd2,

the thirdMellinmoment (x2) of the twist-3 contribution to the
helicity structure function g2ðx;Q2Þ of deep-inelastic longi-
tudinally polarized lepton-nucleon scattering. As this corre-
sponds to the lowest-dimensional nontrivial chiral-even twist-
3 matrix element, d2 is of particular theoretical and

phenomenological interest. For instance, the same correla-
tions of quarks and gluons constitute the leading contribution
to theQiu-Sterman distributions [3], which play a central role
in the collinear factorization of single spin asymmetries.
These distributions represent the limit of vanishing impact
parameter b⃗⊥ ¼ 0⃗ of the Sivers functions [4], i.e., of the
transverse-momentum dependent parton distribution func-
tions f⊥1Tðx; b⃗⊥; Q2Þ that describe the distribution of an
unpolarized quark inside a transversely polarized nucleon.
The measurement of the Sivers distributions in polarized
semi-inclusive deep-inelastic scattering and in Drell-Yan
experiments is one of the main goals of the experimental
programs at JLAB and the EIC. For more details, see, e.g.,
Refs. [5,6].
Neglecting the twist-3 contributions, g2 can be obtained

from the helicity structure function g1ðx;Q2Þ. This involves
invoking the well-known Wandzura-Wilczek relation [7,8].
However, a remarkable property of g2 is that the twist-3
contribution is not power suppressed in 1=Q, relative to its
twist-2 part. Nevertheless, its determination from longitu-
dinally polarized deep-inelastic scattering experiments
alone still represents a serious challenge and new high
precision measurements are planned at JLAB and the EIC.
In order to match the expected statistical precision of the
planned experiments, a much improved theoretical
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understanding of higher-twist contributions is needed andd2
is the ideal starting point.
The matrix element d2 has another very interesting

phenomenological interpretation: As was argued in
Refs. [9,10] it is related to the average transverse color
Lorentz force acting on a quarkq in a nucleonwhichmoves in
the z direction and is transversely polarized. More explicitly,
the y-component of the color Lorentz force is given by

Fq;yð0Þ ¼ −
1ffiffiffi
2

p
pþ hp; sjψ̄qð0ÞγþgGþyð0Þψqð0Þjp; si

¼
ffiffiffi
2

p
pþsxdðqÞ2 : ð1Þ

Here the four-momentum p of the nucleon state jp; si has
been chosen as ðpμÞ ¼ pþð1; 0; 0; 1Þ= ffiffiffi

2
p

, the spinvector s is
normalized according to s2 ¼ −m2

N , G
μν denotes the color

field strength tensor and g is the strong coupling constant.
Using the lattice results for the proton presented in Ref. [11]
(coauthored by some of us)

dðuÞ2 ¼ 0.010� 0.012;

dðdÞ2 ¼ −0.0056� 0.0050; ð2Þ

estimates for this force were published some time ago in
Ref. [9]. It appears, however, that these estimateswere affected
by a misunderstanding of the respective conventions and by a
signerror noted later inRef. [10]. The correctednumbers differ
by a factor − 1

2
from those given in Ref. [9] and read

Fu;yð0Þ ¼ 50� 60 MeV=fm;

Fd;yð0Þ ¼ −28� 26 MeV=fm: ð3Þ

Unfortunately, the errors, which are purely statistical, are
very large. Systematic uncertainties were not estimated, in
particular, those arising from finite lattice spacing.
Meanwhile several experiments have extracted estimates

of dðpÞ2 and dðnÞ2 [12–19], where the superscript indicates
proton or neutron, respectively. These estimates are found
to be quite small compared to various model predictions but
compatible with the old lattice results (considering the large
error bars), see, e.g., Fig. 2 of Ref. [19]. (Actually, the
lattice results in this figure should also have been divided
by 2.) We remark that with the natural energy scale for the
force F being Λ2

QCD one would not expect d2 to be much
smaller than the central values of this early lattice calcu-
lation given in Eq. (2). So there is hope that with a moderate
reduction of the lattice uncertainties, this time also includ-
ing systematics, one may be able to demonstrate that d2 and
thus the average color force F is different from zero.
Let us stress that the experimental and lattice inves-

tigations of dðpÞ2 and dðnÞ2 are only meant to be the starting
point of much broader investigations. For example, it was

also argued in Ref. [10] that there exists an analogous
relationship between generalized parton distributions and
force distributions F i

λ0λðb⃗⊥Þ in the transverse plane,

F i
λ0λðb⃗⊥Þ ¼

Z
d2Δ⃗⊥
ð2πÞ2 e

−ib⃗⊥·Δ⃗⊥Fi
λ0λðΔ⃗⊥Þ ð4Þ

with

Fi
λ0λðΔ⃗⊥Þ ¼ −

1ffiffiffi
2

p
pþ

×

�
pþ;

Δ⃗⊥
2

; λ0
����ψ̄qð0ÞγþgGþið0Þψqð0Þ

����pþ;−
Δ⃗⊥
2

; λ

�
:

ð5Þ

Here λ and λ0 denote the nucleon polarization and Δ⃗⊥
is the transverse momentum conjugate to the impact
parameter b⃗⊥.
Another interesting result was derived in the very recent

paper [20], where QCD factorization for quasidistributions
was analyzed up to twist-3. Approaches based on so-called
quasi- and pseudodistribution functions have gained promi-
nence in lattice QCD calculations of hadron structure
observables, due to their prospect of providing information
that goes beyond the computation of Mellin moments of
(generalized) parton distribution functions, distribution
amplitudes, etc., see Refs. [21–27] and references therein.
In Ref. [20] it was shown that for quasidistributions the

Wandzura-Wilczek relation [7,8] is modified such that
twist-2 and twist-3 contributions stay mixed, making their
separate determination on the lattice far more difficult.
Knowing d2 from a direct lattice calculation would obvi-
ously help to unravel the different contributions.

II. OPE AND RENORMALIZATION
IN THE CONTINUUM

A leading-order OPE (operator product expansion)
analysis with massless quarks shows that the moments
of g1 and g2 can be written as [28]

2

Z
1

0

dxxng1ðx;Q2Þ ¼ 1

2

X
q

Q2
qE

ðqÞ
1;nðμ2=Q2; gðμÞÞaðqÞn ðμÞ;

ð6Þ

2

Z
1

0

dxxng2ðx;Q2Þ

¼ 1

2

n
nþ 1

X
q

Q2
q½EðqÞ

2;nðμ2=Q2; gðμÞÞdðqÞn ðμÞ

− EðqÞ
1;nðμ2=Q2; gðμÞÞaðqÞn ðμÞ�; ð7Þ

where q runs over the light quark flavors with chargesQq and
μ denotes the renormalization scale. Equations (6) and (7)
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hold for even n, with n ≥ 0 for the former and n ≥ 2 for the

latter. The Wilson coefficients EðqÞ
1;n and EðqÞ

2;n depend on the
ratio of scales μ2=Q2 and the running coupling constant gðμÞ,

Ei;nðμ2=Q2; gðμÞÞ ¼ 1þOðgðμÞ2Þ: ð8Þ

To the best of our knowledge, the loop corrections for E2;n

have not yet been calculated, while they are known up to two-
loop order for E1;n [29]. The first-order corrections are flavor
independent,

E1;nð1; gðμÞÞ ¼ 1þ 5

3

gðμÞ2
16π2

þOðgðμÞ4Þ: ð9Þ

The reduced matrix elements aðqÞn ðμÞ and dðqÞn ðμÞ are
defined as [28]

hp; sjO5ðqÞ
fσμ1���μngjp; si

¼ 1

nþ 1
aðqÞn ½sσpμ1 � � �pμn þ � � � − traces�; ð10Þ

hp; sjO5ðqÞ
½σfμ1�μ2���μngjp; si

¼ 1

nþ 1
dðqÞn ½ðsσpμ1 − sμ1pσÞpμ2 � � �pμn þ � � � − traces�

ð11Þ

in terms of matrix elements of the local operators

O5ðqÞ
σμ1���μn ¼

�
i
2

�
n
ψ̄qγσγ5D

↔

μ1 � � �D
↔

μnψq − traces ð12Þ

in the nucleon state jp; si. Here D
↔ ¼ D⃗ − D⃖ and the

symbol f� � �g (½� � ��) indicates symmetrization (antisym-
metrization) of the enclosed indices. The operator in
Eq. (10) has twist two, whereas the operator in Eq. (11)
has twist three. As far as the Wilson coefficients may be
considered as flavor independent, we can define an and dn
for the nucleon as

anðμÞ ¼
X
q

Q2
qa

ðqÞ
n ðμÞ; ð13Þ

dnðμÞ ¼
X
q

Q2
qd

ðqÞ
n ðμÞ: ð14Þ

Remarkably, in the moments (7) of g2 the twist-3 matrix

elements dðqÞn ðμÞ are not suppressed relative to the twist-2

matrix elements aðqÞn ðμÞ.
Note that our definitions of a2 and d2 have been taken

from Ref. [28]. In many publications alternative definitions
are employed, where aalt2 ¼ a2=2 and dalt2 ¼ d2=2.
Utilizing the equations of motion of massless QCD and

the relation ½Dμ; Dν� ¼ −igGμν, the twist-3 operators

O5ðqÞ
½σfμ1�μ2���μng can be rewritten in a manifestly interaction-

dependent form. For n ¼ 2 one finds

O5ðqÞ
½σfμ1�μ2g ¼ −

g
6
ψ̄qðG̃σμ1γμ2 þ G̃σμ2γμ1Þψq − traces; ð15Þ

where G̃μν ¼ 1
2
ϵμνρσGρσ is the dual gluon field strength

tensor and the totally antisymmetric ϵ tensor is such that
ϵ0123 ¼ 1. Therefore we can define the reduced matrix
element d2 in the chiral limit also by (see, e.g., Ref. [30])

−
g
6
hp; sjψ̄qðG̃σμ1γμ2 þ G̃σμ2γμ1Þψq − tracesjp; si

¼ 1

3
dðqÞ2 ½ðsσpμ1 − sμ1pσÞpμ2 þ � � � − traces�: ð16Þ

The Wilson coefficients (8) can be computed in pertur-

bation theory, while the nucleon matrix elements aðqÞn and

dðqÞn are nonperturbative quantities. For simplicity, in the
following we omit the flavor indices, in most cases.
The renormalization of the operators which contribute to

the moments of g2 has been studied by several authors in
continuum perturbation theory [31–38]. For example, in
Refs. [37,38] the following operators are considered for
n ¼ 2 in the flavor-nonsinglet sector:

Rσμν
F ¼ −

i2

3
½2ψ̄γσγ5DfμDνgψ − ψ̄γμγ5DfσDνgψ − ψ̄γνγ5DfμDσgψ � − traces; ð17Þ

Rσμν
1 ¼ 1

12
g½ϵσμαβψ̄Gαβγ

νψ þ ϵσναβψ̄Gαβγ
μψ � − traces; ð18Þ

Rσμν
m ¼ −imψ̄γσγ5Dfμγνgψ − traces; ð19Þ

Rσμν
eq ¼ −

i
3
½ψ̄γσγ5Dfμγνgði=D −mÞψ þ ψ̄ði=D −mÞγσγ5Dfμγνgψ � − traces: ð20Þ

The gluon field strength tensor Gαβ could alternatively be expressed in terms of a commutator of two covariant derivatives.
As Eqs. (11) and (12) show, the matrix element d2 corresponds to the nucleon matrix elements of the renormalized operators
(17). The operators (17)–(20) are linearly dependent,
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Rσμν
F ¼ 2

3
Rσμν
m þ Rσμν

1 þ Rσμν
eq : ð21Þ

In the massless case, this relation leads to Eq. (15) upon application of the equations of motion.
Calculating the quark-quark-gluon three-point functions with a single insertion of each of these operators in one-loop

perturbation theory, one sees that also a gauge-variant operator has to be taken into account in the process of
renormalization,

Rσμν
eq1 ¼ −

i
3
½ψ̄γσγ5∂fμγνgði=D −mÞψ þ ψ̄ði=D −mÞγσγ5∂fμγνgψ � − traces: ð22Þ

Of course, in physical matrix elements neither Req nor
Req1 will contribute. They show up, however, in off-shell
vertex functions and influence the renormalization factors.

III. LATTICE OPERATORS AND
RENORMALIZATION

In the following, we use Euclidean notation. For our
lattice evaluation of the reduced matrix elements a2 and d2
we construct discretized versions of the relevant operators.
In the process of the renormalization of these operators,
operator mixing requires particular attention because the
discrete symmetry group Hð4Þ of a hypercubic lattice is
less restrictive than the continuous symmetry group Oð4Þ
of Euclidean spacetime.
In the case of the twist-2 matrix element a2 we use the

four-dimensional multiplet of operators spanned by

O5
f234g;O

5
f134g;O

5
f124g;O

5
f123g; ð23Þ

where

O5
σμν ¼ ψ̄γσγ5D

↔

μD
↔

νψ : ð24Þ
The operators (23) transform according to the representa-

tion τð4Þ3 of the hypercubic group Hð4Þ [39–41]. They have
mass dimension five and charge conjugation parity þ1.
These properties ensure that they do not mix with any other
gauge-invariant operators of the same or lower dimension.
Therefore, they are multiplicatively renormalizable. We
take the corresponding renormalization factor from Table
XI of Ref. [42].
For the evaluation of the twist-3 matrix element d2 we

use multiplets of operators with charge conjugation parity
þ1 which transform under the hypercubic group according

to the representation τð8Þ1 . Among the gauge-invariant
operators of dimension ≤5 there are three multiplets that
have these symmetry properties and can therefore mix with
each other under renormalization. Suitable bases trans-
forming according to the same (not just equivalent) unitary
representation of Hð4Þ are

Oð1Þ
1 ¼ 1

4
ffiffiffi
3

p ð2O5
2f14g −O5

1f24g −O5
4f12gÞ;

Oð2Þ
1 ¼ 1

4
ffiffiffi
3

p ð2O5
2f13g −O5

1f23g −O5
3f12gÞ;

Oð3Þ
1 ¼ 1

4
ffiffiffi
3

p ð2O5
3f14g −O5

1f34g −O5
4f13gÞ;

Oð4Þ
1 ¼ 1

4
ffiffiffi
3

p ð2O5
3f24g −O5

2f34g −O5
4f23gÞ;

Oð5Þ
1 ¼ 1

4
ðO5

4f23g −O5
2f34gÞ;

Oð6Þ
1 ¼ 1

4
ðO5

4f13g −O5
1f34gÞ;

Oð7Þ
1 ¼ 1

4
ðO5

4f12g −O5
1f24gÞ;

Oð8Þ
1 ¼ 1

4
ðO5

3f12g −O5
1f23gÞ; ð25Þ

Oð1Þ
2 ¼ 1

2
ffiffiffi
2

p ψ̄ðγ3γ1D
↔

1 − γ3γ4D
↔

4Þ;

Oð2Þ
2 ¼ 1

2
ffiffiffi
2

p ψ̄ðγ4γ3D
↔

3 − γ4γ1D
↔

1Þ;

Oð3Þ
2 ¼ 1

2
ffiffiffi
2

p ψ̄ðγ2γ4D
↔

4 − γ2γ1D
↔

1Þ;

Oð4Þ
2 ¼ 1

2
ffiffiffi
2

p ψ̄ðγ1γ2D
↔

2 − γ1γ4D
↔

4Þ;

Oð5Þ
2 ¼ 1

2
ffiffiffi
6

p ψ̄ð2γ1γ3D
↔

3 − γ1γ2D
↔

2 − γ1γ4D
↔

4Þψ ;

Oð6Þ
2 ¼ 1

2
ffiffiffi
6

p ψ̄ð−2γ2γ3D
↔

3 þ γ2γ1D
↔

1 þ γ2γ4D
↔

4Þψ ;

Oð7Þ
2 ¼ 1

2
ffiffiffi
6

p ψ̄ð2γ3γ2D
↔

2 − γ3γ1D
↔

1 − γ3γ4D
↔

4Þψ ;

Oð8Þ
2 ¼ 1

2
ffiffiffi
6

p ψ̄ð−2γ4γ2D
↔

2 þ γ4γ1D
↔

1 þ γ4γ3D
↔

3Þψ ; ð26Þ
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Oð1Þ
3 ¼ ψ̄ðγ1D

↔

½3D
↔

1� − γ4D
↔

½3D
↔

4�Þ;
Oð2Þ

3 ¼ ψ̄ðγ3D
↔

½4D
↔

3� − γ1D
↔

½4D
↔

1�Þ;
Oð3Þ

3 ¼ ψ̄ðγ4D
↔

½2D
↔

4� − γ1D
↔

½2D
↔

1�Þ;
Oð4Þ

3 ¼ ψ̄ðγ2D
↔

½1D
↔

2� − γ4D
↔

½1D
↔

4�Þ;

Oð5Þ
3 ¼ 1ffiffiffi

3
p ψ̄ð2γ3D

↔

½1D
↔

3� − γ2D
↔

½1D
↔

2� − γ4D
↔

½1D
↔

4�Þψ ;

Oð6Þ
3 ¼ 1ffiffiffi

3
p ψ̄ð−2γ3D

↔

½2D
↔

3� þ γ1D
↔

½2D
↔

1� þ γ4D
↔

½2D
↔

4�Þψ ;

Oð7Þ
3 ¼ 1ffiffiffi

3
p ψ̄ð2γ2D

↔

½3D
↔

2� − γ1D
↔

½3D
↔

1� − γ4D
↔

½3D
↔

4�Þψ ;

Oð8Þ
3 ¼ 1ffiffiffi

3
p ψ̄ð−2γ2D

↔

½4D
↔

2� þ γ1D
↔

½4D
↔

1� þ γ3D
↔

½4D
↔

3�Þψ : ð27Þ

The lattice operators (25) are Euclidean counterparts of
the Minkowski operators (17), while the operators (27)
correspond to the operators (18) with the field strength
expressed in terms of a commutator of two covariant
derivatives. The operators (26) are analogous to (19).
Under renormalization all three multiplets are expected
to mix with each other. In the continuum, Rm disappears in
the chiral limit. On the lattice, the explicit breaking of chiral
symmetry caused by Wilson-type fermions persists even

for massless quarks. Therefore OðiÞ
2 will contribute with a

coefficient ∝ a−1, where a denotes the lattice spacing. The

operators OðiÞ
3 , on the contrary, are of the same dimension

asOðiÞ
1 and mix with a coefficient of order g2, which should

be small. The same holds for lattice counterparts of Req and
Req1. Hence, in a first approximation we take into account
only the multiplets (25) and (26). Their renormalization and
mixing can be treated along the lines of Ref. [42], provided
one multiplies the operators (26) with 1=a. Both operator
multiplets then have dimension five.
The renormalized operators of the multiplet (25) are now

given by

OðiÞR
1 ¼ Ẑ11ðμ; aÞOðiÞ

1 þ 1

a
Ẑ12ðμ; aÞOðiÞ

2 : ð28Þ

Here we stick to the notation of Ref. [42], where Ẑmm0 ðμ; aÞ
denotes the renormalization and mixing matrix in the
nonperturbative scheme used on the lattice. For this scheme
we choose the RI0-MOM (regularization independent
momentum subtraction) scheme, i.e., the operators are
taken at vanishing momentum. In order to suppress power-
like lattice artifacts as far as possible the external quark
momenta are chosen as

μ

2
ð1; 1; 1; 1Þ ð29Þ

with the renormalization scale μ. Presently we can-
not convert the coefficients Ẑmm0 ðμ; aÞ (and hence the

renormalized operators) to the MS scheme, because the
required perturbative calculations in the continuum are not
yet available. Our procedure accounts for the mixing with
lower-dimensional operators caused by the explicit break-
down of chiral symmetry in our simulations, but further
mixing effects are still neglected.
In the chiral limit, the matrix element d2 is multiplica-

tively renormalizable [31]. Rewriting Eq. (28) as

OðiÞR
1 ¼ Ẑ11ðμ; aÞ

�
OðiÞ

1 þ 1

a
Ẑ12ðμ; aÞ
Ẑ11ðμ; aÞ

OðiÞ
2

�
; ð30Þ

we see that OðiÞR
1 will have a multiplicative dependence

on μ if the ratio Ẑ12ðμ; aÞ=Ẑ11ðμ; aÞ does not depend on
μ. It turns out that this requirement is better fulfilled
when we use instead of the 2 × 2 matrix Ẑðμ; aÞ the
matrix Z̃ðμ; aÞ constructed in the following way, cf.
Ref. [43]. We compute Ẑðμ; aÞẐ−1ðμ0; aÞ for the renorm-
alization scales μ of interest and a reference scale μ0
chosen as μ0 ¼ 2 GeV. Within our approximations,
this matrix should have a continuum limit, which we
evaluate by fitting the lattice spacing dependence with a
quadratic polynomial in a2. Denoting the result Rðμ; μ0Þ,
we define

Z̃ðμ; aÞ ¼ Rðμ; μ0ÞẐðμ0; aÞ: ð31Þ

To improve on this would require the consideration of
quark-quark-gluon matrix elements instead of quark-quark
matrix elements.

IV. SIMULATION DETAILS

A. Lattice setup

To compute the reduced matrix elements aðfÞn ðμÞ and

dðfÞn ðμÞ in (10) and (11) for n ¼ 2 we analyze a subset of the
lattice gauge ensembles generated within the Coordinated
Lattice Simulations (CLS) effort [44]. The ensembles
have been generated using a tree-level Symanzik improved
gauge action with Nf ¼ 2þ 1 flavors of nonperturbatively
OðaÞ improved Wilson (clover) fermions. Near zero modes
of the Wilson-Dirac operator are avoided by applying
twisted-mass determinant reweighting to achieve stable
Monte Carlo sampling [45]. Furthermore we improve the
overlap of the interpolating currents at the source/sink
time slice using Wuppertal smeared quarks [46] in the
source/sink interpolators with APE smoothed spatial gauge
links [47].
In most of our simulations we use open boundary

conditions in time. Especially for the very fine lattices
this avoids freezing of the topological charge and large
autocorrelation times [45,48]. In order to suppress the
distortions caused by the loss of translation invariance in
time we restrict our measurements to regions with
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sufficiently large distances from the temporal boundaries,
see, e.g., Refs. [42,49]. Only a few of the coarser lattices
have been simulated using (anti)periodic boundary con-
ditions. An overview of the gauge ensembles used in this
work is given in Table I. They have been generated along
three different trajectories in the quark mass plane, which
are indicated in the last column of the table. Along the
trajectory labeled by “trm,” the trace of the quark mass
matrix is held constant, approximately equal to its
physical value [44]. Along the trajectory labeled by
“msc,” the renormalized strange quark mass is set to
its physical value [50], and the symmetric line with equal
masses of the light quarks and the strange quark is
labeled by “symm.” A general explanation of this strategy
can be found in [50]. In summary we use six different
lattice spacings ranging from about 0.039 up to 0.098 fm
and mπ goes down from ∼420 to ∼220 MeV. With linear
spatial lattice extents Lmπ ¼ aNsmπ between 3.8 and 6.4,
finite volume effects are expected to be moderate.
Removing the leading OðaÞ discretization effects in
the relevant matrix elements requires Symanzik improve-
ment of the corresponding operators. This has not been
implemented in our study.

The extraction of the reduced matrix elements aðfÞn ðμÞ and
dðfÞn ðμÞ relies on the computation of ratios between three- and
two-point functions. The evaluation of the two-point func-
tions requires only the inversion of the lattice Dirac operator
bymeans of common numerical solvers. In particular, we use
a modified version of the Wuppertal adaptive algebraic
multigrid code DD-αAMG [51,52] on the Xeon Phi archi-
tecture [53–56] and the IDFLS solver [57,58] on x86-64. The
three-point functions are computed with the help of the
sequential source method [59], extensively applying the so-
called coherent sinkmethodusedby theLHPCCollaboration
in Ref. [60]. All the computations are performed using the
CHROMA software package [61] and additional libraries
implemented by our group.

B. Correlation functions

In Sec. II we used the OPE to relate the moments of the
structure functions giðx;Q2Þ to the reduced matrix elements

aðfÞn ðμÞ and dðfÞn ðμÞ and specified their definitions in
Eqs. (10) and (11). The corresponding matrix elements
are extracted on the lattice from two- and three-point
functions of the form

TABLE I. CLS gauge ensembles analyzed in this work. The ensemble identifier is given in the first column, followed by the inverse
gauge coupling β and the lattice size. The column “BC” indicates whether the boundary condition in time was open (o) or (anti)periodic
(p). In the next columns we give the lattice spacing a, the pion massmπ and the product of the spatial lattice size L ¼ aNs with the pion
mass. The column “t=a” contains the list of source-sink distances analyzed on this lattice. The subscript #meas specifies how many
measurements have been performed for the respective source-sink distance. In physical units these distances roughly correspond to 0.9,
1.0 and 1.2 fm. The number of analyzed configurations is given in the column “ncnfgs,” and “Trajectory” specifies the trajectory in the
quark mass plane to which the ensemble belongs.

Ensemble β N3
s × Nt BC a (fm) mπ (MeV) Lmπ t=a#meas ncnfgs Trajectory

A654 3.34 243 × 48 p 0.0984 334 4.0 94, 114, 134 2534 trm
A653 3.34 243 × 48 p 0.0984 426 5.1 94, 114, 134 2525 trm, symm
H106 3.4 323 × 96 o 0.0859 272 3.8 102, 123, 144 1544 msc
H105 3.4 323 × 96 o 0.0859 279 3.9 102, 123, 144 2065 trm
H102 3.4 323 × 96 o 0.0859 352 4.9 102, 123, 144 2005 trm
H107 3.4 323 × 96 o 0.0859 366 5.1 102, 123, 144 1561 msc
H101 3.4 323 × 96 o 0.0859 420 5.9 102, 122, 142 2016 trm, symm
D451 3.46 643 × 128 p 0.0760 217 5.4 114, 134, 164 531 msc
N450 3.46 483 × 128 p 0.0760 285 5.3 114, 134, 164 1129 msc
B452 3.46 323 × 64 p 0.0760 350 4.3 114, 134, 164 1941 msc
S400 3.46 323 × 128 o 0.0760 352 4.3 114, 134, 164 2872 trm
B450 3.46 323 × 64 p 0.0760 418 5.2 114, 134, 164 1612 trm, symm
N201 3.55 483 × 128 o 0.0643 285 4.5 142, 163, 194 1520 msc
N203 3.55 483 × 128 o 0.0643 345 5.4 142, 163, 194 1543 trm
N204 3.55 483 × 128 o 0.0643 351 5.5 142, 163, 194 1500 msc
N202 3.55 483 × 128 o 0.0643 411 6.4 142, 162, 194 899 trm, symm
J304 3.7 643 × 192 o 0.0497 260 4.2 173, 213, 244 1630 msc
N302 3.7 483 × 128 o 0.0497 346 4.2 172, 213, 244 2201 trm
N304 3.7 483 × 128 o 0.0497 351 4.3 172, 213, 244 1652 msc
N300 3.7 483 × 128 o 0.0497 422 5.1 172, 212, 244 500 trm, symm
J501 3.85 643 × 192 o 0.0391 333 4.2 222, 273, 324 750 trm
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Cp⃗
2ptðtÞ ¼ Pαβ

þ Cp⃗
2pt;βαðtÞ

¼ a3
X
x⃗

e−ip⃗·x⃗Pαβ
þ hN βðx⃗; tÞN̄ αð0⃗; 0Þi; ð32Þ

Cp⃗;p⃗0;O
3pt;Γ ðt; τÞ ¼ ΓαβCp⃗;p⃗0;O

3pt;βα ðt; τÞ
¼ a6

X
x⃗;y⃗

e−ip⃗
0·x⃗þiðp⃗0−p⃗Þ·y⃗

× ΓαβhN βðx⃗; tÞOðy⃗; τÞN̄ αð0⃗; 0Þi: ð33Þ

The initial (final) momentum is denoted by p⃗ (p⃗0). The
quantities of interest in this work allow us to restrict the
kinematics to the forward limit, thus we use p⃗ ¼ p⃗0 from
now on. The nucleon is created by the interpolating current
N̄ at the source time slice tsrc ¼ 0 and annihilated at the
sink time slice t. In the case of the three-point correlation
function an additional local currentO is inserted at the time
slice τ with t > τ > 0. The nucleon interpolating current is
defined by

N αðx⃗; tÞ ¼ ðuðx⃗; tÞTCγ5dðx⃗; tÞÞuαðx⃗; tÞ; ð34Þ

where C is the charge conjugation matrix and the quark
fields are smeared separately in all spatial directions using
the techniques mentioned in Sec. IVA. Furthermore, we
define the positive parity projector Pþ ¼ ð1þ γ4Þ=2, and
Γ ¼ Pþð−iÞγjγ5 corresponds to the difference between the
two spin projections with respect to the direction j ¼ 1,
2, 3.
When evaluating the three-point functions we consider

quark-line connected diagrams only. Calculating the
quark-line disconnected diagrams is computationally very
expensive, but probably only of secondary importance
for the physical quantities such as the color Lorentz force
on a quark in a nucleon. However, we should keep in
mind that, strictly speaking, only flavor-nonsinglet quan-

tities like dðuÞ2 − dðdÞ2 are free of quark-line disconnected
contributions.
The correlation functions are related to matrix ele-

ments by inserting complete sets of energy eigenstates.
In the limit of large Euclidean times t, τ and t − τ
excited states are exponentially suppressed and the
correlation functions can be approximated by the
ground-state contribution,

Cp⃗
2ptðtÞ ≈

X
σ

Pαβ
þ h0jN βjNp⃗

σ ihNp⃗
σ jN̄ αj0i e

−Ep⃗t

2Ep⃗
; ð35Þ

Cp⃗;O
3pt;Γðt; τÞ ≈

X
σ;σ0

Γαβh0jN βjNp⃗
σ0 i

× hNp⃗
σ0 jOjNp⃗

σ ihNp⃗
σ jN̄ αj0i e

−Ep⃗t

4E2
p⃗

; ð36Þ

where jNp⃗
σ i denotes a nucleon state with spin projection

σ and momentum p⃗. The overlap matrix elements can be
written as

Pαβ
þ h0jN βð0⃗; 0ÞjNp⃗

σ i ¼ Pαβ
þ

ffiffiffiffiffiffi
Zp⃗

p
up⃗;βσ ð37Þ

in terms of the momentum and smearing-dependent

overlap factors Zp⃗ and the nucleon spinor up⃗;βσ .
Similarly, the matrix elements of O can be expressed
in the form

hNp⃗
σ0 jOjNp⃗

σ i ¼ ūp⃗σ0J½O�up⃗σ : ð38Þ

Using the spinor identity
P

σ u
p⃗
σ ū

p⃗
σ ¼ Ep⃗γ4 −

ip⃗ · γ⃗ þmN , we rewrite (35) and (36) as

Cp⃗
2ptðtÞ ¼ Zp⃗

Ep⃗ þmN

Ep⃗
e−Ep⃗t þ � � � ; ð39Þ

Cp⃗;O
3pt;Γðt; τÞ ¼ Zp⃗e−Ep⃗tBp⃗

Γ;O þ � � � ; ð40Þ

where

Bp⃗
Γ;O ¼ 1

4E2
p⃗

TrfΓðEp⃗γ4 − ip⃗ · γ⃗ þmNÞJ½O�

× ðEp⃗γ4 − ip⃗ · γ⃗ þmNÞg: ð41Þ

The relations between the ground-state matrix elements

hNp⃗
σ0 jOjNp⃗

σ i and the reduced matrix elements are given in
Sec. II. However, in addition to the ground-state contribu-
tions we have to take into account possible excited states in
Eqs. (39) and (40). An analysis of the first excited-state
contribution is given in the next subsection.

C. Excited-state contributions

In the two- and three-point functions (39) and (40),
respectively, the signal-to-noise ratio decreases exponen-
tially with the source-sink separation in time. However, for
small time distances between the operators we still find
significant excited-state contributions. We take these con-
tributions into account by including excited-state terms in
the spectral decomposition of the correlation functions. Our
ansatz reads

Cp⃗
2ptðtÞ ≈ Zp⃗

Ep⃗ þmN

Ep⃗
e−Ep⃗tð1þ Ae−ΔEp⃗tÞ; ð42Þ

Cp⃗;O
3pt;Γðt; τÞ ≈ Zp⃗e−Ep⃗tBp⃗

Γ;Oð1þ B10e−ΔEp⃗ðt−τÞ

þ B01e−ΔEp⃗τ þ B11e−ΔEp⃗tÞ: ð43Þ

Here ΔEp⃗ denotes the energy difference between the first
excited state and the ground state, which is taken to be the
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same in both correlators. The amplitudes of the excited-
state contributions in the two- and three-point functions are
denoted by A and B, respectively. All amplitudes depend on
the smearing and on the momentum of the interpolating
currents at the source and the sink, while B10, B01 and B11

also depend on the inserted currentO and the spin matrix Γ.
Since we only consider the forward limit, we may
set B10 ¼ B01.

D. Ratios

Instead of performing a simultaneous fit to the two- and
three-point functions, we consider the two-point functions
along with ratios of three-point functions divided by two-
point functions,

Rp⃗
O;Γ ¼ Cp⃗;O

3pt;Γðt; τÞ
Cp⃗
2ptðtÞ

≈
t≫τ≫0 Ep⃗

Ep⃗ þmN
Bp⃗
Γ;O: ð44Þ

In such a ratio the leading-order time dependence and the
overlap factors are eliminated and the ground-state con-
tribution corresponds directly to the matrix element we are
interested in. Taking into account excited-state contribu-
tions according to Eqs. (42) and (43), wewould arrive at the
fit ansatz

Rp⃗
O;Γ ≈

Ep⃗

Ep⃗ þmN
Bp⃗
Γ;O

×
1þ B10e−ΔEp⃗ðt−τÞ þ B01e−ΔEp⃗τ þ B11e−ΔEp⃗t

1þ Ae−ΔEp⃗t
:

ð45Þ

We assume that the ground-state energies are well
described by the continuum dispersion relation

Ep⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

N

q
ð46Þ

in our fitting analysis. This need not be the case for ΔEp⃗

since in general multihadron states may contribute, e.g.,Nπ
and Nππ states.
Unfortunately, our data do not allow us to determine B11.

Therefore we omit this term as well as the analogous
contribution ∝ A in the denominator from our fit function

for the ratio Rp⃗
O;Γ. However, when performing a simulta-

neous fit to the ratio (44) and the two-point function (42) to
extract the reduced matrix elements, the excited-state
contribution ∝ A is taken into account in the two-point
function. To fix the nucleon mass in the fits we include
additional two-point correlators for p⃗ ¼ 0⃗. The fit range of
τ is restricted to the interval 2a < τ < t − 2a resulting in
reasonable values of χ2=d:o:f: (where d.o.f. denotes
degrees of freedom). We choose on-axis momenta p⃗ ¼
�e⃗i2π=L with i taken to be different from the polarization
direction of the nucleon, which is determined by Γ. The
final analysis utilizes the data for all available momenta,
nucleon polarizations and source-sink distances.
As an example we show in Fig. 1 the ratio (44) for the

bare operators (25) (averaged over all members of the
multiplet) with flavor u on the ensemble J304. The curves
represent our fit, the horizontal line and the corresponding
error band show the result for the ground-state contribution.

FIG. 1. The ratio R of Eq. (44) for the bare operators (25) with flavor u on the ensemble J304 along with our fit. The horizontal line and
the corresponding error band represent the contribution of the ground state.
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V. RESULTS

We present our results for the light flavors u and d
separately, where quark-line disconnected contributions
have been neglected. However, we consider it to be unlikely
that the latter would modify our numbers beyond the size of
the other uncertainties. Superscripts (u) and (d) always
refer to the u and d quarks in the proton, while (p) and (n)
denote the matrix elements (14) for the proton and the
neutron, respectively,

dðpÞ2 ¼
�
2

3

�
2

dðuÞ2 þ
�
−
1

3

�
2

dðdÞ2 ; ð47Þ

dðnÞ2 ¼
�
−
1

3

�
2

dðuÞ2 þ
�
2

3

�
2

dðdÞ2 : ð48Þ

Alternatively, one can write

dðpÞ2 ¼ 3

18
dðu−dÞ2 þ 5

18
dðuþdÞ
2 ; ð49Þ

dðnÞ2 ¼ −
3

18
dðu−dÞ2 þ 5

18
dðuþdÞ
2 ; ð50Þ

where dðu−dÞ2 does not suffer from the omission of dis-
connected diagrams.
Approximate renormalization in the RI0-MOM scheme,

as described in Sec. III, is performed at some scale μ0. We
attempt a combined continuum and chiral extrapolation
using the fit functions (53)–(55) given below and evolve the
results to the scale μ ¼ 2 GeVwith the help of the one-loop
formula for the flavor-nonsinglet operators,

d2ðμÞ ¼
�
αsðμ0Þ
αsðμÞ

�
−B
d2ðμ0Þ; ð51Þ

where

B ¼ 1
11
3
Nc − 2

3
Nf

�
3Nc −

1

6

�
Nc −

1

Nc

��
ð52Þ

with Nc ¼ 3 and Nf ¼ 3. As we neglect disconnected
contributions, we use this value of B, which is strictly
speaking only correct for the (u − d) part, also for (uþ d).
Varying the intermediate scale μ0 should give us some
measure of the uncertainty related to the renormalization.
The central results, however, are all obtained at μ0 ¼ μ, so
they do not depend on the perturbative value of B.
When constructing our fit functions we take into account

that the leading discretization effects in the matrix elements
in our simulations are OðaÞ. For the continuum and chiral
extrapolation of the d2 and a2 data, we consider the fit
formulas

f1ða;mπ; mKÞ ¼ C1 þ C2aþ C3δm2 þ C4m̄2; ð53Þ

f2ða;mπ; mKÞ ¼ C1 þ C2aþ C3δm2 þ C4m̄2 þ C5a2;

ð54Þ

f3ða;mπ; mKÞ ¼ C1 þ C2aþ C3δm2 þ C4m̄2

þ C5m̄2aþ C6δm2a; ð55Þ

where

δm2 ¼ m2
K −m2

π; m̄2 ¼ ð2m2
K þm2

πÞ=3: ð56Þ

The difference between the corresponding results should
provide an impression of the uncertainty inherent in the
fit procedure. The gauge field ensembles used in the fits
are collected in Table I. Note that on a few configurations
in some of the coarser ensembles (H105, H106, H107,
N450, B452 and N201) we encountered measurements
that were separated by more than a hundred 68% con-
fidence level intervals from the results obtained on the
remaining configurations. The origin of these deviations

TABLE II. Results for d2 at μ ¼ 2 GeV obtained with the renormalization Z̃ and the extrapolation functions
(53)–(55). Superscripts (u) and (d) refer to the u and d quarks in the proton.

μ02 ðGeV2Þ Fit form dðuÞ2 ðμÞ dðdÞ2 ðμÞ dðu−dÞ2 ðμÞ dðuþdÞ
2 ðμÞ dðpÞ2 ðμÞ dðnÞ2 ðμÞ

4.0 f1 0.026(4) −0.0086ð26Þ 0.034(4) 0.018(5) 0.0105(19) −0.0009ð14Þ
8.0 f1 0.024(4) −0.0090ð29Þ 0.033(4) 0.016(6) 0.0098(21) −0.0012ð15Þ

12.0 f1 0.024(5) −0.0092ð31Þ 0.033(5) 0.015(6) 0.0095(22) −0.0013ð16Þ
4.0 f2 0.028(14) 0.006(9) 0.023(14) 0.036(19) 0.013(7) 0.006(5)
4.0 f3 0.039(13) 0.001(9) 0.036(13) 0.040(18) 0.017(6) 0.005(5)
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is unclear and we excluded these configurations from
further analysis.
The fit results for d2 are given in Table II for the case

of the renormalization matrix Z̃, cf. Sec. III. The
dependence on the intermediate scale μ0 is quite weak,
due to the use of Z̃. However, the dependence on the
choice of the fit function is more pronounced, although
all three functions yield reasonable fits with χ2=d:o:f:
between 0.66 and 0.94. In Fig. 2 we plot our data along
with the fit function (53) for μ0 ¼ 2 GeV versus the
lattice spacing a. The legend identifying the ensembles is

FIG. 3. Legend for Figs. 2, 4 and 5. The order of the ensembles
(from top left to bottom right) is the same as in these figures (from
left to right).

FIG. 2. Continuum extrapolation of dðpÞ2 and dðnÞ2 . This extrapolation corresponds to the first line of Table II. Results belonging to the
same value of a are horizontally shifted for visibility by a small amount such that the exact value of a lies in the center of the respective
group. Within each of these groups the pion mass decreases from left to right. The results from the ensembles A654, H105 and D451 are
not shown on the plots because of their large error bars.
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given in Fig. 3. The curve shows the fit function
evaluated with the physical values of mπ and mK . The
fitted coefficients C3 and C4 have been used to shift
the data points vertically such that they correspond to the
physical masses.
In order to visualize the mass dependence we show in

Fig. 4 the results for dðpÞ2 together with the fit corresponding
to the first line of Table II plotted against mπ . The curve
represents the function f1ð0; mπ; m

phys
K Þ evaluated with the

fitted parameters, and the data points have been shifted by
subtracting f1ða;mπ; mKÞ − f1ð0; mπ; m

phys
K Þ. Compared

to the a dependence, the dependence on mπ turns out to
be more moderate.
Results for the twist-2 matrix element a2 are presented in

Table III. The flavor dependence is of the same form as in
the case of d2. Since the operators that we use for the
determination of a2 are multiplicatively renormalizable, we
can follow the standard RI0-MOM procedure to obtain
values in the MS scheme at μ ¼ 2 GeV. As in the case of

d2, we obtain reasonable fits with all three fit functions
(0.80 ≤ χ2=d:o:f: ≤ 0.92), but find some dependence of the
results for a2 on the fit function. Plots of our a2 data and the
fit function (53) are shown in Fig. 5, which is analogous to
Fig. 2. Again, the dependence on the pion mass appears to
be rather weak.
For our final values, collected in Table IV, we take the

results given in the first line of Table II for d2 and
Table III for a2. The errors in these tables are purely
statistical, but there are several sources of systematic
uncertainties. Comparing the results obtained by varying
the fit function or the scale μ0 allows us to estimate the
influence of the extrapolation method. Since the renorm-
alization in the case of a2 is less subtle than in the case
of d2, we have refrained from varying the intermediate
renormalization scale μ0 in the analysis for a2. As the
estimate of the systematic error due to our extrapolation
we take the maximum of the (absolute value of the)
difference between the final value and the results
obtained by means of the fit functions f2 and f3.

FIG. 4. Mass dependence of dðpÞ2 . The fit curve corresponds to the first line of Table II. The results from the ensembles A654, H105
and D451 are not shown on the plot because of their large error bars.

TABLE III. Results for a2 in the MS scheme at μ ¼ 2 GeV obtained with the extrapolation functions (53)–(55).
Superscripts (u) and (d) refer to the u and d quarks in the proton.

μ02 ðGeV2Þ Fit form aðuÞ2 ðμÞ aðdÞ2 ðμÞ aðu−dÞ2 ðμÞ aðuþdÞ
2 ðμÞ aðpÞ2 ðμÞ aðnÞ2 ðμÞ

4.0 f1 0.161(11) −0.025ð6Þ 0.187(10) 0.136(14) 0.069(5) 0.0068(33)
4.0 f2 0.195(35) −0.016ð21Þ 0.208(35) 0.18(5) 0.085(17) 0.015(11)
4.0 f3 0.137(33) −0.038ð19Þ 0.175(31) 0.10(4) 0.057(15) −0.001ð10Þ
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Unfortunately, we are not able to assess the effect of
neglecting the operators (27) in the process of the
renormalization of d2. This problem must be left for
future investigations. Another source of error that cannot

yet be quantified is the omission of quark-line discon-
nected contributions, which leaves only aðu−dÞ2 and dðu−dÞ2

unaffected. However, we expect that this error is small
compared to the other uncertainties.

FIG. 5. Continuum extrapolation of aðpÞ2 and aðnÞ2 . This extrapolation corresponds to the first line of Table III. Results belonging to the
same value of a are horizontally shifted for visibility by a small amount such that the exact value of a lies in the center of the respective
group. Within each of these groups the pion mass decreases from left to right.

TABLE IV. Final results for a2 (MS scheme) and for d2 (renormalization Z̃), both at μ ¼ 2 GeV. The first error is
statistical, while the second error accounts for the uncertainty due to the combined chiral and continuum
extrapolations. The error caused by the approximations in the renormalization procedure for d2 cannot be quantified.

□
ðuÞ
2 ðμÞ □

ðdÞ
2 ðμÞ □

ðu−dÞ
2 ðμÞ □

ðuþdÞ
2 ðμÞ □

ðpÞ
2 ðμÞ □

ðnÞ
2 ðμÞ

□ ¼ d 0.026(4)(13) −0.0086ð26Þð146Þ 0.034(4)(11) 0.018(5)(22) 0.0105(19)(65) −0.0009ð14Þð69Þ
□ ¼ a 0.161(11)(34) −0.025ð6Þð13Þ 0.187(10)(21) 0.136(14)(44) 0.069(5)(16) 0.0068(33)(82)
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VI. COMPARISON WITH EXPERIMENT

Several experiments have measured the structure func-
tions giðx;Q2Þ for certain ranges of the variables x and Q2

and attempted to determine the moments

Z
1

0

dxx2giðx;Q2Þ ð57Þ

for the proton as well as for the neutron. Results are given
for Q2 up to 5 GeV2. As far as we can see, the Wilson
coefficients are taken into account only in leading order. In
this approximation the moments of the structure functions
are related to the reduced matrix elements by

a2ðμÞ ¼ 4

Z
1

0

dxx2g1ðx;Q2Þ ð58Þ

and

d2ðμÞ ¼ 2

Z
1

0

dxx2ð2g1ðx;Q2Þ þ 3g2ðx;Q2ÞÞ ð59Þ

with μ2 ¼ Q2.
Let us begin with the results for a2. In Table V we collect

the values given for
R
1
0 dxx

2g1ðx;Q2Þ in the literature with
statistical and systematic errors (if they are given sepa-
rately) added in quadrature.
In order to compare the results given in Table V with our

numbers we take into account the one-loop QCD correc-
tions, which are flavor independent, i.e., we divide the
experimental values of

R
1
0 dxx

2g1ðx;Q2Þ by the Wilson
coefficient (9) with μ2 ¼ Q2. Then we use the renormal-
ization group to evolve the renormalization scale of the
resulting matrix element a2 to our value μ2 ¼ 4 GeV2. We
employ the five-loop anomalous dimension of the relevant
operator multiplet along with the five-loop β function. The
details of the calculation are the same as in Ref. [42]. The
resulting values for a2ð2 GeVÞ can be found in Table VI.
In Table VII we collect the values presented for dalt2 ¼

d2=2 in the literature with statistical and systematic errors
(if they are given separately) added in quadrature. As in this
case Wilson coefficients beyond tree level are not available,
we just use the renormalization group to evolve the
renormalization scale to our value μ2 ¼ 4 GeV2. The
corresponding factors are calculated from Eqs. (51) and

(52), and the resulting values for d2ð2 GeVÞ can be found
in Table VIII.
As in the analysis of the experimental data the variation

of Q2 in the respective experimental setup generally was
not taken into account, applying the renormalization group
running is not too well justified, but the effect is anyhow
quite small compared to the experimental uncertainties. If,
however, the sign change from negative numbers at the
smaller values of Q2 to positive numbers at larger Q2 is
taken seriously and interpreted as a “nontrivial scale
dependence” [19], the perturbative renormalization group
would not be applicable in this range of Q2.
In addition to these results from single experiments, there

is also a global analysis of polarized inclusive deep-
inelastic scattering available [63]. Unfortunately, the result-

ing values for dðpÞ2 and dðnÞ2 are given at the rather low scale
Q2 ¼ 1 GeV2. If one nevertheless uses Eq. (51) for the

evolution to the scale 4 GeV2, one finds dðpÞ2 ð2 GeVÞ ¼
0.0062ð25Þ and dðnÞ2 ð2 GeVÞ ¼ −0.0012ð12Þ in broad
agreement with the individual results in Table VIII.

Our results for aðpÞ2 in Table III are larger than the
experimental values, but the dependence on the choice of
the fit function may indicate that this discrepancy should
not be taken too seriously. A similar tendency is observed
in Fig. 20 of Ref. [64], where moments obtained from
quasidistributions are compared with phenomenological
determinations. Figure 6 of Ref. [65] (see also Ref. [60])
seems to suggest that a more sophisticated chiral

TABLE V. Experimental results for
R
1
0 dxx

2g1ðx;Q2Þ.
References Q2 ðGeV2Þ Proton Neutron

[13] 5.0 0.0124(10) −0.0024ð16Þ
[62] 4.2 0.01100(83) � � �
[62] 5.0 0.00853(175) � � �
[18] 3.21 � � � 0.00086(64)
[18] 4.32 � � � 0.00050(65)

TABLE VI. Values for a2 with μ2 ¼ 4 GeV2 from experiment.

References Q2 ðGeV2Þ aðpÞ2 ðμÞ aðnÞ2 ðμÞ
[13] 5.0 0.0497(40) −0.0096ð64Þ
[62] 4.2 0.0427(32) � � �
[62] 5.0 0.0342(70) � � �
[18] 3.21 � � � 0.0032(24)
[18] 4.32 � � � 0.0020(25)

TABLE VII. Experimental results for dalt2 ¼ d2=2. In the case of
Ref. [12] we have chosen the “SLAC average.”

References Q2 ðGeV2Þ dðpÞ2 =2 dðnÞ2 =2

[12] 3.0 � � � −0.010ð15Þ
[13] 5.0 0.0058(50) 0.0050(210)
[14] 5.0 0.0032(17) 0.0079(48)
[15] 5.0 � � � 0.0062(28)
[62] 4.2 0.0014(130) � � �
[62] 5.0 0.0035(150) � � �
[16] 5.0 0.0148(107) � � �
[17] 3.21 � � � −0.00421ð114Þ
[17] 4.32 � � � −0.00035ð108Þ
[19] 2.8 −0.00414ð328Þ � � �
[19] 4.3 −0.00149ð400Þ � � �
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extrapolation could diminish this discrepancy, but better

data are needed to clarify this issue. Concerning aðnÞ2 we can
hardly say more than that it must be quite small, as also
indicated by the experimental values.

The experimental results for dðpÞ2 collected in Table VIII
may perhaps be summarized in the statement that the data
taken at reasonably largeQ2 hint at a value in the vicinity of

0.01 for μ ¼ 2 GeV. The results for dðnÞ2 are not so easy to
summarize. While the order of magnitude is 0.01 as well,
even the sign is ambiguous. For the final numbers from our

lattice calculation see Table IV. We find a value for dðnÞ2

which is consistent with zero. For dðpÞ2 we get a number
quite close to 0.01, which is consistent with most of the
experimental determinations.

VII. COMPARISON WITH OTHER LATTICE
DETERMINATIONS

There are a few previous lattice investigations of a2 and
d2, with which we can compare our new results. For this

purpose we consider the reduced matrix elements aðqÞ2 and

dðqÞ2 with q ¼ u, d.
In Ref. [11] a continuum limit was not attempted.

Instead, the results on the finest lattice in the chiral limit
were considered as the best estimates obtained in this Nf ¼
2 simulation. With the help of the perturbative running
factor we evolve our a2 results from μ2 ¼ 4 GeV2 to the

scale μ2 ¼ 5 GeV2 used in Ref. [11]. This yields aðuÞ2 ¼
0.155ð11Þð33Þ and aðdÞ2 ¼ −0.024ð6Þð13Þ to be compared

with aðuÞ2 ¼ 0.187ð28Þ and aðdÞ2 ¼ −0.056ð11Þ. In the case

of d2 we obtain dðuÞ2 ¼ 0.025ð4Þð12Þ and dðdÞ2 ¼
−0.0081ð25Þð138Þ at μ2 ¼ 5 GeV2 to be compared with

the values dðuÞ2 ¼ 0.010ð12Þ and dðdÞ2 ¼ −0.0056ð50Þ given
in Ref. [11]. The statistical errors of our present determi-
nation are significantly smaller than those quoted in

Ref. [11], while the central values are in rough agreement
with each other. Unfortunately, the uncertainties due to the
combined chiral and continuum extrapolations, which
could not be estimated in the previous study, are still rather
large.

Values for hx2iΔu ¼ aðuÞ2 =2 and hx2iΔd ¼ aðdÞ2 =2 from
another Nf ¼ 2 simulation are presented in Ref. [66]. They
are obtained at a single lattice spacing a ≈ 0.1 fm with the
help of perturbative renormalization. Since the results are
given at μ2 ¼ 4 GeV2 in the MS scheme, they can directly
be compared with our numbers. From Table IX of Ref. [66]

we get aðuÞ2 ¼ 0.232ð84Þ and aðdÞ2 ¼ 0.002ð50Þ. Although
not extrapolated to the continuum, these values are roughly
compatible with our results.

Somewhat indirect information on aðu−dÞ2 is contained in
Ref. [60]. This paper relies on simulations withNf ¼ 2þ 1

flavors at a single lattice spacing a ¼ 0.124 fm and
employs a combination of perturbative and nonperturbative
methods for the renormalization. Results are given at a
renormalization scale μ2 ≈ 2.5 GeV2 for the generalized
form factors Ãu−d

10 ðtÞ and Ãu−d
30 ðtÞ, which are related to

hx2iΔu−Δd ¼ aðu−dÞ2 =2 through

hx2iΔu−Δd ¼ Ãu−d
30 ð0Þ ¼ Ãu−d

30 ðtÞ
Ãu−d
10 ðtÞ

����
t¼0

Ãu−d
10 ð0Þ ð60Þ

with Ãu−d
10 ð0Þ ¼ gA. Reading off from Fig. 32 in Ref. [60]

the value

Ãu−d
30 ðtÞ

Ãu−d
10 ðtÞ

����
t¼0

≈ 0.09 ð61Þ

and using gA ≈ 1.27 one obtains aðu−dÞ2 ≈ 0.229 for

μ2 ≈ 2.5 GeV2. This value corresponds to aðu−dÞ2 ≈ 0.209
at μ2 ¼ 4 GeV2, consistent with our result in
Table IV.
Results from the quasidistribution approach [67] lead to

the conclusion that the Wandzura-Wilczek approximation
for gTðxÞ ¼ g1ðxÞ þ g2ðxÞworks well at least up to x ≈ 0.4.
Whether the deviations observed at higher values of x
indicate nonvanishing twist-3 effects or have a different
origin remains to be seen.

VIII. CONCLUSIONS

In the present paper we computed the nucleon matrix
elements a2 and d2, which determine the x2 moments of the
spin structure functions g1 and g2, in lattice QCD, thus
improving on the earlier evaluation [11] (coauthored by
some of us). In both determinations quark-line discon-
nected contributions were neglected.
For the twist-2 matrix element a2 we found

aðpÞ2 ¼ 0.069ð5Þð16Þ and aðnÞ2 ¼ 0.0068ð33Þð82Þ at the

TABLE VIII. Results for d2 with μ2 ¼ 4 GeV2 from experi-
ment. In the case of Ref. [12] we have chosen the “SLAC
average”.

References Q2 ðGeV2Þ dðpÞ2 ðμÞ dðnÞ2 ðμÞ
[12] 3.0 � � � −0.019ð28Þ
[13] 5.0 0.0122(106) 0.0106(443)
[14] 5.0 0.0068(36) 0.0167(101)
[15] 5.0 � � � 0.0131(59)
[62] 4.2 0.0028(263) � � �
[62] 5.0 0.0074(317) � � �
[16] 5.0 0.0312(226) � � �
[17] 3.21 � � � −0.0080ð22Þ
[17] 4.32 � � � −0.0007ð22Þ
[19] 2.8 −0.0075ð60Þ � � �
[19] 4.3 −0.0030ð81Þ � � �
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renormalization scale μ ¼ 2 GeV, see also Table IV.
In both cases the second (systematic) error is considerably
larger than the first (statistical) error. Our results are in
broad agreement with phenomenology, as shown in Figs. 6
and 7.
The parameter d2 quantifies a specific twist-3 quark-

gluon correlation in the nucleon. Because it is experimen-
tally accessible it became a much discussed test case for our
understanding of hadron structure beyond twist 2. We

observed a strong dependence on lattice spacing for dðpÞ2 ,
see Fig. 2, which implies that the good agreement between
the earlier lattice result and experiment probably was
somewhat accidental. In contrast, in this new lattice

determination of dðpÞ2 and dðnÞ2 we take the lattice spacing
dependence into account and only when doing this, the
results agree well with experiment (and, therefore, also with
the numbers given in Ref. [11]). Note also that the a

dependence of dðnÞ2 is far less pronounced. These results
provide a showcase example justifying the CLS strategy to
focus its resources on controlling the continuum limit. The
a dependence of any observable of interest can be strong

(as for dðpÞ2 ) or weak (as for dðnÞ2 ). What is the case has to be
carefully evaluated for each specific quantity.

The final results can be found in Table IV. We obtained

dðpÞ2 ¼ 0.0105ð19Þð65Þ and dðnÞ2 ¼ −0.0009ð14Þð69Þ at the
renormalization scale μ ¼ 2 GeV. Again, the systematic
error dominates the total one. In Figs. 8 and 9 we compare
our findings with results from the experimental and
phenomenological literature.
Following Refs. [9,10] these numbers can be related to

the transverse color Lorentz force on a quark in a
transversely polarized proton. Considering the proton in
its rest frame with pþ ¼ mN=

ffiffiffi
2

p
and sx ¼ mN , one gets in

analogy to Eq. (1)

Fq;yð0Þ ¼ m2
Nd

ðqÞ
2 : ð62Þ

With m2
N ≈ 4.47 GeV=fm we obtain
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FIG. 8. Comparison of our results for dðpÞ2 with experimental
values. The renormalization scale is μ2 ¼ 4 GeV2. Statistical and
systematic errors have been added in quadrature.
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FIG. 6. Comparison of our results for aðpÞ2 with experimental
values. The renormalization scale is μ2 ¼ 4 GeV2. Statistical and
systematic errors have been added in quadrature.
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FIG. 7. Comparison of our results for aðnÞ2 with experimental
values. The renormalization scale is μ2 ¼ 4 GeV2. Statistical and
systematic errors have been added in quadrature.
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FIG. 9. Comparison of our results for dðnÞ2 with experimental
values. The renormalization scale is μ2 ¼ 4 GeV2. Statistical and
systematic errors have been added in quadrature.
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Fu;yð0Þ ¼ 116ð61Þ MeV=fm;

Fd;yð0Þ ¼ −38ð66Þ MeV=fm; ð63Þ

where we have added the two errors in quadrature.
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