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We analyze the behavior of quarks coupled to a SUðNcÞ gauge theory in 1þ 1 dimensions. In the limit
of strong coupling, the model reduces to a Wess-Zumino-Novikov-Witten (WZNW) model. At nonzero
density, excitations near the Fermi surface form a non-Fermi liquid. With Nf flavors, the finite density of
quarks reduce to a free Uð1Þ field, which governs fluctuations in baryon number, together with a WZNW
SUðNfÞ nonlinear sigma model at level Nc, from the pion/kaon modes. We compute the singularity in the
charge susceptibility at the Fermi surface and the attendant power-law correlations. We suggest that this is
relevant to the quarkyonic regime of cold, dense QCD in (3þ 1) dimensions, in the limit that the Fermi
surface is covered by many small patches, and the theory is effectively one dimensional. In this regime the
dominant excitations near the Fermi surface are not baryons, but gapless bosonic modes.
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I. INTRODUCTION

The behavior of QCD at nonzero temperature and
density is of fundamental interest. Since numerical simu-
lations on the lattice are not possible for three (or more)
colors at nonzero density, and as quantum computers are far
from able to compute the behavior of cold, dense QCD, it is
useful to study analytically tractable models, even those in
fewer dimensions, that may reflect the essential features of
the underlying physics.
At low density, nuclear matter is well described by

effective theories of nucleons. This describes the theory
up to and for some region beyond saturation density [1–8].
Conversely, at very high density, perturbation theory in the
QCD coupling applies [9–17]. Previously it has been argued
that at intermediate densities there is a quarkyonic regime,
where the free energy is that of an interacting theory of
quarks and gluons, but near the Fermi surface, the excitations
are confined [18–32]. This is the regime that we wish to
concentrate upon in this paper.
It was shown in Refs. [21,31,33–36] that the quarkyonic

regime is a critical state which shares many aspects with
systems in (1þ 1) dimensions. We explore this analogy
further in this paper.
In 1þ 1 dimensions the gauge coupling g has dimen-

sions of mass, so weak coupling is the regime where the

quark mass is large relative to g. We concentrate on strong
coupling, where the quark masses are small relative to g.
For vanishing bare quark masses, non-Abelian bosoniza-
tion demonstrates that the gapped color sector decouples.
In the vacuum, and at energies small relative to the gauge
coupling, the quarks are confined and the low-energy
degrees of freedom are gapless Uð1Þ and SUðNfÞNc

Wess-
Zumino-Novikov-Witten (WZNW) meson fields. There
are baryons, but these are not coherent excitations, but
nonlocal combinations of the mesonic fields. At small but
finite quark mass, the color sector can be integrated out,
and generate perturbations in the low-energy sector.
In this paper we consider whether a non-Fermi liquid

exists in QCD in 1þ 1 dimensions at nonzero density. The
Nambu-Jona-Lasinio (NJL) model was studied in 1þ 1

dimensions in Ref. [37]. At nonzero density, even at nonzero
bare quark mass sectors with different symmetry decouple.
We argue that this decoupling remains valid for QCD. In the
NJL model, there are two regimes at nonzero density: a state
with gapped flavor and gapless Uð1Þ excitations at low
density, and a critical state at higher density. The baryons are
formed from the Uð1Þ and flavor fields, but in both regimes
the spectral function for a single baryon never exhibits a
sharp peak, as the baryons are “incoherent.” This is unlike
the typical Fermi liquid, where the spectral function has a
sharp peak, which allows for the consistent definition of
quasiparticles. In the NJL model, the behavior of baryon
Green’s functions changes between the two regimes. At low
density, both the flavor sector and baryons are gapped, and
baryon correlation functions are exponentially damped. In
contrast, the high-density phase is critical, as the baryon
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spectral function is gapless, and baryon correlation functions
fall off as a power law. This can be termed a strange metal.
To establish the density at which a strange metal appears

depends upon the details of the low-energy theory. We
argue that in 1þ 1 dimensions, the low-energy theory is the
same for both the NJL model and QCD. At sufficiently low
density the quark mass term generates a relevant perturba-
tion in the flavor sector. For this to happen the Luttinger
parameter in the Uð1Þ sector must exceed a critical value
determined by the quark mass, the chemical potential, and
depends upon how many flavors, Nf, and colors, Nc, there
are. We extract this dependence for two cases. First, for an
arbitrary Nc and a single flavor, Nf ¼ 1 [38–43]. Second,
for two colors and two flavors, Nc ¼ Nf ¼ 2. We expect
that the behavior for other values of Nc and Nf is
qualitatively similar, although the details certainly change.
Our methods are only useful in the strong coupling regime

of light quarks. It is possible that for a low density of heavy
quarks, QCD in (1þ 1) dimensions is no longer a Luttinger
liquid, and baryon correlation functions are gapped, like the
low-density regime of the NJL model [37]. Heavy quarks
inevitably form a Luttinger liquid at high density, though,
once the mass term is negligible relative to the chemical
potential. It is also natural to conjecture that for any mass,
baryons are incoherent at all densities.
A gauge theory in 1þ 1 dimensions coupled to fer-

mions in the adjoint representation has been studied in
Refs. [44,45]. For massless fields, at nonzero density the
theory is again a strange metal [44], described by a
supersymmetric WZNW model. This is considerably
more complicated than the simple Luttinger liquid which
emerges for quarks in the fundamental representation.
While the phenomenology of QCD in (1þ 1) dimen-

sions is interesting in and of itself, here we are primarily
motivated by its consequences to quarkyonic matter in
(3þ 1) dimensions. For ordinary nuclear matter, the
excitations near the Fermi surface are baryons, and are
typically gapped, being Bogolyubov quasiparticles of
either the superfluid or superconducting state. While
the gaps are small, on the order of a few MeV, transport
coefficients are exponentially suppressed at temperatures
less than these gaps. As the density increases, nuclear
matter is quarkyonic, and forms a smectic liquid crystal
[21,33,34]. The Fermi surface of the theory spontaneously
divides itself into patches, where the propagators for
gapless bosons are anisotropic, and differ between the
direction of the condensate and transverse fluctuations. As
was discussed previously [21,33,34], the solution is stable
when there are many patches, when the net quark density
is large. Then the theory for each patch is effectively one
dimensional, and the coherent excitations at low energy
are then not baryons, but gapless bosons, both Abelian
and non-Abelian, with a dispersion relation which is
quasi-one-dimensional. These bosonic modes are color
singlets, related to a low-energy WZNW model of the

flavor degrees of freedom. Our arguments are qualitative,
as our purpose is simply to emphasize that the quarkyonic
matter is a non-Fermi liquid. This is of direct consequence
for the transport properties of cold quarkyonic matter.
In Sec. II we analyze QCD, coupled to quarks in the

fundamental representation, in (1þ 1) dimensions. The
effective Wess-Zumino-Witten Lagrangian at low energy
is given in Sec. II B, and extended to nonzero density in
Sec. III. Detailed computations of the Luttinger parameter
are given in Secs. III A and III B, while the properties of the
strange metal for Nc ¼ 3, Nf ¼ 2 are detailed in Sec. III C.
In Sec. IV we outline the possible relation to cold, dense
QCD in (3þ 1) dimensions. Appendixes include a review of
the quantum Ising model, Appendix A; of the thermody-
namic Bethe ansatz, Appendix B; the numerical analysis for
a single flavor, Appendix C; and details of the perturbative
calculation, Appendix D.

II. DENSE MATTER IN ð1 + 1Þd QCD

As we have discussed above, some physical aspects of
ð3þ 1Þd quarkyonic state are essentially ð1þ 1Þd in
character. Therefore we will start our discussion from
the pure ð1þ 1Þd case.
We will work with the premise that all physical states in

ð1þ 1Þd are color singlets. Thus to obtain an effective low-
energy description, we have to integrate out the color degrees
of freedom. The effective action and operators should be
projected onto the color singlet ground state. One way to
approach the problem is to use non-Abelian bosonization
and the notion of conformal embeddings. Here we will use
the fact that the Hamiltonian of massless Dirac fermions of
Nc colors and Nf flavors can be decomposed into three
commuting Wess-Zumino-Novikov-Witten Hamiltonians
describing the Uð1Þ, the color, and the flavor sectors
[38–43].
In the NJLmodel there is a local interaction between color

currents and the color sector is gapped [37]. In QCD,
integrating out the gluons generates a long-range interaction
between the color currents; thus it is reasonable to assume
that the color sector remains gapped. In ð1þ 1Þd, the gap is
of order ΛQCD ∼ g. For massless quarks, the color currents
commute with the charge and flavor sectors, leaving a
UðNfÞNc

WZNW model at low energies.
There are issues which need clarification related to the

projection of the observables. They emerge even for the case
of massless quarks or for the dense phase where the mass
term becomes irrelevant. As was noted in the earlier works
on ð1þ 1Þd QCD, there are various observables, including
the mass term, which do not factorize into a product of local
fields from the color and flavor sectors. This was noticed
already in Ref. [42] where it was stated that although the
Hamiltonian of ð1þ 1Þd QCD with Nf;Nc ≥ 2 can be
decomposed via a conformal embedding into three commut-
ing parts consisting of WZNW models acting, respectively,
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on the charge, the flavor and the color sectors, the mass term
cannot be written as a product of mutually local fields
of these models. In fact, this is a common problem for
conformal embeddings. After integrating out the high-
energy degrees of freedom, the color singlet operators can
be expressed as local fields of the low-energy field theory,
which is the UðNfÞNc

WZNWmodel. Below we discuss the
details of the projection for two particular cases: a single
flavor, Nf ¼ 1, for arbitrary Nc, and Nc ¼ Nf ¼ 2. The
conformal embedding is done using Abelian bosonization,
as in Ref. [46]. The conclusion is that after one executes a
projection onto the color singlet vacuum, the corresponding
fields are expressible in terms of the local fields of the charge
and flavor sector.
The QCD Lagrangian with the quarks in the fundamental

representation of the SUðNcÞ color group is

L ¼
Z

dDx

�
−

1

8πg2
trFμνFμν

þ q̄f;σγμDμ;σσ0qf;σ0 þmq̄f;σqf;σ

�
; ð1Þ

where the covariant derivative is defined as

Dσσ0
μ ¼ δσσ

0∂μ − iAσσ0
μ : ð2Þ

The quark fields q̄; q carry f ¼ 1;…Nf flavor and
σ ¼ 1;…Nc color indices and the color Yang-Mills field is

Fμν ¼ ∂μAν − ∂νAμ − i½Aμ; Aν�: ð3Þ

In ð1þ 1Þd one can choose the gauge where Ax ¼ 0 and
integrate out the color Yang-Mills field. Then after a suitable
choice of the gamma matrices, we arrive at the following
Hamiltonian for ð1þ 1Þd QCD:

H ¼
XNf

f¼1

XNc

σ¼1

Z
dx½−iRþ

f;σ∂xRf;σ þ iLþ
f;σ∂xLf;σ

−mðRþ
f;σLf;σ þ Lþ

f;σRf;σÞ�

− πg2
Z

dxdyJa0ðxÞjx − yjJa0ðyÞ; ð4Þ

where

Ja0 ¼ JaR þ JaL; ð5Þ

JaR ¼
XNf

f¼1

Rþ
f;σt

a
σσ0Rf;σ0 ; JaL ¼

XNf

f¼1

Lþ
f;σt

a
σσ0Lf;σ0 : ð6Þ

Here ta matrices are generators of the SUðNcÞ algebra and R,
L are the right- and left-moving components of the q-spinor
field. The currents of the right- and left-moving quarks JR;L

obey a SUðNcÞNf
Kac-Moody algebra. (For a comprehensive

review of non-Abelian bosonization, see Ref. [47].) One can
rewrite the Hamiltonian as the sum of three mutually
commuting parts plus the mass term, which mixes them all:

H ¼ H½Uð1Þ� þHcolor þHflavor þmass; ð7Þ

where H½Uð1Þ�; Hflavor are Hamiltonians of the WZNW
models of the corresponding groups. Hcolor is the
SUðNcÞNf

WZNW model perturbed by the current-current
interaction of Eq. (4). These Hamiltonians are expressed in
terms of the Uð1Þ, SUðNcÞNf

, and SUðNfÞNc
Kac-Moody

currents.
For Nf > 1 at zero quark mass the Hamiltonian is

separated into three commuting parts. The mass term
however violates this separation. As was mentioned in
the Introduction, the corresponding density operator cannot
be even factorized into a product of mutually local
operators acting on the corresponding Hilbert spaces.
This may lead to difficulties in formulating the low-energy
theory in the strong coupling limit. We argued in Ref. [37]
for the NJL model that the issue is resolved once the
Hamiltonian is projected on the color singlet ground state
of the color sector. To elucidate the nature of the issues
involved we will consider both the case Nf ¼ 1 and the
case of Nc ¼ Nf ¼ 2. Here one can treat the conformal
embedding using Abelian bosonization, as it was done, for
example, in Ref. [46].

A. Low-energy theory for Nf = 1

We begin with the simplest case, that of a single flavor,
Nf ¼ 1. We start with Abelian bosonization of the
free quarks and use the standard bosonization rules
for the operators of right- and left-moving quarks
(σ ¼ 1;…Nc; f ¼ 1;…Nf):

Rf;σ ¼
1ffiffiffiffiffiffi
2π

p ξf;σ exp½i
ffiffiffiffiffiffi
4π

p
φf;σ�;

Lf;σ ¼
1ffiffiffiffiffiffi
2π

p ξf;σ exp½−i
ffiffiffiffiffiffi
4π

p
φ̄f;σ�; ð8Þ

where φn; φ̄n (n ¼ ðf; σÞ) are chiral bosonic fields gov-
erned by the Gaussian action (from now on we will work in
Euclidean time),

SGauss ¼
1

2

X
n¼ðf;σÞ

Z
dτdxð∂τφnÞ2 þ ð∂xφnÞ2: ð9Þ

The chiral vertex operators, i.e. exp½i ffiffiffiffiffiffi
4π

p
φ̄f;σ�, are

assumed to be normal ordered and have a normalization
determined by
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⟪e−i
ffiffiffiffi
4π

p
φf;σðτ;xÞei

ffiffiffiffi
4π

p
φf;σð0;0Þ⟫ ¼ 1

τ − ix
: ð10Þ

Finally ξn are anticommuting Klein factors that ensure this
bosonic representation of the quarks anticommutes.
This case can be treated explicitly for any Nc.

Bosonization yields

S ¼ SGauss þ
Z

dτdxðVCartan þ Voff−diagÞ; ð11Þ

VCartan ¼ −πg2
Z

dyjx − yj∂xΦaðδab − 1=NcÞ∂yΦb

¼ g2Φaðδab − 1=NÞΦb; ð12Þ

where SGauss is the Gaussian action (9), we have introduced
nonchiral bosons Φ ¼ φþ φ̄, and the off-diagonal part is
given by

Voff−diag ¼
X
a>b

Z
dy

g2

4π
jx − yj−1fcos½

ffiffiffiffiffiffi
4π

p
½φabðxÞ − φabðyÞ�� þ cos½

ffiffiffiffiffiffi
4π

p
½φ̄abðxÞ − φ̄abðyÞ��

− 2jx − yj2 cos½
ffiffiffiffiffiffi
4π

p
½φabðxÞ þ φ̄abðyÞ��g ð13Þ

with φab ¼ φa − φb.
The form of the effective potential (12) is suggestive of

the confinement: since it is not periodic in the fields, it does
not allow topological excitations for any field configura-
tions except one. The only soft mode remaining is the one

ΦU ¼ 1ffiffiffiffiffiffi
Nc

p
X
a

Φa; ð14Þ

which does not enter into V. The ground state of (11)
corresponds to all fields being equal; projecting the mass
term on this vacuum we get the sine-Gordon model with
renormalized mass term:

Heff ¼
1

2
fΠ2 þ ð∂xΦUÞ2g þ 2

m̃
2π

�
1 − cos

� ffiffiffiffiffiffi
4π

Nc

s
ΦU

��
:

ð15Þ

Naturally, the projection assumes that the energy scale
generated by the mass term is much smaller than the
energies of the mesonic fields. Even for a single flavor, the
complete bosonized form of QCD involves a set of Nc
coupled sine-Gordon models, as first derived by Baluni
[38–43]. Besides the Uð1Þ field ΦU, there are also color
singlet excitations above ΛQCD, involving fluctuations of
individual fields Φa around the minimum of the potential.
By going to energies below the scale of the gauge coupling,
all of these massive degrees of freedom can be ignored.
This simplifies the analysis considerably.

B. Low-energy theory for Nf =Nc = 2

For Nc ¼ Nf ¼ 2 the indices σ and f take the values
σ ¼ �1; f ¼ �1. The Gaussian models in Eq. (9) have
total central charge c ¼ 4. Our goal is to rearrange the

fields into groups with central charges 1, 3=2 and 3=2
corresponding to theUð1Þ, SUð2Þ2 flavor and SUð2Þ2 color
sectors. The next step is to introduce new bosonic fields,
φU, φF, φc, and φcF, defined by

φf;σ ¼
1

2
ðφU þ fφF þ σφc þ fσφcFÞ;

φ̄f;σ ¼
1

2
ðφ̄U þ fφ̄F þ σφ̄c þ fσφ̄cFÞ: ð16Þ

This transformation leaves the bosonic action of Eq. (9)
covariant. The derivatives of fields φU; φ̄U are Uð1Þ
currents describing smooth fluctuations of the particle
density. From other bosonic fields we construct the other
currents—generators of the SUð2Þ2 flavor and color
Kac-Moody algebras. For instance, the color right- and
left-moving color currents

JaR ¼ 1

2

X2
f¼1

Rþ
f;στ

a
σ;σ0Rf;σ0 ¼ ϵabcχ

b
Rχ

c
R;

JaL ¼ 1

2

X2
f¼1

Lþ
f;στ

a
σ;σ0Lf;σ0 ¼ ϵabcχ

b
Lχ

c
L; ð17Þ

where τa are Pauli matrices and the labels are
a ¼ ð1c; 2c; 3cÞ, are expressed in terms of Majorana
fermions. The Majorana fermions describing the color
sector are related to the following chiral bosonic fields via
the relations:
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χR;1c ¼
1ffiffiffi
π

p ξc sinð
ffiffiffiffiffiffi
4π

p
φcÞ;

χR;2c ¼
1ffiffiffi
π

p ξc cosð
ffiffiffiffiffiffi
4π

p
φcÞ;

χR;3c ¼
1ffiffiffi
π

p ξcF cosð
ffiffiffiffiffiffi
4π

p
φcFÞ: ð18Þ

The left-moving ones are related similarly to the corre-
sponding φ̄ fields. The Cartan current J3 is understood in
the regularized sense, i.e. it corresponds to the derivative
of the field φc. Likewise one can introduce the triad of the
Majoranas to represent the SUð2Þ2 flavor sector:

χR;1F ¼ 1ffiffiffi
π

p ξF cosð
ffiffiffiffiffiffi
4π

p
φFÞ;

χR;2F ¼ 1ffiffiffi
π

p ξF sinð
ffiffiffiffiffiffi
4π

p
φFÞ;

χR;3F ¼ 1ffiffiffi
π

p ξcF sinð
ffiffiffiffiffiffi
4π

p
φcFÞ: ð19Þ

Please note that the bosonic field cF takes part in both the
color and the flavor sectors since it enters in the Majorana
fermions 3c and 3F. The mass term in terms of the
transformed bosons becomes

X
f;σ¼�1

ðRþ
f;σLf;σ þ H:c:Þ ¼ 2

X
f;σ¼�1

cos½ ffiffiffiπp ðΦU þ fΦF þ σΦc þ fσΦcFÞ�

¼ 8ℜefei ffiffiπp
ΦU ½cosð ffiffiffi

π
p

ΦFÞ cosð
ffiffiffi
π

p
ΦcFÞ cosð

ffiffiffi
π

p
ΦcÞ − i sinð ffiffiffi

π
p

ΦFÞ sinð
ffiffiffi
π

p
ΦcFÞ sinð

ffiffiffi
π

p
ΦcÞ�g

∼ℜefei ffiffiπp
ΦU ½ðμ1Fμ2Fμ3FÞðμ3cμ1cμ2cÞ − iðσ1Fσ2Fσ3FÞðσ3cσ1cσ2cÞ�g: ð20Þ

In the last line we used the fact that the cosine and sine
fields of

ffiffiffi
π

p
Φ can be expressed in terms of the Ising model

order and disorder parameter fields σ and μ, as explained in
Appendix A.
Now we can proceed further since the Ising fields can be

used to represent the SUð2Þ2 spin-1=2 primary ones. For
example, the spin-1=2 matrix field in the flavor sector can
be represented as [48]

Ĝαβ ¼ Îσ1Fσ2Fσ3F þ i
�
τ̂1μ1Fσ2Fσ3F

þ τ̂2σ1Fμ2Fσ3F þ τ̂3σ1Fσ2Fμ3F
�
; ð21Þ

where Î is the identity and τ̂a are the Pauli matrices. Since at
the critical point the Ising model is self-dual, one can
interchange σa’s and μa’s in Eq. (21) which results in the

alternative (dual) representation ˆ̃G. Although correlation

functions of Ĝ and ˆ̃G are identical, these operators are
nonlocal with respect to each other and as such cannot be
present in the low-energy action simultaneously.
Looking at Eq. (20), we see that the fermionic bilinears

do not factorize into products of single-valued SUð2Þ2
WZNW fields because they contain mutually nonlocal
fields. As we mentioned above, this was noticed already
in Ref. [42] for the case of general Nc, Nf. The factori-
zation occurs for conformal blocks, not for single-valued
operators. Although the present discussion includes only a
particular case, it is intended as an illustration of the general
statement, namely, that the projection to the strong coupling
vacuum chooses one particular representation. This follows
from the fact that the interaction of the color currents

spontaneously breaks the symmetry between the σ and μ
vacua such that either σ’s or μ’s condense (they cannot
condense together). It is straightforward to check this for
the NJL model where the pointlike current-current inter-
action can be decoupled by the Hubbard-Stratonovich
transformation:

g
2
ðχaRχaLÞ2 → Δ2=2gþ iΔðχaRχaLÞ: ð22Þ

Then one can show that integration over the fermions
produces a double-well effective potential for Δ. In the
ground state the Z2 symmetry between the minima is
spontaneously broken. Now recall that the Ising model is
equivalent to massive Majorana fermion and the sign of the
mass determines which of the fields σ or μ condenses. We
suggest that the same mechanism works for QCD, which
differs from the NJL model only in that the interaction in
QCD is long range. The long-range character of the
interaction should only strengthen symmetry breaking.
We elaborate further on the projection argument. In the

limit of vanishing mass, the eigenstates of our theory are
tensor products of the states of the color and the flavor and
Uð1Þ sectors. The color and flavor states are created,
respectively, by Majorana fermions, Eqs. (18) and (19),
and their left-moving counterparts. As we have said, the
vacuum in the color sector is double degenerate. In one
vacuum, j0cσi, we have

hσ1cσ2cσ3ci ≠ 0; ð23Þ

while in the other, j0cμi,
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hμ1cμ2cμ3ci ≠ 0; ð24Þ

At T ¼ 0 the symmetry is spontaneously broken and we
have to project the mass term to one of the vacua, say j0cσi.
Suppose that vacuum of the theory is j0ci. Let then

jf; 0cσi ¼ f†1 � � � f†nj0i ⊗ j0cσi, with fþ being positive
momentum components of the flavor Majoranas (19), be
a shorthand notation for a flavor excitation above the
vacuum. If h0cσjσ1cσ2cσ3cj0cσi is nonzero then

hf; 0cσjðμ1Fμ2Fμ3FÞðμ3cμ1cμ2cÞjf0; 0cσi ¼ 0

hf; 0cσjðσ1Fσ2Fσ3FÞðσ3cσ1cσ2cÞjf0; 0cσi
¼ h0cσjσ1cσ2cσ3cj0cσihfjðσ1Fσ2Fσ3FÞjf0i ð25Þ

for states with arbitrary flavor excitations (i.e. f ≠ f0 ≠ 0)
above the color singlet vacuum. The projection to the color
singlet cuts from the mass term the single-valued field Ĝ
acting in the flavor sector with matrix elements between
different f and f0. Hence the mass term projected on this
ground state is

mðRþ
f;σLf;σ þ H:c:Þ → m̃

4π
ðei ffiffiπp

ΦUTrĜþ H:c:Þ; ð26Þ

where according to (21) TrĜ ¼ 2σ1Fσ2Fσ3F and
m̃ ∝ mhσ1cσ2cσ3ci.
The above example illustrates our point that local fields

emerge as a result of projection on the singlet ground state
of gapped quarks. From this derivation we conjecture that
for general Nc and Nf the strong coupling Lagrangian is
[41,42]

L ¼ 1

2
ð∂μΦUÞ2 þW½SUðNfÞNc

;G�

þ m̃
4π

∶ðei
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π=NcNf

p
ΦUTrGþ H:c:Þ∶ ; ð27Þ

where G is the spin-1=2 primary field of the SUNc
ðNfÞ

WZNW model. ∶∶ denotes normal ordering introduced in
such a way that the theory has a new ultraviolet cutoff
ΛQCD ∼ g. This means that the two-point correlation
function of the operator Oh;h̄ with conformal dimensions
ðh; h̄Þ is equal to

⟪Oðτ; xÞOð0; 0Þ⟫ ¼½ðτ − ixÞ�−2h½ðτ þ ixÞ�−2h̄; ð28Þ

with m̃ being the renormalized quark mass at the scale of
ΛQCD ∼ g:

m̃ ∼mreng
dþ 1

NcNf ; d ¼ Nc − 1=Nc

Nc þ Nf
; ð29Þ

with d being the scaling dimension of the SUðNcÞNf

WZNW matrix field.

III. MATTER AT NONZERO DENSITY

At nonzero chemical potential μ one may shift the Uð1Þ
field

ð4π=NcNfÞ1=2ΦU → 2k0xþ ð4π=NcNfÞ1=2ΦU: ð30Þ

so that μ ¼ NcNfk0. It is expected that the presence of the
oscillations makes the mass term irrelevant. In this case we
have a “strange” metal: both the charge and flavor excita-
tions are gapless, and all correlation functions of baryons
have a power-law decay, with nontrivial scaling exponents.
This is true for all values ofNf andNc for the standard QCD
Lagrangian. In Ref. [37], a generalized NJL model was
considered possessing a current-current interaction in the
Uð1Þ sector. In the presence of such an interaction, a fusion
of operators at second order in m̃ may generate quantities
where the oscillatory terms cancel and produce a relevant
perturbation proportional to TrΦadj, where Φadj is a WZNW
primary field in the adjoint representation of the flavor
symmetry group. This perturbation, in this more generalized
setting, gaps out the flavor sector, and the model’s ground
state is not a metal. We here however will not consider the
addition of this Uð1Þ current-current perturbation to the
theory.
In this section we will focus on describing the strange

metal that results at nonzero density. This metal has a
Luttinger liquid description described by the following
effective low-energy bosonic action:

Leff ¼
K̃ðμÞ
2

½vFðμÞ−1ð∂τΦÞ2 þ vFðμÞð∂xΦÞ2�: ð31Þ

This action depends only upon the Luttinger parameter,
K̃ðμÞ, and the Fermi velocity, vFðμÞ. In the following two
subsections, we determine these parameters as a function of
μ in two cases. First, for a single flavor, Nf ¼ 1, and an
arbitrary number of colors, Nc ≥ 2, where we have
recourse to exact methods. Second, in the case of arbitrary
flavors and colors, Nf;Nc ≥ 1, by using perturbative
methods appropriate for the case when μ far exceeds the
mass gap in the μ ¼ 0 theory. These two parameters
determine the low-energy behavior of correlation functions.
In the final subsection here we will give an example of this
in the specific case of Nc ¼ 3 and Nf ¼ 2.

A. The case of Nf = 1

We begin by determining K̃ðμÞ and vFðμÞ for Nf ¼ 1 as
this case allows for an exact treatment in strong coupling.
As was discussed in Sec. II A, the resulting low-energy
Lagrangian is a sine-Gordon model (15):

L ¼ 1

2

 
ð∂μΦUÞ2 −

m̃
2π

cos

 ffiffiffiffiffiffi
4π

Nc

s
ΦU þ 2k0x

!!
: ð32Þ
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This model is exactly solvable and provides insight into
more realistic cases. The spectrum of this model consists
of a soliton(s)/antisoliton(s̄) pair and n ¼ 1;…; 2Nc − 2
breathers. All of these excitations are color singlets. The
soliton and antisoliton carry �1 Uð1Þ charge and have
mass ms, while the breathers are Uð1Þ neutral and have
mass

mn ¼ 2ms sinðπnξ=2Þ; n¼ 1;…;2Nc− 2¼ ν− 2; ð33Þ

with ξ ¼ 1=ð2Nc − 1Þ. We first consider what happens to
these masses when μ > ms, answering the fundamental
question of what the ground state is of this model at finite
density. It turns out that it is metallic, as advertised,
consisting of a Fermi sea purely of solitons.
To describe what happens to the spectrum when

μ > ms, we employ the following set of thermodynamic
Bethe ansatz (TBA) equations. These equations describe
the energies, ϵs;s̄; ϵn of the different excitations. These
equations, as written below, presume that only the
solitons appear in the ground state. If at a given rapidity
θ, ϵðθÞ < 0, the particle appears in the ground state at zero
temperature. If ϵðθÞ > 0 then the particle is excluded from
the ground state. The basic idea is that we show these
equations are self-consistent, i.e. that if only solitons are
supposed to appear in the ground state then we find that
ϵs̄; ϵn are always positive. The TBA equations are given
by [49]

ϵsðθ; μÞ þ
Z

B

−B
Kssðθ − θ0Þϵsðθ0; μÞdθ0 ¼ ms cosh θ − μ;

ϵsðB; μÞ ¼ 0; ð34Þ

ϵs̄ðθ;μÞþ
ZB
−B

Ks̄sðθ− θ0Þϵsðθ0;μÞdθ0 ¼ms coshθþμ; ð35Þ

ϵnðθ; μÞ þ
ZB
−B

dθ0Knsðθ − θ0Þϵsðθ0; μÞ ¼ mn cosh θ; ð36Þ

KssðωÞ¼
sinh½ð1−1=ðν−1ÞÞπω=2�

2sinh½πω=ð2ðν−1ÞÞ�coshðπω=2Þ ;

KnsðωÞ¼
coth½πω=ð2ðν−1ÞÞ�sinh½πnω=ð2ðν−1ÞÞ�

coshðπω=2Þ : ð37Þ

Here ν≡ 2Nc and the rapidity θ parametrizes energy-
momentum (E/p) of a particle of mass, m, via

E ¼ m coshðθÞ; p ¼ m sinhðθÞ: ð38Þ

The parameter B determines the Fermi momentum
through kF ¼ ms sinhðBÞ—see Fig. 8 in Appendix C.
Note that kF is the dressed version of the “bare” Fermi

momentum, k0, introduced in (30). More details on the
TBA equations are presented in Appendix B. In the
above, KijðωÞ are the Fourier transforms of KijðθÞ with
respect to θ. The soliton mass can be related to m̃—see
Ref. [50]. When μ exceeds the soliton mass, the soliton
spectrum becomes gapless, while the spectral gaps of the
antisoliton and the breathers start to increase, as illus-
trated in Fig. 1 for Nc ¼ 1. This demonstrates that it is
only the soliton that appears in the ground state and that
interactions between the breathers and the Fermi sea of
solitons do not lead to the breathers themselves becoming
gapless.
Now that we have characterized the finite-density ground

state, let us turn to determining the Luttinger parameter, K̃,
and the Fermi velocity vF. The Luttinger parameter can be
extracted [51,52] by solving the equation for the so-called
dressed charge, ζðθÞ:

ζðθÞ þ
ZB
−B

Kssðθ − θ0Þζðθ0Þdθ0 ¼ 1: ð39Þ

The dressed charge measures the change in the charge of
the system when one soliton is added to the system while
keeping B fixed. The dressed charge is not unity as
interactions lead to some of the rapidities of solitons in
the Fermi sea exceeding B and so being expelled from the
ground state (in the sense of the grand canonical ensemble).
The Luttinger parameter is given in terms of the dressed
charge as follows:

K̃ðμÞ ¼ ζ2ðBÞ: ð40Þ

The numerical analysis of this equation is presented in
Appendix C. In the limit of large chemical potential we can
however write down the leading-order solution: at θ ¼ B:

FIG. 1. Spectral gaps of the soliton (S), antisoliton (S̄), and the
four breathers, B1…B4, vs the chemical potential. Here Nc ¼ 3,
Nf ¼ 1, calculated from Eqs. (34)–(37). The spectral gap of the
soliton is the mass minus the chemical potential, and vanishes
when μ ¼ ms.
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ζðBÞ ¼ ½1þKssðω ¼ 0Þ�−1=2 ¼ ðν=2Þ−1=2 ¼ N−1=2
c : ð41Þ

As the Fermi surface shrinks, so that B → 0, ζ approaches
unity as ζ ¼ 1 − 23=2Kssðθ ¼ 0Þδ1=2μ þOðδμÞ with δμ ¼
μ=ms − 1. In fact for any number of flavors, K̃ðμÞ → 1 as
the Fermi surface vanishes, B → 0.
With the relation BðμÞ in hand, it is then possible to

compute the Fermi velocity vF via

vF ¼ ∂ϵsðθ; μÞ
∂θ

				
θ¼B

1

2πρsðBÞ
; ð42Þ

where the rapidity density distribution function ρsðθÞ obeys
the same equation as Eq. (34), with the term ms cosh θ − μ
replaced by ð2πÞ−1ms cosh θ on the right-hand side. The
behavior of the Fermi velocity versus μ is plotted in Fig. 3:
it vanishes at threshold, when μ ¼ ϵs, and approaches unity
at asymptotically high density.
To summarize, for a single flavor, by projecting onto the

color singlet sector, we obtain an effective theory involving
only Uð1Þ fields, the sine-Gordon model of Eq. (32). At
zero chemical potential, all particles are massive: both the
baryons (i.e. solitons and antisolitons) and the mesons (the
breathers). At finite density, however, there is an interacting
Fermi sea composed solely of baryonic (solitonic) particles.
As we show in Sec. III C, this interacting Fermi sea leads to
correlation functions characterized by power laws which
are a function of the Luttinger parameter, K̃ðμÞ.

B. Perturbation theory in the mass

The problem for generalNf andNc is not integrable. The
presence of the mass term changes both the velocity of the
SUðNfÞ and Uð1Þ excitations as well as the Luttinger
parameter K̃ in theUð1Þ sector. Here we will however focus
on the Uð1Þ sector.
At high density, one can compute both K̃ and the velocity

of the Uð1Þ excitations, vF, by expanding in powers of the
mass. There are several ways to determine these parameters
using perturbation theory. We here focus on computing the
charge susceptibility, which is the Fourier transform,

χðq;ΩÞ ¼
Z

dx dt eiqxþiΩtχðx; tÞ; ð43Þ

of the two-point function of J0, the time component of the
Uð1Þ current,

χðx1 − x2; t1 − t2Þ ¼ iΘðt1 − t2Þh½J0ðx1; t1Þ; J0ðx2; t2Þ�i
ð44Þ

as given by the usual Kubo formula. It is easy to calculate
the susceptibility for imaginary frequencies using the
Lehmann spectral expansion, which can be written as a
τ-ordered product:

χðq;Ω ¼ iωÞ ¼
Z

∞

−∞
dxdτeiqxþiωτ

× T τfh0jJ0ðx; τÞJ0ð0; 0Þj0ig; ð45Þ

where J0ðx; τÞ≡ J0ðx; t ¼ −iτÞ.
Let us first recall the exact expression for the Uð1Þ

susceptibility in the effective theory Eq. (31). The bosonic
field of the effective theory admits the mode expansion

Φðx; tÞ ¼ Φ0 þ L−1Π0t

þ
ffiffiffiffiffiffi
vF

pffiffiffiffiffiffiffiffiffiffi
2LK̃

p
X
n≠0

1ffiffiffiffiffiffi
ωn

p ðaneiknx−iωnt þ a†ne−iknxþiωntÞ;

ð46Þ

where

kn ¼
2πn
L

; ωn ¼ vFjknj: ð47Þ

In the effective theory, the Uð1Þ current is given as

Jμðx; tÞ ¼ −
K̃ffiffiffi
π

p ϵμν∂νΦðx; tÞ; ð48Þ

which ensures that the corresponding charge operator has
unit weight on asymptotic states [53]. Differentiating with
respect to xi, performing the sum, and taking the limit
L → ∞, we obtain for the correlator

T τfh0jJ0ðx; τÞJ0ð0; 0Þj0i0g

¼ −
K̃
4π2

�
1

ðxþ ivF0τÞ2
þ 1

ðx − ivF0τÞ2
�
: ð49Þ

Straightforward integration then provides the Fourier trans-
form as

χðq; iωÞ ¼ vFK̃
π

q2

ω2 þ v2Fq
2
: ð50Þ

We expect that the above form of the susceptibility holds
for strong coupling, low-energy QCD as long as q ≪ 2kF.
The static susceptibility is given by the subsequent limits
limq→0 ðlimω→0 χðq;ωÞÞ:

χðω ¼ q ¼ 0Þ ¼ K̃ðμÞ
πvFðμÞ

: ð51Þ

We now turn to computing the same quantity in perturba-
tion theory in m̃ based on the undoped Hamiltonian (27).
By comparing the result, we will thus be able to derive an
expression for K̃ðμÞ and vFðμÞ in terms of m̃.
To proceed, we add a chemical potential to (27) and

compute the susceptibility to leading order in m̃2. For small
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q, ω, the expansion of the susceptibility is necessarily also
an expansion around μ ¼ ∞ and can be written as

χ ¼ χ0 þ χ1 þ…: ð52Þ

In the language of the undoped Hamiltonian, the Uð1Þ
current, written as Jundopedμ in order to distinguish it from the
current operator of the effective theory, is given by

Jundopedμ ðx; tÞ ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πNcNf
p ϵμν∂νΦUðx; tÞ; ð53Þ

where the mode expansion of the field ΦU has the same
structure as Φ in Eq. (46), with the substitutions
vF → 1, K̃ → 1.
With the current Jundoped, the zeroth-order term of the

susceptibility now takes the form

χðq; iωÞ0 ¼
1

NcNfπ

q2

ω2 þ q2:
ð54Þ

This form is valid for the system as μ → ∞. We thus
immediately see

K̃ðμ ¼ ∞Þ ¼ ðNcNfÞ−1;
vFðμ ¼ ∞Þ ¼ 1: ð55Þ

This generalizes our finding from Sec. III A that
K̃ðμ ¼ ∞Þ ¼ 1=Nc where Nf ¼ 1.
Let us now proceed to the first nonvanishing perturbative

correction. The Euclidean two-point function is formally
written as

hJ0ðxa; τaÞJ0ðxb; τbÞi ¼
hT τJ0ðxa; τaÞJ0ðxb; τbÞSi0

hSi0
; ð56Þ

where

S ¼
X∞
n¼0

ð−1Þn
n!

Z∞
−∞

…

Z∞
−∞

dτ1…dτn

× T τfVðτ1Þ…VðτnÞg; ð57Þ

and V is a shorthand for the mass term in Eq. (27) and T τ

refers to Euclidean time ordering.
To get the τ-ordered correlator, it is sufficient to compute

the expression where the arguments are already in order,
τ1 > τ2 > … > τn. Analytical continuation in the τ vari-
ables then automatically provides the τ-ordered quantity. In
the following, we will consider the following normalization
of the WZNW two-point function:

hGβ1
α1ðz; z̄ÞG−1α2

β2
ð0; 0Þi ¼ N−1

f δα2α1δ
β2
β1
ðzz̄Þ−2Δ; ð58Þ

where Δ is the chiral dimension of the SUNc
ðNfÞ WZNW

chiral field G,

Δ ¼ N2
f − 1

2NfðNc þ NfÞ
: ð59Þ

The normalization is chosen such that the two-point
function of trG is consistent with (28). Other normalization
choices would only affect the relation between m̃ and the
bare parameters, the quark mass m and the gauge coupling
g. The leading correction reads

hJ0ðxa;τaÞJ0ðxb;τbÞi1¼
1

2

�
m̃
4π

�
2 1

πNcNf

Z∞
−∞

Z∞
−∞

dτ1dτ2

Z∞
−∞

Z∞
−∞

dx1dx2ðz1− z2Þ−2Δðz̄1− z̄2Þ−2Δ

× h∂xϕðxa;τaÞ∂xϕðxb;τbÞðeiβϕðx1;τ1Þe−iβϕðx2;τ2Þe2ik0ðx1−x2Þ þe−iβϕðx1;τ1Þeiβϕðx2;τ2Þe−2ik0ðx1−x2ÞÞic; ð60Þ

where β ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π=ðNcNfÞ

p
, z1;2 ¼ τ1;2 − ix1;2 and the sub-

script c stands for the connected component of the
correlator.
The mass term is a relevant operator for all Nc and Nf.

For Nc ¼ 1, the dimension is 1 for any Nf as the level 1
WZNW model corresponds to free fermions. When
Nf > 1, the scaling dimension decreases with increasing
Nc and attendantly the perturbation becomes more relevant.
For a fixed Nc, the perturbation becomes less relevant by
increasing Nf. Since the perturbation is always strongly

relevant for Nc > 1, no ultraviolet divergences appear at
finite k0 at second order. The derivation of bosonic expect-
ation values of this type is given in Appendix D.
Introducing the parameter

α ¼
�
β2

4π
þ 2Δ

�
¼ 1þ NcNf

N2
c þ NcNf

; ð61Þ

our calculation gives
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χðq; iωÞ1 ¼ 2

�
m̃
4π

�
2

k−2þ2α
0

1

NcNf
β2

q2

ðq2 þ ω2Þ2
Γð1 − αÞ
ΓðαÞ

×



−1þ 1

2

��
ω2

ð2k0Þ2
þ
�
−1þ q

2k0

�
2
�−1þα

þ
�

ω2

ð2k0Þ2
þ
�
1þ q

2k0

�
2
�−1þα

��
: ð62Þ

The Luttinger parameter and the velocity can be obtained
separately by a careful examination of the q → 0, ω → 0

limits. First we formally expand the parameters K̃ and vF in
Eq. (50) with respect to a small parameter ϵ∶

K̃ ¼ K̃ðμ ¼ ∞Þ þ ϵK̃1 þ… ð63Þ

vF ¼ vF0 þ ϵvF1 þ… ð64Þ

defined as

ϵ ¼ k−4þ2α
0

�
m̃
4π

�
2 2πβ2

4

Γð1 − αÞ
ΓðαÞ : ð65Þ

It is convenient to focus our attention on the lines ω ¼ δq, δ
being a free parameter. In this case Eq. (50) becomes
independent of q. Implementing the same substitution to
the expansion Eqs. (52)–(54)–(62) and then expanding the
resulting expression around q ¼ 0, we can directly com-
pare the Oðq0Þ part of the latter with the effective theory
susceptibility Eq. (50). Performing the comparison order by
order in δ and solving the resulting system for K̃i and vFi,
i ¼ 0, 1, we obtain for the first-order corrections

K̃1 ¼ K̃ðμ ¼ ∞Þð−1þ αÞ2; ð66Þ

vF1 ¼ −vF0ð−1þ αÞð−2þ αÞ: ð67Þ

[the zeroth-order terms have already been given in
Eq. (55)]. Equations (63)–(67) hold for arbitrary Nc and
Nf. In the special case of a single flavor, they can be
compared directly to the TBA results, identifying the bare
coupling of conformal perturbation theory and using the
mass-coupling relation [50]:

�
m̃
4π

�
2

→μ2SG

¼
�
ms

ffiffiffi
π

p
2

Γð1
2
þ b2

2−2b2Þ
Γð b2

2−2b2Þ

�4−4b2� Γðb2Þ
πΓð1−b2Þ

�
2

; ð68Þ

where b2 ¼ 1=ð2NcÞ. This comparison is given in Fig. 2 for
the Luttinger parameter, and in Fig. 3 for the Fermi velocity.
The behavior of K̃ for Nf > 1 is shown in Fig. 4.

C. Baryonic correlation functions at finite density for
Nc = 3, Nf = 2

In this final part of this section, we write down the
elementary correlation functions of some of the baryons for
the particular case of Nc ¼ 3, Nf ¼ 2. The first step is to
identify the operators for the baryons. Following the same
logic as Ref. [37] these operators involve both the boson ϕ

FIG. 2. The Luttinger parameter K̃ as a function of μ, divided
by the soliton mass, for the model with Nf ¼ 1 and Nc ¼ 3. The
solid (red) curve is the result to leading order in perturbation
theory [Eq. (63)], the dotted (blue) curve from the solution of the
thermodynamic Bethe ansatz in Appendix C. The latter shows
that this is a Luttinger liquid for any μ > ms.

FIG. 3. The Fermi velocity, Eq. (42), vs the chemical
potential. The solid (red) curve is the result to leading order
in perturbation theory in the mass [Eq. (64)]; the dotted (blue)
curve from the solution of the thermodynamic Bethe ansatz in
Appendices B and C.
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of the low-energy effective Luttinger theory and operators
from the SUð2Þ3 WZNW model. For example, the nucleon
of spin-1=2 and the Δ-baryon of spin-3=2 have the
following form in the color singlet sector:

nαβγR ¼ ϵabcRaαRbβLcγ∼

× exp½i
ffiffiffiffiffiffiffiffiffiffi
2π=3

p
ð2φ − φ̄Þ�F ð1Þ

2=5F̄
ð1=2Þ
3=20 ;

Δαβγ
R ¼ ϵabcRaαRbβRcγ ∼ expð3i

ffiffiffiffiffiffiffiffiffiffi
2π=3

p
φÞF ð3=2Þ

3=4 : ð69Þ

Here F S
h are primary fields from the SUð2Þ3 WZNW

model of spin S and scaling dimension h. Both nR and ΔR
are right moving—their left-moving counterparts are just
given by exchanging Raα ↔ Laα. The scaling dimensions
of the operators in the Uð1Þ and flavor sector for the
nucleon are [37]

ðh; h̄Þc ¼
�
1

48
ð3

ffiffiffiffi
K̃

p
þ 1=

ffiffiffiffi
K̃

p
Þ2; 1

48
ð3

ffiffiffiffi
K̃

p
− 1=

ffiffiffiffi
K̃

p
Þ2
�
;

ðh; h̄Þf ¼ ð2=5; 3=20Þ; ð70Þ

while that of the Δ particle is

ðh; h̄Þc ¼
�
3

16
ð
ffiffiffiffi
K̃

p
þ 1=

ffiffiffiffi
K̃

p
Þ2; 3

16
ð
ffiffiffiffi
K̃

p
− 1=

ffiffiffiffi
K̃

p
Þ2
�
;

ðh; h̄Þf ¼ ð3=4; 0Þ: ð71Þ

One can see that the scaling dimensions of the fields are
determined by the Luttinger parameter, K̃ðμÞ, of the low-
energy bosonic theory.
The correlators for the baryons are like those for

Luttinger liquid with spin (i.e. they involve two velocities).
For example, the correlators for right-moving baryons are
given by (see Eq. (V.9) of Ref. [37]):

⟪nRðτ; xÞn†Rð0; 0Þ⟫ ¼ ZneikFx
�ðτvF þ ixÞðτvfl þ ixÞ
ðτvF − ixÞðτvfl − ixÞ

�
1=4
�

τ20
τ2 þ x2=v2F

�3
8

�
K̃þ 1

9K̃

��
τ20

τ2 þ x2=v2fl

�
11=20

; ð72Þ

hhΔRðτ; xÞΔ†
Rð0; 0Þ⟫ ¼ ZΔe3ikFx

�ðτvF þ ixÞðτvfl þ ixÞ
ðτvF − ixÞðτvfl − ixÞ

�
3=4
�

τ20
τ2 þ x2=v2F

�3
8

�
K̃þ1

K̃

��
τ20

τ2 þ x2=v2fl

�
3=4

; ð73Þ

where τ0 ∼ ϵ−1F , while Zn and ZΔ are dimensionful con-
stants depending on ϵF. The correlators for the left-moving
particles are obtained by replacing x → −x.
To obtain an idea on how the correlation function

appears in frequency-momentum space, we consider the
limit vF ¼ vfl In this limit, the retarded Green’s function
for the nucleons is

Gnðω; q� kFÞ ¼
Z

ω ∓ vFq

�ðωþ iδÞ2 − v2Fq
2

ϵ2F

�
η

;

η ¼ −1=5þ 1

8
ð
ffiffiffiffiffiffiffi
3K̃

p
þ 1=

ffiffiffiffiffiffiffi
3K̃

p
Þ2; ð74Þ

where δ is an infinitesimal parameter. The general form of
the correlation functions of the baryons remains the same

for any Nf, but the relation of the scaling dimensions to K̃
changes.
We end this section noting that at zero temperature these

correlation functions tell us something about instabilities to
bosonic condensation in the model. The way this happens
depends on the value of the chemical potential. An
indicator of the instability is provided by the T → 0
behavior of the susceptibilities corresponding to the cre-
ation of the bosons:

χ ¼
Z

1=T

0

dτ
Z

dxhT̂Oðτ; xÞOð0; 0Þi ∼ T−2þ2dO ; ð75Þ

whereO is the field creating a particular type of boson, and
dO is its scaling dimension. In case of the scalar meson,

FIG. 4. The relative Luttinger parameter K̃ðμÞ=K̃ð∞Þ, K̃ð∞Þ ¼
ðNcNfÞ−1 as a function of the dimensionless ratio μ=m̃1=ð2−αÞ, for
the models with Nc ¼ 3 and different values of Nf to leading
order in perturbation theory (63).
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dO ¼ 1
6K̃

þ 2Δ, where Δ was defined in Eq. (59). The

condition for the instability to occur is K̃ ≥ 5=21. In this
case we expect that a meson density wave forms. Similarly
there is an instability to deuteronic superconductivity when
K̃ ≤ 7=15 [37].
We contrast our results here for quarks transforming in

the fundamental with that of adjoint quarks considered in
Ref. [44]. For adjoint quarks, there are no color singlet
fermions; i.e. baryons. For fundamental quarks in ð1þ 1Þd,
there are baryons, but because their Green functions have
cuts, not poles, they are incoherent and do not represent
well-defined quasiparticles.

IV. FROM 1+ 1 TO 3+ 1 DIMENSIONS

In QCD, the behavior of the theory in the limit of low and
high density is reasonably well understood.

A. Nuclear matter

At low densities nuclear matter is strongly interacting,
but there is no evidence for non-Fermi liquid behavior. For
example, the shell model provides an excellent description
of nuclei, and there the relevant quasiparticles are certainly
nucleons, up to the largest nuclei probed. This is also
expected theoretically in infinite nuclear matter: while
pions are massless in the chiral limit, they only couple
to nucleons through derivative interactions, which do not
generate the infrared divergences required for a non-Fermi
liquid [54]. Of course there is also superfluidity and
superconductivity for dense nucleons, but that is natural
in a Fermi liquid in the attractive channels.

B. Perturbative regime

In the opposite limit of high density, by asymptotic
freedom perturbation theory in the QCD coupling, g,
applies. The dominant effect is the screening of electric
gluons through a Debye mass, which cuts off any confine-
ment through the exchange of electric gluons. For quarks
near the Fermi surface, there is also a gap due to color
superconductivity, but this is exponentially small in 1=

ffiffiffiffiffi
g2

p
[55]. A careful analysis shows that the perturbative regime
does exhibit non-Fermi liquid behavior, but for any
reasonable range of coupling, the effects are small [56–64].
As an approximate rule of thumb, we can assume that the

perturbative regime is entered when the chemical potential,
which for on-shell massless quarks is the magnitude of the
spatial momentum, is large enough such that perturbative
methods can be used. In vacuum, certainly perturbation
theory, resummed or not, is not useful below momenta of
1 GeV. Thus the perturbative regime cannot set in before a
quark chemical potential of μpert ≈ 1 GeV. Of course this is
a hand-waving argument, and could well be off by a factor
of 2. However, heroic computations of the thermodynamic
potential to four-loop order, ∼g6, indicate that the this is a

reasonable estimate of the quark chemical potential at
which the perturbative regime sets in [9–17].
What is not obvious is the behavior of magnetic gluons

in the perturbative regime. At nonzero temperature, and
zero density, this is an old story [65,66]. At very high
temperatures, static electric fields are screened by a Debye
mass mD ∼

ffiffiffiffiffi
g2

p
T. Loop diagrams bring in factors of

mD=T, and so at T ≠ 0 the perturbative expansion is a
power series not in g2, but in

ffiffiffiffiffi
g2

p
. This first enters the free

energy at ∼ð
ffiffiffiffiffi
g2

p
Þ3.

Since for bosonic fields the timelike component of the
(Euclidean) momentum at T ≠ 0 is an integral multiple of
2πT, we can naturally divide the theory into nonstatic
momenta, with p0 ∼ 2πT ≠ 0, and static momenta, with
p0 ¼ 0. The fermions can then immediately be dropped, as
the timelike component of their (Euclidean) momentum is
always an odd multiple of πT. This leaves only the
interactions of static magnetic fields without quarks, or a
pure SU(N) gauge theory in three dimensions, for which
the coupling constant is g23 ¼ g2T [67,68]. Since this has
dimensions of mass, perturbation theory is an expansion
in g23=p ¼ g2T=p, where p is a characteristic (spatial)
momentum of a given diagram. Thus perturbative methods
are useless to analyze the infrared limit. Even so, as g23 is the
only mass scale in the problem, and as a non-Abelian,
superrenormalizable gauge theory, the theory should con-
fine, with a mass gap proportional to the only mass scale in
the problem, which is ∼g23. This is well confirmed by
numerical simulations on the lattice, and enters into the
pressure at ∼g6 [69–72].
Now consider the theory at zero temperature and nonzero

chemical potential. First, there is no reason to separate out
static momenta. As a theory in four dimensions, the
timelike component of the momenta, for either boson or
fermion fields, is continuous, and can be as small as the
spatial momenta. There is Debye screening of electric
fields, with a Debye massmD ∼ gμ. While this causes some
delicacy in computing the free energy to high order [9–17],
as in the vacuum, at μ ≠ 0 perturbation theory remains an
expansion in powers of g2, and not in

ffiffiffiffiffi
g2

p
. Because of the

logarithmic infrared divergences in four dimensions, the
powers of g2 are multiplied by powers of logarithms of
logðm2

D=μ
2Þ ∼ logðg2Þ, but this is very familiar at zero

temperature.
The interesting question is then what happens to magnetic

gluons in cold, dense quark matter? The effective theory has
three components. First, there are electric gluons, which are
screened by the Debye mass mD. Second, there are quarks,
which (massless or not) develop a small gap about the Fermi
surface from color superconductivity. Lastly, there are the
magnetic gluons, which by gauge invariance remain mass-
less order by order in perturbation theory. Magnetic gluons
do have logarithmic infrared divergences perturbatively, but
these are very mild,∼g2 logðp2Þ and∼g2 logðg2Þ. Even so, it
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is inconceivable that the magnetic fields remain ungapped:
as in vacuum, surely over large distances a magnetic mass
gap is generated nonperturbatively.
The interesting question is then: What is the ratio of the

mass gap for magnetic gluons to that for electric gluons?
The former is nonperturbative, while the latter appears at
one-loop order. We assume that in all cases the “masses”
are defined in a gauge-invariant manner, such as from the
falloff of two-point functions between gauge-invariant
operators.

C. Quarkyonic regime

As the quark chemical potential μ increases, we then
have the following regimes:

(i) μ0: Where a quark chemical potential first matters,
determined kinematically from the condition
μ0 ¼ mB=Nc, where mB is the light baryon.

(ii) μQc > μ > μ0: A strongly interacting Fermi liquid of
nucleons.

(iii) μpert > μ > μQc: The quarkyonic regime, where the
free energy is (approximately) that of (interacting)
quarks, but the excitations near the Fermi surface are
confined.

(iv) μ > μpert: The perturbative regime, where electric
fields are Debye screened and confinement is lost.
Consequently, the value of the Polyakov loop must
be near unity. Quarks near the Fermi surface receive
a small gap from color superconductivity. It is a non-
Fermi liquid, but these effects are mild [56–64].
Magnetic fields are screened nonperturbatively, with
the ratio of that mass scale, to the Debye mass,
unclear.

We begin by reviewing how the quarkyonic regime can
be analyzed by power counting in (fractional) powers of Nc
at large Nc [18]. Then we review recent results from
numerical simulations on the lattice for two colors [73–95].
By using both methods, we can obtain some guide to the
nature of cold, dense QCD, with three colors, and three
light flavors.
Given our analysis in 1þ 1 dimensions, one of the central

questions is where a non-Fermi liquid emerges. One sign of
this is the behavior of the specific heat, which is linear in the
temperature as T → 0, CðTÞ ∼ T, but in a non-Fermi liquid,
CðTÞ ∼ T logðTÞ. Of course picking out a logarithm from
under a power is always challenging.
Another way to look for the existence of a non-Fermi

liquid is to measure the nature of the quark quasiparticles
near the putative Fermi surface. In a Fermi liquid, the width
of the quasiparticle is much less than the energy, while in a
non-Fermi liquid, the width of the quasiparticle is compa-
rable to the energy. Measuring these quantities in a theory
with a local gauge symmetry requires developing gauge-
invariant probes. The simplest way is to tie two quarks
together with a Wilson line [96], and introduce

Gabðx; yÞ ¼
Z

q̄iaL ðxÞP exp

�
ig
Z

x

y
AμðzÞdz

�
ij

qðyÞjbR ;

ð76Þ

where qL and qR are left- and right-handed quarks, i and j
refer to SUðNcÞ color, a and b are flavor indices, and P is
path ordering (with the simplest choice a straight line
between x and y).
These quantities are in principle measurable through

numerical simulations on the lattice, the functional renorm-
alization group [97], etc.
For three colors, cold, dense QCD can only be studied on

the lattice with the quantum computers of the future. This is
not true for two colors, where standard Monte Carlo
techniques can be used [73–95,98]. However, while the
physics of two colors is in some ways very different from
that for an odd number of colors, it is still possible to ask if a
quarkyonic regime arises in the first place.
In all of this we have completely ignored the chiral

transition. Unlike the case of zero chemical potential and
nonzero temperature, where chiral symmetry restoration
occurs well before deconfinement, the situation is reversed
at low temperature and large chemical potential. Moving up
from the hadronic regime, this is expected to involve the
production of a moat regime [35], quantum pion liquids
[31,34,99], a critical endpoint [100], and probably many
other phenomena, which can be probed experimentally,
both in heavy ion collisions at low energy [35], and in
neutron stars [31].

1. Large Nc

At least abstractly, the limit of largeNc is especially clean
to study [18]. We assume that the number of colors is much
larger than the number of flavors, Nc ≫ Nf, but keep the
factors of Nf to understand the generalization to small Nc.
We compare powers of the quark chemical potential μ

versus the renormalization mass scale of QCD, which for
three flavors is ΛMS ∼ 340 MeV. We shall estimate factors
of Nc (and Nf) assuming that ΛMS is about the transition
temperature for the restoration of chiral symmetry, which is
Tχ ≈ 154 MeV. Thus at the outset, our estimates are only
good, at best, to a factor of 2. This emphasizes the utility of
lattice simulations for two colors in Sec. IV C 2.
At zero chemical potential, in the hadronic phase mesons

are weakly interacting, with a pressure of order 1. In the
deconfined phase, above a temperature Td, the pressure is
of order ∼N2

c from gluons, and ∼NcNf from quarks. It is
natural to expect that the deconfining transition is of first
order, with a latent heat ∼N2

c, and this is confirmed by
lattice simulations [101,102]. Further, deconfinement is
expected to trigger the restoration of chiral symmetry at a
temperature Tχ , since for Nc ≫ Nf and μ ¼ 0 the dynam-
ics is driven by gluons.
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The chemical potential does not matter until μ > μ0,
when a Fermi sea of baryons can first form. Even though
the baryons are strongly interacting, because they are
heavy, with a mass ∼Nc, the window in which baryons
form is narrow, with μQc − μ0 ∼ 1=N2

c, Eq. (6) of Ref. [18].
Thus as μ increases from μ0, we quickly enter the

quarkyonic regime. Consider first chemical potentials
which are a number of order 1 times μ0. Trivially, the
temperature for the deconfining transition, TdðμÞ,¼ Tdð0Þ,
as when μ < μ0 a Fermi sphere cannot form. This remains
true when μ is a number of order 1 times μ0, since the
contribution of quarks to the free energy is suppressed by a
factor of ∼Nf=Nc.
This is not true for the restoration of chiral symmetry.

Baryons interact strongly with mesons, and can thereby
restore the chiral symmetry. There is another mechanism
which is special to μ ≠ 0. In nuclear matter, the existence
of spatially inhomogeneous condensates is familiar, as
pion/kaon condensates [103–106]. For such condensates,
a one-dimensional structure forms, and spontaneously
breaks both the rotational and flavor symmetries.
Although hq̄LðxÞqRðxÞi is nonzero locally, it averages
to zero as it winds, periodically, along the direction of the
condensate. To establish a uniformity of notation, we
refer to these as pion/kaon chiral spirals. A pion chiral
spiral rotates between, e.g. the σ and π3 directions, with
σðxÞ2 þ π23ðxÞ ¼ f2π . A more complicated kaon chiral
spiral, involving all three flavor directions, can also
emerge at high density [105,106]. Even at lower den-
sities, though, a kaon chiral kink can develop; for such a
condensate, hs̄ðxÞsðxÞi is nonzero locally, but again
averages to zero along the direction of the kaon chi-
ral kink.
We denote the temperature and chemical potential at

which the chiral symmetry is restored as μχðTÞ. In contrast
to Fig. 1 of Ref. [18], though, it is not necessary that
μχðTdÞ ¼ μ0, up to corrections of order ∼1=N2

c, only that
μχðTχÞ is within μ0 by a number of order 1.
In the region where μ ∼ 1, although the free energy is

quarkyonic, the quasiparticles are uniformly confined.
Thus it is appropriate to speak of hadronic chiral spirals,
which are best described as a condensate of mesonic fields.
Now let us consider chemical potentials which grow as a

fractional power of Nc. To estimate, we assume for the sake
of power counting that in the free energy, T ∼ Tχ . Then the
gluon contribution, ∼N2

cT4
χ , balances the quark contribu-

tion, ∼NcNfμ
4, when μπq ∼ ðNc=NfÞ1=4Tχ . For this range,

since the contribution of quarks to the free energy is as large
as that of the gluons, we suggest that one goes from a region
dominated by hadronic chiral spirals, to one dominated by
quark chiral spirals [21,31,33–35,99]. We call them quark,
and not quarkyonic, chiral spirals, because both the
hadronic and quark chiral spirals occur in the quarkyonic
regime.

Thus there are two regimes in quarkyonic matter:
(i) Hadronic (pion/kaon) chiral spirals from μ∶μQc →

μπq ∼ ðNc=NfÞ1=4Tχ ;
(ii) Quark chiral spirals for μ∶μπq → μpert.
This refines previous analysis in Refs. [18,21,33], where

the transition between the two types of chiral spirals was
not made precise. We stress that there is no phase transition
between the region with hadronic chiral spirals and quark
chiral spirals; it is just that in each regime, it is more useful
to use one description than the other.
To understand what occurs as μ increases further,

consider the Debye mass to leading order in perturbation
theory:

m2
D ¼ g2

��
Nc þ

Nf

2

�
T2

3
þ Nf

μ2

2π2

�
: ð77Þ

When μ ∼ ðNc=NfÞ1=2Tχ , the quark contribution to the
Debye mass is as large as that of the gluons. This is the
perturbative regime, where the screening of electric gluons
removes confinement.
It is not evident how to connect this counting powers of

Nc=Nf to real scales in QCD. From perturbative compu-
tations in QCD [9–17], for three colors perturbation theory
is valid for μ > μpert ∼ 1 GeV. It is difficult to believe
that this scale, μpert, is very sensitive to either Nc or Nf.
In nuclear matter μ0 ∼ 300 MeV. The large Nc expansion
predicts that a quarkyonic regime appears at
μQc ¼ μ0 þOðN2

f=N
2
cÞ, that one goes from a regime of

hadronic chiral spirals, to one of quark chiral spirals, at
μH-Qc ∼ ðNc=NfÞ1=4μ0, and lastly, a perturbative regime
for μpert ∼ ðNc=NfÞ1=2Tχ.
How does this apply to QCD, where Nc ¼ Nf ¼ 3?

2. Two colors

Because the eigenvalues of the quark determinant are
complex for more than two colors, numerical simulations
of lattice QCD cannot be carried out with standard
Monte Carlo techniques. This is not true for two colors,
where the quarks lie in a real representation of the gauge
group and the eigenvalues of the quark determinant are real.
Two colors are in some ways rather different from three.

Principally, baryons are composed of two quarks, and so
are bosons. Thus for two colors, the hadronic regime
exhibits Bose-Einstein condensation of the bosonic bary-
ons, instead of a Fermi sea. The behavior about the
chemical potential where a Bose-Einstein condensate first
forms, μ0 ¼ mπ=2, can be computed in chiral perturbation
theory [107–109].
We summarize some results from lattice studies of

QC2D with two flavors. This includes groups from
Russia, Refs. [83,84,86,89,92–94,98] and Japan, Refs.
[87,90,91,95].
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In Ref. [98], mπ ∼ 380 MeV, so μ0 ∼ 190 MeV. For
μ∶190 → 350 MeV, nuclear matter is a dilute baryon gas,
and the value of the diquark condensate agrees with chiral
perturbation theory. For higher density, one enters a regime
of dense baryons.
In Refs. [84,110], heavier pions were used, with

mπ ∼ 740 MeV, and μ0 ¼ 370 MeV. Chiral perturbation
theory is useful to describe the diquark condensate for
μ∶μ0 → μQc, where μQc ∼ 540 MeV; for μ > μQc, the
diquark density exceeds the value expected from chiral
perturbation theory, computed at lowest order.
The renormalized Polyakov loop is a monotonically

increasing function of μ, but even by μ ∼ 1 GeV, it is only
∼1=3 its value at the highest μ which was probed,
μ ∼ 2 GeV. This suggests that μpert ∼ 1 GeV. This is also
confirmed by measurements of the Debye mass, for which
mD=μ is approximately constant from μ∶1 → 2 GeV,
Figs. 12–14 of Ref. [84]. From Ref. [110], a Fermi sphere
forms above μ ∼ 900 MeV, with diquarks forming as
expected from color superconductivity.
(Incidentally, in Fig. 8 of Ref. [110], the topological

susceptibility varies very slowly as μ increases, and is still
≈75% of its value in vacuum when μ ¼ μpert. See also
Fig. 13 of Ref. [87], where qualitatively similar results are
found. This agrees with the analysis of Ref. [111]. There,
the relative factors of Nc and Nf in the expression for the
Debye mass in Eq. (77) suggest that the topological
susceptibility varies much more slowly with μ than it does
with T.)
It is worth contrasting the results for two colors with the

qualitative estimates for Nc ¼ ∞. First, for two colors, the
regime of nuclear matter is rather broad, as μQc ≈ 1.5μ0.
Second, as indicated by naive expectation, again μpert is
≈1 GeV. In between lies dense quark matter, which we can
hopefully term quarkyonic.
More detailed questions await further study. It is not

clear that hadronic chiral spirals will win over Bose-
Einstein condensation at low density, or if quark chiral
spirals emerge in the quarkyonic phase. Determining the
appearance of quark chiral spirals is challenging, as is
determining if the quarkyonic regime is a non-Fermi liquid.
Both would be useful to study.
One quantity which the lattice has studied is the ratio of

the electric to magnetic masses. In Ref. [89], the electric
and magnetic propagators were fit to forms suggested by
solutions of the Schwinger-Dyson equations. These
gauge-variant results find that the electric mass is uni-
formly heavier than the magnetic. This does not coincide
with our expectation that the quarkyonic regime is
confining.
Building upon previous analysis in Refs. [87,90,91],

however, Ref. [95] studied the profile of the color flux tube.
They find that even in high-density superfluid phase, which
we term quarkyonic, that the color electric field is squeezed
into a flux tube, as it is in the hadronic phase, for chemical

potentials as large as μ ∼ 840 MeV.1 This, along with the
measurements of the renormalized Polyakov loop, confirms
that it is reasonable to assume that electric fields are
confined in the quarkyonic phase, for μQc < μ < μpert.
Thus simulations for Nc ¼ Nf ¼ 2 are essential to

demonstrate that the estimates for large Nc, with
Nc ≫ Nf, are a reasonable guide to QCD, where
Nc ¼ Nf ¼ 3.

D. Quark chiral spirals

To describe quark chiral spirals, we start with the
Gribov-Zwanziger form of the electric propagator,

Δ00ðpÞ ¼
σ

ðp2Þ2 : ð78Þ

Assuming that we can integrate over the two spatially
transverse directions gives a gluon propagator in 1þ 1
dimensions,Z

d2p⊥
σ

ðp2
0 þ p2

z þ p2⊥Þ2
¼ σ

p2
0 þ p2

z
: ð79Þ

We shall use this expression to give a qualitative estimate of
various quantities below. We note that explicit solutions of
the Schwinger-Dyson and functional renormalization
group equations find a more complicated form for the
gluon propagator [97]. Nevertheless, this expression is
useful to give a rough estimate. Assume that one is in the
regime of quark chiral spirals, μ∶μπq → μpert. Following
Refs. [21,33], the confinement scale in 3þ 1 dimensions is
proportional to the square root of the string tension,∼

ffiffiffi
σ

p
. If

μ ≫
ffiffiffi
σ

p
∼ μ0, then it is natural that the Fermi sphere breaks

up into a series of patches, with a weak coupling between
different patches. The condensate of density waves are
described by vectors Qa, where the Fermi surface is then
covered by these patches, with a ¼ 1; 2…N . In momen-
tum space at the edge of the Fermi sphere, the area of each
patch is ∼σ=vF, where vF is the Fermi velocity. Thus the
number of patches is N ∼ k2F=σ.
In the regime of quark chiral spirals, kF ∼ μ ≥

ðNc=NfÞ1=4μ0, and so the number of patches is large,
N ∼ ðNc=NfÞ1=2. The dynamics in a single patch is
illustrated in Fig. 5, where for the purposes of illustration
we have exaggerated the size of the patch, as the figure
only applies to the regime where there are many patches,
N ≫ 1. In Eqs. (11) and (17)–(19) of Ref. [33], the
corresponding slow order parameter fields for the density
waves are quasi-one-dimensional modifications of those
(1þ 1) dimensional QCD, as described in the previous
sections. Below we elaborate on the effects of these
modifications.

1E. Itou, private communication.
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The case of three pairs of patches is shown in Fig. 6, and
illustrates what happens with hadronic (pion/kaon) chiral
spirals, in the range μ∶μQc → μπq.
Each pair of patches has its own set of fields; a scalarUð1Þ

and a matrix SUð2NfÞ field G−Q ¼ Gþ
Q. To distinguish

them we have to assign to each field a subscript Q, with the
2Nf for an enlarged spin-flavor symmetry. Since wave
vectors of the density waves in different patches are not
parallel to one another, the direct coupling of the GQ

complex matrix fields with different Q is suppressed, at

least at large N . However, inside a given patch the
excitations have a transverse dispersion which makes the
(3þ 1)-dimensional case somewhat different from that in
(1þ 1) dimensions. The energies of the meson fields depend
upon the momenta transverse to the wave vector of their
patch Qa, where jQaj ≈ 2kF. As for smectic liquid crystals,
the stiffness in the direction transverse toQ vanishes, and the
dispersion relation is anisotropic. The action for each pair
is the Uð1Þ × SUNc

ð2NfÞ WZNW model, augmented by a
term which depends upon the transverse momenta:

−
αvF

ð2kFÞ−4
TrðGþ

Q½Q × ∇�2GQÞ2; ð80Þ

where α is a numerical coefficient. Linearizing the fluctua-
tions of G, the mesonic modes have the dispersion relation

ωQðqÞ2 ¼ ðvF=2kFÞ2f½Q · ðq−QÞ�2þα½ðQ×qÞ2�2=4k2Fg:
ð81Þ

The transverse fluctuations introduce a new energy scale, as
the width of the fluctuations in the transverse direction,
W ∼ σ=kF ∼ kF=N . This scale marks a crossover from the
ð1þ 1Þd -dimensional regime to one where where trans-
verse fluctuations are important. The separation of Uð1Þ
charge and spin-flavor holds above the crossover scale W,
where the composite description of Eq. (69) apply. The
baryons are incoherent for energies above W, and coherent
for those below. Below W, the transverse fluctuations enter,
and one cannot directly apply the bosonization formulas
to calculate baryon correlation functions. A reasonable
assumption is that since the spectrum of the fundamental
excitations, which are mesons, is gapped everywhere except
at the discrete set of points in momentum space, the baryons
lack an extended Fermi surface.
The vanishing of the Fermi surface affects the thermo-

dynamics for temperatures T ∼W. At temperatures above
∼W the system is a Luttinger liquid, with the specific heat
linear in temperature ∼T=ϵF.
At temperatures below ∼W, the specific heat is

∼T2ðN =ϵFÞ. To get a more detailed description of the
crossover we treat the size of the patch as a rigid cutoff for
the transverse momentum, and normalize behavior for T ≫
W to the asymptotic form for the specific heat for a
conformal field theory. In this case, it is for a Uð1Þ ×
SUNc

ð2NfÞ WZNW model, where the central charge is
C ¼ 1þ Ncð4N2

F − 1Þ=ð2Nf þ NcÞ. Then the temperature
dependence of the specific heat is given by the formula

Cv=T ¼ 2k3FCγðT=W; αÞ;

γðt; αÞ ¼ t
Z

∞

0

dx
Z

1=t

0

dy
ðx2 þ αy2Þ

sinh2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ αy2

p
=2Þ

; ð82Þ

where the function γðt; 1Þ is depicted in Fig. 7.

FIG. 5. Due to the singular character of the interaction, quarks
at the Fermi surface scatter back and forth inside patches of a
particular size.

FIG. 6. The contour plots of the meson spectrum Eq. (81)
for the smallest possible number of patches, six, for a cubic
arrangement of density waves. We set α ¼ 1, with the axes wave
vectors qx;y;z=2kF.
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The softness of the transverse dispersion strengthens the
thermal fluctuations preventing the development of any
kind of long-range order at finite temperature. The non-
Fermi liquid is a critical state and is incompatible with long-
range order. Formally the destruction of the long-range
order is related to the divergence of the integral,

T
X
n

Z
dqkd2q⊥

ð2πTnÞ2 þω2ðqÞ ¼
Z

dqkd2q⊥
2ωðqÞ coth½ωðqÞ=2T�;

measuring the relative fluctuations of the order parameter
fields. This integral converges at T ¼ 0 and logarithmically
diverges at nonzero temperature when it is dominated by
the n ¼ 0 Matsubara frequency:

T
Z

dqkd2q⊥
q2k þ αq4⊥=4k2F

: ð83Þ

In Ref. [33] we argued that at finite T the Abelian sector of
the theory remains critical with temperature-dependent
power-law correlations, but the non-Abelian flavor fluctu-
ations acquire a correlation length exponentially large in
1=T. This difference is related to the fact that the low-
energy theory for the Abelian sector is Gaussian, but the
non-Abelian sector is described by the nonlinear sigma
model where the interactions generate a finite correlation
length.
We comment that if the condensate arises from a moat

spectrum, then the correlation lengths of the non-Abelian
fields remain finite at zero temperature [31]. This correlation
length is exponentially large in the coupling constant, and
implicitly we assume that this correlation length is larger
than all scales above. Even if this scale is commensurate with
those above, the results do not change qualitatively.

E. Neutrino emission

Most properties of cold quark matter are difficult to
observe directly. Because neutron stars are transparent to

neutrinos, neutrino emission can be inferred, albeit indi-
rectly, by the cooling of neutron stars [112–118].
In pion/kaon condensates, it is known that effective

quasiparticles enhance neutrino emission, through their
decay into a quasiparticle neutron-proton pair [112–117].
As discussed in the previous section, there are strong
similarities between pion/kaon condensates and the con-
densates in the quarkyonic phase.
Thus it is natural to expect that neutrino emission is

similarly enhanced in the quarkyonic phase [36].
Fluctuations of the WZNW matrix fields decay into a
virtual nucleon pair, and thereby through the weak
interaction into a lepton neutrino pair [119]:

LW ∼ igW
X
Q

½ēðQ · γÞð1 − γ5Þνe þ μ̄ðQ · γÞð1 − γ5Þvμ�

× ðTrðGþQ · ∇Gτ̂þÞÞ þ H:c:; ð84Þ
where G is the SUð2Þ flavor WZNW matrix field for a
given patch vector Q, γ are Dirac gamma matrices with
spacelike indices, and τ̂þ is the Pauli matrix acting on
flavor indices of G [33] (we dropped the subscript Q).
The neutrino emissivity is

Eν ¼ 2

Z
d3pν

ð2πÞ3 pν
∂
∂t fνðt;pÞ; ð85Þ

where fν is the neutrino distribution function. Following
Ref. [118],

Eν ∼ μeρðϵFÞT6g2sðTÞ; ð86Þ
where μe is the chemical potential of the electrons, ρðϵFÞ is
the quark density of states and gsðTÞ is the running coupling
constant. Since ρðϵFÞ is proportional to the specific heat, we
can write

Eν ∼ μe

�∂S
∂T
�
T6g2sðTÞ; ð87Þ

where S is the entropy. Substituting this into the equation
∂F
∂t ¼ −EνðTÞ, where F is the free energy per unit volume,
we obtain the equation for the temperature as a function of
time:

∂T
∂t ¼ −Aμe

�∂ lnS
∂T

�
T6g2sðTÞ; ð88Þ

where A is a temperature-independent proportionality
coefficient.
For ϵF > T > W ∼ ϵF=N , the density of states is con-

stant, while at lower temperatures we replace ρðϵFÞ by T=W.
The right-hand side of Eq. (88) contains ln S ∼ n lnT, where
n ¼ 1 for T ≫ W and n ¼ 2 for T ≪ W. The temperature
dependence of the strong coupling constant gsðTÞ can be
neglected, as that is only logarithmic. So approximately,

FIG. 7. The specific heat divided by temperature, γðt; αÞ in
Eq. (82), for α ¼ 0, 5, 1, 2, as a function of t ¼ T=W.
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T ¼ T0

ð1þ t=τÞ1=4 ; 1=τ ∼ nT4
0g

2ðT0Þμe: ð89Þ

where T0 is the temperature at time t ¼ 0. The same time
dependence is found with weakly interacting quarks, the
only difference being the overall numerical coefficient in
front. This difference, however, is important, and it would be
well worth studying in detail.

V. CONCLUSIONS

In this paper we considered the strange-metal phase of
QCD in (1þ 1) dimensions, and explored the conse-
quences for quarkyonic matter in (3þ 1) dimensions. In
1þ 1 dimensions a strange metal exists above a given
quark density; it is a critical phase, where nucleon exci-
tations are incoherent and essentially a Tomonaga-
Luttinger liquid. In (3þ 1) dimensions the low-energy
theory remains very similar, as it remains a nonlinear sigma
model for the collective mesonic modes, with the baryons
topological excitations of the meson field. The spectrum of
the mesons is highly anisotropic, and is very soft in the
direction tangential to the Fermi surface. This introduces an
extra energy scale related to the crossover from the regime
of one-dimensional fluctuations at high energy, to the
regime of anisotropic three-dimensional fluctuations at
low energies. Above this energy scale the Luttinger liquid
description of the quarkyonic state remains valid and the
nucleons are incoherent. We have not been able to
determine whether fermionic quasiparticles exist at lowest
energies. We also explored the consequences for neutrino
emission from neutron stars.
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APPENDIX A: FACTS ABOUT QUANTUM ISING
MODEL

The quantum Ising model on a lattice is defined as

H ¼ −
X
n

ðJσxnσxnþ1 − hσznÞ; ðA1Þ

where σa are the Pauli matrices. It allows a self-dual
representation in terms of other Pauli matrix operators
defined on the dual lattice,

μznþ1=2 ¼ σxnσ
x
nþ1; μxnþ1=2 ¼

Yn
j¼1

σzj; ðA2Þ

so that

H ¼ −
X
n

ðJμznþ1=2 − hμxnþ1=2μ
x
n−1=2Þ: ðA3Þ

It is obvious that at J ≫ h the ground state of (A1) is such
that hσxi ≠ 0 and at J ≪ h the ground state of (A2) is such
that hμxi ≠ 0. Since σx and μx cannot order simultaneously,
we conclude that the point J ¼ h is critical separating two
phases of model (A1).
Using the Jordan-Wigner transformation, one can trans-

form (A1) into a Hamiltonian of noninteracting Majorana
fermions ρn, ηn with anticommutation relations

fρn; ρmg ¼ fηn; ηmg ¼ δnm; fρn; ηmg ¼ 0; ðA4Þ

i.e.

H ¼ i
X
n

ðJρnηnþ1 − hρnηnÞ: ðA5Þ

As far as applications to quantum field theory are con-
cerned, we need to pass to the continuum limit via defining
n ¼ x=a0 with a0 → 0 the lattice spacing or, alternatively,
momentum cutoff. The continuum limit of σx and μx

operators become the order and disorder fields σðxÞ and
μðxÞ. The continuum limit of the Majoranas is related to the
chiral fields used in the main text as

1

a0
ρn → χR þ χL;

1

a0
ηn → χR − χL: ðA6Þ

At the critical point, J ¼ h, the fields σ, μ are primary fields
with conformal dimensions ð1=16; 1=16Þ. The right- and
left-moving Majorana fields have conformal dimensions
ð1=2; 0Þ and ð0; 1=2Þ, respectively.
Since two species of real Majorana fermions form a

complex Dirac fermion which in turn can be bosonized and
described by the Gaussian model of a bosonic field Φ, one
can establish a correspondence between σ, μ and the
bosonic field. This correspondence was first given by
Itzykson and Zuber as [120]

μ1μ2 ∼ cosð ffiffiffi
π

p
ΦÞ; σ1σ2 ∼ sinð ffiffiffi

π
p

ΦÞ;
σ1μ2 ∼ cosð ffiffiffi

π
p

ΘÞ; μ1σ2 ∼ sinð ffiffiffi
π

p
ΘÞ; ðA7Þ

where Θ ¼ φ − φ̄ is a field dual to Φ. These are the
identities that we use in the main text.
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As is shown in the main text, the color and flavor sectors
in the model with Nc ¼ Nf ¼ 2 are described by six
Majorana fermions which naturally split into two groups
of three. The interaction of the color currents includes three
Majorana fermions corresponding to three critical Ising
models. The interaction leads to a spontaneous breaking of
the ½Z2�3 symmetry in the color sector generating vacuum
averages either for μ or σ fields of the corresponding Ising
models.

APPENDIX B: THERMODYNAMIC BETHE
ANSATZ

In the sine-Gordon theory, on-shell scattering is purely
elastic (in the sense that the number of particles and the set
of rapidities always has to be the same in the in and out
state) and it factorizes completely. Knowledge of the 2 → 2
elastic scattering phases between all particle types provides
a complete description of all scattering processes. This
makes it an integrable model. At a general sine-Gordon
coupling, scattering is not completely diagonal due to the
possibility of ss̄ → s̄s scattering. In our cases of interest
(Nc ∈ Z) these off-diagonal amplitudes are exactly zero,
which simplifies the discussion.
To derive the thermodynamics, it is useful to adopt a first

quantized viewpoint, where a state is described by a
multiparticle wave function. For a moment let us restrict
the model onto a circle of circumference L. Since it is a
relativistic system, interactions are local. Particles propa-
gate freely between pointlike interactions, when they
acquire a phase determined by the S-matrix element.
This provides the quantization condition for the particles
up to exponentially small corrections for large L:

eipjL
Y
k≠j

Srjrkðθj − θkÞ ¼ 1; ðB1Þ

where ri specifies the type of particle i. Taking the
logarithm, one has

mrjLsinhθjþ
X
k≠j

δrjrkðθj−θkÞ¼2πnj; nj∈Z; ðB2Þ

where

δrjrkðθÞ ¼ −i log SrjrkðθÞ: ðB3Þ

The set of equations (B2) is commonly referred to as the
asymptotic Bethe ansatz or Bethe-Yang equations. The
energy and momentum of multiparticle states are simply
given as a sum of one-particle states with the obtained
rapidities

E ¼
X
j

mrj cosh θj; P ¼
X
j

mrj sinh θj: ðB4Þ

In the sine-Gordon model these S-matrix elements are well
known. They have the form (Nc ∈ Z)

SssðθÞ ¼ Sss̄ðθÞ ¼ Ss̄sðθÞ ¼ Ss̄ s̄ðθÞ ðB5Þ

¼ −e

R
∞
0

dt
t

sinhðν−2Þt
sinhðtÞ coshððν−1ÞtÞ sinh

�
2tθðν−1Þ

iπ

�
; ðB6Þ

SsnðθÞ ¼ SnsðθÞ ¼ Ss̄nðθÞ ¼ Sns̄ðθÞ ðB7Þ

¼
sinh θ þ i cos nπ

2ðν−1Þ
sinh θ − i cos nπ

2ðν−1Þ

Yn−1
k¼1

sin2
�

n−2k
4ðν−1Þ π − π

4
þ i θ

2

�
sin2

�
n−2k
4ðν−1Þ π − π

4
− i θ

2

� : ðB8Þ

We now focus on the case of finite soliton density. In the
ground state of our setup, all soliton states are filled up to
a threshold rapidity B, and none above. To obtain the
continuum limit of the quantization condition, we introduce
the rapidity density ρsðθÞ. Denoting the total number of
soliton one-particle states between rapidity 0 and θ with
NðθÞ, the rapidity density is defined as ρsðθÞ ¼ L−1 dN

dθ .

Therefore, nj ¼ L
R θj
0 ρsðθ0Þdθ0.

Let us first consider the finite-density ground state. The
sum in Eq. (B2) can be rewritten as an integral over
rapidities (dropping the index j)

msL sinh θ þ L
ZB
−B

dθ0ρsðθ0Þδssðθ − θ0Þ

¼ 2πL
Z

θ

0

ρsðθ0Þdθ0: ðB9Þ

Differentiating with respect to θ, we obtain an integral
equation for ρsðθÞ,

ms

2π
cosh θ ¼ ρsðθÞ þ

ZB
−B

dθ0ρsðθ0ÞKssðθ − θ0Þ; ðB10Þ

where KssðθÞ ¼ − 1
2π ∂θδssðθÞ. The solution can be written

formally as

ρsðθÞ ¼ ð1 −KssÞ−1
�
ms

2π
cosh θ

�
: ðB11Þ

The energy of the finite-B ground state is thus

E0 ¼
X
j

ms cosh θj ¼ L
ZB
−B

ρsðθÞðms cosh θ − μÞdθ:

ðB12Þ

The operator ð1 −KssÞ−1 is symmetric, so the ground-state
energy is equivalently written as
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E0 ¼ Lms

ZB
−B

dθ
2π

cosh θ · ϵsðθÞ; ðB13Þ

where the soliton spectral gap ϵsðθÞ is the solution of the
Fredholm equation with inhomogeneity ms cosh θ − μ,

ϵsðθÞ ¼ ð1 −KssÞ−1½ms cosh θ − μ�; ðB14Þ

and the total Uð1Þ charge is the number of solitons in the
condensate,

Q0 ¼ L
ZB
−B

ρsðθÞdθ ¼ Lms

ZB
−B

dθ
2π

cosh θ · ζðθÞ ðB15Þ

where ζðθÞ ¼ ð1 −KssÞ−1½1� is the dressed charge
in Eq. (39).
Consider now adding an extra particle of type r with

rapidity θ0 to the condensate. The modified quantization
condition to the condensate reads

2πnj ¼ msL sinh θj þ δrsðθj − θ0Þ þ
X
k≠j

δssðθj − θkÞ;

nj ∈ Z: ðB16Þ

In the continuum,

ms

2π
cosh θ ¼ ρ̃ðθÞ þ

Z
B

−B
dθ0ρ̃ðθ0ÞKssðθ − θ0Þ

−
1

2πL
∂θδrsðθ − θ0Þ: ðB17Þ

The equation for the density difference with respect to the
ground state Dθ0ðθÞ ¼ L½ρ̃ðθÞ − ρsðθÞ� takes the form

Dθ0ðθÞ ¼ ð1 −KssÞ−1½−Krsðθ − θ0Þ�; ðB18Þ

with Krsðθ − θ0Þ ¼ − 1
2π ∂θδrsðθ − θ0Þ. The energy differ-

ence due to the extra particle is then

E1 − E0 ≡ ϵrðθ0Þ

¼ mr cosh θ0 − μQr þ
ZB
−B

Dθ0ðθÞ½ms cosh θ − μ�dθ

¼ mr cosh θ0 − μQr −
ZB
−B

Krsðθ − θ0ÞϵsðθÞdθ;

ðB19Þ

in agreement with Eqs. (34)–(35). HereQs ¼ þ1,Qs̄ ¼ −1
and Qr ¼ 0 otherwise. When r ¼ s, this yields the
Fredholm equation for ϵs. For r ≠ s, the spectral gap can
be calculated straightforwardly once ϵs is known. When an
extra soliton of rapidity θ0 is added to the system, the net
extra charge

Q1 −Q0 ¼ 1þ
ZB
−B

Dθ0ðθÞdθ ðB20Þ

¼ 1 −
Z

B

−B
Kssðθ − θ0ÞζðθÞ≡ ζðθ0Þ ðB21Þ

equals ζðθ0Þ. Hence the name “dressed charge.”

APPENDIX C: NUMERICAL ANALYSIS FOR A
SINGLE FLAVOR

The integral equations (34)–(39) can be solved inde-
pendently. They are all Fredholm equations of the second
kind, for which many numerical methods exist. In fact TBA
equations of this type can be solved well beyond machine
precision (see e.g. [121]). A simple yet efficient method is
provided by the Nystrom method [122]. In case of an
integer number of colors Nc, the kernel function KðθÞ can
be written in a closed form in terms of digamma functions:

KðθÞ ¼ −
1

2π

dδðθÞ
dθ

¼ 1

4π2
Xν−2
n¼0

�
ψ

�
1

2

�
1 −

iθ
π
þ n
ν − 1

��
þ ψ

�
1

2

�
1þ iθ

π
þ n
ν − 1

��

− ψ

�
π þ nπ − iθðν − 1Þ

2πðν − 1Þ
�
− ψ

�
π þ nπ þ iθðν − 1Þ

2πðν − 1Þ
��

: ðC1Þ

By a change of variables θ ¼ By, θ0 ¼ By0, ϵ̂ðyÞ ¼ ϵðByÞ,
Ĝðy; y0Þ ¼ KðBðy − y0ÞÞ, we transform the integral equa-
tions to the interval ½−1; 1�. For example, Eq. (34) takes
the form

ϵ̂ðyÞ þ B
Z1
−1

dy0Ĝðy; y0Þϵ̂ðy0Þ ¼ ms coshðByÞ − μ; ðC2Þ
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and the boundary condition becomes ϵ̂ð�1Þ ¼ 0.
The integral in Eq. (C2) is then approximated by the

Gauss-Legendre quadrature rule. This means that the
integrand is to be evaluated at the roots yi, i ∈ 1;…; N
of the Nth Legendre polynomial. To this end, we introduce
N-component vectors ϵ̂i ≡ ϵ̂ðyiÞ, ui ¼ ms coshðByiÞ − μ
and the matrix Ĝij ¼ Ĝðyi; yjÞ. The components of the
vector ϵ̂ðyiÞ are obtained through the solution of the linear
system

ð1ij þ BwjĜijÞϵ̂j ¼ ui; ðC3Þ

where wj are the quadrature weights. Finally, the solution is
given by substituting back to Eq. (C2) and using the
quadrature rule

ϵ̂ðyÞ ≈ms coshðByÞ − μ − B
XN
i¼1

wiĜðy; yiÞϵ̂i: ðC4Þ

This provides a robust way to reproduce the unknown
function and its derivative.
The results for ζðθÞ are shown in Fig. 8(a). Note the

plateau that develops for large values of B. Equation (39)

has a constant bulk solution as B → ∞, which can be
obtained by a simple Fourier transform. Also plotted are the
asymptotic values ζbulk ¼ 2=ν. This signals that the B → ∞
limit has to be taken carefully as the behavior at the
boundary is never reproduced from the bulk solution.
It is easy to obtain the (inverse) relation μðBÞ from

Eq. (34). A simple implementation of the secant method,
connected to the Fredholm solver for ϵðB; μÞ, converges
to the root ϵðμÞ ¼ 0 within a small number of iterations
for each point. The result is depicted in Fig. 8(b). The
ζ − μ relation is plotted in Fig. 2. There is a phase
transition at μ ¼ msð¼ 1Þ. The parameter ζ approaches
1 in this limit. Increasing μ, ζ quickly takes its asymptotic
value, ζ� ¼

ffiffiffiffiffiffiffiffi
2=ν

p
.

We note that the relation μðBÞ is available analytically
through a large-B expansion, which is provided in implicit
form in [50]. This was useful to check the accuracy of the
numerical method. The relation is given as

μ ¼ ms
ffiffiffi
π

p
ν

2

Γ
�

ν
2ðν−1Þ

�

Γ
�

1
2ðν−1Þ

� q−
ν

4ðν−1Þ

×
1

1 −
P∞

n¼1
ν

1þð2nþ1Þðν−1Þ q
nbnwn

; ðC5Þ

where the expansion is in terms of q,

q ¼ e
−4ðBþΔÞ

�
1−1

ν

�
; ðC6Þ

Δ ¼ 1

2
logðν − 1Þ − ν

2ðν − 1Þ log ν: ðC7Þ

The coefficients bn are given explicitly as

bn ¼
ð−1Þn

n!ðn − 1Þ!
Γ
�

n
ν

�
Γ
�

3
2
þ nðν−1Þ

ν

�

Γ
�
− n

ν

�
Γ
�

3
2
− nðν−1Þ

ν

� ; ðC8Þ

and wn ≡ wnðqÞ are provided implicitly through the linear
system

wn ¼
1

n
−
X∞
m¼1

qm

mþ n
bmwm: ðC9Þ

Figure 9 shows how the above expansion, truncated at
various orders of q, approaches (exponentially) to the TBA-
computed values towards larger B, providing an important
consistency check for the latter.

FIG. 8. Numerical solution of the TBA equations [(34)–(39)]
for Nc ¼ 3, ms ¼ 1. On the top panel, solutions for different B
values are shown. The ζ − B relation is drawn with a dashed

curve (ζ ¼
ffiffiffiffi
K̃

p
is the dressed charge). On the bottom, the relation

BðμÞ is shown.
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APPENDIX D: DETAILS OF THE
PERTURBATIVE CALCULATION

Using Eq. (60), normalizing the vertex operators in finite
volume with the appropriate ð2πL−1Þ factors so that their
normalization is consistent with Eq. (28),

χðq;iωÞ1¼
�
m̃
4π

�
2 1

NcNfπ

β2

ð4πÞ2
Z∞
−∞

dτ1

Z∞
−∞

dτ2

Z∞
−∞

Z∞
−∞

dx1dx2·

×
Z∞
−∞

Z∞
−∞

dXdTeiqXþiωT jz1−z2j−2α

×cosð2k0ðx1−x2ÞÞ·

×

�
1

Z−z1
−

1

Z−z2
−c:c:

��
1

z2
−
1

z1
−c:c:

�
;

ðD1Þ

where Z ¼ T − iX, z1;2 ¼ τ1;2 − ix1;2 and α was defined in
Eq. (61). We first perform the X and T integration of
Eq. (D1). Using the residue theorem, we obtain

χðq; iωÞ1 ¼
�
m̃
4π

�
2 1

NcNfπ

β2

ð4πÞ2

×
Z∞
−∞

dτ2

Z∞
−∞

dτ1

Z∞
−∞

Z∞
−∞

dx1dx2

× jz1− z2j−2α cosð2k0ðx1− x2ÞÞ
�
1

z2
−
1

z1
− c:c:

�

×
4πq

q2þω2
ðeiqx2þiωτ2 − eiqx1þiωτ1Þ: ðD2Þ

We then change integration variables x1 → xþ x2, τ1 →
τ þ τ2 and integrate with respect to x2 and τ2. This is again
possible with the residue theorem. We arrive at

χðq; iωÞ1 ¼
�
m̃
4π

�
2 1

NcNfπ

β2

ð4πÞ2
4πq

q2 þ ω2

−16πq
q2 þ ω2

×
Z∞
−∞

dτ
Z∞
−∞

dx

× ðx2 þ τ2Þ−α cosð2k0xÞsin2
�
qxþ ωτ

2

�
:

ðD3Þ

This integral can be evaluated analytically, and yields an
explicit formula for general q, ω, leading to the result
reported in Eq. (62).
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