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We present a calculation of the scalar, vector, and tensor form factors for the pion and kaon in lattice
QCD. We use an ensemble of two degenerate light, a strange and a charm quark (Nf ¼ 2þ 1þ 1) of
maximally twisted mass fermions with clover improvement. The corresponding pion and kaon masses are
about 265 MeV and 530 MeV, respectively. The calculation is done in both rest and boosted frames
obtaining data for four-vector momentum transfer squared up to −q2 ¼ 2.5 GeV2 for the pion and 3 GeV2

for the kaon. The excited-states effects are studied by analyzing six values of the source-sink time
separation for the rest frame (1.12–2.23 fm) and for four values for the boosted frame (1.12–1.67 fm). The
lattice data are renormalized nonperturbatively and the results for the scheme- and scale-dependent scalar
and tensor form factors are presented in the MS scheme at a scale of 2 GeV. We apply different
parametrizations to describe q2-dependence of the form factors to extract the scalar, vector, and tensor radii,
as well as the tensor anomalous magnetic moment. We compare the pion and kaon form factors to study
SU(3) flavor symmetry breaking effects. By combining the data for the vector and tensor form factors we
also obtain the lowest moment of the densities of transversely polarized quarks in the impact parameter
space. Finally, we give an estimate for the average transverse shift in the y direction for polarized quarks in
the x direction.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is the theory that best
describes the strong interaction. It accommodates a com-
plex array of strongly interacting phenomena that requires,
at low energies, a nonperturbative framework. This non-
perturbative character of QCD leads to numerous emergent
phenomena, where perhaps the most prominent are hadrons
with mass, even in the chiral limit when both the quarks and
gluons are massless. The origin of hadron mass (e.g., the
proton mass) is intimately tied to the breaking of scale

invariance in QCD and the associated trace anomaly [1,2].
In addition, QCD exhibits dynamical chiral symmetry
breaking (DCSB) [3] which produces large mass splittings
between parity partner mesons and baryons, but also gives
rise to Nambu-Goldstone bosons that are massless in the
chiral limit, i.e., the pions, kaons, and eta mesons. In the
physical world, where the quarks have a small mass from
the coupling to the Higgs field the Nambu-Goldstone
bosons develop a mass, however, these masses are still
much smaller than typical hadron mass scales, such as the
proton mass. Understanding the interplay and connections
between the trace anomaly and DCSB remains an impor-
tant question in QCD, and exploring the quark and gluon
structure of these Nambu-Goldstone bosons can cast light
onto these phenomena. It is also interesting to study pion
and kaon structure and compare it to the proton. For
instance, even in the absence of the quark couplings to
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the Higgs field, the proton has a significant nonzero mass
while the pion and kaon would be massless.
Furthermore, pions and kaons are very important for

describing the long-range dynamics of the strong inter-
actions. Studying their structure is of foremost importance
to better understand QCD dynamics [4]. In fact, the
importance of these mesons justifies the intense experi-
mental activity since the 1970s for the pion [5–27]. In
addition, several studies exist using chiral perturbation
theories and other phenomenological approaches [28–37],
as well as, lattice calculations on the pion (vector) form
factor (see, e.g., Refs. [38–45]). Almost all the information
on pion structure comes from using the electromagnetic
current as a probe, while the scalar and tensor form factors
are lesser studied. Existing lattice calculations for the scalar
form factor of the pion can be found in Refs. [40,46–48]
and for the tensor in Ref. [49]. The work of Ref. [47]
includes a calculation of the kaon vector form factor. The
kaon has always been more elusive, as compared to the
pion, as the pion is more accessible in experiments and
theoretical studies using chiral perturbation theory.
Experiments involving kaons are harder, especially at large
momentum. To date, only a few measurements exist
[14,50–52]. Nonetheless, the forthcoming JLAB E12-09-
001 experiment and the Electron-Ion Collider (EIC) aim to
generate a large amount of high precision data for the
kaon [53].
In this work, we calculate the scalar, vector and tensor

form factors of both the pion and the kaon. We neglect a
certain class of sea quark contributions connected to the so-
called disconnected diagrams. These are expected to be
small, especially for larger than physical pion mass. Of
particular interest is the q2-dependence of the form factors,
which leads to the monopole masses and radii when a
parametrization is applied. For the tensor case, we can also
extract the tensor anomalous magnetic moment. We com-
bine the lattice data on the vector and tensor form factors, to
extract information on the transverse spin of the mesons
under study. We draw qualitative conclusions on the SU(3)
flavor symmetry breaking effect, by comparing the form
factors between the pion and kaon.
The article is structured as follows. Section II discusses

the theoretical approach and the lattice setup providing
detailed information on the ensemble we use and the
kinematical frames. Section III summarizes the renormal-
ization procedure and gives results on the renormalization
factors. In Sec. IV we explain how we extract the matrix
elements including details on the excited states analysis.
Our results in the rest and boosted frames are provided in
Secs. V and VI for the pion and the kaon form factors,
respectively. These sections also include the parametriza-
tion of the q2 ¼ −Q2 dependence, results on the monopole
masses, the tensor anomalous magnetic moment and the
radii. Using the parametrizations of the pion and kaon form
factors, we study SU(3) flavor symmetry breaking effects,

which are presented in Sec. VII. Section VIII describes the
framework for studying the transverse spin structure of the
pion and the kaon and the extraction of the average
transverse shift in the y direction for polarized quarks in
the x direction. Finally, Sec. IX summarizes our results and
gathers our conclusions.

II. THEORETICAL AND LATTICE SETUP

The form factors for a particular quark flavor f are
obtained from the matrix elements of ultralocal operators

hMðp0ÞjOf
ΓjMðpÞi; ð1Þ

where the allowed operator structure Of
Γ for 0-spin mesons

are the scalar, Of
S ¼ ψ̄1̂ψ , vector, Of

V ¼ ψ̄γμψ , and tensor,
Of

T ¼ ψ̄σμνψ with σμν ¼ 1
2
½γμ; γν�. The 4-vector momentum

transfer (t≡ −Q2) dependence of the form factor is
extracted from the off-forward matrix element, where the
momentum transfer between the initial (p) and final (p0)
state is q ¼ p0 − p. The decomposition of each matrix
element for the general frame in Euclidean space is [4]

hMðp0ÞjOf
SjMðpÞi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4EðpÞEðp0Þp AMf

S10; ð2Þ

hMðp0ÞjOf
Vμ jMðpÞi ¼ −i

2Pμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4EðpÞEðp0Þp AMf

10 ; ð3Þ

hMðp0ÞjOf
Tμν jMðpÞi ¼ i

ðPμqν − PνqμÞ
mM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4EðpÞEðp0Þp BMf

T10: ð4Þ

Pμ is the average momentum, P≡ ðp0 þ pÞ=2, and q is the
momentum difference, q≡ p0 − p. The mass of mesonM is
indicated by mM, and its energy at momentum p is
EðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

M þ p2
p

. To avoid complicated notation, we
omit the index M from the energy. Here we will use the
notationFMf

S ≡ AMf

S10; F
Mf

V ≡ AMf

10 ; F
Mf

T ≡ BMf

T10. The decom-
position simplifies in the rest frame, for which p0 ¼ 0, that is

hMðp0ÞjOf
SjMðpÞi ¼ 1

2
ffiffiffiffiffiffiffi
mE

p FMf

S ; ð5Þ

hMðp0ÞjOf
V0 jMðpÞi ¼ ðEþmÞ

2
ffiffiffiffiffiffiffi
mE

p FMf

V ; ð6Þ

hMðp0ÞjOf
Vj jMðpÞi ¼ i

pj

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mEðpÞp FMf

V ; ð7Þ

hMðp0ÞjOf
T0j jMðpÞi ¼ i

pj

2m
ffiffiffiffiffiffiffi
mE

p FMf

T ; ð8Þ

hMðp0ÞjOf
Tjk jMðpÞi ¼ 0; ð9Þ
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where E≡ EðpÞ, and m≡mM. We note that the matrix
element of Eq. (4) is zero in the forward limit at any frame,
due to the kinematic factor of q. Therefore, FTðQ2 ¼ 0Þ
cannot be extracted directly from the lattice data.
We calculate the connected contributions to the pion and

kaon form factors, as shown schematically in Fig. 1. We use
one ensemble of twisted-mass clover fermions and Iwasaki
improved gluons labeled cA211.30.32. Besides the light
mass-degenerate quarks, the ensemble has strange and charm
quarks in the sea (Nf ¼ 2þ 1þ 1). These gauge configu-
rations have been produced by the Extended Twisted Mass
Collaboration (ETMC) and more details can be found in
Ref. [54]. The most relevant ensemble parameters for this
work are summarized in Table I. Other characteristic param-
eters are κcrit ¼ 1=ð2amcrit þ 8Þ ¼ 0.1400645, csw ¼ 1.74,
aμl ¼ 0.003, aμσ ¼ 0.1408, and aμδ ¼ 0.1521.
We have a general setup for the calculation, and extract

matrix elements in the rest, as well as the boosted frame.
While the boosted frame is not necessary, it serves a very
important purpose: it gives access to the form factors for a
denser set of Q2 because Q2 is defined as follows in each
frame:

Q2
rest ¼ 2mðEðqÞ −mÞ; ð10Þ

Q2
boosted ¼ q2 − ðEðp0Þ − EðpÞÞ2: ð11Þ

Another advantage of the boosted frame is that we obtain
the form factors for an extended range of Q2, up to
2.5–3 GeV2. It is worth mentioning that, the signal-to-
noise ratio for the rest frame at Q2 ¼ 0 remains constant
[56] in the pion case. However, in the remaining of the
cases, the matrix elements are subject to statistical fluctua-
tions that cause a decrease in the quality of the signal.
Therefore, the use of the boosted frame, coupled with the
momentum transfer, requires a larger number of statistics
compared to the rest frame to control gauge noise. We use
momentum boost of the form p0 ¼ 2πn0=L with n0 ¼
ð�1;�1;�1Þ, which results in an increase of the computa-
tional cost by a factor of eight. For Q2 ¼ 0 the eight
combinations can be averaged, as we have done in the
calculation for the Mellin moments hxi, hx2i, and hx3i
[57,58]. However, this is not the case for the form factors
because the various p0 do not correspond to the same value
of Q2, as can be seen in Eq. (11). The choice of the
momentum boost is such that it can be used to extract
matrix elements with up to three-covariant derivative
operators [58] avoiding any mixing under renormalization.
The statistics used for each frame and each value of the
source-sink time separation, ts, is given in Table II.

III. RENORMALIZATION

We apply renormalization functions that are calculated
nonperturbatively using the Rome-Southampton method
(RI0 scheme) [59] following the procedure outlined in
Refs. [60–62]. We employ the momentum source approach,
introduced in Ref. [63], in which the vertex functions
are calculated with a momentum-dependent source. The
momentum-source method requires separate inversions for
each value of the renormalization scale, but has the
advantage of high statistical accuracy and the evaluation
of the vertex for any operator at negligible computational
cost. The renormalization functions in the RI0 scheme are
defined by the condition

FIG. 1. Diagrammatic representation of the three-point function
entering the calculation of the connected contributions to the form
factors. The wavy line indicates the current probing the meson.

TABLE I. Parameters of the ensemble used in this work. The lattice spacing is extracted from the pion sector [55].

Parameters

Ensemble β a (fm) Volume L3 × T Nf mπ (MeV) Lmπ L (fm)

cA211.30.32 1.726 0.09471(39) 323 × 64 2þ 1þ 1 265 4 3.0

TABLE II. Statistics used in the calculation of the form factors in the rest and boosted frames. ts is the source-sink
time separation. Nconfs is the number of configurations, Nsrc is the number of source positions per configuration, and
Np0 is the number of combinations for p0.

n0 ts=a Nconfs Nsrc Np0 Total statistics

(0, 0, 0) 12, 14, 16, 18, 20, 24 122 16 1 1,952
ð�1;�1;�1Þ 12 122 48 8 46,848
ð�1;�1;�1Þ 14, 16, 18 122 104 8 101,504
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Z−1
q ZO

1

12
Tr½ΓL

OðpÞðΓtree
O ðpÞÞ−1�jp2¼μ2

0
¼ 1; ð12Þ

where ΓL
O is the amputated vertex function of operator O,

and Γtree
O is its tree-level value. Here, we focus on the

renormalization for the scalar and tensor form factors. For
the vector form factor we use the conserved current, which
is free of renormalization. Note that, for twisted mass
fermions, the scalar form factor is renormalized using the
vertex functions of the pseudoscalar operator. The latter
suffers from a pion pole and a dedicated analysis is needed
to extract it reliably. For the ensemble used in this work, we
use the Zp results given in Ref. [55]. The momentum of the
vertex function in Eq. (12) is indicated by p, and is set to
the RI0 renormalization scale, μ0. Zq is the renormalization
function of the fermion field defined as

Zq ¼
1

12
Tr½ðSLðpÞÞ−1StreeðpÞ�jp2¼μ2

0
; ð13Þ

where SLðpÞ (Stree) is the lattice (tree-level) fermion
propagator. In the above equations, Zq ≡ ZRI0

q ðμ0; mπÞ
and ZO ≡ ZRI0

O ðμ0; mπÞ, where mπ is the pion mass of
the ensemble used.
We apply a chiral extrapolation onZT calculated on a set

of ensembles with different pion mass (see Table III), and
we find a negligible pion mass dependence. Therefore, the
linear fit with respect to m2

π (or, equivalently linear in the
twisted mass parameter),

ZRI0
O ðμ0; mπÞ ¼ ZRI0; chiral

O ðμ0Þ þ Zð1Þ
O ðμ0Þ · ðamπÞ2; ð14Þ

yields a zero slope. We convert the chirally extrapolated ZP

and ZT to the MS scheme and evolve them to a scale
of 2 GeV using an intermediate renormalization group

invariant (RGI) scheme. The factor CMS;RI0 needed for the
conversion

ZMS
O ð2 GeV; μ0Þ ¼ CMS;RI0

O ð2 GeV; μ0Þ · ZRI0; chiral
O ðμ0Þ;

ð15Þ
is calculated up to four loops (three loops) in perturbation
theory for the pseudoscalar (tensor) operator [64–67].

We compare the conversion factor in different orders in
perturbation theory for the anomalous dimension and find
an effect of about 0.5% for Zp and 0.8% for ZT, when the
initial scale is between [3–5] GeV. Finally, we apply a
linear fit in ðaμ0Þ2 to eliminate residual dependence on the
initial scale μ0, that is

ZMS
O ð2 GeV; μ0Þ ¼ ZMS

O ð2 GeVÞ þ Zð1Þ
O · ðaμ0Þ2: ð16Þ

ZMS
O corresponds to the final value of the renormalization

function for operator O.
We evaluate the renormalization functions on the five

ensembles of Table III for a wide range of values for ðapÞ2
that are spatially isotropic, that is

ðapÞ≡ 2π

�
nt
Lt

þ 1

2Lt
;
nx
Ls

;
nx
Ls

;
nx
Ls

�
; ntϵ½2; 9�;

nxϵ½2; 5�; ðapÞ2 ∈ ½0.9–6.7�; ð17Þ

where Lt (Ls) is the temporal (spatial) extent of the
lattice. The choice of momenta is such that the ratioP

i p
4
i =ð

P
i p

2
i Þ2 is less than 0.3, to reduce Lorentz non-

invariant contributions [68]. Such terms have been found in
the analytic expressions from lattice perturbation theory
[60,61,69,70]. We improve ZO by subtracting inherited
lattice artifacts utilizing perturbation theory. More pre-
cisely, we calculate in one-loop perturbation theory the
terms to all orders in the lattice spacing, Oðg2a∞Þ [62,71].
These are subtracted from the final estimates of ZO.
The renormalization function ZT is shown in Fig. 2 as a

function of the initial scale μ0. ZP can be found in Ref. [55].
For ZT, the conversion to the MS and evolution to a
common scale results in a flatter behavior in the initial
scale, as compared to the RI0 estimates. This effect is
more profound in the region ðaμ0Þ2 < 2, where hadronic
contamination are non-negligible. However, as ðaμ0Þ2
increases, a slope is observed in the pure nonperturbative

TABLE III. Parameters for the Nf ¼ 4 ensembles used for the
renormalization functions.

β ¼ 1.726, a ¼ 0.093 fm

aμ amPS Lattice size

0.0060 0.1680 243 × 48
0.0080 0.1916 243 × 48
0.0100 0.2129 243 × 48
0.0115 0.2293 243 × 48
0.0130 0.2432 243 × 48

0 1 2 3 4 5 6 7

(a 
0
)2

0.75

0.80

0.85

Z
T

 

RI’
MS
_

 unsub

MS
_

 O(g2ainf)-subtracted

FIG. 2. Chirally extrapolated estimates for ZT. Results in the
RI0 scheme are shown with blue triangles, and in the MS scheme
at 2 GeV with black circles. The magenta diamonds correspond to
the improved estimates upon subtraction of the artifacts applied
on the black points. The dashed line corresponds to the fit of
Eq. (16). The filled magenta diamond is our final value.
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estimates due to lattice artifacts. The subtraction procedure
using the one-loop perturbative expressions removes the
majority of the artifacts leading to plateaus with negli-
gible slope.
For ZT we apply the fit of Eq. (16) in the interval

ðaμ0Þ2 ϵ½2–7�, where plateau is identified. We avoid the
small ðaμ0Þ2 region, as spontaneous chiral symmetry
breaking effects can be non-negligible [72,73]. For this
work, ðapÞ2min ¼ 9 GeV2.
We obtain

ZMS
T ð2 GeVÞ ¼ 0.829ð1Þ; ð18Þ

ZMS
P ð2 GeVÞ ¼ 0.475ð4Þ ½55�; ð19Þ

For ZP we use the average of the results presented
in Ref. [55].

IV. EXTRACTION OF MATRIX ELEMENTS

For the extraction of the matrix elements hMðp0Þ ×
jOΓjMðpÞ we use the interpolating fields of πþ and Kþ

Jπþ ¼ d̄γ5u; JKþ ¼ s̄γ5u; ð20Þ

which are smeared at the source and the sink using
Gaussian smearing [74,75] to increase the overlap with
the proton state, that is

q̃smearðx; tÞ ¼
X
y

ð1̂þ αHðx; y;UðtÞÞÞNGqðy; tÞ;

Hðx; y;UðtÞÞ ¼
X3
i¼1

½UiðxÞδx;y−{̂ þ U†
i ðx − {̂Þδx;yþ{̂�: ð21Þ

We choose αG ¼ 0.2 and vary NG separately for the pion
and kaon. The criterion is that the root mean squared radius
of the smeared source reproduces the experimental radius
of the pion [76] for the light quarks and the experimental
radius of the kaon [77] for the strange quarks. This leads to
NG ¼ 50 for the light quarks and NG ¼ 40 for the strange
quark. In addition, we apply APE-smearing to the gauge
fields Uμ entering the hopping matrix H with parame-
ters ðαAPE; NAPEÞ ¼ ð0.5; 50Þ.
The matrix elements are obtained from a combination of

two-point functions,

CMðts; ti;pÞ ¼
X
xs

h0jJMðts;xsÞJ†Mðti;xiÞj0ie−ip·ðxs−xiÞ;

ð22Þ

and three-point functions

CΓ
Mðts; t; ti;p0;qÞ ¼

X
xs;x

h0jJMðts;xsÞOΓðt;xÞ

× J†Mðti;xiÞj0ie−ip0·ðxs−xiÞeiq·x: ð23Þ

In the above equations, ti, t, and ts denote the source,
insertion, and sink Euclidean times, respectively. Also,
q ¼ p0 − p. The spatial coordinates of the source, current
insertion and sink are xi, x, and xs. Without loss of
generality, we set the source to be at ti ¼ 0, so that the
source-sink separation is ts − ti ≡ ts. Therefore, we drop
the argument ti from the correlation functions. The nor-
malization of the meson state is h0jJMjMi ¼ ZM=

ffiffiffiffiffiffi
2E

p
. In

the results presented in this paper, we focus on the uþ

contribution to the pion, where fþ ≡ f þ f̄ (f: quark
flavor).
To extract the meson matrix elements, we form the

optimized ratio

RM
Γ ðts; t;p0;qÞ ¼ CM

Γ ðts; t;p0;qÞ
CMðts;p0Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CMðts − t;pÞCMðt;p0ÞCMðts;p0Þ
CMðts − t;p0ÞCMðt;pÞCMðts;pÞ

s
;

ð24Þ

which cancels the time dependence and the overlaps
between the interpolating field and the meson state. We
note that the ratio of Eq. (24) is written for a general frame.
We use CMðt;pÞ ¼ c0e−E0ðp2Þt for the two-point functions,
where c0 is calculated from the two-state fit on the two-
point functions, and E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
is calculated from the

plateau fit on the effective mass, so that, at insertion times
far enough away from the source and sink positions, the
ratio becomes independent of the insertion time, i.e.,

RM
Γ ðts; t;p0;qÞ ⟶ΔEðts−tÞ≫1

Et≫1
ΠM

Γ ðp0;qÞ: ð25Þ

We calculate ΠM
Γ using two methods: (a) by fitting the

plateau region of the data to a constant value; (b) by
performing a two-state fit on the three-point functions. We
use the general Ansatz

CM
Γ ðts; t;p0;pÞ ¼ A00e−E

0
0
ðp02Þðts−tÞ−E0ðp2Þt

þ A01e−E
0
0
ðp02Þðts−tÞ−E1ðp2Þt

þ A10e−E
0
1
ðp02Þðts−tÞ−E0ðp2Þt

þ A11e−E
0
1
ðp02Þðts−tÞ−E1ðp2Þt; ð26Þ

which simplifies in the rest frame (p0 ¼ 0, E0 ¼ m0,
E1 ¼ m1). In the above expressions, m0 (m1) are the
masses of the ground (first-excited) state, and E0 (E1) its
corresponding energy. The masses are fixed from the fit on
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the two-point functions. For the two-state fit, the time-
independent ratio is then ΠM

Γ ¼ A00=
ffiffiffiffiffiffiffiffiffi
c00c0

p
, where c0 (c00)

is the amplitude calculated from the two-state fit on the
two-point functions at the initial (final) momentum. To
improve the quality of the signal for the two-state fit, we
use the dispersion relation for the ground-state energy,
E0ðp2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
, while E1 is calculated from the two-

state fit on the two-point functions. In the boosted frame,
we obtain the ratio of Eq. (24) for the cases where the
momentum of the two-point function is less or equal to
12 2π

L . We find that for higher values of the momentum, the
data are very noisy and subjected to systematic uncertain-
ties. To test the validity of this approach, we compare the
ground-state energy calculated by the dispersion relation
to those extracted from plateau fits of the effective energies
at each value of the momentum transfer. Figure 3 shows
this comparison for the pion and kaon. We find that
the dispersion relation holds, and suppresses statistical
uncertainties.
For each value of the 4-vector momentum squared,

Q2 ¼ ðE0 − EÞ2 þ ðp0 − pÞ2, there are more than one
combination of p0 and p contributing. Also, the vector
and tensor form factors may be extracted from a current
insertion with different Dirac matrices (μ, ν ¼ 0, 1, 2, 3).
Therefore, it is important to calculate the statistical uncer-
tainties appropriately. This is particularly needed in the
boosted frame, as one combines two-point functions at
different momenta in the ratio of Eq. (24). For each value of
Q2 we solve the system of equations

ΠΓðp0;qÞ ¼ Gðp0;qÞFðQ2Þ; ð27Þ

where G is a vector of kinematic coefficients given by the
decomposition, and F is a vector of the form factors.

Because Π and G depend on the momentum vectors p0 and
q but F depends on the four-momentum Q2, the system is
over constrained and so we use singular value decom-
position (SVD). Since for the matrix elements that we study
here there is only one form factor, the above procedure is
equivalent to a weighted average Π=G over the values of p0

and q which contribute to the same Q2.

V. PION FORM FACTORS

A. Excited-states investigation

As previously mentioned, we calculate the form factors
in both the rest (p0 ¼ 0) and boosted (p0 ≠ 0) frame. The
analysis in the rest frame is rather straightforward, because
the plus/minus components of the momentum transfer
vector q ¼ p0 − p contribute to the same Q2, and one
can take their average, weighted by their jackknife errors.
Furthermore, the square root in the ratio of Eq. (24) only
receives contributions from the two-point function at zero
momentum and at the momentum of the source. Because of
the aforementioned properties, the form factors have small
statistical uncertainties.
In Fig. 4 we plot the ratio of Eq. (24) for the three

operators, as obtained in the rest frame at Q2 ∼ 0.12 GeV2.
We find that excited states affect the scalar and tensor
operators. The vector one, at this momentum transfer,
seems to have small contamination from excited states.
For the vector operator we find agreement between the two-
state fit and all ts values. The comparison of the two
methods for the scalar case shows agreement of the two-
state fit with ts ¼ 16a − 20a, while for the tensor the
agreement is ts ¼ 16a − 18a with borderline agreement for
ts ¼ 14a and ts ¼ 20a. For all cases, we find little
sensitivity in the lowest value of ts entering the two-state
fit when varied from ts ¼ 12a to ts ¼ 16a, as can be seen in

FIG. 3. The ground state energies for the pion (left) and kaon (right) at the various values of Q2. The red points correspond to the
dispersion relation, and the blue to the energy obtained from a plateau fit. The points are slightly shifted horizontally for clarity.
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the right panel of Fig. 4. Overall, the two-state fit is the
preferred analysis method, capturing in almost all cases
excited-states contamination (see, e.g., Fig. 5). We empha-
size that, inclusion of more ensembles is needed to quantify
other sources of systematic effects that may contribute to
some outliers.
The Q2 dependence of the scalar, vector and tensor form

factors using the data in the rest frame is shown in Fig. 5.
We include the data for all values of ts, that is, 12a-24a, as
well as the 2-state fits using the aforementioned separa-
tions. We find good signal for Q2 up to 0.5 GeV2. This is
expected as the pion is a light particle, and the ratio
jQmaxj=mπ is about 2.5 for this ensemble.
The tensor form factor is suppressed by the quark mass

due to the chirality flip on a quark line, which explains the
fact that our results are about 30% of the vector one. Also,
Fπu
T ðQ2 ¼ 0Þ cannot be extracted directly from the matrix

elements, due to a vanishing kinematic factor [see Eq. (7)].
Therefore, one has to fit the Q2 dependence of the tensor
form factor to extract its forward limit. Fπu

T ðQ2 ¼ 0Þ is an
important quantity, as it defines the tensor anomalous
magnetic moment κT [78].
Regarding excited-states effect, the vector form factor

converges to the ground state at source-sink time separa-
tions about 1.3 fm (ts ¼ 14a) for all values of Q2. On the
contrary, the scalar and tensor form factors suffer from

excited-states effect, and the ground state contribution is
identified at about 1.7 fm (ts ¼ 18a). This conclusion is
based on the agreement between the single-state fits results
for the form factors at this separation and the two-state fit
values. For the scalar, the excited-states effect are visible for
the whole range of Q2, even though the statistical uncer-
tainties increase. Such a behavior is expected for the scalar
operator, which is known to suffer from large excited-states
contamination also in the nucleon case (see, e.g., Ref. [79]).
The excited-states contamination for the tensor form factor
has somewhat different behavior than the other two cases.
In particular, there is a small discrepancy in FT between the
ts ¼ 24a and the two-state fit in the smallQ2 region, where
the statistical errors of the data are less than systematic
uncertainties. Comparison of the form factors, for example
at ts ¼ 18a reveals that the statistical uncertainties for the
vector are the smallest, and for the scalar the largest. At
Q2 ∼ 0.5 GeV2, the relative statistical errors of the tensor
and scalar form factor are 3 and 3.5 times higher than the
vector.
The meson states for the boosted frame setup, carry

momentum 0.72 GeV, leading to a ground state energy
of about 0.77 GeV. We obtain a good signal up to Q2 ∼
2.5GeV2, which corresponds to a ratio jQmaxj=E0∼2,
similar to the ratio in the rest frame. As we have done
in our previous work on the pion and kaon Mellin moments

FIG. 4. From top to bottom: ratio of the scalar, vector and tensor pion form factor as a function of the rescaled current insertion time,
t=a − ts=2a, for the first nonzero momentum transfer, Q2 ∼ 0.12 GeV2. The plateau fits are plotted in the center panels as a function of
ts and. The right panels show the two-state fit results by varying the lowest ts entering the fit. In all panels, the two-state fit is plotted in
all panels as a gray band.
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hxi, hx2i, and hx3i [57,58], we focus on four values of the
source-sink time separation, that is ts=a ¼ 12, 14, 16, 18.
We have shown that at Q2 ¼ 0 a two-state fit on these
separations can eliminate excited states. Our results shown
in the left panel of Fig. 6 indicate that the excited-states for
the vector are present only at Q2 ¼ 0. For the tensor and
scalar form factors the excited states are suppressed starting
at Q2 ∼ 0.5 GeV2 and Q2 ∼ 1 GeV2, respectively.
It is interesting to compare the form factors as extracted

from the rest and boosted frame. Since there is no frame
dependence in these quantities, the lattice data in the two
frames should be compatible. However, systematic uncer-
tainties, such as cutoff effects, may affect each frame
differently. In principle, combining the form factors for
the two frames gives a more dense set of data for Q2 ≤ 0.4.
This is useful, as one can control better the parametrizations
of the Q2 dependence (see, Sec. V B). In the right panel of
Fig. 6 we show the comparison, and one can see that there is
very good agreement between the two frames for the vector.
For the scalar, the same conclusion holds at a separation

where ground-state dominance has been established, and for
the two-state fits data. Finally, the tensor exhibits some
tension in the slope between 0.25 GeV2 and 0.5 GeV2. In
the remaining of the analysis, we will use the 2-state fit
results and combine both the rest and boosted frame.

B. Parametrization of pion form factors

To extract the pole parameters from the form factors, we
parametrize their Q2 dependence using the monopole
Ansatz as depicted by the vector meson dominance
(VMD) model [80],

FΓðQ2Þ ¼ FΓð0Þ
1þ Q2

M2
Γ

; ð28Þ

with two fit parameters, that is the forward limit of the form
factor, FΓð0Þ, and the monopole mass, MΓ. This fit
function describes better the Q2-dependence of the lattice
data for all operators than a dipole fit. Note that, while such
an Ansatz is commonly used, it does not rely on theoretical
arguments. For the scalar and vector form factors we also
apply a one-parameter fit by fixing FΓð0Þ to the value
obtained from our lattice data.
Several interesting quantities can be derived from para-

metrizing the form factors. The most commonly extracted
quantity is the radius, defined as the slope of the form factor
at Q2 ¼ 0

hr2iΓ ¼ −
6

FΓð0Þ
∂FΓðQ2Þ
∂Q2

����
Q2¼0

: ð29Þ

For the ansatz of Eq. (28) for the form factors, the radius is
related to the monopole mass, via

hr2iΓ ¼ 6

M2
Γ
: ð30Þ

Of particular importance is the charge radius of the vector
form factor. This has been extracted from π − e scattering
data [5–7,10,11,27], as well as eþe− → πþπ− data
[9,26,36,43]. The decay τ → ππν offers another channel
to extract information about the pion form factor [25]. Also,
the scalar radius is related to ππ-scattering amplitudes
[28,81,82]. Data coming from pion electroproduction in
the moderate [19–24] and large [8,12–15,17,18] Q2 regions
can also be used to constraint the scalar radius. The scalar
radius is also of phenomenological interest, as it enters the
chiral expansion of the pion decay constant.
For the parametrization, we focus on the results from the

two-state fits to ensure that excited-states are eliminated.
We apply the fit of Eq. (28) in three datasets: results
obtained using the rest frame (R), the boosted frame (B), as
well as a combination of results from both frames (R&B).
The monopole fit is performed on the form factors
calculated from the two-state fit. We test different ranges

FIG. 5. From top to bottom: The scalar, vector and tensor form
factors in the rest frame for ts=a ¼ 12 (blue circles), 14 (red
squares), 16 (green up triangles), 18 (magenta left triangles), 20
(cyan right triangles), 24 (orange down triangles). The two-state
fit on these data is shown with purple stars.
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for the Q2 interval, that is, up to 0.55 GeV2 for the three
cases, as well as up to 1 and 2.5 GeV2 for B and R&B.
In Table IV we give the fit parameters for each form

factor. The one- and two-parameter fits are indicated with a
subscript 1 and 2, respectively. Based on the results, there is
a number of conclusions. First, the various estimates of
FVð0Þ from any choice of Qmax and from 1- or 2-parameter

fits are compatible. Also, the fitted values are compatible
with actual lattice data. The same conclusions hold for
FSð0Þ. For the estimates of κT (¼ FTð0Þ) using the B
datasets at different Qmax are compatible. However, a slight
tension is observed for the R&B estimates as Qmax
increases. The effect is also demonstrated in Fig. 7, which
will be discussed below. Conclusions can also be drawn

FIG. 6. Left from top to bottom: The scalar, vector and tensor form factors in the boosted frame for ts=a ¼ 12 (blue circles), 14 (red
squares), 16 (green up triangles), and 18 (magenta left triangle). The two-state fit as applied on these data is shown with purple stars.
Right from top to bottom: Comparison of the scalar, vector and tensor form factors in the rest (open symbols) and boosted (filled
symbols) frame. Blue, red, green, and magenta points correspond to ts=a ¼ 12, 14, 16, 18.

TABLE IV. Fit parameters for the up contribution to the pion as obtained from the two-state fits. The results in the rest, boosted and
combined frames are indicated by R, B, and R&B, respectively. The maximum momentum transfer, Q2

max, entering the fit is given in
GeV2, and the monopole masses in GeV. The subscript 1 and 2 indicate the one- and two-parameter fits, respectively.

Frame Q2
max Mπu

S;1 Fπu
S;2ð0Þ Mπu

S;2 Mπu
V;1 Fπu

V;2ð0Þ Mπu
V;2 κπ

u

T Mπu
T;2

R 0.55 0.959(54) 1.177(5) 0.958(56) 0.927(19) 0.991(6) 0.938(22) 0.414(14) 0.633(39)
B 0.55 1.066(74) 1.217(34) 1.075(76) 0.831(50) 1.011(25) 0.853(38) 0.394(17) 0.808(62)
R&B 0.55 1.004(47) 1.177(5) 1.003(47) 0.893(8) 0.994(5) 0.897(9) 0.396(9) 0.712(34)

B 1.00 1.158(44) 1.189(31) 1.203(30) 0.819(36) 1.049(10) 0.795(12) 0.405(13) 0.771(15)
R&B 1.00 1.144(40) 1.169(5) 1.161(39) 0.865(7) 1.011(6) 0.846(8) 0.369(5) 0.829(15)

B 2.50 1.189(39) 1.173(31) 1.248(32) 0.815(33) 1.054(11) 0.789(13) 0.420(14) 0.739(16)
R&B 2.50 1.201(36) 1.165(6) 1.221(36) 0.855(7) 1.017(6) 0.832(8) 0.376(5) 0.800(12)
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for the monopole masses, where we find that the 1- and
2-parameter fits lead to compatible results. Slight tensions
are observed as Qmax increases, as the determination of the
monopole mass heavily relies on the slope, and therefore,
the fit range.
We choose as final results the values from the combined

fit (R&B) using a 2-parameter monopole Ansatz and the
whole range of Q2.

Fπu
S ð0Þ¼ 1.165ð6Þð4Þð8Þ; Mπu

S ¼ 1.221ð36Þð60Þð27ÞGeV;
ð31Þ

Fπu
V ð0Þ¼ 1.017ð6Þð6Þð37Þ; Mπu

V ¼ 0.832ð8Þð14Þð43ÞGeV;
ð32Þ

κπ
u

T ¼ 0.376ð5Þð6Þð44Þ; Mπu
T ¼ 0.800ð12Þð29Þð61ÞGeV:

ð33Þ

In the first parenthesis we give the statistical error and in the
second parenthesis the systematic error related to the fit
range, determined as the difference between the values
obtained using Q2

max ¼ 1 GeV2 and Q2
max ¼ 2.5 GeV2.

The third parenthesis contains the difference between the
data R&B and B with Q2

max ¼ 2.5 GeV2.
In Fig. 7 we plot FOðQ2Þ using the two-state fit data in

the rest and boosted frames. These are compared against the
fitted form factors extracted from all cases of Table IV. For
the scalar and vector case we show only the 2-parameter fits
for better clarity. The main observation is that there is a
small difference between the fits of the R datasets and the B
case obtained from Q2

max ¼ 0.55 GeV2. As expected, the
fits of R&B for the same range are situated between the fits
for the rest and boosted frame. For the fits on the combined
data, we find compatibility for different values ofQ2

max. The
various fitted bands for FS and FV show that the corre-
sponding value atQ2 ¼ 0 is in agreement. The discrepancy
for the case of κT discussed previously is due to the change
in the slope for different datasets.
The radii can be derived from the parametrization as

discussed previously. Experimentally, the value of the pion
charge radius has been extracted using datasets from
pion electroproduction, pion electron scattering and positron
electron annihilation into two charged pions. The averaged
value is hr2iπþ ¼ 0.434ð4Þ fm2 [83], which does not include
the electroproduction data, due to uncertainties in the
extraction of the radius. Here, we apply Eq. (30) using the
monopole mass from the one- and two-parameter fit. To test
for systematic effects, we use the data from the rest and
boosted frame separately, as well as the combined ones. For
all cases we use the two-state fit data, and fit for all values

FIG. 7. From top to bottom: The scalar, vector and tensor form
factors of the pion using two-state fit in the rest (blue points) and
boosted (red points) frame. The 2-parameter fitted form factors
are shown with bands for the cases R (blue), B (red), and R&B
(green). The length of the band indicates the atQ2

max interval used
for the fit.

TABLE V. The scalar, charge, and tensor radii for the pion in fm2. The notation is the same as Table IV.

Frame Q2
max hr2iπuS;1 hr2iπuS;2 hr2iπuV;1 hr2iπuV;2 hr2iπuT;2

R 0.55 0.254(29) 0.254(30) 0.272(11) 0.265(13) 0.582(72)
B 0.55 0.206(29) 0.202(29) 0.339(41) 0.321(29) 0.357(55)
R&B 0.55 0.232(22) 0.232(22) 0.293(6) 0.291(6) 0.461(44)

B 1.00 0.174(13) 0.174(13) 0.348(31) 0.370(11) 0.393(16)
R&B 1.00 0.178(12) 0.173(12) 0.312(5) 0.327(6) 0.340(12)

B 2.50 0.165(11) 0.150(8) 0.352(28) 0.375(12) 0.427(18)
R&B 2.50 0.162(10) 0.157(9) 0.320(5) 0.337(7) 0.365(11)
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of Q2. The values for the radii can be found in Table V.
As expected, the tension observed in the monopole mass
propagates to the radii. For each dataset (rest, boosted,
combined), we find agreement between the 1- and
2-parameter fits. However, given the difference in the slope
there is tension between the three datasets. To address this
point, we also give results by constraining the fit up to
Q2 ¼ 0.55 GeV2. Our final results for the radii are obtained
from the 2-parameter monopole Ansatz applied on the R&B
data. Since the radii describe the small-Q2 behavior, we
chooseQ2

max ¼ 0.55 GeV2 and give as a systematic error the
differencewith the radius extracted fromwhen fitting the data
up to 1 GeV2. The number in the third parenthesis is the
difference between the radii extracted from the rest and
boosted frame data using Q2

max ¼ 0.55 GeV2.

hr2iπuS ¼ 0.232ð22Þð54Þð48Þ fm2; ð34Þ

hr2iπuV ¼ 0.291ð6Þð36Þð56Þ fm2; ð35Þ

hr2iπuT ¼ 0.461ð44Þð121Þð225Þ fm2: ð36Þ

Our results for hr2iπuS are compatible with the ones obtained
in Ref. [48] from the connected contributions on an Nf ¼ 2

OðaÞ-improvedWilson fermions ensemble at a pion mass of
280 MeV. Similar values are also obtained from a 310 MeV
pion mass ensemble of Nf ¼ 2þ 1 overlap fermions [47].
We note that a sizeable logarithmic behavior in the pionmass
is found in chiral perturbation theory [28,29] which causes a
rise in the radii. Therefore, at this stage,wedonot attempt any
comparisonwith the PDGvalue of hr2iπV , as the ensemblewe
used is not at the physical value of the pion mass.
As already mentioned, FTð0Þ can be obtained from fits

applied on the tensor form factor to parametrize its Q2

dependence. It has been discussed, for the nucleon and pion
case, that the Q2 dependence of the vector and tensor form

factors are expected to be the same due to the elastic
unitarity relation [84]. This argument holds for Q2 below
1 GeV2 due to corrections from inelastic states beyond that.
We test this argument for the pion by taking the ratio of the
tensor and vector form factors. If the argument holds, the
ratio should be constant with Q2 and equal to FTð0Þ.
The ratio is presented in Fig. 8, using lattice data and

their parametrizations. The data point atQ2 ¼ 0 is obtained
from the actual lattice data of FVð0Þ and the 2-parameter fit
using all available lattice data for FTð0Þ up toQ ¼ 1 GeV2.
The ratio using the monopole fit for both form factors is
also shown. It is interesting to observe that the Q2 behavior
of the ratio is very mild compared to the individual form
factors, suggesting that it is largely canceled between the
two form factors. The value of the vector form factor
at Q2 ¼ 2.5 GeV2 is 20% its value at Q2 ¼ 0. Similar
comparison for the tensor form factor shows a similar
change, that is, 75%. For the ratio of the two form factors,
we find that the change is only about 10%–15%. A reliable
extraction of FTð0Þ is desirable, as it enters the average
transverse shift of transversely polarized quarks (see
Sec. VIII), and it is the tensor anomalous magnetic
moment. Estimations from both the monopole fit and the
ratio of the tensor and vector form factors are expected to be
in better agreement once various sources of systematic
uncertainties are better controlled.

VI. KAON FORM FACTORS

A. Excited-states investigation

In this section, we apply the analysis method discussed
above for the up- and strange-quark contributions to the
kaon form factors. We begin our presentation with the
results in the rest frame shown in Fig. 9. We can obtain
the form factors up to Q2 ∼ 1 GeV2, as compared to about
0.5 GeV2 for the pion. This is expected, as the kaon is
about twice as heavy as the pion for this ensemble. In Fig. 9
we show the vector form factor after combining the up-
and strange-quark contributions, each multiplied by their
respective charge. Similar to the pion case, we find that
excited-states contamination are suppressed, as the results
for the various ts values are compatible. Also, agreement is
found between the two-state fits and the plateau values. The
decay of the form factor with Q2 is slower than in the case
of the pion. This is an indication of SU(3) flavor symmetry
breaking effect. We will revisit this discussion in Sec. VII.
The rest-frame results for the scalar and tensor form

factors for the individual flavors are shown in Fig. 10. As
for the pion, the up-quark contributions are susceptible to
excited-states contamination; a convergence to the ground
state is observed at ts=a ¼ 18 for the scalar form factor, and
ts=a ¼ 16 for the tensor one. The plateau values at this and
larger time separations are compatible with the two-state fit.
For the strange-quark form factors we find smaller

FIG. 8. The ratio FT=FV as a function ofQ2 using the two-state
fit results from the boosted frame (blue circles). The curve is
calculated from the 2-parameter monopole fit applied on all
available data for the vector and tensor form factors. The red
square is FTð0Þ calculated from the 2-parameter fit using all
available lattice data (R&B).
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contamination from excited states. For both flavors, we
choose the two-state fits as final results.
The vector form factor in the boosted frame is shown in

Fig. 11 for the four values of the source-sink time
separation and the two-state fit. We see that there are mild
excited states effects in the small-Q2 region, which are
suppressed at ts ¼ 18a. The removal of the excited-states
contamination changes the slope of the form factor at small
Q2 values making it more steep. Also the form factor at
Q2 ¼ 0 becomes equal to one in the two-state fit, as
expected from charge conservation.
The scalar and tensor form factors are shown in Fig. 12.

The up-quark part of the tensor form factor, FKu

T , exhibits

FIG. 9. The vector form factor for the kaon in the rest frame. The notation is the same as Fig. 5.

FIG. 10. The scalar (top panel) and tensor (bottom panel) form factor for the up (left) and strange (left) contributions to the kaon. The
data have been obtained in the rest frame. The notation is the same as Fig. 5.

FIG. 11. The vector form factor for the kaon in the boosted
frame. The notation is the same as Fig. 6.

CONSTANTIA ALEXANDROU et al. PHYS. REV. D 105, 054502 (2022)

054502-12



excited-states contamination for Q2 up to 0.5 GeV2, which
are, however, eliminated for ts ≥ 16a. For the scalar case,
the excited-states effect extend up to Q2 ¼ 0.8 GeV2, but
are suppressed for ts ¼ 18a. The strange-quark contribu-
tion for both form factors is less affected by excited states.
It is also worth noting that the tensor form factor for the
kaon is about a factor of two larger than for the pion. This is
expected because the suppression of FT by the mass,
indicating that the ratio FK

T =F
π
T is about MK=Mπ ∼ 2.

The comparison between the rest and boosted frame is
shown in Fig. 13 for the vector and Fig. 14 for the scalar
and tensor. The results for the vector are fully compatible
for the ts values that excited states effects are eliminated.
This is expected because excited states are frame

dependent. The strange-quark scalar and tensor form
factors show compatibility between the two frames. The
situation with the up-quark form factors is similar with the
pion: there is some tension in the slope between the two
frames, with the rest-frame results having a steeper slope.

B. Parametrization of kaon form factors

Using the setup outlined in Sec. V B, we parametrize the
Q2 dependence of the kaon form factors using the monop-
ole fit of Eq. (28). Similar to the pion case, we explore both
a 1- and 2-parameter fits. Here we employ two values for
the Q2

max, that is 1 and 3 GeV2. First we explore the
parametrization of the vector form factor, which combines

FIG. 12. The scalar and tensor form factors in the boosted frame. The notation is the same as Fig. 6.

FIG. 13. Comparison of the vector form factor of the kaon between the rest and boosted frame. The notation is the same as Fig. 6.
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the up- and strange-quark contributions, shown in Table VI.
We find that MV is insensitive to the choice of fit (1- or
2-parameters). We also observe that the fitted FVð0Þ is fully
compatible to the value obtained directly from the matrix
elements. The results for different fit ranges and including
datasets from different frames are also compatible.
In Tables VII and VIII we provide the parameters of the

fits on all form factors for the up- and strange-quark
components, respectively. Also, we give the corresponding
radii in Table IX. In summary, we find no dependence on
the number of parameters, and the fitted FOð0Þ is inde-
pendent of the fit range and the datasets included.
Moreover, there is agreement with the actual lattice data
for the scalar and vector cases. Compatible results are also
seen across all estimates of the monopole mass for the
strange quark contributions. However, the estimates ofMKu

S
extracted from the rest frame has tension with the value
obtained from the boosted frame and the combined case.

Similar behavior is also observed in MKu

T . All the afore-
mentioned conclusions can be seen in Figs. 15 and 16.
Similarly to the pion, we choose as final results the

values from the combined fit (R&B) using a 2-parameter
monopole ansatz and Q2

max ¼ 3 GeV2, which leads to

FK
V ð0Þ ¼ 1.015ð4Þð11Þð13Þ;
MK

V ¼ 0.879ð5Þð19Þð12Þ GeV; ð37Þ
for the vector case. For the up-quark contributions to the
scalar and tensor parameters we obtain

FKu

S ð0Þ ¼ 1.093ð8Þð10Þð3Þ;
MKu

S ¼ 1.291ð15Þð40Þð10Þ GeV; ð38Þ
FKu

V ð0Þ ¼ 1.016ð5Þð11Þð20Þ;
MKu

V ¼ 0.822ð5Þð19Þð15Þ GeV; ð39Þ
κK

u

T ¼ 0.844ð9Þð61Þð1Þ;
MKu

T ¼ 0.724ð5Þð59Þð1Þ GeV: ð40Þ
The corresponding values for the strange-quark compo-
nents are

FKs

S ð0Þ ¼ 1.158ð7Þð8Þð1Þ;
MKs

S ¼ 1.552ð17Þð46Þð1Þ GeV; ð41Þ
FKs

V ð0Þ ¼ 1.017ð4Þð11Þð7Þ;
MKs

V ¼ 1.000ð6Þð22Þð11Þ GeV; ð42Þ
κK

s

T ¼ 0.717ð5Þð17Þð8Þ;
MKs

T ¼ 0.930ð6Þð37Þð9Þ GeV: ð43Þ

FIG. 14. Comparison of the scalar and tensor form factor of the kaon between the rest and boosted frame. The notation is the same
as Fig. 6.

TABLE VI. Fit parameters for the kaon vector form factor as
obtained from the two-state fits. The results in the rest, boosted
and combined frames are indicated by R, B, and R&B, respec-
tively. The maximummomentum transfer,Q2

max, entering the fit is
given in GeV2, and the monopole masses in GeV. The subscript
1 and 2 indicate the one- and two-parameter fits, respectively.

Frame Q2
max MK

V;1 FK
V;2 MK

V;2

R 1.0 0.927(11) 0.987(5) 0.937(13)
B 1.0 0.913(8) 1.015(5) 0.885(5)
R&B 1.0 0.911(6) 1.004(4) 0.898(4)

B 3.0 0.901(7) 1.028(5) 0.867(5)
R&B 3.0 0.899(6) 1.015(4) 0.879(5)
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Overall, we find that the systematic uncertainties dominate
the statistical ones. In particular, the extraction of the
monopole masses is more susceptible to the fit range for
Q2, which is reflected in the systematic errors indicated in
the second parenthesis. This error corresponds to the
difference in the estimate between Q2

max ¼ 1 GeV2 and

Q2
max ¼ 3 GeV2. The dependence on the datasets incorpo-

rated in the fit (error in third parenthesis) appears to be
smaller than in the pion.
The behavior of the monopole mass with respect to the fit

range is also observed in the radii. More precisely, the
values of hr2iKu

S and hr2iKu

T obtained from the rest frame

TABLE VII. Fit parameters for the up-quark contribution to the kaon as obtained from the two-state fits. The results in the rest, boosted
and combined frames are indicated by R, B, and R&B, respectively. The maximum momentum transfer,Q2

max, entering the fit is given in
GeV2, and the monopole masses in GeV. The subscript 1 and 2 indicate the one- and two-parameter fits, respectively.

Frame Q2
max MKu

S;1 FKu

S;2ð0Þ MKu

S;2 MKu

V;1 FKu

V;2ð0Þ MKu

V;2 κK
u

T MKu

T;2

R 1.0 1.054(35) 1.119(7) 1.052(38) 0.857(10) 0.989(5) 0.862(12) 0.816(13) 0.701(20)
B 1.0 1.201(24) 1.113(15) 1.258(15) 0.862(8) 1.019(5) 0.828(5) 0.799(8) 0.772(4)
R&B 1.0 1.223(18) 1.103(8) 1.251(14) 0.853(5) 1.005(4) 0.841(4) 0.783(6) 0.782(4)

B 3.0 1.233(20) 1.096(14) 1.301(15) 0.848(7) 1.036(6) 0.807(5) 0.843(9) 0.724(5)
R&B 3.0 1.255(16) 1.093(8) 1.291(15) 0.841(5) 1.016(5) 0.822(5) 0.844(9) 0.724(5)

TABLE VIII. Fit parameters for the strange-quark contribution to the kaon as obtained from the two-state fits. The results in the rest,
boosted and combined frames are indicated by R, B, and R&B, respectively. The maximum momentum transfer,Q2

max, entering the fit is
given in GeV2, and the monopole masses in GeV. The subscript 1 and 2 indicate the one- and two-parameter fits, respectively.

Frame Q2
max MKs

S;1 FKs

S;2ð0Þ MKs

S;2 MKs

V;1 FKs

V;2ð0Þ MKs

V;2 κK
s

T MKs

T;2

R 1.0 1.471(60) 1.166(6) 1.486(71) 1.100(15) 0.986(5) 1.116(19) 0.694(8) 0.972(33)
B 1.0 1.409(31) 1.179(12) 1.479(16) 1.025(10) 1.014(4) 1.007(5) 0.704(6) 0.961(5)
R&B 1.0 1.507(22) 1.166(7) 1.506(16) 1.041(8) 1.006(3) 1.022(4) 0.700(4) 0.967(5)

B 3.0 1.462(25) 1.158(11) 1.553(17) 1.015(8) 1.024(5) 0.989(6) 0.725(6) 0.921(6)
R&B 3.0 1.536(19) 1.158(7) 1.552(17) 1.028(7) 1.017(4) 1.000(6) 0.717(5) 0.930(6)

FIG. 15. Parametrization of the vector form factor for the kaon. The notation is the same as Fig. 7.

TABLE IX. The scalar, charge and tensor radii of the kaon form factors in fm2.

Frame Q2
max hr2iKu

S;1 hr2iKu

S;2 hr2iKs

S;1 hr2iKs

S;2 hr2iKV;1 hr2iKV;2 hr2iKu

T;2 hr2iKs

T;2

R 1.0 0.210(14) 0.211(15) 0.108(9) 0.106(10) 0.272(6) 0.266(8) 0.475(27) 0.247(17)
B 1.0 0.162(6) 0.148(4) 0.118(5) 0.107(2) 0.280(5) 0.298(3) 0.392(5) 0.253(3)
R&B 1.0 0.156(5) 0.149(3) 0.103(3) 0.103(2) 0.282(4) 0.289(3) 0.382(4) 0.250(3)

B 3.0 0.154(5) 0.138(3) 0.109(4) 0.097(2) 0.288(5) 0.311(4) 0.445(6) 0.275(3)
R&B 3.0 0.147(4) 0.139(3) 0.099(2) 0.097(2) 0.289(4) 0.302(3) 0.427(5) 0.270(3)
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data are higher then the corresponding one in the boosted-
frame and combined-frame fits. On the contrary, we find
full compatibility for the case of the strange-quark con-
tributions. Experimentally, the charge radius of the kaon
has been measured from the K− form factor in Ke elastic
scattering [50,51] and the PDG value reported is hr2iK ¼
0.314ð25Þ [83]. Additional data for the kaon form factor
has been obtained at moderate and large Q2 using electro-
production processes [14,52].
We report the following as final values from this analysis

hr2iKu

S ¼ 0.149ð3Þð10Þð63Þ fm2;

hr2iKs

S ¼ 0.103ð2Þð6Þð1Þ fm2; ð44Þ

hr2iKV ¼ 0.289ð3Þð13Þð32Þ fm2; ð45Þ

hr2iKu

T ¼ 0.382ð4Þð45Þð83Þ fm2;

hr2iKs

T ¼ 0.250ð3Þð20Þð6Þ fm2; ð46Þ

based on the same criteria as for the pion. We observe that
the extraction of the tensor radius is more sensitive to the fit
range. We note that our results for hr2iKV are compatible
with the ones of Ref. [47] obtained from an Nf ¼ 2þ 1

ensemble of overlap fermions producing a pion mass of
310 MeV.
The argument of Ref. [84] that theQ2-dependence of the

vector and tensor form factors should match, could be also
be discussed for the kaon. One can look at the isovector
combination from dispersive arguments and the isoscalar
one using vector meson dominance. This implicates the
ρ, ω, and ϕmesons [85]. In Fig. 17 we show the ratio of the

FIG. 17. The ratio of up- and strange-quark contributions to the kaon tensor over the vector form factor (red squares) and over the
corresponding quark contributions to the vector form factor (green triangles). The notations is the same as Fig. 8.

FIG. 16. Parametrization of the scalar and tensor form factor for the up (left) and strange (right) quark components of the kaon. The
notation is the same as Fig. 7.
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tensor and vector form factors for each quark flavor.
Interestingly, we find that the ratios have smaller slopes
compared to the individual form factors. Nevertheless, a
slope is still observed. For the strange quark, the ratio
changes by about 10–15%. On the other hand, for the up
quark we find an effect of ∼15–20%. This is in contrast to
the pion, where the effect is less than ∼5%. This sizeable
slope is expected to be due to SU(3) flavor symmetry
breaking effect, which is found to be about 20% (see
Sec. VII).

VII. SU(3) FLAVOR SYMMETRY BREAKING

Studying both the pion and kaon form factors is useful to
understand SU(3) flavor symmetry breaking effects. Such
effects have been observed in nature, for example, in the
charge radii of π� andK�, as well as in π0 andK0. We have
previously investigated such effects in the Mellin moments
of the pion and kaon PDFs and their reconstructed PDFs
[58]. In this work, we draw conclusions on the SU(3) flavor
symmetry breaking using the scalar, vector and tensor form
factors. To this end, we examine the ratios Fπu=FKu

,
Fπu=FKs

, and FKu
=FKs

for each form factor. Note that
the numerical value of Q2 depends on the mass of the
meson as given in Eqs. (10) and (11). Thus, the pion and
kaon form factors are extracted at different values of Q2.
Therefore, to study the SU(3) flavor symmetry breaking,
we use the fitted values of the form factors, as detailed in
Sec. V B for the pion and Sec. VI B for the kaon. We are
also interested on how excited-states contamination affect
such ratios, so we study them using the parametrizations on
the individual plateau values, as well as the two-state fit. In
Figs. 18–20 we show the aforementioned ratios for the

scalar, vector and tensor operators. For a direct comparison,
we keep the same y-axis for Fπu=FKu

, Fπu=FKs
, and

FKu
=FKs

for a given form factor. To increase readability,
we only show the results for ts=a ¼ 14, 18 and the two-
state fit. For the case of the tensor form factor we include
the ratio of the meson masses,M≡mK=mπ . For all cases,
we use the parametrizations obtained from all lattice data in
both the rest and boosted frames.
One of the common aspects for all the ratios is that there

are no excited states contamination. Another common
characteristic is that the ratios Fπu

S;V;T=F
Ku

S;V;T have very
mild dependence on Q2 and are close to unity. Regardless
of the form factor, the up-quark contribution in the kaon
becomes about 80% of that of strange quark as Q2

increases. Since the up-quark component is similar in

FIG. 18. The ratio Fπu
S =FKu

S (top), Fπu
S =FKs

S (center), and
FKu

S =FKs

S (bottom) for the scalar form factor as a function of
Q2 using the results obtained from both frames. The results for
ts=a ¼ 14, 18 and the two-state fit are shown with blue, red and
green bands, respectively.

FIG. 19. The same as Fig. 18 but for the vector form factor.

FIG. 20. The ratio Fπu
T =FKu

T (top), Fπu
T =FKs

T (center), and
FKu

T =FKs

T (bottom) for the tensor form factor as a function of
Q2 using the results obtained from both frames. The results for
ts=a ¼ 14, 18 and the two-state fit are shown with blue, red and
green bands, respectively.
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the pion and kaon, we also find that the up-quark
contribution in the pion is approximately 80% that of
the strange quark in the kaon.

VIII. TRANSVERSE SPIN OF THE PION
AND KAON

The computation of both the vector and tensor form
factors can be used as a probe of the transverse spin
structure of hadrons and the Boer-Mulders effect in the pion
and kaon. Reference [86] discusses how GPDs at zero
skewness contain physical interpretation when Fourier
transformed into the impact-parameter space. In this
representation, they describe the spatial distributions in
the transverse plane of partons with fixed longitudinal
momentum. This allows one to extract the densities of
transversely polarized quarks in the hadron under study
[87]. It is worth mentioning that the Sivers asymmetry
arises from the asymmetry of the quark distribution in the
impact parameter space. The above observations can also
be extended for the moments of GPDs, that is the form
factors and their generalizations. Here, we outline the
procedure for the lowest moments, and use our lattice data
for a numerical implementation.
The density for the lowest moment is given by

ρðb⊥; s⊥Þ ¼
1

2

�
FVðb2⊥Þ −

si⊥ϵijb
j
⊥

m
∂FTðb2⊥Þ
∂b2⊥

�
; ð47Þ

where s⊥ is the quark transverse spin vector, and
b⊥ ¼ ðbx; byÞ ¼ ðb cosϕ; b sinϕÞ. FOðb2⊥Þ is a Fourier
transform of the form factor FOðtÞwith momentum transfer
squared in the transverse direction,

FOðb2⊥Þ ¼
1

2π

Z
d2Δ2⊥e−ib⊥·Δ⊥FOðt ¼ −Δ2⊥Þ: ð48Þ

One can take advantage of the parametrization of Eq. (28)
to extract a continuous function of Q2 for the form factors.

For the monopole Ansatz, the impact parameter form factor
and its derivative become

FOðb2⊥Þ ¼
M2

OFOð0Þ
2π

K0

�
MO

ffiffiffiffiffiffi
b2⊥

q 	
;

∂FOðb2⊥Þ
∂b2⊥ ¼ −

M3
OFOð0Þ
4π

ffiffiffiffiffiffi
b2⊥

p K−1

�
MO

ffiffiffiffiffiffi
b2⊥

q 	
; ð49Þ

where KnðxÞ are the modified Bessel functions with
K−1ðxÞ ¼ K1ðxÞ. It should be noted that the parametriza-
tion of the form factors alleviates the issue of applying a
Fourier transform on discretized lattice data. However,
there are constraints related to the maximum Q2 value that
the form factors can be obtained. Indeed, in our calculation,
the use of the rest frame gives access in the pion (kaon)
form factors up to ∼0.5 GeV2 (∼1 GeV2). The use of the
boosted frame allows to better parametrize the Q2 depend-
ence via an extended dataset up to ∼2.5 GeV2 for the pion
and ∼3 GeV2 for the kaon. Therefore, the resolution of the
impact parameter [88], 1=

ffiffiffiffiffiffiffiffiffiffi
Q2

max

p
, is of the order of 0.1 fm

in this work. Combining all the above, the density can be
written in terms of the fit parameters obtained in Sec. V B
for the pion and Sec. VI B for the kaon,

ρðb⊥; s⊥Þ ¼
1

2

�
M2

VFVð0Þ
2π

K0ðMV

ffiffiffiffiffiffi
b2⊥

q
Þ

þ si⊥ϵijb
j
⊥

m
M3

TFTð0Þ
4π

ffiffiffiffiffiffi
b2⊥

p K−1ðMT

ffiffiffiffiffiffi
b2⊥

q
Þ
�
: ð50Þ

For quarks polarized in the x or the y direction, Eq. (50) can
be used to find the average transverse shift in the other
perpendicular direction. For instance, if the polarization is
along the x axis, s⊥ ¼ ð1; 0Þ, then the average transverse
shift in the y direction is defined as

FIG. 21. Profile of the density ρðb⊥; s⊥Þ for unpolarized quarks, s⊥ ¼ ð0; 0Þ, (left panel) and for transversely polarized quarks in the x
direction, s⊥ ¼ ð1; 0Þ, (right panel) in the pion and kaon. bx was set to 0.15 fm. Red, blue, green bands correspond to up quark in the
pion, the up quark in the kaon, and the strange quark in the kaon, respectively.
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hby⊥i ¼
R
d2b⊥by⊥ρðb⊥; s⊥ÞR
d2b⊥ρðb⊥; s⊥Þ

: ð51Þ

Using theQ2-parametrization of the form factors, the above
simplifies to

hby⊥i ¼
FTð0Þ

2mFVð0Þ
: ð52Þ

Here, we use the actual data for the vector form factor at
Q2 ¼ 0. For FTð0Þ we use the value obtained from the
monopole fit using the lattice data from both frames andQ2

up to 2.5 and 3 GeV2 for the pion and kaon, respectively.
Furthermore, we use the two-state fit results to suppress any
excited-states contributions. For the pion we find

hby⊥iuπ ¼ 0.1373ð17Þ fm; ð53Þ

FIG. 22. Density plot of Eq. (50) of unpolarized quark (left) and transversely polarized quarks in the x direction (right). From top to
bottom we show the case of the up quark in the pion, the up quark in the kaon, and the strange quark in the kaon. The white area in the
center represents a value of the density outside the regions given with red and purple color.
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and for the kaon

hby⊥iuK ¼ 0.1465ð9Þ fm; hby⊥isK ¼ 0.1287ð6Þ fm: ð54Þ

In Fig. 21 we show the profile of the density plot for
unpolarized quarks (s⊥ ¼ ð0; 0Þ) and for transversely
polarized quarks in the x direction [s⊥ ¼ ð1; 0Þ] in the

pion and kaon. For presentation purposes we set bx ¼ 0.15
and plot the density as a function of by. In the unpolarized
case, it is symmetric with respect to bx and by, as can be
seen from the first term of Eq. (50). On the contrary, in all
cases of polarized quarks we find an asymmetry in by, with
the maximum of the density at about by ¼ 0.07 fm. The
densities for the up quarks are almost the same in the pion

FIG. 23. Equation (50) of unpolarized quark (left) and transversely polarized quarks in the x direction (right) as a function of by for
bx ¼ 0.15. From top to bottom we show the up-quark for the pion, up-quark for the kaon, and strange-quark for the kaon. The gray area
represents an increase in the density outside the values indicated by the range of the vertical axis.
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and the kaon. The density of unpolarized strange quarks is
larger than for unpolarized up quarks in the region
jbyj < 0.3 fm. A similar picture is observed for the
polarized quarks with the region of dominance of the
strange quarks is shifted in −0.15 fm < by < 0.35 fm.
The effect of distortion for polarized quarks discussed

above can also be seen in Fig. 22, in which we plot the
density using the parametrization b⊥ ¼ jb⊥jðcosϕ; sinϕÞ.
For the form factors at Q2 ¼ 0 and the monopole masses
we use the mean values given in Eqs. (32) and (33) for the
pion, Eqs. (38)–(40) for the up-quark in the kaon, and
Eqs. (41)–(43) for the strange-quark in the kaon. The
picture for up and strange quarks with the same polarization
is qualitatively the same. Similar conclusions are drawn
from the three-dimensional plots of the density as a
function of bx and by, shown in Fig. 23 using the same
data as in Fig. 22. The overall picture for the pion is
qualitatively compatible with the work of Ref. [49], which
employs several ensembles of Nf ¼ 2 improved Wilson
fermions with pion mass ranging between 400 MeV
and 1 GeV.

IX. SUMMARY AND CONCLUSIONS

We present a calculation in lattice QCD of the scalar,
vector and tensor form factors of the pion and kaon. Our
results are obtained from the analysis of anNf ¼ 2þ 1þ 1

ensemble of twisted mass fermions with clover improve-
ment with 260 MeV pion mass and 530 MeV kaon mass.
The scalar and tensor form factors are renormalized non-
perturbatively and the results are given in the MS scheme
at a scale of 2 GeV. For the vector form factor we
use the conserved vector operator, which does not need
renormalization.
We obtain the form factors on two kinematic setups, that

is, the rest frame and a momentum-boosted frame of
0.72 GeV (p0 ¼ 2π

L ð�1;�1;�1Þ). The use of the boosted
frame has the advantage of a wider and denser range of
values for the four-vector momentum transfer squared,
−t ¼ Q2. This becomes possible due to the higher ground-
state energy compared to the rest frame. However, much
larger statistics are needed to control statistical uncertain-
ties. Here we use a factor of 50 more statistics in the
boosted frame compared to the rest frame. This allows the
extraction of the pion form factors up to Q2 ¼ 2.5 GeV2

and the kaon form factors up to Q2 ¼ 3 GeV2. The form
factors are frame independent, so one can combine the data
obtained from both the rest and boosted frame. Overall, we
find that there is excellent agreement between the two
frames for the vector form factors of the pion and kaon,
as well as the strange-quark contributions for the scalar
and tensor form factors of the kaon. The aforementioned
agreement mostly holds for the two-state fits, as the
excited-states contamination affects differently the data
in each frame. For the up-quark part of the pion and

kaon scalar and tensor form factors we find agreement in
the small-Q2 region, with some deviations in the slope
between 0.25–0.5 GeV2 for the pion and 0.35–1 GeV2

for the kaon. This is an indication of cutoff effects that
would need ensembles of at least three lattice spacings to
quantify.
In this work we limit ourselves to investigating possible

sources of systematic uncertainties that can be studied on a
single ensemble, the primary one being excited-states
contamination. To this end, we produce data for six values
of the source-sink time separation in the rest frame (1.12–
2.23 fm) and four values in the boosted frame (1.12–
1.67 fm). The two- and three-point functions are analyzed
using single-state and two-state ansatz. We give our final
results for the form factors using the two-state fits, and we
parametrize theirQ2 dependence using a monopole fit. This
leads to the scalar, vector and tensor monopole masses, and
their corresponding radii. For the tensor form factor we also
extract the tensor anomalous magnetic moment, kT which
can only be obtained from fits on the data. Another
systematic effect that we study is the sensitivity of the
extracted parameters on the fit range of Q2 and the frame
sets included in the fit. As expected from the comparison
of the form factors in the two frames, there are some
tensions in extracting the scalar and tensor monopole
masses and radii based on the datasets included in the
fit. Our final results for the monopole masses and the tensor
magnetic moment use all available lattice data in both
frames. For the radii, we use all data up to Q2 ¼ 0.5 GeV2

for the pion andQ2 ¼ 1 GeV2 for the kaon. In all cases, we
assign a systematic error by varying the fit range. The final
results can be found in Eqs. (31)–(36) for the pion and
Eqs. (37)–(46) for the kaon.
We compare the parametrized form factors for the pion

and kaon to address SU(3) flavor symmetry breaking
effects. Our analysis indicates that excited states are sup-
pressed in such ratios. We also find a mild Q2-dependence
in the case of Fπu=FKu

for all operators with the ratios being
around the value 1. For the Fπu=FKs

and FKu
=FKs

cases, we
find sizeable Q2-dependence and SU(3) flavor symmetry
breaking effects up to 20%. Finally, combining the data for
the vector and tensor form factors we also obtain the lowest
moment of the densities of unpolarized and transversely
polarized quarks in the impact parameter space, b⊥. As
expected, a distortion appears for the polarized case with
the density reaching maximum for positive values of by.
The values for the average transverse shift in the y direction
for polarized quarks in the x direction are given in Eqs. (53)
and (54).
An extension of this work, will be the investigation of

other sources of systematic uncertainties, such as volume
and discretization effects. In the near future, we will
perform such calculations on ensembles with a physical
pion mass. We also plan to advance this work, as well as the
work of Ref. [57] with the calculation of the generalized
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form factors of the one-derivative operators using a similar
setup as for the form factors.
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