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The aim of this work is to study some possible local and global Uð1Þ axial condensates in the high-
temperature chirally restored phase of QCD, by means of two nonperturbative analytical techniques: (i) by
expressing the functional averages in terms of the spectral density of the Euclidean Dirac operator and
(ii) by evaluating the functional integrals in the instanton-background approximation. In this way, besides
proving that these condensates are indeed different from zero in the high-temperature regime, we shall also
derive their asymptotic temperature dependence and compare it with that of the topological susceptibility.
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I. INTRODUCTION

It is well known that the vacuum state of quantum
chromodynamics (QCD) is characterized by certain non-
vanishing condensates which cannot be understood in the
framework of perturbation theory. In the so-called chiral
limit, in which Nf quark masses are sent to zero (Nf ¼ 2

and Nf ¼ 3 being the physically relevant cases), the
QCD Lagrangian turns out to be symmetric under the
chiral group Uð1ÞV ⊗ Uð1ÞA ⊗ SUðNfÞV ⊗ SUðNfÞA. In
the quantum theory, the subgroup SUðNfÞV ⊗ SUðNfÞA
is spontaneously broken down to SUðNfÞV because of
the condensation of quark-antiquark pairs, which gives
rise to the so-called chiral condensate Σ≡ −hq̄qi ¼
−
PNf

f¼1hq̄fðxÞqfðxÞi, where the brackets h…i stand for
the vacuum expectation value at zero temperature or,
more generally, for the thermal average at a finite
temperature T. On the other hand, the Uð1ÞA (axial)
symmetry is broken by the quantum anomaly [1]. At the
quantum level, under Uð1ÞA transformations the action
acquires a contribution proportional to the so-called
topological charge Q: Although Q is the integral of a
total divergence, it can be nonzero because of the

existence of topologically nontrivial gauge configura-
tions known as instantons, which are Euclidean solutions
of the classical equations of motion with finite action and
integer topological charge [2,3].
Moreover, it is also known (mainly by lattice simulations

[4]) that, at a certain (pseudo)critical temperature Tc ≈
150 MeV, QCD (in the chiral limit) undergoes a phase
transition which restores the SUðNfÞV ⊗ SUðNfÞA sym-
metry: The chiral condensate Σ, which is just an order
parameter of this symmetry, vanishes above Tc.
Instead, the fate of the Uð1ÞA symmetry above the

transition remains unclear. Although the quantum
anomaly is present at any finite temperature [so that an
exact restoration of the Uð1ÞA symmetry is, of course, out
of question], above some temperature TUð1Þ its effects
could become practically negligible: If so, the Uð1ÞA
symmetry would be approximately restored. Two different
scenarios are possible [5,6]: (i) This approximate restora-
tion could occur well inside the quark-gluon plasma
phase, i.e., at temperatures sensibly larger than Tc
(TUð1Þ ≫ Tc), or, vice versa, (ii) it could occur simulta-
neously to the chiral one at Tc (TUð1Þ ≃ Tc); and the nature
of the chiral phase transition at Tc crucially depends on
which of these two scenarios is realized. For example,
in the case Nf ¼ 2, if the first scenario is realized
(TUð1Þ ≫ Tc), then the chiral phase transition is expected
to be of second order, belonging to the three-dimensional
Oð4Þ universality class; if, instead, the second scenario is
realized (TUð1Þ ≃ Tc), then the chiral phase transition may
be either of first order or of second order but belonging to
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a universality class different from Oð4Þ. However, which
of these two scenarios is indeed realized is still an
(important) open question.
Traditionally, this question has been investigated, at

least in the case Nf ¼ 2, by studying (mainly by lattice
simulations) the so-called chiral susceptibilities [6,7]. For
each meson channel M (σ, δ, π, and η), the chiral
susceptibility χM is defined as the integral over four-space
of the two-point correlation function of the corresponding
interpolating operator JMðxÞ ¼ q̄ðxÞΓMqðxÞ, for some
proper matrix ΓM in Dirac and flavor space:

Jσ ¼ q̄q; Jaδ ¼ q̄τaq; Jη¼ iq̄γ5q; Jaπ ¼ iq̄γ5τaq; ð1:1Þ
where τa, with a ¼ 1; 2; 3, are the Pauli matrices, normal-
ized so as TrðτaτbÞ ¼ 2δab. That is,

χM ¼
Z

d4xhJMðxÞJ†Mð0Þi

¼ 1

V

Z
d4x

Z
d4yhJMðxÞJ†MðyÞi; ð1:2Þ

where the brackets at the right-hand side stand for the
functional integration over the gauge field and the quark
fields and translational invariance has been used.
The importance of these correlators lies in the fact that

under SUð2ÞA and Uð1ÞA transformations the meson
channels are mixed as follows:

σ↔
Uð1ÞA

η

SUð2ÞA↕ ↕SUð2ÞA
π↔
Uð1ÞA

δ: ð1:3Þ

The restoration of a certain symmetry thus results in
the degeneracy between the correlation functions of the
channels that are mixed under that symmetry. In particular,
besides the chiral condensate Σ, also the differences χπ − χσ
and χδ − χη can be regarded (in the chiral limit
m≡mu;d → 0) as order parameters of the SUð2ÞA sym-
metry and must vanish above the critical temperature Tc,
as confirmed by lattice simulations. On the other hand,
χπ − χδ and χσ − χη behave as order parameters of the
Uð1ÞA symmetry.
Several lattice simulations, measuring these quantities

(for the case Nf ¼ 2 and also for the more realistic case
Nf ¼ 2þ 1, with m≡mu;d → 0 and ms ∼ 100 MeV),
have been carried out, but the results achieved so far are
not yet conclusive. Most of the studies [8–16] (using
staggered quarks or domain-wall quarks on the lattice)
find that the Uð1ÞA-breaking difference χπ − χδ is still
sensibly nonzero above the chiral transition (so favoring the
first scenario that we have mentioned above), but some
others [17,18] (using the so-called overlap quarks on the
lattice) find that this quantity vanishes for T ≥ Tc, so

indicating an effective restoration of the Uð1ÞA symmetry
already at Tc, at least at the level of the chiral susceptibil-
ities for the meson channels (1.1) (and so favoring the
second scenario that we have mentioned above).1

The aim of this work is to study other local and global
“genuine” Uð1Þ axial condensates in the high-temperature
chirally restored phase of QCD, by means of two nonpertur-
bative analytical techniques: (i) by expressing the functional
averages h…i in terms of the spectral density of the Euclidean
Dirac operator i=D and (ii) by evaluating the functional
integrals in the instanton-background approximation.
The local Uð1Þ axial condensates that we shall first

consider are functional averages CUð1Þ ≡ hOUð1ÞðxÞi of
local 2Nf-quark operators of the form

OUð1ÞðxÞ ∼ detst

�
q̄sðxÞ

�
1þ γ5

2

�
qtðxÞ

�
þ H:c:; ð1:4Þ

where s; t ∈ f1;…; Nfg are flavor indices and the Dirac
indices (not explicitly shown) are contracted in each quark
bilinear q̄sðxÞð1þγ5

2
ÞqtðxÞ, while the color indices (also not

explicitly shown) can be contracted in different possible
ways, so to give a color singlet (see below): These operators
are invariant under the whole chiral group except for the
Uð1ÞA transformations, so that, differently from the above-
mentioned chiral condensate Σ and the quantity χπ − χδ,
their functional averages CUð1Þ are “genuine” order param-
eters for the Uð1ÞA symmetry alone (for any number of
flavors). Operators of this kind were first introduced by
Kobayashi and Maskawa in 1970 [19], as an additional
effective vertex in a generalized Nambu-Jona-Lasinio
model, and by ’t Hooft in 1976 [3], as an effective quark
interaction in the background gauge field of an instanton.
(See also Ref. [20] for an interesting historical review on
this subject.) These genuine Uð1Þ axial condensates were
then reconsidered in Ref. [21] (in the context of an effective
chiral Lagrangian formulation) and also in Ref. [6].

1We point out that here (and also in the rest of the paper) we are
using “effective restoration” (which is a bit stronger that just
“approximate restoration”) with exactly the same meaning that was
used in Refs. [17,18]. Even if, as we have already said, the Uð1ÞA
symmetry is always broken by the quantum anomaly, it may
happen that certain (but not all) correlation functions, obtained by
considering the expectation values of operators which are not
invariant under a Uð1ÞA transformation, are exactly equal to zero
(in the chiral limit m → 0) above Tc: In this case, we say that this
particular set of correlation functions manifest an effective resto-
ration of the Uð1ÞA symmetry above Tc. For example, the usual
chiral condensate Σ≡ −hq̄qi, which is also an order parameter for
the Uð1ÞA symmetry [the operator q̄q not being invariant under a
Uð1ÞA transformation], vanishes exactly (in the chiral limitm → 0)
for T ≥ Tc. It was argued in Refs. [17,18] (using both analytical
and numerical methods on the lattice) that also the chiral
susceptibilities of the meson channels (1.1) (that is to say, the
mass spectrum of these meson channels) manifest such an effective
restoration of the Uð1ÞA symmetry for T ≥ Tc.
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In this work, we shall also consider global Uð1Þ axial
condensates, taking the functional average of multilocal
operators of the form (indicating with ϵf1…fNf the com-
pletely antisymmetric tensor in the flavor indices
f1;…; fNf

∈ f1;…; Nfg, with ϵ12…Nf ¼ 1)

OUð1Þðx1;…; xNf
Þ∼ ϵf1…fNf q̄1ðx1Þ

�
1þ γ5
2

�
qf1ðx1Þ…

× q̄Nf
ðxNf

Þ
�
1þ γ5
2

�
qfNf

ðxNf
Þ þH:c:

ð1:5Þ

[i.e., performing a “point splitting” of the Nf quark
bilinears contained in the expression of the local operator
OUð1ÞðxÞ] and then integrating over the four-space coor-
dinates. The main motivation for introducing these new
quantities is that [differently from the local Uð1Þ axial
condensates] they can be studied using the spectral-density
technique, as we shall see in detail in the next section.
Moreover, the global feature of these new Uð1Þ axial
condensates renders them promising objects for future
numerical studies on the lattice (probably better than their
local counterparts, for which, on the contrary, a direct
numerical determination on the lattice is expected to be
highly problematic: See, e.g., Ref. [22]).
The paper is organized as follows. In the Appendix,

we shall review, for the benefit of the reader, the results
obtained for the chiral susceptibilities by using the spectral-
density technique, and, in Sec. II, we shall apply the same
technique to study also the above-mentioned global Uð1Þ
axial condensates and their relations with the chiral
susceptibilities, as well as with the so-called topological
susceptibility χtop ≡ hQ2i=V.
In Sec. III, instead, we shall explicitly compute the local

and global Uð1Þ axial condensates in the high-temperature
phase, using the instanton-background approximation of
the functional integrals. In this way, besides proving that
these condensates are indeed different from zero in the
high-temperature regime, we shall also derive their asymp-
totic temperature dependence and compare it with that of
the topological susceptibility χtop.
Finally, in Sec. IV, we shall conclude by briefly

summarizing the results obtained in this paper and giving
also some prospects for future studies.

II. LOCAL AND GLOBAL Uð1Þ AXIAL
CONDENSATES AND THEIR

SPECTRAL-DENSITY ANALYSIS

A. Uð1Þ axial condensates in QCD
with Nf = 2 light flavors

Let us start by considering the most simple case (and,
presumably, also the most relevant one, from the physical

point of view), that is, the case of two light flavors. It is
known (see the third Ref. [21] and also Appendix A in
Ref. [23], where also the case Nf ¼ 3 is considered) that
the most general local quark operator (without derivatives)
which has the required chiral transformation properties
mentioned in the introduction [i.e., it is invariant under the
whole chiral group except for the Uð1ÞA transformations]
and is color singlet, Hermitian, and P invariant, is the
following four-quark local operator2:

O
ðNf¼2Þ
Uð1Þ ðx; κ1; κ2Þ ¼ Fαγ

βδðκ1; κ2Þϵstq̄α1ðxÞ
�
1þ γ5

2

�
qβsðxÞ

× q̄γ2ðxÞ
�
1þ γ5

2

�
qδt ðxÞ þ H:c:; ð2:1Þ

where s; t ∈ f1; 2g are flavor indices and ϵst ¼ −ϵts,
ϵ12 ¼ 1, the Dirac indices (not explicitly shown) are
contracted in each of the two quark bilinears
q̄α1ðxÞð1þγ5

2
ÞqβsðxÞ and q̄γ2ðxÞð1þγ5

2
Þqδt ðxÞ, while the Greek

letters α; β; γ; δ ∈ f1;…; Ncg are color indices and the
color tensor Fαγ

βδðκ1; κ2Þ is given by

Fαγ
βδðκ1; κ2Þ≡ κ1δ

α
βδ

γ
δ þ κ2δ

α
δδ

γ
β; ð2:2Þ

where κ1 and κ2 are arbitrary real constants. [Let us observe
that if one chooses, in particular, κ1 ¼ Nc and κ2 ¼ −1,
then the operator (2.1) just becomes, up to a propor-
tionality constant, the effective quark interaction in the
background gauge field of an instanton, found by ’t Hooft
in Ref. [3].]
Let us now try to investigate, by means of the spectral-

density technique, the local Uð1Þ axial condensates
obtained by taking the functional averages of the operators
(2.1), CUð1Þ ≡ hOUð1ÞðxÞi. By integrating over the quark
fields, one obtains the following result:

C
ðNf¼2Þ
Uð1Þ ¼ 1

2
Fαγ
βδhTrDGβα

A ðx; xÞTrDGδγ
A ðx; xÞ

þ TrD½γ5Gβα
A ðx; xÞ�TrD½γ5Gδγ

A ðx; xÞ�
þ TrD½Gβγ

A ðx; xÞGδα
A ðx; xÞ�

þ TrD½γ5Gβγ
A ðx; xÞγ5Gδα

A ðx; xÞ�i; ð2:3Þ

2Of course, this local operator (as well as the other local and
multilocal operators [Eqs. (1.4), (1.5), and (2.4)] that we shall
discuss in the following) should be properly renormalized in a
given renormalization scheme. This is surely a fundamental (and
quite delicate) question, which is, however, beyond the original
explorative scope of this paper and will be addressed in future
works: In this paper, therefore, we shall simply neglect the
renormalization question [apart from some brief comment in
Sec. III, when discussing the computation in the instanton-
background approximation of the local and global Uð1Þ axial
condensates].
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where GA is the quark propagator in the external gauge field
Aμ [see Eq. (A3) with f ¼ f0] and TrD stands for the trace
over the Dirac indices only. By virtue of translational
invariance, we can rewrite the Uð1Þ axial condensate CUð1Þ
integrating Eq. (2.3) over 1

V

R
d4x. Let us consider, for

example, the third term of Eq. (2.3):

Fαγ
βδ

1

2V

�Z
d4x

X
k

uβ;ik ðxÞu†γ;jk ðxÞ
m − iλk

X
k0

uδ;jk0 ðxÞu†α;ik0 ðxÞ
m − iλk0

�
;

where i; j ∈ f1;…; 4g are Dirac indices. It is evident that
the local feature of this condensate prevents us from using
the orthonormality relation (A8) of the uk’s, since the four
Dirac eigenfunctions are all evaluated at the same space
point. If we want to perform the integration over four-space
and to rewrite this object in terms of the spectral density, we
should have the Dirac eigenfunctions with contracted quark
indices evaluated at different space points. In other words,
we should introduce a point splitting and consequently
perform an additional four-space integration:

Fαγ
βδ

1

2V

�Z
d4x

Z
d4y

X
k

uβ;ik ðxÞu†γ;jk ðyÞ
m − iλk

X
k0

uδ;jk0 ðyÞu†α;ik0 ðxÞ
m − iλk0

�
:

To this purpose, let us define the following multilocal operator:

O
ðNf¼2Þ
Uð1Þ ðx; yÞ≡ ϵstq̄α1ðxÞ

�
1þ γ5

2

�
qαsðxÞq̄γ2ðyÞ

�
1þ γ5

2

�
qγt ðyÞ þ H.c.; ð2:4Þ

where, in order to guarantee the gauge invariance of the multilocal operator, only the color contraction generated by the first
term in Eq. (2.2) (with κ1 ¼ 1) has been retained. We then define the global Uð1Þ axial condensate DUð1Þ as

D
ðNf¼2Þ
Uð1Þ ≡ 1

V

Z
d4x

Z
d4yhOðNf¼2Þ

Uð1Þ ðx; yÞi

¼ 1

V

�
detst

�Z
d4xq̄αs ðxÞ

�
1þ γ5

2

�
qαt ðxÞ

�
þ detst

�Z
d4xq̄αs ðxÞ

�
1 − γ5
2

�
qαt ðxÞ

��
: ð2:5Þ

The multilocal operator (2.4) transforms under the chiral group exactly as the local operator (2.1), so that also D
ðNf¼2Þ
Uð1Þ is a

genuine order parameter of the Uð1ÞA symmetry: Moreover, its global feature renders it somewhat similar to the chiral
susceptibilities.
It is now easy to see that, performing the functional integration over the quark fields in the expression (2.5) for the new

global condensate D
ðNf¼2Þ
Uð1Þ , Eq. (2.3) is replaced by

D
ðNf¼2Þ
Uð1Þ ¼ 1

2V
hðTrDCxGAÞ2 þ ½TrDCxðγ5GAÞ�2 þ TrDCxðG2

AÞ þ TrDCx½ðγ5GAÞ2�i; ð2:6Þ

where we have used the compact notation TrDCx for the trace over the Dirac, color, and spatial indices. By comparing the
four terms of Eq. (2.6) with the expressions (A7) and (A17), we find that

1

2V

�Z
d4x

Z
d4yTrDCGAðx; xÞTrDCGAðy; yÞ

�
¼ χσ;disc

8
;

1

2V

�Z
d4x

Z
d4yTrDC½γ5GAðx; xÞ�TrDC½γ5GAðy; yÞ�

�
¼ −

χη;disc
8

;

1

2V

�Z
d4x

Z
d4yTrDC½GAðx; yÞGAðy; xÞ�

�
¼ −

χσ;conn
4

;

1

2V

�Z
d4x

Z
d4yTrDC½γ5GAðx; yÞγ5GAðy; xÞ�

�
¼ χη;conn

4
;

so that, summing the four contributions, the following result is found:
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D
ðNf¼2Þ
Uð1Þ ¼ 1

4
ðχη;conn − χσ;connÞ þ

1

8
ðχσ;disc − χη;discÞ: ð2:7Þ

It follows, in particular, that, in the chirally restored phase
(T > Tc, m ¼ 0) where Eq. (A25) holds, the global Uð1Þ
axial condensate DUð1Þ in two-flavor QCD turns out to be
proportional to the Uð1ÞA-breaking difference χπ − χδ and,
thus, to limm→0 χtop=m2:

D
ðNf¼2Þ
Uð1Þ ðT > TcÞ ¼

1

2
ðχπ − χδÞ ¼ 2 lim

m→0

χtop
m2

: ð2:8Þ

Using Eq. (A26) for χπ − χδ, we can immediately express

D
ðNf¼2Þ
Uð1Þ for T > Tc in terms of the spectral density:

D
ðNf¼2Þ
Uð1Þ ðT > TcÞ ¼ 4 lim

m→0

Z
∞

0

dλ
m2ρðλ; mÞ
ðm2 þ λ2Þ2 :

From this expression, one immediately recognizes that the

new global condensateD
ðNf¼2Þ
Uð1Þ gets (for T > Tc) a nonzero

contribution from the so-called Dirac zero modes, whose

contribution to the spectral density is given by ρðλ; mÞj0 ¼
Cm2δðλÞ [see the Appendix, Eq. (A39)]; in fact, substitut-
ing ρðλ; mÞ ¼ ρðλ; mÞj0 þ � � � ¼ Cm2δðλÞ þ � � �, one finds
that

D
ðNf¼2Þ
Uð1Þ ðT > TcÞ ¼ 2C þ � � � ; ð2:9Þ

where the coefficient C is given by Eq. (A39).

B. Uð1Þ axial condensates in QCD
with Nf light flavors

Let us now consider the case of an arbitrary number
Nf > 2 of light flavors. As is well known (see the
Appendix), if Nf > 2, the chiral susceptibilities no longer
represent good candidates to assess theUð1ÞA breaking and
their place is taken by the expectation value of proper
2Nf-quark operators, such as the global Uð1Þ axial con-
densateDUð1Þ, defined by generalizing Eq. (2.5) to the more
general case with Nf light flavors:

DUð1Þ ≡ 1

V

Z
d4x1 � � �

Z
d4xNf

��
ϵf1…fNf q̄α11 ðx1Þ

�
1þ γ5

2

�
qα1f1ðx1Þ…q̄

αNf

Nf
ðxNf

Þ
�
1þ γ5

2

�
q
αNf

fNf
ðxNf

Þ
�

þ
�
ϵf1…fNf q̄α11 ðx1Þ

�
1 − γ5
2

�
qα1f1ðx1Þ…q̄

αNf

Nf
ðxNf

Þ
�
1 − γ5
2

�
q
αNf

fNf
ðxNf

Þ
��

: ð2:10Þ

By performing the functional integration over the quark fields, one obtains Nf! possible different Wick contractions. As an
example, let us write the global condensate in the case Nf ¼ 3:

D
ðNf¼3Þ
Uð1Þ ¼ −

1

4V
hðTrDCxGAÞ3 þ 3TrDCxGA½TrDCxðγ5GAÞ�2 þ 3fTrDCxGATrDCxðG2

AÞ þ TrDCxGATrDCx½ðγ5GAÞ2�
þ 2TrDCxðγ5GAÞTrDCxðγ5G2

AÞg þ 2fTrDCxðG3
AÞ þ 3TrDCx½GAðγ5GAÞ2�gi: ð2:11Þ

In the following, we shall concentrate on the fifth term of
this expression and generalize it to the case of an arbitrary
numberNf of light flavors. Indeed, among the Nf! possible
different Wick contractions in the general case, we will
always find a term proportional to

1

V
hTrDCxðγ5GAÞTrDCxðγ5GNf−1

A Þi: ð2:12Þ

By using the anticommutativity of the Euclidean Dirac
operator i=D with γ5, the orthonormality relation (A8) for
the eigenfunctions uk, and the well-known Atiyah-Singer

theorem [see the analogous derivation of Eq. (A20) in the
Appendix], the first trace can be expressed in terms of the
topological charge Q as

TrDCxðγ5GAÞ ¼
Z

d4xTrDC

�X
k

γ5ukðxÞu†kðxÞ
m − iλk

�
¼ −

Q
m
:

ð2:13Þ

On the other hand, let us evaluate the following trace:

TrDCxðγ5GN
A Þ ¼

Z
d4x1…

Z
d4xNTrDC

�X
k1

γ5uk1ðx1Þu†k1ðx2Þ
m − iλk1

YN
i¼2

X
ki

ukiðxiÞu†kiðxiþ1Þ
m − iλki

�
;
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with the boundary condition xNþ1 ¼ x1. By virtue of the
orthonormality relation (A8) for the eigenfunctions uk, the
integration over x2;…; xN imposes ki ¼ k∀ i, and, as a
consequence, we derive that

TrDCxðγ5GN
A Þ¼

Z
d4x1TrDC

�X
k

γ5ukðx1Þu†kðx1Þ
ðm− iλkÞN

�
¼−

Q
mN :

ð2:14Þ

Finally, substituting Eqs. (2.13) and (2.14) with N¼Nf−1
into Eq. (2.12), we find that

1

V
hTrDCxðγ5GAÞTrDCxðγ5GNf−1

A Þi¼ 1

V
hQ2i
mNf

¼ χtop
mNf

: ð2:15Þ

We note that this derivation is valid at any temperature T
and at any value of the (common) quark mass m. At high
temperatures, the so-called dilute instanton gas approxi-
mation (DIGA) [24] predicts that the topological suscep-
tibility χtop is different from zero and depends on the
(common) quark mass precisely asmNf in the small-m limit
(and the same prediction is also derived using chiral
effective Lagrangian models above Tc [25,26]): Therefore,
the contribution (2.15) is expected to be different from zero
in the chiral limit m → 0, and we can, thus, argue that it is
responsible for theUð1ÞA breaking of the global condensate
DUð1Þ at high temperature, similarly to χπ − χδ in the case
Nf ¼ 2. Indeed, we have already demonstrated that,
for Nf ¼ 2, the whole global condensate DUð1Þ becomes
proportional to limm→0 χtop=m2 as the chiral symmetry is
restored for T > Tc [see Eq. (2.8)]. It might be that the
same thing happens also in the case Nf > 2, i.e., that at
high temperatures (T > Tc) and in the chiral limit m → 0
the whole global condensateDUð1Þ becomes proportional to
limm→0 χtop=mNf : In the next section, we shall find a
confirmation of this guess.

III. INSTANTON-BACKGROUND COMPUTATION
OF THE LOCAL AND GLOBAL Uð1Þ AXIAL

CONDENSATES

In the previous section (and in the Appendix), the crucial
role of Dirac operator’s zero modes in the Uð1ÞA breaking
has been remarked. This can be realized also through the
following reasoning. Let O2n be a 2n-quark operator: After
integrating over the quark fields, its functional average can
be expressed as

hO2ni ¼
1

Z

Z
DAe−SG½A�½detð=D½A� þmÞ�NfGn

A; ð3:1Þ

where Gn
A is a simplified notation for the product of n

external gauge-field propagators of the form (A3), with
properly contracted indices. Let us now consider the
contribution of gauge configurations with a single zero

mode Ψ0, such that ½detð=DþmÞ�Nf ≃mNfðdet=DÞNf , where
det is restricted to the nonzero modes, and GA ≃Ψ0Ψ

†
0=m

(apart from terms which are regular in m). In the case of
an instanton (I), according to our conventions (see the
Appendix), the only zero mode is right-handed (i.e.,
γ5Ψ0 ¼ −Ψ0) and the topological charge is Q ¼ 1: The
contribution to the functional integral (3.1) in the chiral
limit m → 0 is then

hO2niI∼
1

Z

Z
I
DAe−SG½A�ðdet=D½A�ÞNfmNf

�
Ψ0Ψ†

0

m

�
n
: ð3:2Þ

Evidently, if n ¼ Nf, this contribution can be nonvanishing
in the chiral limit. In particular, the product of two quark
bilinears J of the type given in Eq. (1.1) has n ¼ 2 and can,
thus, receive a nonzero contribution of this type in two-
flavor QCD. The same holds for theUð1Þ axial condensates
in the case of an arbitrary number of flavors Nf, as we will
explicitly derive in this section.

A. Instanton-background computation
at zero temperature

Here, we first perform an explicit computation of the
Uð1Þ axial condensates in the instanton-background
approximation at zero temperature, in the case Nf ¼ 2

and for an arbitrary number of colors Nc. The general case
of an arbitrary number of light flavors Nf at a finite
temperature T will be considered in the next subsection.
In order to restrict the path integral to the contribution of
the instanton (that we denote as h…iI), the integration over
the gauge configurations Aμ is traded for the one over the
instanton parameters: its orientation into the gauge group
SUðNcÞ, its center x0, and its scale size ρ, that is,

1

Z

Z
DAe−SG ½detð=DþmÞ�Nf…

⇒
Z

dnðρÞ
Z

d4x0

Z
dU…; ð3:3Þ

wheredU is theHaarmeasure of integration over theSUðNcÞ
“rotations” of the instanton and dnðρÞ is the measure of
integration over the instanton size, defined as [3,27,28]

dnðρÞ ¼ dρ
ρ5

dðρÞ; ð3:4Þ

where the “instanton density” dðρÞ, near the chiral limit and
for equal quark masses, can be approximated as

dðρÞ ≃
m→0

ðmρÞNfd0ðρÞ; with

d0ðρÞ ¼ CNc;Nf

�
8π2

g2ðρÞ
�

2Nc

e
− 8π2

g2ðρÞ; ð3:5Þ
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whereCNc;Nf
is a constant depending on bothNc andNf and

gðρÞ is the running coupling constant at the length scale ρ [see
Eq. (3.19) below].
Let us first consider the generic four-quark correlation

function and integrate over the quark fields:

hq̄α;ia ðωÞqβ;jb ðxÞq̄γ;kc ðyÞqδ;ld ðzÞi
¼ δabδcdhGβα;ji

A ðx;ωÞGδγ;lk
A ðz; yÞi

− δadδcbhGδα;li
A ðz;ωÞGβγ;jk

A ðx; yÞi; ð3:6Þ

where a, b, c, and d are flavor indices, while Greek letters
α, β, γ, and δ stand for color indices, and i, j, k, and l are
Dirac indices. In the instanton background, the Dirac
operator has a zero mode of the form [3]

Ψα;i
0 ðx − x0; ρÞ ¼ ψ0ðx − x0; ρÞvα;i; ð3:7Þ

where the spinors vα satisfy the following relation:

X
α

vα;iv
†
α;j ¼

�
1 − γ5
4

�
ij

ð3:8Þ

and the function ψ0ðx − x0; ρÞ is given by

ψ0ðx − x0; ρÞ ¼
ffiffiffi
2

p

π

ρ

½ρ2 þ ðx − x0Þ2�3=2
; ð3:9Þ

so that the following identities hold:

Z
d4x½ψ0ðx − x0; ρÞ�2 ¼ 1;

Z
d4x½ψ0ðx − x0; ρÞ�4 ¼

1

5π2ρ4
: ð3:10Þ

Near the chiral limit (m → 0), the quark propagator for each
flavor [see Eq. (A3) with f ¼ f0] can be expressed as

Gαβ;ij
A ðx; yÞ ¼

X
k

uα;ik ðxÞu†β;jk ðyÞ
m − iλk

≃
Ψα;i

0 ðx − x0; ρÞΨ†β;j
0 ðy − x0; ρÞ

m
; ð3:11Þ

where the regular terms in m have been neglected.
Substituting into Eq. (3.6) and making use of Eq. (3.3),
one obtains the following expression for the four-quark
correlation function in the instanton background:

hq̄α;ia ðωÞqβ;jb ðxÞq̄γ;kc ðyÞqδ;ld ðzÞiI ¼ ðδabδcd − δadδcbÞhvβ;jv†α;ivδ;lv†γ;kiSUðNcÞ

×
Z

dnðρÞ
m2

Z
d4x0ψ0ðx − x0; ρÞψ0ðω − x0; ρÞψ0ðz − x0; ρÞψ0ðy − x0; ρÞ; ð3:12Þ

where h…iSUðNcÞ is the average over the possible SUðNcÞ rotations of the spinor v (and v†), i.e.,

hvβv†αvδv†γiSUðNcÞ ≡
Z

dUv0βv
0†
αv0δv

0†
γ ; where v0α ¼ Uαα0vα0 ; v0†α ¼ v†α0U

†
α0α; ð3:13Þ

and dU is the Haar invariant measure over the group SUðNcÞ. Using the following rule of integration over SUðNcÞ [29]:Z
dUUββ0U

†
α0αUδδ0U

†
γ0γ ¼

1

N2
c − 1

ðδβαδβ0α0δδγδδ0γ0 þ δβγδβ0γ0δδαδδ0α0 Þ −
1

NcðN2
c − 1Þ ðδβαδβ0γ0δδγδδ0α0 þ δβγδβ0α0δδαδδ0γ0 Þ;

and the relation (3.8), one obtains

hvβ;jv†α;ivδ;lv†γ;kiSUðNcÞ ¼
1

4NcðN2
c − 1Þ

�
ðNcδβαδδγ − 1δβγδδαÞ

�
1 − γ5
2

�
ji

�
1 − γ5
2

�
lk
þ
�
α ↔ γ

i ↔ k

��
:

Finally, substituting this expression into Eq. (3.12), one finds the following result:

hq̄α;ia ðωÞqβ;jb ðxÞq̄γ;kc ðyÞqδ;ld ðzÞiI ¼ ðδabδcd − δadδcbÞ
1

4NcðN2
c − 1Þ

�
ðNcδβαδδγ − δβγδδαÞ

�
1− γ5
2

�
ji

�
1− γ5
2

�
lk
þ
�
α↔ γ

i↔ k

��

×
Z

dnðρÞ
m2

Z
d4x0ψ0ðx− x0;ρÞψ0ðω− x0;ρÞψ0ðz− x0;ρÞψ0ðy− x0;ρÞ: ð3:14Þ

This expression is valid for any number Nc of colors, generalizing a relation found by Callan, Dashen, and Gross in
Ref. [30]. (Our result has an extra factor 1=4, due to the fact that the zero mode used in Refs. [3,30] was
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erroneously normalized to 2, as noted also in Ref. [27],
instead of 1 as in our case.) Moreover, Eq. (3.14) is
valid for any number Nf of flavors, although in what
follows we shall use it (at first) in the particular case
Nf ¼ 2, since only in this case is OUð1Þ a four-quark
operator.

1. Local Uð1Þ axial condensate (in the case Nf = 2)

In the local case x ¼ y ¼ z ¼ ω, the integration over the
instanton center x0 in Eq. (3.14) can be immediately
performed, making use of the second Eq. (3.10), and the
result does not depend on x, as expected from translational
invariance:

hq̄α;ia ðxÞqβ;jb ðxÞq̄γ;kc ðxÞqδ;ld ðxÞiI
¼ ðδabδcd − δadδcbÞ

Z
dnðρÞ

5π2m2ρ4
1

4NcðN2
c − 1Þ

�
ðNcδβαδδγ − δβγδδαÞ

�
1 − γ5
2

�
ji

�
1 − γ5
2

�
lk
þ
�
α ↔ γ

i ↔ k

��
: ð3:15Þ

Using this result, we can compute the local Uð1Þ axial condensate CUð1ÞjI ≡ hOUð1ÞiI in the instanton background, in the

caseNf ¼ 2. The four-quark operatorO
ðNf¼2Þ
Uð1Þ is defined by Eq. (2.1), which, using the properties Fαγ

βδ ¼ Fγα
δβ and F

αγ
βδ ¼ Fβδ

αγ

of the color tensor (2.2), can be expressed as

O
ðNf¼2Þ
Uð1Þ ðxÞ ¼ Fαγ

βδϵ
stq̄α;i1 ðxÞqβ;js ðxÞq̄γ;k2 ðxÞqδ;lt ðxÞ

��
1þ γ5

2

�
ij

�
1þ γ5

2

�
kl
þ
�
1 − γ5
2

�
ij

�
1 − γ5
2

�
kl

�
: ð3:16Þ

Thus, to compute hOðNf¼2Þ
Uð1Þ iI, we just need to consider

Eq. (3.15) with a ¼ 1, b ¼ s, c ¼ 2, and d ¼ t: The
contraction over the flavor indices yields a fac-
tor ðδ1sδ2t − δ1tδ2sÞϵst ¼ 2.
Contracting the color tensor (2.2) with the two different

color factors appearing in the two terms on the right-hand
side of Eq. (3.15), one obtains Fαγ

βδðNcδβαδδγ − δβγδδαÞ ¼
κ1NcðN2

c − 1Þ in the first term and Fαγ
βδðNcδβγδδα −

δβαδδγÞ ¼ κ2NcðN2
c − 1Þ in the second one.

Finally, since the products of different chiral projectors
vanish, when one takes the trace over the Dirac indices, the
term in Eq. (3.16) containing the left projectors
ð1þγ5

2
Þijð1þγ5

2
Þkl does not contribute to hOUð1ÞiI , and one

is, thus, left with these two Dirac contractions:�
1 − γ5
2

�
ij

�
1 − γ5
2

�
kl

�
1 − γ5
2

�
ji

�
1 − γ5
2

�
lk

¼
�
Tr

�
1 − γ5
2

��
2

¼ 4;

�
1 − γ5
2

�
ij

�
1 − γ5
2

�
kl

�
1 − γ5
2

�
jk

�
1 − γ5
2

�
li

¼ Tr

�
1 − γ5
2

�
¼ 2:

The computation can be repeated for an anti-instanton (Ī)
configuration (for whichQ ¼ −1) just by replacing γ5 with
−γ5. In both cases, one thus obtains the same result:

C
ðNf¼2Þ
Uð1Þ jI ¼ C

ðNf¼2Þ
Uð1Þ jĪ ¼ ð2κ1 þ κ2Þ

Z
dnðρÞ

5π2m2ρ4
: ð3:17Þ

One can also sum the two contributions and define

C
ðNf¼2Þ
Uð1Þ jinst ≡ C

ðNf¼2Þ
Uð1Þ jI þ C

ðNf¼2Þ
Uð1Þ jĪ ¼ 2CðN2¼2Þ

Uð1Þ jI as the con-
tribution resulting from both the instanton (for which
Q ¼ 1) and the anti-instanton (for which Q ¼ −1):
Using Eqs. (3.4) and (3.5) with Nf ¼ 2, it is therefore
given by

C
ðNf¼2Þ
Uð1Þ

			
inst

≃
m→0

2ð2κ1 þ κ2Þ
Z

∞

0

dρ
5π2ρ7

d0ðρÞ

¼ 2ð2κ1 þ κ2ÞCNc;Nf

5π2

Z
∞

0

dρ
ρ7

�
8π2

g2ðρÞ
�

2Nc

e
− 8π2

g2ðρÞ;

ð3:18Þ

where we notice that the dependence on m has canceled
out, so that the result is nonzero in the chiral limit m → 0.
We observe that this integral is, however, affected by an
infrared divergence as ρ → ∞. Indeed, substituting the one-
loop result for the running coupling constant,

g2ðρÞ ¼ 1

2β0 lnð 1
ρΛQCD

Þ ; with β0 ¼
1

ð4πÞ2
�
11

3
Nc−

2

3
Nf

�
;

ð3:19Þ

one finds that e
− 8π2

g2ðρÞ ≃ ðρΛQCDÞb0 , with b0 ¼ ð4πÞ2β0 ¼
11
3
Nc − 2

3
Nf: For Nf ¼ 2 and Nc ¼ 3, b0 ≃ 9.6 and, there-

fore, CUð1Þjinst diverges as
R∞
0 dρρb0−7.

However, we note that Eq. (3.19) is valid only for
ρ ≪ 1=ΛQCD: For larger values of the (anti-)instanton size
ρ, one cannot rely on the perturbative expression for the
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running coupling constant gðρÞ. As is well known (and as
we shall see in the next subsection), this infrared problem
disappears when one considers the theory at a finite
temperature T, 1=T acting in this case as an infrared cutoff.

2. Global Uð1Þ axial condensate (in the case Nf = 2)

Using Eq. (3.14) in the case x ¼ ω and y ¼ z, we can also
compute the global Uð1Þ axial condensate DUð1Þ defined by
Eq. (2.5) [see also the expression (2.10)] in the particular
case Nf ¼ 2. The only substantial difference with respect to
the computation in the local case is the integration over the
instanton centre x0, which in this case gives

1

V

Z
d4x0

Z
d4x½ψ0ðx− x0;ρÞ�2

Z
d4y½ψ0ðy− x0;ρÞ�2 ¼ 1;

ð3:20Þ
by virtue of the first Eq. (3.10). Adjusting properly the
passages above (taking κ1 ¼ 1 and κ2 ¼ 0) and using
Eqs. (3.4) and (3.5) with Nf ¼ 2, one immediately
finds that

D
ðNf¼2Þ
Uð1Þ jinst ≡ 2D

ðNf¼2Þ
Uð1Þ jI ¼ 4

Z
dnðρÞ
m2

≃
m→0

4

Z
∞

0

dρ
ρ3

d0ðρÞ;

ð3:21Þ

i.e., a nonzero result in the chiral limit m → 0.

The result (3.21) is consistent with the one found
in Eq. (2.9) by considering the contribution of the zero
modes to the spectral density, taking into account that

[see Eq. (A39) in the case Nf ¼ 2] C ¼ 1
V
hn0i
m2 , where

now hn0i ≃ hn0iI þ hn0iĪ ¼ 2V
R
dnðρÞ. We recall that

Eq. (2.9) was derived above the chiral transition, and
indeed we also expect the instanton-background approxi-
mation to be reliable only above the chiral transition:
Therefore, in the above-reported expressions, dnðρÞ should
be more properly replaced by its expression at a finite
temperature T, which will be considered and discussed in
the next subsection.

B. Instanton-background computation
at high temperatures T

In Ref. [24], Gross, Pisarski, and Yaffe demonstrated that
at a finite temperature T instantons of size ρ ≥ 1

T are
suppressed, rendering integrals such as (3.17) convergent
in the infrared and dominated by ρ ∼ 1

T: It follows that as
T → ∞ all the instantons are suppressed. At high enough
temperatures, one can use perturbation theory, being ρ ≪ 1
and, thus, gðρÞ ≪ 1 for the relevant configurations.
Performing a one-loop computation in the instanton-

background approximation, Gross, Pisarski, and Yaffe
found the following expression for the “reduced instanton
density” d0ðρ; TÞ at a finite temperature T:

d0ðρ; TÞ ¼ CNc;Nf

�
8π2

g2ðρÞ
�

2Nc

exp



−
�
8π2

g2ðρÞ þ λ2
�
2Nc þ Nf

3

�
þ AðλÞ

��
; ð3:22Þ

where λ≡ πρT and AðλÞ diverges logarithmically as
λ → ∞ [if we are interested in only the asymptotic
temperature dependence, the explicit form of AðλÞ is
irrelevant].
Besides the instanton density, also the zero mode (3.9)

has to be modified at a finite temperature T (see below):
However, if one is considering the global Uð1Þ axial
condensate DUð1Þ or also the chiral susceptibilities, its
exact expression is irrelevant, since these quantities depend
on the zero mode only through its normalization condition
[see Eq. (3.20) and the first Eq. (3.10)], which is valid at
any temperature T. In fact, being γ5Ψ0 ¼∓ Ψ0, and thus
γ5GA ¼∓ GA [see Eq. (3.11)], in the field of an instanton or

anti-instanton, the explicit expressions (2.6) for D
ðNf¼2Þ
Uð1Þ

and (2.11) for D
ðNf¼3Þ
Uð1Þ , that we have found in the previous

section, reduce (when evaluated in the instanton-background
approximation) to the functional averages of various terms
containing products of factors of the type TrDCxðGN

A Þ, which,
by virtue of Eq. (3.11) and the normalization condition

R
d4xΨ†α;i

0 ðx − x0; ρÞΨα;i
0 ðx − x0; ρÞ ¼ 1 [see Eq. (A8)], is

equal to 1=mN .

1. Global Uð1Þ axial condensate and chiral
susceptibilities

Therefore, by virtue of the above-reported considera-
tions, the expression (3.21) for the global Uð1Þ axial
condensate in the case Nf ¼ 2 is generalized as follows,
at a finite temperature T:

D
ðNf¼2Þ
Uð1Þ ðTÞjinst ≃

m→0
4

Z
∞

0

dρ
ρ3

d0ðρ; TÞ

∼
Z

∞

0

dρ
ρ3

ðρΛQCDÞb0e−2
3
ðπρTÞ2ðNcþ1Þ

¼ Λb0
QCDðπTÞ2−b0

Z
∞

0

dλλb0−3e−
2
3
λ2ðNcþ1Þ:

ð3:23Þ
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That is to say, we have found the following asymptotic
temperature dependence of DUð1Þ in the case Nf ¼ 2:

D
ðNf¼2Þ
Uð1Þ ðTÞ ∼ T2−b0 ; ð3:24Þ

where b0 ¼ ð11Nc − 2NfÞ=3 ¼ ð11Nc − 4Þ=3. [Let us
observe that, for Nf ¼ 2, DUð1Þ has dimension 2 in natural
units, and indeed the expression above must be intended to
be multiplied by Λb0

QCD, as explicitly shown in Eq. (3.23).]
Now, recalling that for T > Tc (in the chiral limit

m → 0) DUð1Þ comes out to be proportional to χπ − χδ
and to limm→0χtop=m2 [see Eq. (2.8)], we also obtain that

ðχπ − χδÞðTÞjNf¼2 ∼ T2−b0 ; ð3:25Þ

and, for the topological susceptibility,

χtopðTÞjNf¼2 ∝ m2D
ðNf¼2Þ
Uð1Þ ðTÞ ∼ T4−b0

�
m
T

�
2

; ð3:26Þ

which coincides with the well-known DIGA prediction
for the asymptotic temperature dependence of χtop [24] in
the case of Nf ¼ 2 light flavors. [This expression is usually
derived directly from the free energy Fðθ; TÞ, being
χtop ¼ ∂2F

∂θ2 jθ¼0.] Moreover, let us note the correctness of
the dimensions also in Eqs. (3.25) and (3.26), the chiral and
topological susceptibilities having dimensions 2 and 4,
respectively.
It is easy to generalize the asymptotic behaviors

(3.24)–(3.26) to the case of an arbitrary number of light
flavors Nf. Indeed, as already pointed out, the result (3.14)
is valid also in this more general case, and, therefore, at
high T, the chiral susceptibilities (being expectation values
of certain four-quark operators) are always proportional to
the integral in Eq. (3.21), with dnðρ; TÞ ¼ dρ

ρ5
dðρ; TÞ and

dðρ; TÞ ≃ ðmρÞNfd0ðρ; TÞ:

ðχπ − χδÞðTÞjinst ∼
Z

dnðρ; TÞ
m2

∼mNf−2
Z

∞

0

dρ
ρ5−Nf

ðρΛQCDÞb0e−
2NcþNf

3
ðπρTÞ2

∼ T2−b0
�m
T


Nf−2: ð3:27Þ

The contribution of the instantons to the chiral susceptibil-
ities thus vanishes, in the case Nf > 2, as mNf−2 in the
chiral limitm → 0, just as the contribution of the Dirac zero
modes [which give rise to a term ρðλ; mÞj0 ¼ CmNfδðλÞ in
the spectral density; see the Appendix]. For a comparison,
the contribution of the instantons to the chiral condensate
Σ≡ −hq̄qi at high temperatures T turns out to be

Σjinst ¼
2Nf

V
hTrDCxGAiI

¼ 2Nf

Z
dnðρ; TÞ

m

≃
m→0

2NfmNf−1
Z

∞

0

dρ
ρ5−Nf

d0ðρ; TÞ; ð3:28Þ

which correctly vanishes in the chiral limit m → 0 for
every Nf ≥ 2.
Finally, let us consider the global Uð1Þ axial condensate

DUð1Þ for an arbitrary Nf, defined by Eq. (2.10): This
condensate being the expectation value of a certain 2Nf-
quark operator, it will not be proportional (as the chiral
susceptibilities) to the integral

R
dnðρ; TÞ=m2 but rather to

the integral
R
dnðρ; TÞ=mNf , where the factor 1=mNf comes

from the Nf propagators of the form (3.11). We thus obtain
the following asymptotic behavior:

DUð1ÞðTÞjinst ∼
Z

dnðρ; TÞ
mNf

≃
m→0

Z
∞

0

dρ
ρ5−Nf

d0ðρ; TÞ ∼ T4−Nf−b0 : ð3:29Þ

[Let us observe that the dimension of DUð1Þ is
3Nf − 4ðNf − 1Þ ¼ 4 − Nf.]
We have, thus, found a nonzero result for the global

condensate DUð1Þ at high temperatures and in the chiral
limit m → 0: Consistently with the fact that the instantons
are asymptotically suppressed at high temperatures, the
Uð1Þ axial condensate DUð1Þ vanishes as T → ∞, but it is
anyhow different from zero at any finite temperature.
At the end of the previous section, we have

demonstrated that DUð1Þ contains a term [see Eq. (2.15)]
proportional to χtop=mNf , and we have guessed that the
whole global condensate DUð1Þ might be proportional to
limm→0 χtop=mNf above the chiral phase transition, in the
chiral limit m → 0. Indeed, the result (3.29) is consistent
with this guess and with the above-mentioned DIGA
prediction for χtop [24], i.e.,

χtopðTÞ ∝ mNfDUð1ÞðTÞ ∼ T4−b0

�
m
T

�
Nf

: ð3:30Þ

An even more direct confirmation of this result can also be
found by evaluating, in the instanton-background approxi-

mation, the explicit expressions (2.6) forD
ðNf¼2Þ
Uð1Þ and (2.11)

for D
ðNf¼3Þ
Uð1Þ that we have found in the previous section.

Since in the field of an instanton or anti-instanton one has
that γ5GA ¼∓ GA [see Eq. (3.11), being γ5Ψ0 ¼∓ Ψ0] and
Q ¼ �1, one can easily compute the expressions (2.6) and
(2.11) in the instanton-background approximation, making
use of the relations (2.13) and (2.14), finding the following
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results: D
ðNf¼2Þ
Uð1Þ ðTÞjinst ¼ 2 limm→0 χtopðTÞ=m2 and

D
ðNf¼3Þ
Uð1Þ ðTÞjinst ¼ −6 limm→0 χtopðTÞ=m3.

2. Local Uð1Þ axial condensate
Let us now consider the local condensate CUð1Þ for

Nf ¼ 2, which depends on the zero mode Ψ0ðx; ρ; TÞ
through the nontrivial integral

R
d4x½Ψ0Ψ

†
0�2. For a finite-

temperature instanton, the following expression holds for
the zero mode (in the so-called singular gauge) [24,31]:

Ψα;i
0 ðx; ρ; TÞ ¼ ψ0μðx; ρ; TÞvα;iμ ; ð3:31Þ

where the spinor vα;iμ does not depend on x, ρ, T, and

ψ0μðx; ρ; TÞ ¼
1

π
ffiffiffi
2

p
ρ

ffiffiffiffi
Π

p ∂μ

�
Φ
Π

�
; ð3:32Þ

with

Πðx; ρ; TÞ ¼ 1þ πρ2T
r

sinh ð2πTrÞ
cosh ð2πTrÞ − cos ð2πTτÞ ;

Φðx; ρ; TÞ ¼ ½Πðx; ρ; TÞ − 1� cos ðπTτÞ
cosh ðπTrÞ ; ð3:33Þ

τ being the Euclidean time and r≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x32

p
.

Being interested only in the asymptotic temperature
dependence of CUð1Þ, we shall neglect its structure with
respect to the Dirac and colour indices, as it is irrelevant for
our discussion. Let us now evaluate, making use of
Eqs. (3.31)–(3.33), the T and ρ dependence as T → ∞
of the integral

R
d4x½ψ0μψ0μ�2, which replaces the second

Eq. (3.10) in the integral (3.18). As T → ∞, we obtain

Πðx; ρ; TÞ ∼ πρ2T
r

; Φðx; ρ; TÞ ∼ πρ2T
r

cos ðπTτÞe−πTr;

and, therefore, neglecting some constant multiplicative
factors,

ψ0μðx; ρ; TÞ ∼
ffiffiffiffi
T
r

r
∂μ½cos ðπTτÞe−πTr�

(where we note that the dependence on ρ has been
canceled), so that

Z
d4x½ψ0μψ0μ�2 ∼

Z
β

0

dτ
Z

∞

0

dr4πr2
�
T3e−2πTr

r

�
2

∼ 4πT5

Z
∞

0

dre−4πTr ¼ T4; ð3:34Þ

while
R
d4xψ0μψ0μ ∼ const, as it must be. Therefore, the

expression (3.18) for the local condensate CUð1Þ in the

instanton or anti-instanton background in the case Nf ¼ 2

is so modified at asymptotically high temperatures [using
for d0ðρ; TÞ the expression (3.22), which renders the
integral convergent in the infrared, and for gðρÞ the one-
loop perturbative result (3.19)]:

C
ðNf¼2Þ
Uð1Þ ðTÞjinst ∼ T4

Z
∞

0

dρ
ρ3

d0ðρ; TÞ

∼ T4

Z
∞

0

dρ
ρ3

ðρΛQCDÞb0e−2
3
ðπρTÞ2ðNcþ1Þ

¼ T4ðπTÞ2−b0Λb0
QCD

Z
∞

0

dλλb0−3e−
2
3
λ2ðNcþ1Þ;

ð3:35Þ

where the remaining integral over the dimensionless
variable λ yields a constant multiplicative factor. In other
words, the asymptotic temperature dependence of CUð1Þ, for
Nf ¼ 2 light flavors, is

C
ðNf¼2Þ
Uð1Þ ðTÞ ∼ T6−b0 : ð3:36Þ

(Let us observe that, for Nf ¼ 2, CUð1Þ has dimension 6 in
natural units.)
In conclusion, in the instanton-background approxima-

tion and in the case Nf ¼ 2, the local condensate CUð1Þ is
different from zero at any finite temperature T, and
it vanishes asymptotically as T → ∞, according to
Eq. (3.36): That is, the Uð1ÞA symmetry is effectively
restored only asymptotically as T → ∞.
Finally, let us point out the difficulties of extending this

estimation to the case of an arbitrary number Nf of light
flavors. In this case, since OUð1Þ consists of 2Nf quark
fields, instead of Eq. (3.34) we find the following integral:

Z
d4x½ψ0μψ0μ�Nf ∼ T3Nf−1

Z
∞

0

dr4πr2−Nfe−2NfπTr;

which is clearly divergent in r ¼ 0 for Nf > 2. While this
approximate procedure gave a correct result for Nf ¼ 2, it
cannot be used in the general case, making it necessary to
perform a more precise and in-depth analysis. In fact, we
also observe that a simple temperature dependence with a
power law of the kind CUð1ÞðTÞ ∼ T3Nf−b0 ¼ T

11
3
ðNf−NcÞ,

obtained by naively extending the result (3.36), using
purely dimensional considerations, would imply an
increase (rather than a decrease) with the temperature in
the case Nf > Nc: Since the instantons are expected to be
suppressed as T → ∞, this divergent high-temperature
behavior of the Uð1Þ axial condensate appears to be really
unnatural.
This problem could actually require some kind of non-

perturbative renormalization: Indeed, let us observe that, at
T ¼ 0, being
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Z
d4x½ψ0ðx; ρÞ�2Nf ¼ 2π2

Z
∞

0

drr3
� ffiffiffi

2
p

π

ρ

ðρ2 þ r2Þ3=2
�
2Nf

∝
1

ρ4ðNf−1Þ ;

where ψ0ðx; ρÞ is given by Eq. (3.9), the result (3.18) is
generalized to the case of Nf light flavors as follows:

CUð1Þjinst ∼
Z

∞

0

dρ
ρ3Nfþ1

d0ðρÞ:

For Nf ≥ Nc, this integral is affected by an ultraviolet
divergence, instead of an infrared one: Indeed, at small
instanton sizes, the integrand diverges as ρb0−ð3Nfþ1Þ. We
observe that this UV divergence cannot be removed by the
suppression factor in Eq. (3.22) (which introduces only an
infrared cutoff), and it resembles the one obtained in
Refs. [32,33], where the density of instantonic molecules
was found to be affected by a power UV divergence of
nonperturbative nature. To overcome this problem, one
could perhaps introduce some kind of nonperturbative
renormalization (as suggested in the above-mentioned
references) or some UV cutoff on the instanton size.

IV. SUMMARY OF THE RESULTS AND
CONCLUSIONS

In this conclusive section, we summarize our results and
draw our conclusions, discussing also some possible future
developments. The aim of our work was to study, in the
chirally restored phase, some possible local and global
genuine Uð1Þ axial condensates and their relations with
the chiral susceptibilities (1.1) and (1.2) as well as with
the topological susceptibility χtop ≡ hQ2i=V, by means of
two nonperturbative analytical techniques: (i) by express-
ing the functional averages h…i in terms of the spectral
density ρðλÞ of the Euclidean Dirac operator i=D and (ii) by
evaluating the functional integrals in the instanton-
background approximation.
In the Appendix, we have briefly reviewed (for the

benefit of the reader) the most relevant results found in the
past literature concerning the analysis of the chiral sus-
ceptibilities through the spectral density, and we have also
extended some of the results to the case of an arbitrary
number of light flavors Nf. In particular, we have found
that the relation χπ − χδ ∝ limm→0 χtop=m2 [see Eq. (A35)]
still holds, above Tc (in the chiral limit m → 0), also for an
arbitrary Nf: By virtue of the well-known DIGA prediction
for the quark-mass dependence χtop ¼ OðmNfÞ in the chiral
limit m → 0 at high temperatures T [24] (the same
prediction is also derived using chiral effective
Lagrangian models above Tc [25,26]), this result shows
that, while for Nf ¼ 2 χπ − χδ represents a good order
parameter of the Uð1ÞA symmetry, for Nf > 2 the chiral

susceptibilities become Uð1ÞA symmetric at high temper-
atures (χπ − χδ → 0). Indeed, in the chirally restored phase
(T > Tc), the Uð1ÞA anomaly is expected to affect only the
2n-point correlation functions with n ≥ Nf [34–36]: The
Uð1Þ axial condensates considered in this paper, being
functional averages of 2Nf-quark operators, are, therefore,
the right objects to be studied in order to assess the Uð1ÞA
breaking.
The local Uð1Þ axial condensates considered in this

paper are functional averages CUð1Þ ≡ hOUð1ÞðxÞi of local
2Nf-quark operators of the form (1.4) [see also Eqs. (2.1)
and (2.2) for the particular case Nf ¼ 2]: These operators
are invariant under the whole chiral group except for the
Uð1ÞA transformations, so that, differently from the chiral
condensate Σ and the quantity χπ − χδ, their functional
averages CUð1Þ are genuine order parameters for the Uð1ÞA
symmetry alone (for any number of flavors) [6,21].
In this paper, we have also proposed a new global Uð1Þ

axial condensate DUð1Þ, which is obtained taking the func-
tional average of a multilocal operator OUð1Þðx1;…; xNf

Þ of
the form (1.5) [see also Eq. (2.4) for the particular case
Nf ¼ 2] and then integrating over the four-space coordinates
[see Eqs. (2.5) and (2.10)]: The multilocal operator trans-
forms under the chiral group exactly as the local operator
OUð1ÞðxÞ, so that also DUð1Þ is a genuine order parameter of
the Uð1ÞA symmetry. Moreover, its global feature renders it
somewhat similar to the chiral susceptibilities. The main
motivation for introducing this new condensate is that
[differently from the local Uð1Þ axial condensates] it can
be studied using the spectral-density technique, as we have
shown in detail in Sec. II. [Moreover, the global feature of
this newUð1Þ axial condensate renders it a promising object
for future numerical studies on the lattice, probably better
than the local counterparts, for which, on the contrary, a
direct numerical determination on the lattice is expected to
be highly problematic; see, e.g., Ref. [22].]
In particular, in Sec. II, we have derived, in the case

Nf ¼ 2, the exact relation (2.7) between the global Uð1Þ
axial condensateDUð1Þ and the connected and disconnected
components of the chiral susceptibilities, from which it
follows that, in the chirally restored phase (T > Tc,m ¼ 0)
where Eq. (A25) holds, DUð1Þ turns out to be proportional
to the Uð1ÞA-breaking difference χπ − χδ and, thus, to
limm→0 χtop=m2 [see Eq. (2.8)].
However, while the chiral susceptibilities cease to reveal

the Uð1ÞA breaking if Nf > 2, DUð1Þ represents a good
order parameter for any Nf: We have found that, for any
number Nf of light flavors, DUð1Þ always contains a term
proportional to χtop=mNf [see Eq. (2.15)], which (by virtue
of the above-mentioned DIGA prediction for the
quark-mass dependence of χtop) is expected to remain
different from zero in the chiral limit m → 0 at high
temperatures.
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In Sec. III, we have explicitly computed the local and
globalUð1Þ axial condensates in the high-temperature phase,
using the instanton-background approximation of the func-
tional integral. In this way, besides proving that these
condensates are indeed different from zero in the high-
temperature regime, we have also derived their asymptotic
temperature dependence and compared it with that of the
chiral and topological susceptibilities. In particular, for an
arbitrary number of light flavorsNf, we have found a nonzero
result for the global condensate DUð1Þ at high temperatures
and in the chiral limit m → 0, with the following asymptotic
temperature dependence [see Eq. (3.29)]: DUð1ÞðTÞ∼
T4−Nf−b0 , where b0 ¼ ð11Nc − 2NfÞ=3. Consistently with
the fact that the instantons are asymptotically suppressed at
high temperatures, theUð1Þ axial condensateDUð1Þ vanishes
as T → ∞, but it is anyhow different from zero at any finite
temperature.
Instead, for the chiral susceptibilities, the following

corresponding result has been found [see Eq. (3.27)]:
ðχπ − χδÞðTÞ ∼ T2−b0ðm=TÞNf−2, which vanishes, in the
case Nf > 2, as mNf−2 in the chiral limit m → 0, while
it is nonzero in the particular case Nf ¼ 2.
In the case Nf ¼ 2, recalling that for T > Tc (in the

chiral limit m → 0) DUð1Þ comes out to be proportional to
χπ − χδ and to limm→0 χtop=m2 [see Eq. (2.8)], one also
obtains that [see Eq. (3.26)] χtopðTÞ ∝ m2DUð1ÞðTÞ∼
T4−b0ðm=TÞ2, which coincides with the well-known
DIGA prediction for the asymptotic temperature depend-
ence of χtop [24] in the case of Nf ¼ 2 light flavors
(and which has been verified on the lattice: See, e.g.,
Refs. [37–41]; see also Ref. [42] for a recent review).
More in general, as we have already said, in Sec. II

we have shown that, for an arbitrary Nf, the Uð1Þ axial
condensate DUð1Þ contains a term proportional to χtop=mNf

[see Eq. (2.15)], and we have guessed that the whole
global condensate DUð1Þ might be proportional to
limm→0 χtop=mNf above the chiral phase transition, in the
chiral limit m → 0: Indeed, the above-reported result
for the asymptotic temperature dependence of DUð1Þ is
consistent with this guess and with the above-mentioned
DIGA prediction for χtop [24], i.e., [see Eq. (3.30)]
χtopðTÞ ∝ mNfDUð1ÞðTÞ ∼ T4−b0ðm=TÞNf .
Finally, making use of the finite-temperature expression

for the instanton zero mode, we have also estimated the
asymptotic temperature dependence of the local Uð1Þ axial
condensate in the case of Nf ¼ 2 light flavors, obtaining
the result [see Eq. (3.36)] CUð1Þ ∼ T6−b0 . (Instead, the case
Nf > 2 requires a more accurate and in-depth analysis and
eventually the introduction of some kind of nonperturbative
renormalization [32,33] to remove a possible UV diver-
gence that, as in the case at zero temperature, affects the
result for more than two flavors: This issue, together with a
more general and in-depth analysis of the renormalization

of the local and multilocal operators discussed in this paper,
is left to future works.)
In conclusion, making use of the instanton-background

approximation, we have found that these 2Nf-quark Uð1Þ
axial condensates are different from zero at any finite
temperature T and vanish only asymptotically as T → ∞.
As we have seen, for Nf > 2, the Uð1ÞA anomaly seems

to have no effects on the chiral susceptibilities above Tc, so
that an effective restoration of the Uð1ÞA symmetry at the
level of the qq̄ scalar and pseudoscalar meson mass
spectrum is expected, in spite of the fact that the Uð1ÞA
symmetry is manifestly broken by the above-mentioned
2Nf-quark condensates (see also Ref. [43]).
Instead, for the (physically most relevant) case Nf ¼ 2,

the global Uð1Þ axial condensate DUð1Þ comes out to be
proportional to χπ − χδ for T > Tc, so that, DUð1Þ being
nonzero above Tc, an effective restoration of the Uð1ÞA
symmetry at the level of the qq̄ scalar and pseudoscalar
meson mass spectrum above Tc is excluded.
Of course, we cannot make more quantitative statements

about the real magnitude of these condensates and so of the
breaking of the Uð1ÞA symmetry (which could be obtained
only by numerical calculations), so that we cannot exclude
that an approximate restoration of the Uð1ÞA symmetry may
anyhow happen in the vicinity of Tc. Numerical studies of
these Uð1Þ axial condensates on the lattice (and also a direct
investigation of the quark-mass dependence of χtop above
the chiral transition) could, of course, allow for a deeper
understanding of this important problem and (hopefully)
provide a first-principle confirmation of the analytical results
found in this paper: The fact that, as we have already said,
present lattice data are in agreement with the DIGA
prediction for the asymptotic temperature dependence of
χtop already gives, however, indirect support to the results
found in this paper concerning the Uð1Þ axial condensates.

APPENDIX: A REVIEW ON CHIRAL
SUSCEPTIBILITIES AND THEIR
SPECTRAL-DENSITY ANALYSIS

1. Chiral susceptibilities in QCD
with Nf = 2 light flavors

In this appendix, we shall review, for the benefit of the
reader, themost relevant relations for the chiral susceptibilities
of all the meson channels in terms of the so-called spectral
density (see, e.g., Refs. [44–46]) of the Euclidean Dirac
operator i=D½A� ¼ iγEμDμ, where Dμ ¼ ∂μ þ igAμ is the
covariant derivative in a given gauge field Aμ and γEμ
(μ ¼ 0; 1; 2; 3) are theHermitianEuclideangammamatrices3:

3We use the Hermitian Euclidean gamma matrices γEμ, related
to the Minkowskian gamma matrices γμ by the relations γE0 ¼ γ0

and γEk ¼ −iγk (k ¼ 1; 2; 3), so that they satisfy the condition
fγEμγEνg ¼ 2δμνI4×4. We also use the following definition:
γ5 ≡ −γE0γE1γE2γE3 ¼ −iγ0γ1γ2γ3.
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ρðλÞ≡
�
1

V

X
k

δðλ − λk½A�Þ
�
: ðA1Þ

fλk½A�g is the set of (real) gauge-field-dependent eigenvalues
of i=D½A�, i.e., i=Duk ¼ λkuk, uk being the corresponding
eigenvectors, and the brackets at the right-hand side stand
for the following functional integration over the gauge field:

h…i ¼ 1

Z

Z
DAe−SG½A�½detð=D½A� þmÞ�Nf…; ðA2Þ

where SG½A� is the pure-gauge (Yang-Mills) action and m is
the quark mass, which we assume, for simplicity, to be equal
for all the Nf quark flavors (the chiral limit m → 0 will be
taken later on).
The key ingredient which allows us to relate the chiral

susceptibilities with the spectral density ρðλÞ is the so-
called spectral decomposition of the quark propagator
GAðx; yÞ in an external gauge field Aμ [44–46]:

Gαβ;ij
A;ff0 ðx; yÞ≡ hqα;if ðxÞq̄β;jf0 ðyÞiA ¼ δff0

X
k

uα;ik ðxÞu†β;jk ðyÞ
m − iλk

;

ðA3Þ

where f and f0 are flavor indices (note that, since we are
assuming equal quark masses, GA is proportional to the
identity matrix in flavor space), α and β are color indices,
i and j are Dirac indices, and h…iA stands for the functional
integration over the quark fields only, in a given gauge
field Aμ.
Let us start with the chiral susceptibility in the isoscalar

(I ¼ 0) scalar channel Jσ ¼ q̄q (the relations that we shall
derive can be also found, for example, in Refs. [14,15,47]):

χσ ¼
1

V

Z
d4x

Z
d4yhJσðxÞJ†σðyÞi: ðA4Þ

Explicitly performing the functional integration over the
quark fields, one obtains

hJσðxÞJ†σðyÞi ¼ −hTr½GAðx; yÞGAðy; xÞ�i
þ hTrGAðx; xÞTrGAðy; yÞi; ðA5Þ

where the traces are done with respect to Dirac, color, and
flavor indices and the brackets at the right-hand side stand
for the functional integration (A2).
Substituting this expression into Eq. (A4), one obtains

χσ ¼ χσ;conn þ χσ;disc; ðA6Þ

where χσ;conn and χσ;disc are defined as the connected and
disconnected components, respectively, of χσ, with respect
to the quark lines in an external field (that is, before
averaging over the gauge fields):

χσ;conn ≡ −
1

V

Z
d4x

Z
d4yhTr½GAðx; yÞGAðy; xÞ�i;

χσ;disc ≡ 1

V

Z
d4x

Z
d4yhTrGAðx; xÞTrGAðy; yÞi: ðA7Þ

By using the orthonormality condition for the eigenfunc-
tions uk,

Z
d4xu†α;ik ðxÞuα;ik0 ðxÞ ¼ δkk0 ; ðA8Þ

and the well-known fact that ρðλÞ is an even function of λ
[ρð−λÞ ¼ ρðλÞ], one can easily express the connected term
in terms of the spectral density:

χσ;conn ¼ −
2

V

�X
k

1

ðm − iλkÞ2
�

¼ −4
Z

∞

0

dλρðλÞ m2 − λ2

ðm2 þ λ2Þ2 : ðA9Þ

Instead, it is not possible to repeat the same calculations for
the disconnected part. In fact, by using the orthonormality
condition (A8), one obtains two independent summations
which cannot be directly written in terms of ρðλÞ:

χσ;disc ¼
4

V

�X
k

1

m − iλk

X
k0

1

m − iλk0

�
: ðA10Þ

Nevertheless, it is possible to relate χσ;disc to a derivative of
the spectral density. In fact, the total susceptibility χσ is
related to the chiral condensate Σ ¼ −hq̄qi as follows:

χσ ¼
∂Σ
∂mþ VΣ2; ðA11Þ

being Σ ¼ 1
V
∂ lnZ
∂m . Since Σ ¼ −hJσð0Þi, Eq. (A11) can be

rewritten as

Z
d4x½hJσðxÞJσð0Þi − hJσðxÞihJσð0Þi� ¼

∂Σ
∂m :

It is convenient to redefine the chiral susceptibility as the
left-hand side of this expression, i.e., by subtracting the
disconnected product of the two expectation values
hJσðxÞihJσð0Þi4:

χ̄σ ≡
Z

d4x½hJσðxÞJσð0Þi − hJσðxÞihJσð0Þi�; ðA12Þ

4The chiral susceptibility redefined in this way is usually
referred to as “connected” with respect to the full theory. Here,
instead, we shall use the term connected as in Eq. (A7), i.e., with
respect to the quark lines in an external gauge field Aμ.
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that is,

χ̄σ ≡ χσ − VΣ2 ¼ ∂Σ
∂m : ðA13Þ

We also define the connected and disconnected compo-
nents of χ̄σ as, respectively,

χ̄σ;conn ≡ χσ;conn;

χ̄σ;disc ≡ χσ;disc − VΣ2:

Clearly, above Tc and in the chiral limit m → 0, the chiral
condensate Σ vanishes, and, therefore, χσ ¼ χ̄σ . For con-
venience, since we shall mainly consider the chirally
restored phase for T > Tc, in the following, we shall
continue to use the notation χσ. Making use of a well-
known expression for the chiral condensate in terms of the
spectral density [44,46],

Σ ¼ 2Nfm
Z

∞

0

dλ
ρðλÞ

m2 þ λ2
ðA14Þ

[which in the chiral limit m → 0 leads to the famous
Banks-Casher relation Σ ¼ Nfπρð0Þ [48]], we can rewrite
Eq. (A13) as follows:

χσ ¼
∂Σ
∂m ¼ 4

Z
∞

0

dλρðλ; mÞ λ2 −m2

ðm2 þ λ2Þ2

þ 4

Z
∞

0

dλ
∂ρðλ; mÞ

∂m
m

m2 þ λ2
;

where the dependence of ρ on the quark mass m (coming
from the weight ½detð=DþmÞ�2 in the functional integral
over the gauge fields) has been explicitly indicated. The
first term is just equal to the connected susceptibility (A9),
and, therefore, it follows that

χσ;disc ¼ 4

Z
∞

0

dλ
∂ρðλ; mÞ

∂m
m

m2 þ λ2
: ðA15Þ

Let us now consider the chiral susceptibility in the isovector
(I ¼ 1) scalar channel Jaδ ¼ q̄τaq, corresponding to the
three mesons δa:

χδa ¼
1

V

Z
d4x

Z
d4yhJaδðxÞðJaδðyÞÞ†i;

where, in this case,

hJaδðxÞðJbδðyÞÞ†i ¼ −hTr½τaGAðx; yÞτbGAðy; xÞ�i
þ hTr½τaGAðx; xÞ�Tr½τbGAðy; yÞ�i

¼ −2δabhTrDC½GAðx; yÞGAðy; xÞ�i:

In the last passage, the trace over the flavor indices has been
explicitly performed: Let us observe that in this case the

disconnected term vanishes, because TrðτaÞ ¼ 0, and,
using TrðτaτbÞ ¼ 2δab, we are left with the above-reported
expression for the connected term, having indicated with
“TrDC” the trace over the Dirac and color indices only and
with GA the quark propagator (A3) with f ¼ f0. Of course,
the isospin symmetry (the quark masses being equal to
the common value m) implies that χδa is the same for
a ¼ 1; 2; 3, and, moreover, from a comparison with
Eq. (A5), it is easy to see that χδ ≡ χδa ¼ χσ;conn.
The isoscalar (I ¼ 0) pseudoscalar channel Jη ¼ iq̄γ5q

is associated to the singlet η, which is the two-flavor
version of the meson η0. As in the scalar channel, the
integration over the quark fields gives rise to a connected
and a disconnected term:

hJηðxÞJ†ηðyÞi ¼ hTr½γ5GAðx; yÞγ5GAðy; xÞ�i
− hTr½γ5GAðx; xÞ�Tr½γ5GAðy; yÞ�i: ðA16Þ

The chiral susceptibility χη is thus given by χη ¼ χη;conn þ
χη;disc, where the connected and disconnected terms (with
respect to the quark lines in an external gauge field) are
defined analogously to Eq. (A7), i.e.,

χη;conn ≡ 1

V

Z
d4x

Z
d4yhTr½γ5GAðx; yÞγ5GAðy; xÞ�i;

χη;disc ≡ −
1

V

Z
d4x

Z
d4yhTr½γ5GAðx; xÞ�Tr½γ5GAðy; yÞ�i:

ðA17Þ

By using the fact that γ5GAðx; yÞγ5 ¼ G†
Aðy; xÞ [44], the

connected part can be straightforwardly written in terms of
the spectral density:

χη;conn¼
2

V

�X
k

1

m2þλ2k

�
¼4

Z
∞

0

dλ
ρðλÞ

m2þλ2
¼ Σ
m
: ðA18Þ

Instead, it is not possible to express the disconnected
part straightforwardly in terms of the spectral density.
Nevertheless, one can derive an important relation between
χη;disc and the topological susceptibility χtop, which is
defined in Euclidean space as

χtop ≡
Z

d4xhqðxÞqð0Þi ¼ 1

V

Z
d4x

Z
d4yhqðxÞqðyÞi

¼ 1

V
hQ2i; ðA19Þ

where qðxÞ ¼ g2

64π2
εμνρσFa

μνFa
ρσ (with ε0123 ¼ −1) is the

topological charge density and Q ¼ R
d4xqðxÞ is the topo-

logical charge.As a consequence of the fact that theEuclidean
Dirac operator i=D anticommutes with the γ5 matrix, it is easy
to see that χη;disc gets a contribution only from the so-called
zero modes of the Euclidean Dirac operator,
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χη;disc ¼ −
4

V

�Z
d4x

Z
d4yTrDC

�X
k

γ5ukðxÞu†kðxÞ
m − iλk

�

× TrDC

�X
k0

γ5uk0 ðyÞu†k0 ðyÞ
m − iλk0

��

¼ −
4

V

�
1

m2
ðnL − nRÞ2

�
¼ −

4

m2

1

V
hQ2i ¼ −4

χtop
m2

;

ðA20Þ

where nL and nR are the number of left-handed and right-
handed zero modes, respectively (i.e., γ5uL;R ¼ �uL;R),
which, as is well known, are related to the topological charge
Q of the given gauge-field configuration by theAtiyah-Singer
theorem Q ¼ nR − nL [49].
Finally, let us consider the isovector (I ¼ 1) pseudoscalar

channel Jaπ ¼ iq̄γ5τaq, corresponding to the three pions πa.
In the chiral limit m → 0 and in the low-temperature phase
(T < Tc), these are the Goldstone bosons generated by the
chiral symmetry breaking of SUð2ÞV ⊗ SUð2ÞA down to
SUð2ÞV . As for the isovector (I ¼ 1) scalar channel, the
chiral susceptibility χπ consists of the connected term only,
and, moreover, it is equal to the connected part of χη:

χπ ≡ χπa ¼ χη;conn ¼
Σ
m
; ðA21Þ

as is evident from a comparison of the expression

hJaπðxÞðJbπðyÞÞ†i ¼ hTr½γ5τaGAðx; yÞγ5τbGAðy; xÞ�i
¼ 2δabhTrDC½γ5GAðx; yÞγ5GAðy; xÞ�i

ðA22Þ

with Eqs. (A16)–(A18). Let us observe that in the chiral limit
m → 0 and for T < Tc the chiral condensate Σ is nonzero,
and, therefore, χπ diverges, which is consistent with the fact
that the pions are massless in this case.5

Let us summarize the expression obtained so far:

χσ ¼ χσ;connþχσ;disc; χσ;conn¼−4
Z

∞

0

dλρðλ;mÞ m2−λ2

ðm2þλ2Þ2 ;

χδ¼ χσ;conn; χσ;disc¼4

Z
∞

0

dλ
∂ρðλ;mÞ

∂m
m

m2þλ2
;

χη¼ χη;connþχη;disc; χη;conn¼
Σ
m
¼4

Z
∞

0

dλ
ρðλ;mÞ
m2þλ2

;

χπ ¼ χη;conn; χη;disc¼−4
χtop
m2

: ðA23Þ

In the chiral limit m → 0 and for T > Tc, the SUð2ÞV ⊗
SUð2ÞA chiral restoration implies that [see Eq. (1.3)]

χπ − χσ ¼ χπ − χδ − χσ;disc ¼ 0;

χη − χδ ¼ χπ − χδ − 4 lim
m→0

χtop
m2

¼ 0: ðA24Þ

Therefore, in the chirally restored phase, we can relate the
Uð1ÞA-breaking difference χπ − χδ ¼ χη;conn − χσ;conn to the
topological susceptibility χtop:

χπ − χδ ¼ χη;conn − χσ;conn ¼ χσ;disc ¼ −χη;disc ¼ 4 lim
m→0

χtop
m2

:

ðA25Þ

We stress that this equation must hold for every T > Tc, as
long as we take the chiral limit m → 0. If the whole chiral
group Uð2ÞV ⊗ Uð2ÞA were realized à laWigner-Weyl, all
the chiral susceptibility should be equal and each member
of Eq. (A25) should vanish in the chiral limit. However,
in the so-called DIGA [24], the topological susceptibility
χtop at high temperatures is expected to be of the order of
OðmNfÞ, in the chiral limit m → 0: As a consequence,
being here Nf ¼ 2, we expect that the right-hand side of
Eq. (A25) is nonzero and, therefore, that the Uð1ÞA
symmetry remains manifestly broken even at high T and
that the whole chiral group Uð2ÞV ⊗ Uð2ÞA is effectively
restored only asymptotically as T → ∞.
Finally, let us briefly discuss the expression of the

Uð1ÞA-breaking difference χπ − χδ in terms of the spectral
density ρ. From Eq. (A23), one finds that

χπ − χδ ¼ 8

Z
∞

0

dλ
m2ρðλ; mÞ
ðm2 þ λ2Þ2 ¼

8

m

Z
∞

0

dz
ρðmz;mÞ
ð1þ z2Þ2 :

ðA26Þ

Analogously to the case of the SUð2ÞV ⊗ SUð2ÞA sym-
metry, also an eventualUð1ÞA breaking is expected to come
from the low-lying part of the Dirac spectrum. However, in
order for χπ − χδ to vanish in the chiral limit m → 0, it is
not sufficient that ρðλ ¼ 0; m ¼ 0Þ ¼ 0, as for the chiral
condensate Σ, but also the behavior of ρðλ; mÞ as λ → 0 and
m → 0 is important. For example, as noted in Refs. [14,15],
if ρðλ; mÞ ∼mνm jλjνλ with νm þ νλ ¼ 1 as m, λ → 0, then,
according to Eq. (A26), the Uð1ÞA order parameter χπ − χδ
is nonzero in the chiral limit. In other words, proper forms
of the function ρðλ; mÞ can result in scenarios in which the
Uð1ÞA symmetry is manifestly broken even though the
SUð2ÞV ⊗ SUð2ÞA symmetry is restored. Another Uð1ÞA-
broken scenario, which is particularly important to our
discussion, is the one obtained by considering the con-
tribution of the discrete Dirac zero modes, as we will
discuss in the last subsection of this appendix.

5Indeed, hJMðxÞJ†Mð0Þi−hJMðxÞihJ†Mð0Þi∼e−MM jxj as x→∞,
where MM is the screening mass of the meson excitation M
interpolated by the operator JM [7]. We note that hJMi vanishes in
all the meson channels except for the σ one, in which case it
vanishes only in the chirally restored phase T > Tc.
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2. Chiral susceptibilities in QCD with Nf light flavors

In this subsection, we extend the study of the chiral
susceptibilities to the case of an arbitrary number Nf of
light quark flavors (with a common mass m). In particular,
we determine the new constraints imposed by the chiral
restoration: One cannot straightforwardly extend the con-
ditions (A24) and (A25) of SUð2ÞV ⊗ SUð2ÞA restoration
to the general case of Nf flavors, because the mixing
between the meson channels is now much more complicate
than the one shown in Eq. (1.3). The definitions (1.1) of
quark bilinears JM can be straightforwardly extended to an
arbitrary number of flavorsNf: In the caseNf ¼ 2, τa (with
a ¼ 1; 2; 3) are the Pauli matrices and the πa channel
corresponds to the three pions, while in the more general
case τa (a ¼ 1;…; N2

f − 1) are the generators of SUðNfÞ in
the fundamental representation, normalized as TrðτaτbÞ ¼
2δab, and the πa form a multiplet of N2

f − 1 pseudoscalar
mesons.
It is easy to see that the Uð1ÞA transformations mix the

meson channels in the same way as in Eq. (1.3). Therefore,
χπ − χδ ≠ 0 still implies Uð1ÞA breaking (but the reverse
implication may not be true). As regards the SUðNfÞA
transformations, one can easily derive that

SUðNfÞA∶ Jσ ¼ q̄q → J0σ ¼ J3π þ J
ðNf−2Þ
σ ;

Jη ¼ iq̄γ5q → J0η ¼ J3δ þ J
ðNf−2Þ
η ; ðA27Þ

under a rotation of an angle θ ¼ �π=2, respectively, along
the generator τ3, which is the third Pauli matrix in the
subspace of the up and down quarks and zero elsewhere.

We have defined J
ðNf−2Þ
σ ≡ q̄ðNf−2ÞqðNf−2Þ ¼ s̄sþ…,

where qðNf−2Þ has the first two components (the up and

down) set equal to zero: Thus, J
ðNf−2Þ
σ has just Nf − 2

terms. The bilinear J
ðNf−2Þ
η is defined analogously. The

restoration of SUðNfÞV ⊗ SUðNfÞA implies that

hJσJσi ¼ hJ0σJ0σi ¼ hJ3πJ3πi þ hJðNf−2Þ
σ J

ðNf−2Þ
σ i; ðA28Þ

where the mixed terms vanish, as they contain only one
SUðNfÞ generator τ3. Once integrated over the quark fields,
the correlation function hJσJσi consists of a connected and
a disconnected term, provided with one or two traces over
the quark indices, respectively: Therefore, the first term
gets a factorNf from the trace over the flavor indices, while
the second one gets a factor N2

f. Conversely, hJ3πJ3πi does
not depend (explicitly) on Nf, since the trace over the
flavor indices yields Trðτ23Þ ¼ 2. Let us rewrite the quan-
tities involved in Eq. (A28) so that the dependence on Nf,
coming from the trace operation, is made explicit:

hJσJσi ¼ NfhAi þ N2
fhBi;

hJðNf−2Þ
σ J

ðNf−2Þ
σ i ¼ ðNf − 2ÞhAi þ ðNf − 2Þ2hBi;
hJ3πJ3πi ¼ hCi; ðA29Þ

where A, B, and C do not depend on Nf. (However,
their functional average depends on Nf through the
determinant of the quark matrix ½detð=DþmÞ�Nf .)
Substituting these expressions in Eq. (A28), we obtain
the following equation:

2hAi þ 4ðNf − 1ÞhBi ¼ hCi; ðA30Þ

which has to be satisfied if SUðNfÞV ⊗ SUðNfÞA is
restored. In the particular case Nf ¼ 2, Eq. (A30) becomes
2hAi þ 4hBi ¼ hCi, which is nothing else than hJσJσi ¼
hJ3πJ3πi, and results in the constraint χσ ¼ χπ .
Before analyzing the condition (A30) further, let us

redefine the quark correlators in a more convenient manner.
Indeed, we note that 1

V

R
d4x

R
d4yhAi ¼ χσ;conn

Nf
and

1
V

R
d4x

R
d4yhBi ¼ χσ;disc

N2
f
, χσ;conn and χσ;disc being the con-

nected and disconnected susceptibilities, respectively,
defined as in Eqs. (A4)–(A7).
In order to eliminate these Nf factors, it is convenient to

renormalize the isoscalar channels by a factor
ffiffiffiffiffi
2
Nf

q
, so that

they are normalized as the isovector ones:

J̃σ ≡ q̄τ0q; J̃η ≡ iq̄γ5τ0q; ðA31Þ

where τ0 ≡
ffiffiffiffiffi
2
Nf

q
INf×Nf

and, thus, Trðτ20Þ ¼ Trðτ2aÞ ¼ 2.

By redefining also the chiral susceptibilities χ̃σ and χ̃η with
these renormalized isoscalar operators, we easily derive the
following generalization of Eq. (A23):

χ̃σ ¼ χ̃σ;connþ χ̃σ;disc; χ̃σ;conn¼−4
Z

∞

0

dλρðλ;mÞ m2−λ2

ðm2þλ2Þ2 ;

χδ¼ χ̃σ;conn; χ̃σ;disc¼4

Z
∞

0

dλ
∂ρðλ;mÞ

∂m
m

m2þλ2
;

χ̃η¼ χ̃η;connþ χ̃η;disc; χ̃η;conn¼
2

Nf

Σ
m
¼4

Z
∞

0

dλ
ρðλ;mÞ
m2þλ2

;

χπ ¼ χ̃η;conn; χ̃η;disc¼−2Nf
χtop
m2

; ðA32Þ

where Σ is still given by Eq. (A14). Now, being χ̃σ ¼ 2
Nf

χσ,

by integrating the condition (A30) over 1
V

R
d4x

R
d4y,

we obtain the following relation:

χ̃σ;conn þ
2ðNf − 1Þ

Nf
χ̃σ;disc ¼ χπ: ðA33Þ
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Again, for Nf ¼ 2 this is just the degeneracy condition
χσ ¼ χπ . Starting from Eq. (27), we can repeat all the above
passages also for the η channel, obtaining

χ̃η;conn þ
2ðNf − 1Þ

Nf
χ̃η;disc ¼ χδ: ðA34Þ

We recall that this equation, together with Eq. (A33), must
be valid above Tc and in the chiral limit m → 0. Being
χπ ¼ χ̃η;conn and χδ ¼ χ̃σ;conn, we obtain the following
generalization of Eq. (A25):

χπ−χδ¼ χ̃η;conn− χ̃σ;conn¼
2ðNf−1Þ

Nf
χ̃σ;disc

¼−
2ðNf−1Þ

Nf
χ̃η;disc¼4ðNf−1Þ lim

m→0

χtop
m2

: ðA35Þ

Therefore, χπ − χδ ∝ limm→0 χtop=m2 is always valid in the
chirally restored phase. However, for Nf > 2, if we use
the above-mentioned DIGA prediction for χtop ¼ OðmNfÞ
in the chiral limit m → 0, for high temperatures T [24],
we conclude that χπ − χδ → 0 in the chiral limit at high
temperatures: In this case, therefore, the Uð1ÞA anomaly
seems to have no effects on the chiral susceptibilities,
in agreement with the statements of Refs. [34–36].
Nevertheless, the Uð1ÞA breaking could still manifest
(and we shall argue that it does) taking the expectation
values of proper operators with a higher number (2Nf) of
quark fields. We finally note that, as a result of the chiral
susceptibilities being Uð1ÞA symmetric, the condition
(A33) becomes χ̃σ ¼ χ̃σ;conn ¼ χπ , as in the case Nf ¼ 2.

3. Zero-mode contribution

In the chirally restored phase, the Uð1ÞA-breaking differ-
ence χπ − χδ becomes proportional to the topological
susceptibility χtop [see Eqs. (A25) and (A35)], which
receives a nonzero contribution only from the Dirac zero
modes. We recall that these (discrete) modes are associated
to the topological charge Q through the Atiyah-Singer
theorem [49] and that the topologically nontrivial gauge
configurations are the ones that allow the Uð1ÞA anomaly
to have physical effects: Therefore, it is natural to expect
the Dirac zero modes to play a fundamental role in the
Uð1ÞA breaking. Indeed, these zero modes give rise to the
following contribution in the spectral density, which
explicitly breaks the Uð1ÞA symmetry:

ρðλ; mÞj0 ¼
δðλÞ
V

hn0½A�i

¼ δðλÞ
VZ

Z
DAe−SG½A�½detð=D½A� þmÞ�Nfn0½A�;

ðA36Þ

where n0½A� is the number of zero modes of the gauge-field
configuration Aμ. Now, if the Dirac spectrum is discrete
(see the discussion below), the term ½detð=D½A� þmÞ�Nf can
be expressed as

½detð=D½A� þmÞ�Nf ¼
Y
k

ð−iλk½A� þmÞNf

¼ mNfn0½A�
Y
k

ðm2 þ λ2k½A�ÞNf ; ðA37Þ

where
Q

k is restricted to the nonzero modes. The Atiyah-
Singer theorem [49] implies that n0 ¼ nL þ nR ≥ jQj, and
in each topological sector (corresponding to a given Q)
of the path integral one can always find a gauge-field
configuration with n0 ¼ jQj, which will dominate in the
chiral limit:

hn0i∼
m→0

1

Z

X∞
Q¼−∞

mNf jQjjQj
Z

DAQe−SG½AQ�
Y
k

λk½A�2Nf :

ðA38Þ
The full path integral will then be dominated by the gauge
configurations with jQj ¼ 1 [i.e., the so-called instantons
(Q ¼ 1) or anti-instantons (Q ¼ −1)], resulting in a quark-
mass dependence of the type hn0i ∼mNf . It is then
convenient to express ρðλ; mÞj0 as

ρðλ; mÞj0 ¼ CmNfδðλÞ; with C≡ 1

V
hn0i
mNf

: ðA39Þ

From the previous discussion, it follows that C is a nonzero
constant in the chiral limit. Furthermore, from Eq. (A38),
i.e., hn0i ∼ hjQji as m → 0, and since the dominant
contribution comes from the topological sectors Q¼�1,
one can infer that

hn0i ∼ hjQji ∼ hQ2i ¼ Vχtop ðA40Þ
in the chiral limit, so that we expect Eq. (A39) to be
nonvanishing in the thermodynamic limit as well.

Moreover, χtop ∼
hn0i
V ¼ CmNf , in agreement with the

above-mentioned DIGA prediction [24].
The problem with the above reasoning is that, by using

Eq. (A37), we have assumed a discrete Dirac spectrum,
while what we expect in the thermodynamic limit is a
superposition of a continuous spectrum and a discrete one6:
Therefore, the quark-mass dependence could be more
complicated. Still, gauge configurations such that the
Dirac operator =D½A� has n0 ¼ 1 discrete zero mode give
rise to a term ∼mNfδðλÞ in the spectral density. Of course,

6In some sense, by considering only the discrete spectrum, we
have taken the wrong order of limits: m → 0 before V → ∞.
Actually, it has been argued that the order of limits no longer
matters above the chiral transition [34], since in this case there is
no spontaneous-breaking phenomenon.
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this contribution must then be averaged in the full path
integral: Nevertheless, this contribution could survive the
integration. Therefore, let us study the effects of the zero
modes on the chiral susceptibilities, supposing that, near
the chiral limit (m → 0) and for T > Tc, the spectral
density can be expressed as

ρðλ; mÞ ¼ ρðλ; mÞj0 þ � � � ¼ CmNfδðλÞ þ � � � : ðA41Þ

[This term was proposed in Ref. [50] and further analyzed in
Refs. [14–16], where the authors found numerical evidences
of the contribution (A41) at high temperature.] Substituting
the expression (A41) into Eq. (A14), one obtains

Σ ¼ Nfm
Z

∞

−∞
dλ

ρðλ; mÞ
m2 þ λ2

¼ CNfmNf−1 þ � � � ; ðA42Þ

and then, from Eq. (A32),

χ̃η;conn ¼
2

Nf

Σ
m

¼ 2CmNf−2 þ � � � ; ðA43Þ

χ̃σ;conn ¼ −2
Z

∞

−∞
dλρðλ;mÞ m2 − λ2

ðm2 þ λ2Þ2 ¼ −2CmNf−2 þ � � � ;

ðA44Þ

χ̃σ;disc ¼ 2

Z
∞

−∞
dλ

∂ρðλ; mÞ
∂m

m
m2 þ λ2

¼ 2NfCmNf−2 þ � � � ;

ðA45Þ

so that, in particular,

χπ − χδ ¼ χ̃η;conn − χ̃σ;conn ¼ 4CmNf−2 þ � � � : ðA46Þ

Evidently, if Nf ¼ 2, the zero-mode contribution (A41)
results in a Uð1ÞA-broken scenario, since the Uð1ÞA order
parameter χπ − χδ differs from zero in the chiral limit
m → 0. Instead, the SUð2ÞV ⊗ SUð2ÞA chiral symmetry
is restored, as it must be for T > Tc: In fact, from Eq. (A42)
one sees that the chiral condensate Σ vanishes in the chiral
limit m → 0, and, moreover, using Eqs. (A32) and (A32)–
(A45) in the case Nf ¼ 2, one can immediately verify that
the π and σ channels become degenerate (χπ ¼ χσ) and
(using also the fact that χtop ¼ Cm2 þ � � �) that the δ and η
channels become degenerate, too (χδ ¼ χη).
On the other hand, if Nf > 2, all the expressions (A32)

and (A43)–(A46) for the chiral susceptibilities vanish in the
chiral limit m → 0 (including χ̃η;disc ¼ −2Nf

χtop
m2 , being

χtop ¼ CmNf þ � � �), in agreement with the well-known fact
that only proper n-point quark-field correlation functions
with n ≥ 2Nf can manifest the Uð1ÞA breaking [34–36]. In
this case, χπ − χδ no longer represents an order parameter
for the Uð1ÞA symmetry: In order to investigate the fate of
this symmetry, one has to study functional averages of
operators containing at least 2Nf quark fields. The Uð1Þ
axial condensates, which we investigate in Secs. II and III
of this paper, are precisely of this kind.
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