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We compute the Πu and Σ−
u hybrid static potentials in SU(3) lattice gauge theory using four different

lattice spacings ranging from a ¼ 0.040 fm to a ¼ 0.093 fm. We provide lattice data points for quark-
antiquark separations as small as 0.08 fm, where the a-dependent self-energy as well as lattice
discretization errors at tree level of perturbation theory and at leading order in a2 have been removed.
We also investigate and exclude possibly present systematic errors from topological freezing, due to the
finite spatial lattice volume and from glueball decays. Moreover, we provide corresponding para-
metrizations of the potentials, which can e.g. be used for Born-Oppenheimer predictions of heavy hybrid
mesons.
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I. INTRODUCTION

The constituent quark model is quite successful in
explaining the properties of a variety of nonexotic hadrons,
quark-antiquark pairs or triplets of quarks or antiquarks
without gluonic excitations. However, a particular class of
exotic mesons, so-called hybrid mesons, contain such
gluonic excitations and, thus, cannot be studied in a proper
way using the constituent quark model. These systems
require approaches closer to QCD, which contain gluons as
degrees of freedom. In this work we use lattice gauge
theory and are interested in heavy hybrid mesons, which
are composed of heavy c or b quarks and a surrounding
excited gluon field. The gluonic excitation contributes to
the quantum numbers of the hybrid meson such that exotic
combinations of JPC are allowed, which do not exist in the
constituent quark model.
The experimental searches for exotic states in existing

and future facilities such as the GlueX experiment at
Jefferson Lab or the PANDA experiment at FAIR as well
as the theoretical explanation of their internal structure
and properties are currently hot research topics (for an
experimental review see e.g. Ref. [1]; for theoretical
reports we refer to Refs. [2–6]). Concerning theoretical
approaches, lattice gauge theory is an ideal nonperturbative

first principles approach to investigate properties and
masses of heavy hybrid mesons, either within the Born-
Oppenheimer approximation [7–16] or in full lattice QCD
(see e.g. Refs. [17–20]). We focus on hybrid mesons
composed of heavy c or b quarks and use SU(3) lattice
gauge theory in combination with the Born-Oppenheimer
approximation [21], which is a two-step approach. In the
first step, we fix the positions of the heavy quarks and
compute so-called hybrid static potentials with lattice
gauge theory. Hybrid static potentials correspond to energy
levels of gluonic excitations in the presence of static quarks
as functions of their separation. In the second step of the
Born-Oppenheimer approximation, the radial Schrödinger
equation for the relative coordinate of the heavy quark-
antiquark pair is solved with one of the hybrid static
potentials obtained in the first step.
In recent years a lot of effort was invested to refine the

second step of the Born-Oppenheimer approximation, e.g.
by including the mixing of different sectors via coupled
channel equations [11–13] and by taking heavy quark spin
effects into account [15,16]. These approaches require
precise lattice results for hybrid static potentials, in par-
ticular at small quark-antiquark separations r to combine
them with perturbative predictions valid only at small r or
to fix matching coefficients in potential nonrelativistic
QCD (pNRQCD) [12,15,16,22]. Thus, the main goal of
this work is to use lattice gauge theory to investigate
the small-r region of the Πu and Σ−

u hybrid static potentials.
We aim at extending the range of precise lattice field
theory results to smaller quark-antiquark separations and
improve existing investigations of hybrid static potentials
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[7–9,14,23–46]. For this we perform computations at
four different lattice spacings ranging from a ¼
0.040 fm to a ¼ 0.093 fm. These computations at sev-
eral small lattice spacings do not only allow one to
access smaller quark-antiquark separations than before,
but also to explore and remove lattice discretization
errors, such that our final results are expected to be
consistent with the continuum limit within statistical
errors. Moreover, we can convincingly confirm the
repulsive behavior of hybrid static potentials at small
r predicted by perturbation theory.
To compute the ordinary static potential and the Πu

and Σ−
u hybrid static potentials we employ optimized

operators from our previous work [14] as well as a
multilevel algorithm [47]. In this way we obtain precise
lattice results for these potentials on four ensembles
for quark-antiquark separations as small as 0.08 fm
(see Sec. II–IV). We also check that our lattice gauge
theory computations are not contaminated by sizable
systematic errors related to topological freezing, the finite
spatial lattice volume or glueball decays of hybrid flux
tubes, which are expected to be particularly prominent
at small lattice spacings and small quark-antiquark
separations (see Sec. VI). Moreover, we provide para-
metrizations describing the hybrid static potentials for
quark-antiquark separations 0.08 fm≲ r≲ 1.12 fm. We
use these parametrizations to eliminate discretization
errors and the a-dependent self-energy (see Sec. V).
We also use the parametrizations to check the impact
of including our new lattice data at small lattice spacings
in Born-Oppenheimer predictions of cc̄ and bb̄ hybrid
meson masses and find sizable differences from our
previous work [14], where we have only considered a
single lattice spacing a ¼ 0.093 fm. The numerical values
of all lattice data points and their parametrizations are
provided for straightforward use in future applications,
e.g. for predictions of heavy hybrid meson masses in more

refined Born-Oppenheimer approaches as proposed in
Refs. [12,13,15,16]. We also provide similar results for
gauge group SU(2), which were obtained at an early stage
of this work.

II. HYBRID STATIC POTENTIALS:
QUANTUM NUMBERS, OPERATORS,
AND CORRELATION FUNCTIONS

Hybrid static potentials represent the energy of the
excited gluon field in the presence of a static quark and
antiquark as a function of their separation.
Static potentials are characterized by the following three

quantum numbers:
(i) Λ ¼ Σð¼ 0Þ;Πð¼ 1Þ;Δð¼ 2Þ;…, denotes the total

angular momentum with respect to the quark-
antiquark separation axis, i.e. is a non-negative
integer (without loss of generality we separate the
static quark and antiquark along the z axis).

(ii) η ¼ gð¼þÞ; uð¼−Þ describes the even (g) or odd (u)
behavior under the combined parity and charge
conjugation transformation P ∘ C.

(iii) ϵ ¼ þ;− is the eigenvalue of a reflection Px along
an axis perpendicular to the quark-antiquark sepa-
ration axis (for definiteness we use the x axis). For
Λ ≥ 1, hybrid static potentials are degenerate with
respect to ϵ and ϵ is typically omitted.

The ordinary static potential has quantumnumbersΣþ
g , while

hybrid static potentials have quantumnumbers different from
Σþ
g . In this work we carry out a precise computation and

parametrization of the two lowest hybrid static potentials,
which have quantum numbers Πu and Σ−

u , with particular
focus on rather small quark-antiquark separations r.
Hybrid static potentials are computed from correlation

functions similar to Wilson loops, where the straight spatial
parallel transporters are replaced bymore complicated gauge
link combinations with nontrivial transformation properties,

WS;Λϵ
η
ðr; tÞ ¼ hTrðaS;Λϵ

η
ð−r=2;þr=2; 0ÞUðþr=2; 0; tÞðaS;Λϵ

η
ð−r=2;þr=2; tÞÞ†Uð−r=2; t; 0ÞÞiU: ð1Þ

Uðr; t1; t2Þ is a straight path of temporal gauge links from time t1 to time t2 at spatial position r ¼ ð0; 0; rÞ, and h� � �iU
denotes the average on an ensemble of gauge link configurations. aS;Λϵ

η
is given by a sum of properly transformed spatial

insertions USU, to probe the sector with quantum numbers Λϵ
η,

aS;Λϵ
η
ð−r=2;þr=2Þ ¼ 1

4

X3
k¼0

exp

�
iπΛk
2

�
R

�
πk
2

�
ðUð−r=2; r1ÞðSðr1; r2Þ þ ϵSPx

ðr1; r2ÞÞUðr2;þr=2Þ

þ Uð−r=2;−r2ÞðηSP∘Cð−r2;−r1Þ þ ηϵSðP∘CÞPx
ð−r2;−r1ÞÞUð−r1;þr=2ÞÞ: ð2Þ

The subscripts Px and P ∘ C denote the spatial reflection
along the x axis and the charge conjugated reflection with
respect to the origin. The notation is explained in detail in
Ref. [14]. We employ operators S from Ref. [14], where we

have carried out a dedicated optimization to maximize the
generated ground state overlaps. For the Πu hybrid static
potential we use SIII;1 and for the Σ−

u hybrid static potential
we use SIV;2, which are defined and illustrated in Tables I
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and II. The spatial extents Ej listed in these tables in units
of the lattice spacing a refer to and were optimized in
Ref. [14] for a ¼ 0.093 fm. For computations at smaller
values of a we increase Ex and Ey such that they are
approximately constant in physical units. See also the
discussion in Appendix A.
To further enhance the ground state overlaps, we apply

APE smearing (see e.g. Ref. [48] for detailed equations) to
the spatial gauge links appearing in aS;Λϵ

η
. The number of

APE smearing steps is increased with decreasing lattice
spacing to keep the smearing radius approximately constant
in physical units. Details can also be found in Appendix A.

III. COMPUTATIONAL DETAILS

A. Gauge link ensembles

We computed hybrid static potentials on both SU(2) and
SU(3) gauge link configurations generated with the stan-
dard Wilson plaquette action without dynamical quarks.
Results for purely gluonic observables such as energies in
the presence of a static quark-antiquark pair, possibly in a
sector with hybrid quantum numbers, are expected to
be similar in pure gauge theory and in QCD (for hybrid
static potentials this is supported by lattice results from
Ref. [34]). To study hybrid static potentials, it might even
be advantageous to use pure gauge theory, because in that
case an excited flux tube can only decay into multiparticle
states, which include rather heavy glueballs, but not
light pions. In Sec. VI C glueball decays are discussed
in detail.

In the main part of this work we focus exclusively
on computations and results for gauge group SU(3).
Corresponding results for gauge group SU(2) are summa-
rized in Appendix E.
We generated four ensembles of gauge link configura-

tions with gauge couplings β ¼ 6.594, 6.451, 6.284, 6.000
using the CL2QCD software package [49]. We relate the
corresponding lattice spacing a to the Sommer scale r0 via
a parametrization of lnða=r0Þ provided in Ref. [50], which
is based on a precision determination of r0 up to β ¼ 6.92.
We introduce physical units by setting r0 ¼ 0.5 fm, which
is a simple and common choice in pure gauge theory, but is
slightly larger than QCD results [51].
The details of our gauge link ensembles, which we label

by A, B, C, and D, are collected in Table III. The lattice
volume for all four ensembles is L3 × T ≈ ð1.2 fmÞ3 ×
2.4 fm.1 This is sufficiently large to neglect finite volume
corrections (see Sec. VI B for a detailed investigation and
discussion). Each ensemble was generated by Nsim inde-
pendent Monte Carlo simulations, where each simu-
lation comprises Ntotal updates. An update is composed
of a heat-bath sweep and Nor overrelaxation sweeps. Nor is
chosen roughly as Nor ≈ 1.5r0=a following Ref. [53].

TABLE I. Optimized creation operator for VΠu
[14].

USIII;1U ¼ UEx
x U

Ey
y UEz

z U
Ey
−yU

Ex
−x

r=a 2 3 4 5 6 7 8 9 10 11 12

Ez 2 3 4 5 6 7 8 9 10 11 12
Ex 1 1 1 1 1 1 1 1 1 1 1
Ey 3 3 3 3 3 3 3 3 3 3 3

TABLE II. Optimized creation operator for VΣ−
u
[14].

USIV;2U ¼ UEz;1
z UEx

x U
Ey
y UEx

−xU
Ey
−yU

Ez;2
z UEx

x U
Ey
y UEx

−xU
Ey
−yU

Ez;1
z

r=a 2 3 4 5 6 7 8 9 10 11 12

Ez;1 0 0 0 1 1 2 2 3 3 4 4
Ez;2 2 3 4 3 4 3 4 3 4 3 4
Ex 3 3 3 3 3 3 3 3 3 3 3
Ey 3 3 3 3 3 3 3 3 3 3 3

1The ratio T=L is not exactly the same for the four ensembles.
One reason for this is that the CL2QCD software package [49]
requires an even number of lattice sites in both spatial and
temporal directions. Moreover, ensembles C and D were gen-
erated previously for another project [52] and reused for our
computation of hybrid static potentials.
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This is expected to minimize correlations between sub-
sequent gauge link configurations. The first Ntherm updates
are considered as thermalization updates and the corre-
sponding gauge link configurations were, thus, discarded.
After thermalization, gauge link configurations separated
byNsep updates were used to measure correlation functions,
where Nsep is chosen significantly larger than the auto-
correlation times of our observables. The total number
of gauge link configurations used for measurements is
thus Nmeas ¼ NsimðNtotal − NthermÞ=Nsep.
To eliminate autocorrelations, we combined these Nmeas

gauge link configurations into a much smaller number of
bins. Statistical errors were determined using both the
jackknife and the bootstrap methods. Further details con-
cerning data analysis are discussed in Appendix B.

B. Multilevel algorithm

For the efficient computation of Wilson looplike corre-
lation functions (1) we employ the multilevel algorithm
[47]. The starting point for a multilevel simulation is one of
the sets of Nmeas thermalized gauge link configurations
discussed in Sec. III A. The lattice is partitioned into nts
time slices with thicknesses p1; p2;…; pnts . In principle,
time slices can be partitioned more than once, but we use
only a single level of partitioning. For each time slice nm
sublattice configurations are generated using a standard
heat-bath algorithm. These sublattice configurations are
separated by nu heat-bath sweeps, where links in the
interior of the time slice are updated, while spatial links
on the boundaries are fixed.
Two-link operators are defined via Tðx; rĵÞαβγδ ¼

U�
0ðxÞαβU0ðxþ rĵÞγδ [ĵ denotes the spatial unit vector in

the j-direction, e.g. 1̂ ¼ ð0; 1; 0; 0Þ]. They are multiplied
according to

Pk ¼ fTðxþ ðdk − pkÞa0̂; rĵÞTðxþ ðdk − pk þ 1Þa0̂; rĵÞ
� � � Tðxþ ðdk − 1Þa0̂; rĵÞg ð3Þ

with the multiplication prescription fT 1T 2gαβγδ ¼
fT 1gασγρfT 2gσβρδ, such that the product Pk connects the
two boundaries of the time slice k, i.e. extends from t=a ¼
dk−1 to t=a ¼ dk with dk ¼

P
k
j¼1 pj. The products Pk are

then averaged over the nm corresponding sublattice con-
figurations with the results denoted as ½Pk�.

Wilson loops are computed via

WS;Λϵ
η
ðr; tÞ ¼ aS;Λϵ

η
ðx;xþ rĵ; x0Þαγf½Pk�½Pkþ1�

� � � ½Pkþnt−1�gαβγδðaS;Λϵ
η
ðx;xþ rĵ; x0 þ tÞÞ�βδ;

ð4Þ

where the spatial parallel transporters aS;Λϵ
η
[see Eq. (2)] are

both located on boundaries between time slices. nt denotes
the number of time slices traversed by the Wilson loop,
i.e. dk−1 ¼ x0 and

Pnt
j¼1 pkþj ¼ t=a. Finally, the samples

WS;Λϵ
η
ðr; tÞ from Eq. (4) are averaged over spacetime, the

three spatial directions, and the Nmeas thermalized gauge
link configurations.
Note that the time-slice partitioning might impose

constraints on the temporal extent of Wilson loops, which
can be computed. For simplicity we choose a regular
pattern, where all time slices have thickness 2, i.e.
p1 ¼ p2 ¼ … ¼ pnts ¼ 2. This choice is not only simple
but also efficient, because it allows one to exploit trans-
lational invariance in temporal direction extensively.
Moreover, we use nm ¼ 400 and nu ¼ 30.
For a technically more detailed discussion of the multi-

level algorithm see Sec. 3.2 of Ref. [52].

C. Tree-level improvement for static potentials

To reduce lattice discretization errors for the ordinary
and for hybrid static potentials, we apply a tree-level
improvement similar as in Ref. [54]. In the continuum in
leading-order perturbation theory static potentials are
proportional to 1=r due to one-gluon exchange. The
ordinary static potential is attractive, while the Πu and
Σ−
u hybrid static potentials exhibit a repulsive 1=r behavior,

which is suppressed by the factor 1=8. On an infinite
spacetime lattice the leading order perturbative result can
be computed in a straightforward way as discussed in
Appendix C. The difference to its 1=r continuum counter-
part represents lattice discretization errors at tree level.
These discretization errors can be subtracted from the
nonperturbative lattice data points obtained from Wilson
looplike correlation functions (1). For this one needs to
estimate the prefactor of the 1=r perturbative part, which is
proportional to the strong coupling (see e.g. Ref. [55] and
references therein). We do this in Sec. V with a suitable fit
to the Σþ

g static potential.

TABLE III. Gauge link ensembles.

Ensemble β a in fm [50] ðL=aÞ3 × T=a Nsim Ntotal Nor Ntherm Nsep Nmeas

A 6.000 0.093 123 × 26 2 60000 4 20000 50 1600
B 6.284 0.060 203 × 40 2 60000 12 20000 100 800
C 6.451 0.048 263 × 50 4 80000 15 40000 200 800
D 6.594 0.040 303 × 60 4 80000 15 40000 200 800
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We note that there is a related but slightly different
method for tree-level improvement also common in the
literature (see e.g. Refs. [50,55]). Instead of changing the
lattice result for the value of the static potential at a given
quark-antiquark separation, this separation is replaced by a
so-called improved separation. According to our numerical
tests this method works well for the static force. However,
for static potentials it seems to be inferior to the method
discussed in the previous paragraph, because of their linear
behavior for large separations. We plan to discuss this in
detail in another publication.

IV. LATTICE FIELD THEORY RESULTS FOR THE
Πu AND Σ−

u HYBRID STATIC POTENTIALS

In the following we discuss our lattice field theory results
Ve
Λϵ
η
ðrÞ for static potentials with quantum numbers Λϵ

η ¼
Σþ
g (the ordinary static potential) and Λϵ

η ¼ Πu;Σ−
u (the two

lowest hybrid static potentials) for all four lattice ensembles
e ∈ fA;B;C;Dg listed in Table III. They correspond to the
ground state energies in the sectors with quantum numbers
Λϵ
η and quark-antiquark separation r.
To extract these static potentials, we compute temporal

correlation functions We
Λϵ
η
ðr; tÞ [see Eq. (1)] of suitably

designed creation operators as discussed in Sec. II. We
restrict the computations to temporal separations t, which
are multiples of 2a. This allows the use of a single
multilevel time-slice partitioning, which is simple as well
as efficient (for details see Sec. III B).
Effective potentials are defined in terms of the correla-

tion functions We
Λϵ
η
ðr; tÞ via

Ve
eff;Λϵ

η
ðr; tÞ ¼ 1

2a
ln

� We
Λϵ
η
ðr; tÞ

We
Λϵ
η
ðr; tþ 2aÞ

�
: ð5Þ

These effective potentials approach plateaus at large t,
which correspond to the ground state energies, i.e.

Ve
Λϵ
η
ðrÞ ¼ lim

t→∞
Ve
eff;Λϵ

η
ðr; tÞ: ð6Þ

Numerically the plateau values and, thus, the static
potentials are extracted by uncorrelated χ2 minimizing fits
of constants to aVe

eff;Λϵ
η
ðr; tÞ in the range t0min ≤ t ≤ t0max.

The fit range is chosen individually for each set of quantum
numbers Λϵ

η and each quark-antiquark separation r by an
algorithm used already in our preceding work [14]:

(i) tmin is defined as the minimal t, where the values of
aVe

eff;Λϵ
η
ðr; t − 2aÞ and aVe

eff;Λϵ
η
ðr; tÞ differ by less

than 1σ.
(ii) tmax is the maximal t, whereWe

Λϵ
η
ðr; tþ 2aÞ has been

computed, i.e. tmax ¼ 12a; 20a; 22a; 22a for ensem-
bles A, B, C, D, respectively.

(iii) Fits to aVe
eff;Λϵ

η
ðr; tÞ are performed for all ranges

t0min ≤ t ≤ t0max with tmin ≤ t0min, t0max ≤ tmax, and
t0max − t0min ≥ 6a.

(iv) The result of the fit with the longest plateau and
χ2red ≤ 1 is taken as a result for aVe

Λϵ
η
ðrÞ, where χ2red is

determined via

χ2red ¼
2a

t0max − t0min

×
X

t¼t0min;t
0
minþ2a;…;t0max

ðaVe
eff;Λϵ

η
ðr; tÞ − aVe

Λϵ
η
ðrÞÞ2

ðΔaVe
eff;Λϵ

η
ðr; tÞÞ2

ð7Þ

with ΔaVe
eff;Λϵ

η
ðr; tÞ denoting the statistical error

of aVe
eff;Λϵ

η
ðr; tÞ.

To confirm the validity of this procedure, we compared
these results to results for aVe

Λϵ
η
ðrÞ obtained by fits in the

range t0min þ 2a ≤ t ≤ t0max. We found agreement within
statistical errors. To illustrate the quality of our lattice data,

FIG. 1. Exemplary plots of effective potentials aVe
eff;Λϵ

η
ðr; tÞ with Λϵ

η ¼ Σþ
g ;Πu;Σ−

u for r ¼ 4a (Left: ensemble B, i.e. a ¼ 0.060 fm;
Right: ensemble D, i.e. a ¼ 0.040 fm).
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we show exemplary effective potential plots in Fig. 1.
The final fit ranges t0min ≤ t ≤ t0max and fit results are
indicated by the horizontal lines.
The resulting static potentials Ve

Λϵ
η
ðrÞ for Λϵ

η ¼
Σþ
g ;Πu;Σ−

u and separations r ≥ 2a are collected in units
of the lattice spacing in Appendix D, Table VIII. Due to the
regulator-dependent self-energy of static quarks, potentials
computed at different lattice spacings a, i.e. on different
ensembles e, are shifted relative to each other. We will
subtract these self-energies in Sec. V, where we also remove
discretization errors at tree level and partly proportional to
a2, before we show the results for all ensembles together in
a common plot in Fig. 2 and list them in physical units in
Table IX.
Note that in contrast to previous lattice field

theory computations of hybrid static potentials
[7,8,14,26,27,29,36,40,41], where lattice spacings

a≳ 0.07 fm were used,2 our results are based on four
ensembles with lattice spacings as small as 0.04 fm. Since
lattice discretization errors in static potentials typically
become large for r≲ 2a, the lattice potentials presented in
this work are trustworthy down to r ≈ 0.08 fm, whereas
existing works were limited to separations roughly twice
as large.
A major goal of this work is to explore the small-r region

of the Πu and Σ−
u hybrid static potentials to make contact

to perturbative calculations. Using the framework of

FIG. 2. Lattice data points Ṽe
Λϵ
η
ðrÞ in GeV and corresponding parametrizations (9), (13), (14), and (15) as functions of the quark-

antiquark separation r in fm. The colors green, blue, yellow, and red indicate different lattice spacings a ¼ 0.093 fm, a ¼ 0.060 fm,
a ¼ 0.048 fm, and a ¼ 0.040 fm.

2In Ref. [27] hybrid static potentials were computed for gauge
group SU(2) at very small lattice spacing a ≈ 0.022 fm (when
setting the scale as in Ref. [56]), but at the same time also at very
small spatial volume, such that finite volume effects appear to be
huge (see e.g. Fig. 1 in Ref. [27] and our detailed discussion of
finite volume effects in Sec. VI B).
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pNRQCD these hybrid static potentials have been predicted
to be repulsive at very small r [12,13,40,57,58], a behavior
that could not convincingly be confirmed by existing lattice
computations because of the use of rather coarse lattice
spacings. In contrast to that, our results from the ensembles
with the fine lattice spacings a ≈ 0.048 fm and a ≈
0.040 fm clearly show the predicted and expected upward
curvature at small r (see Tables VIII and IX, and Fig. 2).
This will be discussed in detail in Sec. V, where we
parametrize our lattice data points by analytic functions
based on pNRQCD predictions.

V. PARAMETRIZATION OF LATTICE RESULTS
FOR HYBRID STATIC POTENTIALS

In this section we parametrize the lattice data points for
the ordinary static potential VΣþ

g
ðrÞ and the two lowest

hybrid static potentials VΠu
ðrÞ and VΣ−

u
ðrÞ computed in

Sec. IV and collected in Table VIII. The resulting para-
metrizations allow one to eliminate discretization errors to a
large extent and can e.g. be used as input for Born-
Oppenheimer predictions of heavy hybrid meson masses
as previously done in Refs. [7–16].
In addition to the lattice data points specifically com-

puted in the context of this work and discussed in Sec. IV,
we use results from our previous computation [14] for
quark-antiquark separations 0.19 fm≲ r≲ 1.12 fm to
constrain our parametrizations also at large separations.
This computation was performed at lattice spacing
a ≈ 0.093 fm, which is identical to the largest lattice
spacing used in this work, i.e. to that of ensemble A.
However, in contrast to the computations discussed in
Sec. IV, HYP2 smeared temporal links [59–61] were used,
which imply a significantly reduced self-energy and con-
sequently smaller statistical errors, but possibly also larger
discretization errors at small separations r. For complete-
ness, these previous lattice results VAHYP2

Λϵ
η

ðrÞ are also listed

in Table VIII.
When combining the lattice results for the static poten-

tials from the five ensembles e ∈ fA;B;C;D; AHYP2g
(AHYP2 denotes the ensemble generated in the context of
Ref. [14]), one needs to take into account that the self-
energy is different for each ensemble. It depends on both
the lattice spacing a and whether HYP2 smeared temporal
links are used or not. To eliminate both the self-energy and
lattice discretization errors at tree level, we first perform an
eight-parameter uncorrelated χ2-minimizing fit of

Vfit;e
Σþ
g
ðrÞ ¼ VΣþ

g
ðrÞ þ Ce þ ΔV lat;e

Σþ
g
ðrÞ ð8Þ

with the Cornell ansatz

VΣþ
g
ðrÞ ¼ −

α

r
þ σr ð9Þ

and

ΔV lat;e
Σþ
g
ðrÞ ¼ α0

�
1

r
−
Geðr=aÞ

a

�
ð10Þ

to all lattice data points Ve
Σþ
g
ðrÞ with 0.2 fm < r. The fit

parameters are the 1=r coefficient α, the string tension σ,
the coefficient α0, and for each ensemble an additive
constant Ce. The constants Ce absorb the ensemble
dependent self-energies. ΔVlat;e

Σþ
g
ðrÞ reflects lattice discreti-

zation errors at tree level, where the continuum result for
the ordinary static potential at tree level is proportional to
1=r and its lattice counterpart Geðr=aÞ=a can be calculated
numerically (see Refs. [50,54,62] and Appendix C). The
physically meaningful part of the parametrization (8) is
VΣþ

g
ðrÞ with the two parameters α and σ. It is known that

this Cornell ansatz provides an accurate description of the
ordinary static potential for 0.2 fm≲ r (see e.g. Ref. [63]).
We note again that the ordinary static potential is only used
to eliminate the self-energy and lattice discretization errors
at tree level in the hybrid static potentials such that a precise
parametrization of Σþ

g for r < 0.2 fm is not necessary.
The resulting fit parameters are collected in Table IV. In

particular, we obtain α ¼ 0.289ð2Þ ¼ 0.0571ð4Þ GeV fm
and σ ¼ 1.064ð4Þ GeV=fm in reasonable agreement with
results from the literature [64]. These fit parameters allow
one to define data points

Ṽe
Σþ
g
ðrÞ ¼ Ve

Σþ
g
ðrÞ − Ce − ΔV lat;e

Σþ
g
ðrÞ; ð11Þ

where the self-energies and the lattice discretization errors
at tree level are subtracted. These data points are collected
in Table IX and plotted in Fig. 2. They are consistently
parametrized by VΣþ

g
ðrÞ for 0.2 fm ≤ r as demonstrated in

the same figure.
Our parametrization of the Πu and Σ−

u hybrid static
potentials is based on the pNRQCD prediction for small
separations r ≪ 1=ΛQCD,

VpNRQCD
hybrid ðrÞ ¼ VoðrÞ þ ΛH þOðr2Þ ð12Þ

(see Refs. [12,57]). The pNRQCD hybrid static energies
are given through the perturbative octet potential VoðrÞ
and a nonperturbative constant ΛH at leading order in a
multipole expansion. The next term in such a multipole
expansion is proportional to r2. At leading order in
perturbation theory, VoðrÞ ∝ 1=r.
Simple fit functions consistent with this pNRQCD

prediction are

VΛϵ
η
ðrÞ ¼ A1

r
þ A2 þ A3;Λϵ

η
r2; ð13Þ

where the parameters A1 and A2 are the same for both the
Πu and the Σ−

u hybrid static potential, while the coefficients
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in front of the r2 terms, A3;Πu
and A3;Σ−

u
, are independent. As

in our preceding work [14], we found that Eq. (13) is suited
to parametrize the Πu potential in the r range, where lattice
data points are available, but not suited to parametrize the
Σ−
u potential. Because of that we use extended fit functions

already proposed in Ref. [14],

VΠu
ðrÞ ¼ A1

r
þ A2 þ A3r2; ð14Þ

VΣ−
u
ðrÞ ¼ A1

r
þ A2 þ A3r2 þ

B1r2

1þ B2rþ B3r2
; ð15Þ

which reduce to Eq. (13) in the limit of small separations.
Note that, in principle, all fit parameters depend on the

lattice spacing a. In practice, however, only A2 seems to
have a sizable a dependence, as indicated by a small
ensemble dependent additive offset particularly prominent
at large a. We, thus, include the leading order lattice
discretization error for A2, which is proportional to a2. It
can be different for theΠu and the Σ−

u hybrid static potential
and when using HYP2 smeared temporal links or not,
i.e. is represented by terms A0e

2;Λϵ
η
a2 with A0A

2;Πu
¼ A0B

2;Πu
¼

A0C
2;Πu

¼ A0D
2;Πu

and A0A
2;Σ−

u
¼ A0B

2;Σ−
u
¼ A0C

2;Σ−
u
¼ A0D

2;Σ−
u
.

As previously for the ordinary static potential, we also
include in the fit functions the constants Ce containing the
self-energies. Moreover, we include a term reflecting
discretization errors at tree level,

ΔV lat;e
hybridðrÞ ¼ −

1

8
ΔV lat;e

Σþ
g
ðrÞ ¼ −

α0

8

�
1

r
−
Geðr=aÞ

a

�
; ð16Þ

where the prefactor −1=8 relative to Eq. (10) is motivated
by leading order perturbation theory. In summary, this
amounts to a ten-parameter uncorrelated χ2 minimizing
fit of

Vfit;e
Πu

ðrÞ ¼ VΠu
ðrÞ þ Ce þ ΔV lat;e

hybridðrÞ þ A0e
2;Πu

a2; ð17Þ

Vfit;e
Σ−
u
ðrÞ ¼ VΣ−

u
ðrÞ þ Ce þ ΔV lat;e

hybridðrÞ þ A0e
2;Σ−

u
a2 ð18Þ

to the lattice data points Ve
Πu
ðrÞ and Ve

Σ−
u
ðrÞ of all five

ensembles.
In Table IV we compare results obtained with two fit

ranges, 2a ≤ r (Fit 1) and 3a ≤ r (Fit 2). In analogy to
Eq. (11) we define data points

Ṽe
Λϵ
η
ðrÞ ¼ Ve

Λϵ
η
ðrÞ − Ce − ΔV lat;e

hybridðrÞ − A0e
2;Λϵ

η
a2; ð19Þ

where the self-energy as well as lattice discretization errors
at tree level and proportional to a2 in the difference from the
ordinary static potential are removed. We note that data
points Ve

Λϵ
η
ðrÞ − Ce, where only the ensemble dependent

self-energy is subtracted, exhibit the expected linear
behavior in a2 caused by discretization errors. This is
illustrated in Fig. 3, where Ve

Σþ
g
ðrÞ − Ce and Ve

Πu
ðrÞ − Ce,

e ¼ A, B, C, D are shown at fixed separation r ¼ 0.24 fm
as functions of the squared lattice spacing [for ensemble A
there is no data point at r ¼ 0.24 fm; we generated such
a point by interpolating data points VA

Λϵ
η
ðrÞ close to

r ¼ 0.24 fm]. Linear extrapolations in a2 to a2 ¼ 0 are
consistent with the parametrizations (9) and (14) with
parameters corresponding to Fit 1 as listed in Table IV

TABLE IV. Resulting fit parameters. Fit 1 and Fit 2 correspond to the parametrizations (14) and (15) and fit ranges
2a ≤ r and 3a ≤ r, respectively. Fit 3 corresponds to the parametrization (13) and fit range 2a ≤ r ≤ 0.3 fm, where
A3;Πu

¼ A3 and A3;Σ−
u
¼ A3 þ B1.

α½GeV fm� σ½GeV=fm� α0½GeV fm� χ2red

0.0571(4) 1.064(4) 0.0735(23) 0.7

A1½GeV fm� A2 [GeV] A3½GeV fm2� B1½GeV fm2� B2½fm−1� B3½fm−2� χ2red

Fit 1 0.0124(9) 1.135(8) 0.372(7) 1.56(15) 1.2(3) 2.1(2) 1.2
Fit 2 0.0147(18) 1.126(11) 0.381(7) 1.57(17) 1.0(4) 2.3(2) 0.8
Fit 3 0.0065(16) 1.190(14) −0.092ð91Þ 1.15(4) - - 0.5

Fit 1 Fit 2 Fit 3

Ensemble Ce [GeV] A0e
2;Πu

A0e
2;Σ−

u
A0e

2;Πu
A0e

2;Σ−
u

A0e
2;Πu

A0e
2;Σ−

u
½GeV=fm2�

A 1.398(2) 3.1(7) 6.7(8) 3.0(9) 6.5(9) 3.4(8) 5.7(9)
B 2.059(2)
C 2.472(2)
D 2.862(2)
AHYP2 0.340(2) 1.0(7) 5.0(5) 0.9(9) 4.7(9) 1.6(7) 4.4(6)
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(see again Fig. 3). This confirms that our strategy to
eliminate discretization errors to a large extent in the
parametrizations (9) and (14) is successful.
The data points defined in Eq. (19) are collected

in Table IX and plotted in Fig. 2 together with the
parametrizations (14) and (15). For larger separations,
r≳ 0.2 fm, the parametrizations corresponding to 2a ≤ r
and to 3a ≤ r are quite similar. For separations
r≲ 0.15 fm, however, there are clear deviations, which
signal the importance of computing data points at small r.
This is also reflected by the difference in the results
for the coefficient A1 of the repulsive 1=r term, A1 ¼
0.0124ð9Þ GeV fm versus A1 ¼ 0.0147ð18Þ GeV fm for
2a ≤ r and 3a ≤ r, respectively. Since the corresponding
reduced χ2 (listed in Table IV) indicate that both fits are of
reasonable quality, we consider the parametrization
obtained by taking into account a larger number of data
points (i.e. Fit 1 with 2a ≤ r) to be superior and recom-
mend to use this parametrization in future applications, e.g.
Born-Oppenheimer predictions of heavy hybrid meson
masses. A rather conservative strategy (which we do not
follow in this work) would be to add a systematic error to
the parametrization defined as the absolute difference
between the parametrizations corresponding to Fit 1 and
to Fit 2.
To study hybrid static potentials at small separations in

even more detail, we performed an additional fit, where we
fixed B2 ¼ B3 ¼ 0. The fit ansatz is then equivalent to
Eq. (13), when identifying A3;Πu

in Eq. (13) with A3 in
Eq. (14) and A3;Σ−

u
in Eq. (13) with A3 þ B1 in Eq. (15).

Since the fit ansatz is then restricted to the perturbative
prediction valid for small r, we use a reduced fit range,
2a ≤ r ≤ 0.3 fm. The fit is of reasonable quality, and as
before the fit results are collected in Table IV and the
corresponding parametrization is shown in Fig. 2. The
coefficient of the repulsive 1=r term is now significantly
smaller, A1 ¼ 0.0065ð16Þ GeV fm.

In summary, our lattice data points, for both the Πu and
the Σ−

u hybrid static potential, clearly show a repulsive
behavior at small separations, as predicted perturbatively
in pNRQCD. We performed various fits with fit func-
tions guided by these perturbative expansions, which
are proportional to 1=r at small separations. We find
the coefficient A1 of the 1=r term in the region
0.005 GeV fm…0.017 GeV fm. A more precise determi-
nation of a parametrization of the repulsive region of hybrid
static potentials will require further data points at even
smaller separations and possibly refined fit functions with
additional terms contributing to the small-r behavior.
Finally we compare to existing work, where the 1=r

repulsion of the Πu and the Σ−
u hybrid static potentials was

also quantified. In Ref. [65] the lattice data from Ref. [36]
for theΠu hybrid static potential was parametrized with a fit
function similar to Eq. (13) with A1 ¼ 0.022 GeV fm,
which is larger than our results for A1 from simultaneous
fits to the Πu and Σ−

u potentials. Reference [13] follows
the prediction from perturbation theory at leading order
in αs and fixes the 1=r-coefficient to α=8, where α is
obtained from a fit similar to Eq. (9) to lattice data from
Ref. [36] in the range 0.2 fm ≤ r ≤ 2.4 fm. The resulting
1=r-coefficient for the hybrid potentials is 0.012 GeV fm,
which agrees with our fit results for the parameter A1 for Fit
1 and Fit 2. In Ref. [12] hybrid static potential lattice data
from Refs. [36,40] is parametrized consistently at small
separations 0.08 fm ≤ r < 0.25 fm by functions similar to
Eq. (13). There, the 1=r-coefficient is not a fit parameter,
but fixed to ≈0.01 GeV fm by the perturbative octet
potential calculated in the renormalon subtracted scheme
up to order α3s. This value for the 1=r-coefficient is in the
ballpark of our fit results for A1.

A. Prediction of masses of heavy hybrid mesons

In the following we estimate masses of c̄c and b̄b hybrid
mesons following the same Born-Oppenheimer approach
as in our previous work [14], this time, however, using the
refined and more accurate parametrizations (9), (14), and
(15) with parameters corresponding to Fit 1 (see Table IV).
Our goal is to quantify the impact of our new lattice data
(results for ensembles A, B, C, andD), which cover smaller
separations as well as several smaller lattice spacings than
our previous data from ensemble AHYP2.
We solve the radial Schrödinger equation

�
−

1

2μ

d2

dr2
þ LðLþ 1Þ − 2Λ2 þ JΛϵ

η
ðJΛϵ

η
þ 1Þ

2μr2
þ VΛϵ

η
ðrÞ

�

× uΛϵ
η;L;nðrÞ ¼ EΛϵ

η;L;nuΛϵ
η;L;nðrÞ; ð20Þ

using standard numerical techniques, i.e. a fourth order
Runge-Kutta shooting method in combination with
Newton’s method for root finding. μ ¼ mQ̄mQ=ðmQ̄ þ
mQÞ is the reduced mass of the heavy Q̄Q pair, and we

FIG. 3. Continuum extrapolations linear in a2 using lattice data
Ve
Λϵ
η
ðr ¼ 0.24 fmÞ − Ce, e ¼ A, B, C, D for Λϵ

η ¼ Σþ
g (top) and

Λϵ
η ¼ Πu (bottom). The results are consistent with the para-

metrizations (9) and (14) with parameters corresponding to Fit 1
as listed in Table IV (the black points).
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use mc ¼ 1628 MeV and mb ¼ 4977 MeV from quark
models [66]. For the potential VΛϵ

η
ðrÞ we employ our

parametrizations (9), (14), or (15) with parameters listed
as Fit 1 in Table IV. Following Ref. [11], we approximate
the gluon spin JΛϵ

η
by the gluon spin of a glue lump, i.e.

JΣþ
g
¼ 0 and JΛϵ

η
¼ 1 for Λϵ

η ¼ Πu;Σ−
u . This approximation

is motivated by the limit r → 0, where the gluon configu-
ration of a state representing a hybrid static potential
becomes identical to that of the corresponding glue lump.
ψΛϵ

η;L;n;mL
ðr; θ;ϕÞ ¼ ðuΛϵ

η;L;nðrÞ=rÞYL;mL
ðθ;ϕÞ is the wave

function of the relative coordinate of the quark-antiquark
pair with L ∈ fΛ;Λþ 1;…g denoting the orbital angular
momentum of the Q̄Q pair of the hybrid meson. For details
on the interpretation of the resulting energy levels and
their assignment to hybrid meson multiplets we refer to
Ref. [14].
In Table V we provide our updated results for heavy

hybrid meson masses, which are defined according to

mΛϵ
η;L;n ¼ EΛϵ

η;L;n − EΛϵ
η¼Σþ

g ;n¼1;L¼0 þ m̄; ð21Þ

where EΛϵ
η¼Σþ

g ;n¼1;L¼0 is the lowest energy level computed
with the ordinary static potential and m̄ is the correspond-
ing spin averaged mass of the lightest quarkonium from
experiments, either m̄ ¼ ðmηcð1SÞ;exp þ 3mJ=Ψð1SÞ;expÞ=4 ¼
3.069ð1Þ GeV or m̄ ¼ ðmηbð1SÞ;exp þ 3mϒð1SÞ;expÞ=4 ¼
9.445ð1Þ GeV [67]. In particular, the masses obtained with
VΣ−

u
ðrÞ are around 55 MeV lower for c̄c and 35 MeV lower

for b̄b compared to our previous results from Ref. [14]. The
masses related to VΠu

ðrÞ are around 20 MeV lower for c̄c
and almost unchanged for b̄b. These discrepancies are
similar to our newly introduced term A0e

2;Λϵ
η
a2 evaluated for

e ¼ AHYP2, which is 43(4) MeV forΛϵ
η ¼ Σ−

u and 9(6) MeV
for Λϵ

η ¼ Πu. The term A0e
2;Λϵ

η
a2 represents lattice discreti-

zation errors, and can be determined only when static
potential lattice data are available for several lattice spac-
ings. This demonstrates that the lattice data and the
corresponding parametrizations provided in this work

constitute an important step toward higher precision in
Born-Oppenheimer predictions of heavy hybrid meson
masses. The remaining discrepancies seem to be mostly
related to the coefficient α in the parametrization (9) of
VΣþ

g
ðrÞ, for which we quoted α ¼ 0.0518ð5Þ GeV fm in

Ref. [14] and which we updated to α ¼ 0.0571ð4Þ GeV fm
in this work. This change in α might also be a consequence
of our careful identification and removal of lattice discre-
tization errors, this time related to the tree-level improve-
ment represented by the term ΔV lat;e

Σþ
g
ðrÞ defined in Eq. (10).

We note that our prediction of heavy hybrid meson
masses within the Born-Oppenheimer approximation is
based on several limiting assumptions (see the discussion in
Sec. 6. 2 in Ref. [14]), e.g. the single-channel approxima-
tion, where mixing between static potentials is excluded,
and the neglect of effects due to the heavy quark spins.
More sophisticated coupled channel Schrödinger equations
were derived and used for Born-Oppenheimer predictions
in Refs. [12,13]. Moreover, in Refs. [15,16] first steps were
taken to include corrections from the heavy quark spins.
These more advanced approaches also require lattice field
theory results for the ordinary static potential and the Πu
and Σ−

u hybrid static potentials. However, the correspond-
ing predictions of heavy hybrid meson masses are based on
lattice field theory results obtained at significantly larger
lattice spacing than our smallest lattice spacing and
corresponding parametrizations trustworthy only at larger
quark-antiquark separations and presumably suffering from
sizable lattice discretization errors. It would be interesting
to repeat the Born-Oppenheimer computations from
Refs. [12,13,15,16] with the lattice field theory results
for static potentials from this work provided in Table IX.
Finally we note that a precision determination of heavy

hybrid meson masses in a Born-Oppenheimer framework
also requires precise knowledge of static potentials for
separations even smaller than 0.08 fm, for which lattice
computations were carried out in this work. In this small-r
region higher order perturbation theory might be more
suited than lattice QCD. In Ref. [63] the combination of
next-to-next-to-next-to leading order (NNNLO) perturba-
tion theory and lattice QCD is discussed for the Σþ

g

potential. It would be worthwhile to advance in the same
direction for hybrid static potentials.

VI. EXCLUDING SYSTEMATIC ERRORS

A. Topological freezing

In the continuum, gauge field configurations can be
classified according to their integer topological charge Q.
The corresponding topological sectors are separated by
barriers of infinite action.
Topological freezing refers to the problem that a

Monte Carlo simulation of a lattice gauge theory is trapped
in one of the topological sectors, either during a signi-
ficant part or the whole simulation. Clearly, gauge link

TABLE V. Predictions for heavy hybrid meson masses.

Λϵ
η L n

mΛϵ
η;L;n in GeV

for QQ̄ ¼ cc̄

mΛϵ
η;L;n in GeV

for QQ̄ ¼ bb̄

Πu 1 1 4.175 (6) 10.682 (6)
1 2 4.550 (8) 10.895 (6)
2 1 4.360 (7) 10.785 (6)
3 1 4.546 (8) 10.890 (7)

Σ−
u 0 1 4.439 (5) 10.876 (5)

0 2 4.878 (5) 11.153 (5)
1 1 4.574 (5) 10.960 (5)
1 2 5.001 (6) 11.228 (5)
2 1 4.762 (5) 11.078 (5)
3 1 4.964 (5) 11.205 (5)
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configurations generated in such a simulation do not form a
representative set distributed according to e−S. Topological
freezing is expected to appear when using small lattice
spacings a ≈ 0.05 fm [68]. It becomes increasingly more
problematic when approaching the continuum, i.e. when
further decreasing a. If a simulation is fully trapped in a
topological sector, observables exhibit specific finite volume
corrections proportional to powers of 1=V (V denotes the
spacetime volume) [69–72] in addition to finite volume
corrections not related to topological freezing, which are
discussed in Sec. VI B.
Since our lattice spacings are as small as 0.04 fm, we

consider it important and necessary to check and compare
the Monte Carlo histories of the topological charge for all
our simulations. We use a field strength definition of the
topological charge on the lattice (for a discussion and
comparison of various definitions see Refs. [73,74])

Q ¼ a4
X
x

qðxÞ ð22Þ

with the clover-leaf discretization of the topological charge
density

qðxÞ ¼ 1

32π2
X3

μ;ν;σ;ρ¼0

ϵμνρσTrðCclov
μν ðxÞCclov

ρσ ðxÞÞ; ð23Þ

Cclov
μν ðxÞ ¼ 1

4
ℑðPμνðxÞ þ Pν−μðxÞ þ P−μ−νðxÞ þ P−νμðxÞÞ:

ð24Þ

To eliminate UV fluctuations, which do not contribute to
the topological charge, but might cause strong distortions
of the corresponding lattice results, a smoothing procedure
needs to be applied to the gauge links. We use four-
dimensional APE smearing, similar to the three-
dimensional APE smearing for the static potential oper-
ators, with αAPE ¼ 0.3. The number of smearing steps is
chosen individually for each lattice spacing. We stop
smearing as soon as Q is stable for several smearing
steps for the majority of gauge link configurations. We
computed the topological charge on all gauge link con-
figurations of the four ensembles A, B, C, and D given in
Table III. In Fig. 4(a) we show exemplarily the Monte Carlo
histories of the topological charge for a subset of gauge
link configurations for ensemble B (a ¼ 0.06 fm) and

(a)

(b)

FIG. 4. (a) Monte Carlo histories of the topological charge for ensemble B (a ¼ 0.06 fm) and D (a ¼ 0.04 fm) for two independent
simulation runs. (b) Normalized and symmetrized histograms reflecting the topological charge distribution for ensemble B
and ensemble D.
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D (a ¼ 0.04 fm). At a ¼ 0.06 fm the topological charge
changes frequently and topological freezing is clearly
not a problem. At a ¼ 0.04 fm the autocorrelation time
of Q is much longer, consistent with the expectation from
Ref. [68]. However, there are still sufficiently many
changes, such that our statistical error analysis, based on
four independent simulation runs and a suitable binning
(see Appendix B), should provide realistic uncertainties for
the static potentials.
In Fig. 4(b) we show normalized and symmetrized

histograms reflecting the topological charge distribution
for ensembles B and D. Both are consistent with Gaussian
distributions, as expected at finite, large spacetime volume.
From their squared widths, hQ2i, we obtain estimates of the
related topological susceptibilities via χtop ¼ hQ2i=V,
which are in reasonable agreement with results from the
literature [75]. This is another indication that our compu-
tations of static potentials do not suffer from the problem of
topological freezing.

B. Finite volume corrections

All static potential results discussed in Secs. IV and V
were obtained from simulations with periodic spatial
volume L3 ≈ ð1.2 fmÞ3. Since this is a rather small volume,
it is important to check that finite volume corrections to
these results are negligible.
One source of finite volume corrections is that of virtual

glueballs traveling around the far side of the periodic
spacetime volume. They cause a negative shift of energy
levels, which is proportional to expð−m0þþLÞ at asymp-
totically large L [76] (m0þþ denotes the mass of the lightest
glueball). Note that in pure gauge theory such finite volume
corrections are much more strongly suppressed than e.g. in
QCD, where the lightest particles are pions with a mass
much smaller than that of the 0þþ glueball. We observe a
small negative shift for the ordinary static potential for
L ≪ 1.0 fm, which could be related to such glueball
interactions. Another type of finite volume correction will
appear when the (infinite volume) wave function of a state
has a larger extent than the finite spacetime volume of the

lattice. Then this wave function is necessarily squeezed,
which will lead to a positive shift of the corresponding
energy level [77]. For theΠu and Σ−

u hybrid static potentials
we found sizable positive shifts for L ≪ 1.0 fm. Since their
wave functions cover a significantly larger region than the
ordinary static potential [78], these positive shifts are also
consistent with expectation.
In Fig. 5(a) we show the difference between the Πu

hybrid static potential and the ordinary static potential,
VΠu

− VΣþ
g
, at fixed quark-antiquark separation r ¼

0.25 fm as a function of the spatial lattice extent L for
gauge group SU(2). This difference is consistent with a
constant, i.e. L-independent, for L≳ 1.0 fm. For smaller L,
however, the difference increases, which is consistent with
the previously discussed expectation of a squeezed wave
function for the Πu hybrid static potential.
Additionally, for gauge group SU(3) we compared results

for the Σþ
g , theΠu, and the Σ−

u static potential from ensemble
A to results from an analogous computation with approx-
imately twice the spatial lattice extent, i.e. L ¼ 2.4 fm. We
did not find statistically significant differences, as can be seen
in Fig. 5(b). In summary, the investigations and checks
discussed in this subsection strongly indicate that finite
volume corrections at our preferred spacetime volume L3 ×
T ≈ ð1.2 fmÞ3 × 2.4 fm are small compared to current
statistical errors and, thus, can be neglected.

C. Glueball decay

At sufficiently small r, the energy difference between a
hybrid static potential and the ordinary static potential is
large enough such that the Λϵ

η hybrid flux tube can decay
into a glueball and the Σþ

g ground state. The threshold
energy for a decay into the lightest glueball with quantum
numbers JPC ¼ 0þþ and massm0þþ ¼ 1.73ð5Þ GeV [79] is
shown as a dashed line in Fig. 6 together with lattice results
for hybrid static potentials from Ref. [14]. The critical

separations r
Λϵ
η

crit, where the dashed line intersects the Λϵ
η

hybrid static potentials, are listed in Table VI. For r ≤ r
Λϵ
η

crit
decays to a 0þþ glueball are energetically allowed.

(a) (b)

FIG. 5. VΠu
ð0.25 fmÞ − VΣþ

g
ð0.25 fmÞ as a function of the spatial lattice extent L for gauge groups SU(2) and SU(3). (a) SU(2) and (b)

SU(3).
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However, such decays might be excluded because of
quantum numbers. A comprehensive and general derivation
of selection rules for both hybrids and tetraquarks can be
found in Ref. [2]. Here we focus on hybrid static potentials
with quantum numbers Λϵ

η and discuss whether decays to
the Σþ

g ground state and a JPC ¼ 0þþ glueball are possible.
Since J ¼ 0 for the considered glueball, also Jz ¼ 0. Thus,
the z-component of the orbital angular momentum of the
glueball must be Lz ¼ Λ (as stated in Sec. II, the static
quark and antiquark are separated along the z axis). The
quantum number η does not protect a hybrid flux tube
because the distribution of the glueball in the z-direction
can be symmetric or antisymmetric. There is, however, a
constraint due to the quantum number ϵ. The 0þþ glueball
is symmetric with respect to Px. Its orbital angular
momentum wave function is also symmetric with respect
to Px for Lz ¼ Λ ¼ Σ ¼ 0. For Lz ¼ Λ > 0 there are two
independent possibilities for the wave function, one of
them symmetric, the other antisymmetric. From this one
can conclude that a 0þþ glueball decay is not possible for
Σ−
u and for Σ−

g , while it is allowed for all other hybrid
flux tubes.
Decays into heavier glueballs with quantum numbers

JPC different from 0þþ (some of them are antisymmetric
with respect to Px) are energetically only allowed for
separations much smaller than those listed in Table VI.
Thus, they are not relevant in the context of our work.
In Secs. IV and V we presented and used lattice

results for separations as small as r ≈ 0.08 fm. Since
rΠu
crit ¼ 0.11 fm, results for the Πu hybrid static potential

below that separation might be contaminated by a
“Σþ

g þ glueball” scattering state. However, we observe
the expected upward curvature for the Πu hybrid static
potential (see Fig. 2). Moreover, the Πu and Σ−

u hybrid
static potentials approach each other for small r, consistent
with the expected degeneracy in the limit r → 0. Thus, we
conclude that a possible contamination of our results for the
Πu hybrid static potential is negligible compared to
statistical errors.

VII. SUMMARY AND OUTLOOK

We computed the ordinary static potential and theΠu and
Σ−
u hybrid static potentials in SU(3) lattice gauge theory

at four different lattice spacings, where the smallest lattice
spacing, a ¼ 0.04 fm, is roughly half the size of lat-
tice spacings previously used in similar computations.
Lattice discretization errors, which were found to be sizable
in the bare lattice data points, were studied in detail. We
removed a large part of these discretization errors by using
both perturbative tree-level improvement and a suitable
simultaneous fit to the bare lattice data points from all our
ensembles to identify the dominant a2 contribution to the
discretization errors. Using the same fit we were also able
to subtract the a-dependent unphysical self-energy. For
future reference these improved lattice data points are
collected in Table IX. Moreover, we investigated possibly
existent systematic errors related to topological freezing,
due to the finite spatial volume and because of glueball
decays in detail and provided evidence that these errors are
negligible compared to statistical errors.
We also provide parametrizations of the Σþ

g , Πu, and Σ−
u

static potentials, which can e.g. be used for Born-
Oppenheimer predictions of heavy hybrid meson masses.
The Born-Oppenheimer approach in the context of heavy
hybrid mesons received considerable interest in the past
couple of years, with many improvements and refinements,
e.g. the derivation of coupled channel Schrödinger equa-
tions, which take into account mixing between different

FIG. 6. Threshold energy for decays of hybrid flux tubes into the Σþ
g ground state and a 0þþ glueball (dashed line) and hybrid static

potentials for various quantum numbers Λϵ
η. Static potentials are taken from Ref. [14], the 0þþ glueball mass from Ref. [79].

TABLE VI. Maximal separation r
Λϵ
η

crit, where a decay of a Λϵ
η

hybrid flux tube into the Σþ
g ground state and a 0þþ glueball is

energetically possible. For Σ−
u and Σ−

g such decays are excluded
because of quantum numbers.

Λϵ
η Πu Πg Δg Δu Σþ

g
0 Σþ

u Σ−
u Σ−

g

r
Λϵ
η

crit [fm] 0.11 0.23 0.28 0.58 0.19 0.46 0.11 0.3
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sectors [12,13], or the inclusion of effects due to the heavy
quark spins [15,16]. These papers, however, use lattice data
[8,29,33,36,40,41] generated around two decades ago at
much coarser lattice spacing and partly without any
dedicated investigation or removal of discretization errors.
Thus, it would be an interesting and important step toward
higher precision to combine the refined Born-Oppenheimer
approaches from Refs. [12,13,15,16] with the lattice data
points or the parametrizations presented in this work.
Since we performed computations at very small lattice

spacings, we were able to reliably access quark-antiquark
separations as small as r ¼ 0.08 fm. This, in turn, allowed
us to convincingly show the upward curvature at small r of
the Πu and Σ−

u hybrid static potentials predicted by pertur-
bation theory, i.e. their repulsive nature at small quark-
antiquark separations. An interesting future direction with
the aim to improve the precision of Born-Oppenheimer
predictions even further could be to match higher order
perturbation theory and the lattice results presented in this
work. For the ordinary static potential a possible method
using next-to-next-to-next-to-leading order perturbation
theory was discussed in Ref. [63] and an approach based
on leading order perturbation theory for hybrid static
potentials can be found in Ref. [12].
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APPENDIX A: OPTIMIZATION OF OPERATORS

The operators S appearing in Eq. (2) were optimized in
Ref. [14] at lattice spacing a ¼ 0.093 fm with respect to
their generated ground state overlaps. This was done by
minimizing the effective potential at small temporal sep-
aration t ¼ awith respect to the operator extents Ej defined
in Tables I and II. To crudely retain this optimization also
for smaller values of the lattice spacing without investing
additional computer resources, we adjust the operator
extents Ex and Ey in units of the lattice spacing (which
are restricted to integers) such that their values in physical
units are approximately independent of a. We tested this
procedure numerically for SIII;1 and gauge group SU(2) and
found satisfactory ground state overlaps also for rather

small values of the lattice spacing. Moreover, we select
NAPE, the number of APE-smearing steps, individually for
each lattice spacing, while keeping αAPE ¼ 0.5 constant
(see e.g. Ref. [48] for detailed equations). We do this in
such a way that the effective potentials of theΠu and the Σ−

u
hybrid static potentials at temporal separation t=a ¼ 2 are
small. This amounts to increasing NAPE for decreasing a.
Our preferred values for NAPE for both gauge groups SU(2)
and SU(3) are listed in Table VII.

APPENDIX B: ERROR ANALYSIS

To eliminate correlations in Monte Carlo time, we
combine consecutively generated gauge link configura-
tions, which are used for the computation of static
potentials, to Ne bins.
For the data points Ve

Λϵ
η
ðrÞ (see Sec. IV) statistical errors

are determined via a standard jackknife analysis, i.e. from
Ne reduced jackknife samples Ve;jackknife

Λϵ
η;j

ðrÞ according to

ΔVe
Λϵ
η
ðrÞ ¼

�
Ne − 1

Ne

XNe

j¼1

ðVe;jackknife
Λϵ
η;j

ðrÞ − V̄e
Λϵ
η
ðrÞÞ2

�
1=2

ðB1Þ

[V̄e
Λϵ
η
ðrÞ denotes the result for the full sample].

The fits from Sec. V, where data points of all five
ensembles are used at the same time, can in principle also
be computed via the jackknife method. The number of
reduced jackknife samples, however, would be rather large,
NA × NB × NC × ND × NAHYP2

, and the corresponding
computational effort huge. Therefore, we use for these fits
and all following analyses the bootstrap method. To this
end we first inflate the reduced jackknife samples,

Ve
Λϵ
η;j
ðrÞ ¼ V̄e

Λϵ
η
ðrÞ þ ðNe − 1ÞðVe;jackknife

Λϵ
η;j

ðrÞ − V̄e
Λϵ
η
ðrÞÞ:

ðB2Þ

A bootstrap sample is then generated by randomly selecting
Ne of the inflated samples Ve

Λϵ
η;j
ðrÞ for each ensemble,

where the same inflated sample may be selected more than
once. As usual, the bootstrap error of a quantity O is then
the standard deviation of the results obtained on the
bootstrap samples, i.e.

TABLE VII. Smearing parameter NAPE for various lattice
spacings for gauge groups SU(2) and SU(3).

a in fm 0.078 0.041 0.026

NAPE for SU(2) 30 100 200

a in fm 0.093 0.060 0.048 0.040

NAPE for SU(3) 20 50 75 100
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ΔO ¼
�
1

K

XK
j¼1

ðOj − ŌÞ2
�

1=2
: ðB3Þ

Oj denotes the result on the jth bootstrap sample and Ō the
result on the full sample, where O can be α, σ, α0, Ce, A1,
A2, etc. K, the number of bootstrap samples, has to
be chosen sufficiently large, such that ΔO is essentially
independent of K.
For our computations we used NA ¼ 320, NB ¼

NC ¼ ND ¼ 160, NAHYP2 ¼ 5000, and K ¼ 10000.

APPENDIX C: TREE-LEVEL IMPROVEMENT

In the continuum at tree level of perturbation theory the
ordinary static potential is attractive and proportional to

1=r. Its lattice counterpart for the standardWilson plaquette
gauge action and the Eichten-Hill static action is�

1

r

�
lat

¼ 4πGðr=a; 0; 0Þ; ðC1Þ

where Green’s function

GðRÞ ¼ 1

ð2πÞ3
Z

π

−π
d3k

Q
3
j¼1 cosðkjRjÞ

4
P

3
j¼1 sin

2ðkj=2Þ
ðC2Þ

can be computed in an efficient way via a recursion
relation [50,62].
For the HYP2 static action [59–61], which was used for

the computations on ensemble AHYP2, the numerator of the
integrand differs from Eq. (C2) by an additional factor,

GHYPðRÞ ¼ 1

ð2πÞ3
Z

π

−π
d3k

Q
3
j¼1 cosðkjRjÞ × ð1 − ðα1=6Þ

P
3
i¼1 4sin

2ðkiÞΩi0Þ2
4
P

3
j¼1 sin

2ðkj=2Þ
; ðC3Þ

where Ωμν is

Ωμν ¼ 1þ α2ð1þ α3Þ −
α2
4
ð1þ 2α3Þ

�X3
j¼1

4sin2ðpj=2Þ − 4sin2ðpμ=2Þ − 4sin2ðpν=2Þ
�
þ α2α3

4

Y
η≠μ;ν

4sin2ðpμ=2Þ ðC4Þ

(see Ref. [54]). This integral can be solved e.g. by standard
Monte Carlo integration techniques.
To eliminate lattice discretization errors at tree level for

the ordinary static potential, we subtract

ΔV lat;e
Σþ
g
ðrÞ ¼ α0

�
1

r
−
Geðr=aÞ

a

�
ðC5Þ

from the lattice data points [see Sec. V, in particular
Eq. (11)], where Geðr=aÞ ¼ 4πGðr=a; 0; 0Þ for e ¼ A,
B, C, D, and Geðr=aÞ ¼ 4πGHYPðr=a; 0; 0Þ for
e ¼ AHYP2. α0 is proportional to the strong coupling and
is determined by a fit to the lattice data (see again Sec. V).
Similarly, we subtract ΔVlat;e

hybridðrÞ ¼ −ð1=8ÞΔV lat;e
Σþ
g
ðrÞ

from the lattice data points for the Πu and Σ−
u hybrid static

FIG. 7. Comparison of unimproved (left) and improved (right) lattice data points for the Σþ
g static potential from our five ensembles A,

B, C, D, and AHYP2. We subtract VΣþ
g
ðrÞ þ Ce with VΣþ

g
ðrÞ defined in Eq. (9) and parameters obtained by a fit to data points with

r ≥ 0.2 fm (indicated by the vertical dashed line) as listed in Table IV.
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potentials, which are repulsive and, in leading-order per-
turbation theory, suppressed by the factor 1=8 relative to the
ordinary static potential.
The benefit of applying tree-level improvement when

combining lattice field theory results obtained at different
lattice spacings and with different static actions is demon-
strated in Fig. 7, where we compare unimproved and
improved data points for the Σþ

g potential from our five
ensembles. The two plots show that the majority of
improved data points are consistent with a single curve,
while unimproved data points from different ensembles
exhibit strong discrepancies for r≲ 0.4 fm.

APPENDIX D: SUMMARY OF SU(3) LATTICE
FIELD THEORY RESULTS FOR THE Σ+

g , Πu,
AND Σ−

u STATIC POTENTIALS

In Table VIII we list Ve
Λϵ
η
ðrÞa, the bare lattice data points

in units of the lattice spacing (see Sec. IV). In Table IX we
list Ṽe

Λϵ
η
ðrÞ, the lattice data points defined in Eqs. (11) and

(19), where the self-energy as well as lattice discretization
errors at tree level and proportional to a2 are removed.

TABLE VIII. Bare lattice data points for the Σþ
g , Πu, and Σ−

u
static potentials in units of the lattice spacing (see Sec. IV).

Ensemble r=a Ve
Σþ
g
a Ve

Πu
a Ve

Σ−
u
a

A 2 0.596753(62) 1.2527(28) 1.2813(35)
3 0.699138(134) 1.2457(27) 1.2972(41)
4 0.772857(238) 1.2476(27) 1.3228(48)
5 0.835109(387) 1.2570(28) 1.3547(58)
6 0.891807(601) 1.2726(30) 1.3898(71)

B 2 0.512961(19) 1.0067(46) 1.0150(52)
3 0.584400(40) 0.9996(45) 1.0155(56)
4 0.629977(73) 0.9966(44) 1.0212(61)
5 0.664972(117) 0.9963(43) 1.0315(67)
6 0.694703(175) 0.9973(82) 1.0432(76)

C 2 0.478535(11) 0.9091(40) 0.9120(43)
3 0.540198(26) 0.9019(39) 0.9095(25)
4 0.577592(47) 0.8976(37) 0.9110(25)
5 0.604988(76) 0.8959(21) 0.9154(26)
6 0.627360(111) 0.8954(20) 0.9210(28)

D 2 0.453884(7) 0.8417(22) 0.8433(22)
3 0.509466(16) 0.8353(21) 0.8396(23)
4 0.542058(29) 0.8317(21) 0.8393(23)
5 0.565146(46) 0.8295(20) 0.8412(24)
6 0.583422(68) 0.8282(19) 0.8438(25)
7 0.598894(93) 0.8276(19) 0.8479(26)

AHYP2 2 0.116648(13) 0.7427(21) 0.7737(7)
3 0.206462(31) 0.7369(18) 0.7901(8)
4 0.275767(60) 0.7395(17) 0.8151(9)
5 0.336546(114) 0.7483(18) 0.8469(10)
6 0.392896(184) 0.7621(19) 0.8809(6)
7 0.446512(289) 0.7805(21) 0.9171(7)
8 0.498474(446) 0.8037(24) 0.9586(8)
9 0.549517(680) 0.8326(15) 0.9966(9)

10 0.599980(1032) 0.8613(19) 1.0382(11)
11 0.649218(1563) 0.8920(23) 1.0831(13)
12 0.696191(2361) 0.9243(28) 1.1266(15)

TABLE IX. Lattice data points defined in Eqs. (11) and (19),
where the self-energy as well as lattice discretization errors at tree
level and proportional to a2 are removed (using Fit 1), for the Σþ

g ,
Πu, and Σ−

u static potentials in units of GeV (physical units are
introduced by setting r0 ¼ 0.5 fm).

Ensemble r=a r [fm] Ṽe
Σþ
g
[GeV] Ṽe

Πu
[GeV] Ṽe

Σ−
u
[GeV]

A 2 0.1863 −0.1033ð24Þ 1.2245(73) 1.2541(76)
3 0.2794 0.0929(24) 1.2122(76) 1.2903(91)
4 0.3726 0.2428(24) 1.2169(78) 1.3454(108)
5 0.4657 0.3726(24) 1.2372(81) 1.4131(127)
6 0.5589 0.4919(25) 1.2703(84) 1.4876(154)

B 2 0.1201 −0.3254ð26Þ 1.2318(150) 1.2465(170)
3 0.1801 −0.1227ð24Þ 1.2127(149) 1.2521(183)
4 0.2402 0.0174(24) 1.2039(147) 1.2719(199)
5 0.3002 0.1292(24) 1.2035(147) 1.3061(220)
6 0.3603 0.2256(24) 1.2067(270) 1.3449(246)

C 2 0.0960 −0.4459ð28Þ 1.2489(168) 1.2525(180)
3 0.1441 −0.2326ð24Þ 1.2241(165) 1.2472(108)
4 0.1921 −0.0910ð24Þ 1.2082(159) 1.2551(112)
5 0.2401 0.0176(24) 1.2015(95) 1.2737(116)
6 0.2881 0.1079(24) 1.1999(93) 1.2968(122)

D 2 0.0800 −0.5520ð30Þ 1.2754(108) 1.2776(113)
3 0.1200 −0.3260ð25Þ 1.2497(109) 1.2653(116)
4 0.1600 −0.1796ð24Þ 1.2337(106) 1.2655(118)
5 0.2000 −0.0706ð24Þ 1.2234(104) 1.2753(122)
6 0.2400 0.0176(24) 1.2173(101) 1.2888(127)
7 0.2800 0.0930(24) 1.2148(99) 1.3088(133)

AHYP2 2 0.1863 −0.1112ð24Þ 1.2267(58) 1.2573(51)
3 0.2794 0.0928(23) 1.2126(56) 1.2904(51)
4 0.3726 0.2430(24) 1.2178(58) 1.3430(53)
5 0.4657 0.3727(24) 1.2364(61) 1.4102(54)
6 0.5589 0.4923(26) 1.2654(66) 1.4822(52)
7 0.6520 0.6059(28) 1.3045(72) 1.5588(52)
8 0.7452 0.7159(32) 1.3538(79) 1.6467(53)
9 0.8383 0.8240(37) 1.4148(74) 1.7273(54)

10 0.9315 0.9308(44) 1.4757(79) 1.8153(55)
11 1.0246 1.0351(54) 1.5407(85) 1.9104(58)
12 1.1178 1.1345(69) 1.6090(91) 2.0026(61)
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APPENDIX E: SU(2) LATTICE FIELD THEORY
RESULTS FOR THE Σ+

g , Πu, AND Σ−
u

STATIC POTENTIALS

We carried out computations for gauge group SU(2)
analogous to those for gauge group SU(3) discussed and
presented in the main sections of this work. We generated
three ensembles of gauge link configurations with gauge
couplings β ¼ 2.85, 2.70, 2.50. We relate the lattice spacing
a to the scale t0 using a parametrization of lnðt0=a2Þ
determined in Ref. [56] via the gradient flow. Physical units
are then introduced by setting

ffiffiffiffiffiffi
8t0

p ¼ 0.3010 fm, which

corresponds to r0 ¼ 0.5 fm. The details of the gauge link
ensembles are summarized in Table X. The three lattice
volumes are quite similar, L3 × T ≈ ð1.3 fmÞ3 × ð1.3 fmÞ.
For the investigation of finite volume effects in Sec. VI B,
additional ensembles with both smaller and larger lattice
volumes at gauge couplings β ¼ 3.00, 2.85, 2.70, 2.50 were
generated.
In Table XI we list Ve

Λϵ
η
ðrÞa, the bare lattice data points

in units of the lattice spacing. These can be used to
generate parametrizations, using methods as e.g. discussed
in Sec. V.

TABLE X. Gauge link ensembles for gauge group SU(2).

Ensemble β a in fm [56] ðL=aÞ3 × T=a Nsim Ntotal Nor Ntherm Nsep Nmeas

a 2.50 0.078 163 × 16 20 40000 0 10000 100 6000
b 2.70 0.041 323 × 32 20 25000 0 10000 100 3000
c 2.85 0.026 483 × 48 20 25000 0 10000 200 1500

TABLE XI. Bare lattice data points for the Σþ
g , Πu, and Σ−

u static potentials in units of the lattice spacing (see
Table X) for gauge group SU(2).

Ensemble r=a Ve
Σþ
g
a Ve

Πu
a Ve

Σ−
u
a

a 2 0.484308(68) 1.1150(47) 1.1448(58)
3 0.565442(151) 1.0899(42) 1.1428(61)
4 0.623418(271) 1.0803(38) 1.1486(66)
5 0.671506(422) 1.0792(39) 1.1677(74)
6 0.714737(645) 1.0819(39) 1.1864(86)
7 0.755318(914) 1.0901(43) 1.2149(98)
8 0.794584(1292) 1.1012(46) 1.2307(115)

b 2 0.395714(7) 0.8213(18) 0.8259(19)
3 0.446300(17) 0.8040(29) 0.8144(20)
4 0.476883(31) 0.7964(16) 0.8104(20)
5 0.499216(50) 0.7903(16) 0.8101(21)
6 0.517411(74) 0.7860(16) 0.8118(22)
7 0.533191(104) 0.7832(15) 0.8153(23)
8 0.547435(138) 0.7817(15) 0.8198(24)
9 0.560630(177) 0.7807(15) 0.8254(25)

10 0.573101(223) 0.7812(15) 0.8314(27)

c 2 0.353848(16) 0.6860(25) 0.6854(24)
3 0.394722(30) 0.6734(23) 0.6737(23)
4 0.417829(50) 0.6646(22) 0.6680(21)
5 0.433611(87) 0.6609(22) 0.6654(22)
6 0.445685(89) 0.6567(19) 0.6643(22)
7 0.455557(110) 0.6524(19) 0.6644(22)
8 0.463982(141) 0.6503(18) 0.6643(23)
9 0.471474(164) 0.6493(19) 0.6635(25)

10 0.478364(214) 0.6458(18) 0.6648(26)
11 0.484684(228) 0.6438(19) 0.6662(27)
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