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The aim of this work is to study some possible local and global U(1) axial condensates in the high-
temperature chirally restored phase of QCD, by means of two nonperturbative analytical techniques: (i) by
expressing the functional averages in terms of the spectral density of the Euclidean Dirac operator and
(ii) by evaluating the functional integrals in the instanton-background approximation. In this way, besides
proving that these condensates are indeed different from zero in the high-temperature regime, we shall also
derive their asymptotic temperature dependence and compare it with that of the topological susceptibility.
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I. INTRODUCTION

It is well known that the vacuum state of quantum
chromodynamics (QCD) is characterized by certain non-
vanishing condensates which cannot be understood in the
framework of perturbation theory. In the so-called chiral
limit, in which N, quark masses are sent to zero (N = 2
and N, =3 being the physically relevant cases), the
QCD Lagrangian turns out to be symmetric under the
chiral group U(1), ® U(1), ® SU(Ny)y ® SU(Ny),. In
the quantum theory, the subgroup SU(N,), @ SU(Ny),
is spontaneously broken down to SU(N;), because of
the condensation of quark-antiquark pairs, which gives
rise to the so-called chiral condensate X = —(gq) =

- Z}V; 1{@/(x)qs(x)), where the brackets (...) stand for

the vacuum expectation value at zero temperature or,
more generally, for the thermal average at a finite
temperature 7. On the other hand, the U(1), (axial)
symmetry is broken by the quantum anomaly [1]. At the
quantum level, under U(1), transformations the action
acquires a contribution proportional to the so-called
topological charge Q: Although Q is the integral of a
total divergence, it can be nonzero because of the
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existence of topologically nontrivial gauge configura-
tions known as instantons, which are Euclidean solutions
of the classical equations of motion with finite action and
integer topological charge [2,3].

Moreover, it is also known (mainly by lattice simulations
[4]) that, at a certain (pseudo)critical temperature 7.~
150 MeV, QCD (in the chiral limit) undergoes a phase
transition which restores the SU(N;)y ® SU(N,), sym-
metry: The chiral condensate X, which is just an order
parameter of this symmetry, vanishes above T ..

Instead, the fate of the U(1), symmetry above the
transition remains unclear. Although the quantum
anomaly is present at any finite temperature [so that an
exact restoration of the U(1), symmetry is, of course, out
of question], above some temperature Ty its effects
could become practically negligible: If so, the U(1),
symmetry would be approximately restored. Two different
scenarios are possible [5,6]: (i) This approximate restora-
tion could occur well inside the quark-gluon plasma
phase, i.e., at temperatures sensibly larger than T,
(Ty(1y > T.), or, vice versa, (ii) it could occur simulta-
neously to the chiral one at 7', (T'y (1) ~ T.); and the nature
of the chiral phase transition at 7. crucially depends on
which of these two scenarios is realized. For example,
in the case N = 2, if the first scenario is realized
(Ty(1y > T.), then the chiral phase transition is expected
to be of second order, belonging to the three-dimensional
O(4) universality class; if, instead, the second scenario is
realized (T'y(;) = T ), then the chiral phase transition may
be either of first order or of second order but belonging to

Published by the American Physical Society
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a universality class different from O(4). However, which
of these two scenarios is indeed realized is still an
(important) open question.

Traditionally, this question has been investigated, at
least in the case Ny = 2, by studying (mainly by lattice
simulations) the so-called chiral susceptibilities [6,7]. For
each meson channel M (o, 6, =, and #), the chiral
susceptibility y,, is defined as the integral over four-space
of the two-point correlation function of the corresponding
interpolating operator Jy,(x) = g(x)['yq(x), for some
proper matrix I'y; in Dirac and flavor space:

(1.1)

where 7,, with a = 1,2, 3, are the Pauli matrices, normal-
ized so as Tr(z,7,) = 28,,- That is,

]O_ZQq, ngﬂ_ﬂa% Jr]:iq}/SCI’ Jg:izl}/STaq’

tu = [ @00 (0)
=y [ @ [ @)

where the brackets at the right-hand side stand for the
functional integration over the gauge field and the quark
fields and translational invariance has been used.

The importance of these correlators lies in the fact that
under SU(2), and U(1), transformations the meson
channels are mixed as follows:

(1.2)

oc<>1
U),

SU2)4% 3SUQ2)4

T <> 0.

1.3
U)a (13)

The restoration of a certain symmetry thus results in
the degeneracy between the correlation functions of the
channels that are mixed under that symmetry. In particular,
besides the chiral condensate X, also the differences y, — y,
and ys;—y, can be regarded (in the chiral limit
m=m,, — 0) as order parameters of the SU(2), sym-
metry and must vanish above the critical temperature 7.,
as confirmed by lattice simulations. On the other hand,
Xz —Xs and y, —y, behave as order parameters of the
U(1), symmetry.

Several lattice simulations, measuring these quantities
(for the case Ny =2 and also for the more realistic case
Ny=2+1, with m=m,,— 0 and m;~ 100 MeV),
have been carried out, but the results achieved so far are
not yet conclusive. Most of the studies [8—16] (using
staggered quarks or domain-wall quarks on the lattice)
find that the U(1),-breaking difference y, — x5 is still
sensibly nonzero above the chiral transition (so favoring the
first scenario that we have mentioned above), but some
others [17,18] (using the so-called overlap quarks on the
lattice) find that this quantity vanishes for 7> T, so

indicating an effective restoration of the U(1), symmetry
already at T, at least at the level of the chiral susceptibil-
ities for the meson channels (1.1) (and so favoring the
second scenario that we have mentioned above).1

The aim of this work is to study other local and global
“genuine” U(1) axial condensates in the high-temperature
chirally restored phase of QCD, by means of two nonpertur-
bative analytical techniques: (i) by expressing the functional
averages (...) in terms of the spectral density of the Euclidean
Dirac operator ip) and (ii) by evaluating the functional
integrals in the instanton-background approximation.

The local U(1) axial condensates that we shall first
consider are functional averages Cy() = (Oy()(x)) of
local 2N s-quark operators of the form

O (x) ~ det,, {q (x) (%“) q,(x)] FHe, (14)

where s,7 € {1,..., N} are flavor indices and the Dirac

indices (not explicitly shown) are contracted in each quark

bilinear g,(x)(*5)q,(x), while the color indices (also not

explicitly shown) can be contracted in different possible
ways, so to give a color singlet (see below): These operators
are invariant under the whole chiral group except for the
U(1), transformations, so that, differently from the above-
mentioned chiral condensate ¥ and the quantity y, — ys,
their functional averages Cy(;) are “genuine” order param-
eters for the U(1), symmetry alone (for any number of
flavors). Operators of this kind were first introduced by
Kobayashi and Maskawa in 1970 [19], as an additional
effective vertex in a generalized Nambu-Jona-Lasinio
model, and by 't Hooft in 1976 [3], as an effective quark
interaction in the background gauge field of an instanton.
(See also Ref. [20] for an interesting historical review on
this subject.) These genuine U(1) axial condensates were
then reconsidered in Ref. [21] (in the context of an effective
chiral Lagrangian formulation) and also in Ref. [6].

"We point out that here (and also in the rest of the paper) we are
using “effective restoration” (which is a bit stronger that just
“approximate restoration”’) with exactly the same meaning that was
used in Refs. [17,18]. Even if, as we have already said, the U(1),
symmetry is always broken by the quantum anomaly, it may
happen that certain (but not all) correlation functions, obtained by
considering the expectation values of operators which are not
invariant under a U(1), transformation, are exactly equal to zero
(in the chiral limit m — 0) above T',.: In this case, we say that this
particular set of correlation functions manifest an effective resto-
ration of the U(1), symmetry above T.. For example, the usual
chiral condensate ¥ = —(gq), which is also an order parameter for
the U(1), symmetry [the operator §¢ not being invariant under a
U(1), transformation], vanishes exactly (in the chiral limit m — 0)
for T > T,. It was argued in Refs. [17,18] (using both analytical
and numerical methods on the lattice) that also the chiral
susceptibilities of the meson channels (1.1) (that is to say, the
mass spectrum of these meson channels) manifest such an effective
restoration of the U(1), symmetry for 7 > T...
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In this work, we shall also consider global U(1) axial
condensates, taking the functional average of multilocal

operators of the form (indicating with ¢% the com-
pletely antisymmetric tensor in the flavor indices
fi.fn, € {1.....N,}, with el2-Nr = 1)

_ 1+
(’)U(1>(x1, ...,fo) ~€f""fo611(x1) <Ty5>61f] (x1)...

_ L+ys
X gy, (xy,) (T) qfy, (xn,) +H.c.

(1.5)

[i.e., performing a “point splitting” of the N, quark
bilinears contained in the expression of the local operator
OU(I)(x)] and then integrating over the four-space coor-
dinates. The main motivation for introducing these new
quantities is that [differently from the local U(1) axial
condensates] they can be studied using the spectral-density
technique, as we shall see in detail in the next section.
Moreover, the global feature of these new U(1) axial
condensates renders them promising objects for future
numerical studies on the lattice (probably better than their
local counterparts, for which, on the contrary, a direct
numerical determination on the lattice is expected to be
highly problematic: See, e.g., Ref. [22]).

The paper is organized as follows. In the Appendix,
we shall review, for the benefit of the reader, the results
obtained for the chiral susceptibilities by using the spectral-
density technique, and, in Sec. II, we shall apply the same
technique to study also the above-mentioned global U(1)
axial condensates and their relations with the chiral
susceptibilities, as well as with the so-called topological
susceptibility y,, = (Q?)/V.

In Sec. 111, instead, we shall explicitly compute the local
and global U(1) axial condensates in the high-temperature
phase, using the instanton-background approximation of
the functional integrals. In this way, besides proving that
these condensates are indeed different from zero in the
high-temperature regime, we shall also derive their asymp-
totic temperature dependence and compare it with that of
the topological susceptibility yop-

Finally, in Sec. IV, we shall conclude by briefly
summarizing the results obtained in this paper and giving
also some prospects for future studies.

II. LOCAL AND GLOBAL U(1) AXIAL
CONDENSATES AND THEIR
SPECTRAL-DENSITY ANALYSIS

A. U(1) axial condensates in QCD
with N, =2 light flavors

Let us start by considering the most simple case (and,
presumably, also the most relevant one, from the physical

point of view), that is, the case of two light flavors. It is
known (see the third Ref. [21] and also Appendix A in
Ref. [23], where also the case N = 3 is considered) that
the most general local quark operator (without derivatives)
which has the required chiral transformation properties
mentioned in the introduction [i.e., it is invariant under the
whole chiral group except for the U(1), transformations]
and is color singlet, Hermitian, and P invariant, is the
following four-quark local operatorz:

Np=2 7 St =a 1 + 4
ng(‘b (iK1, K2) = Fii(iy, k)€™ g (x) <TS) 7’ (x)

x g5 (x) <1+Ty5> 2 (x) +H.c., (2.1)

where s,t € {1,2} are flavor indices and €% = —¢”,
€2 =1, the Dirac indices (not explicitly shown) are
contracted in each of the two quark bilinears
ge(x)(5)gh (x) and g5 (x)(55)g? (x), while the Greek
letters a,f,7,6 € {1,...,N.} are color indices and the
color tensor Fyi(ky,k,) is given by

Fyi(ky, k) = k18365 + k2,636, (2.2)
where k| and k, are arbitrary real constants. [Let us observe
that if one chooses, in particular, x; = N, and x, = —1,
then the operator (2.1) just becomes, up to a propor-
tionality constant, the effective quark interaction in the
background gauge field of an instanton, found by 't Hooft
in Ref. [3].]

Let us now try to investigate, by means of the spectral-
density technique, the local U(1) axial condensates
obtained by taking the functional averages of the operators
(2.1), Cy1y = (Oyqy(x)). By integrating over the quark
fields, one obtains the following result:

w=2) _1 4 o
Coly = EF/;§<Tngﬁ (x. x)TrpGyY (x. %)

+ Trprs Gy (. 0)] Trp[rsGY (x, x)]
+ Tip[G) (x. x) G (x. x)]

+ Trplys G (x. x)rs G5 (x. %)), (2.3)

2of course, this local operator (as well as the other local and
multilocal operators [Egs. (1.4), (1.5), and (2.4)] that we shall
discuss in the following) should be properly renormalized in a
given renormalization scheme. This is surely a fundamental (and
quite delicate) question, which is, however, beyond the original
explorative scope of this paper and will be addressed in future
works: In this paper, therefore, we shall simply neglect the
renormalization question [apart from some brief comment in
Sec. III, when discussing the computation in the instanton-
background approximation of the local and global U(1) axial
condensates].
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where G, is the quark propagator in the external gauge field
A, [see Eq. (A3) with f = /'] and Trj, stands for the trace
over the Dirac indices only. By virtue of translational
invariance, we can rewrite the U(1) axial condensate Cy(y)
integrating Eq. (2.3) over % Ik d*x. Let us consider, for
example, the third term of Eq. (2.3):

Bii 17, / o.j tai
Fa . U, (x (x) u; (x)uk, (x)
ﬂ(i 2V </ d Z lﬂk Z lﬂ.k/ ’

K

where i, j € {1, ...,4} are Dirac indices. It is evident that
the local feature of this condensate prevents us from using
the orthonormality relation (A8) of the u,;’s, since the four
Dirac eigenfunctions are all evaluated at the same space
point. If we want to perform the integration over four-space
and to rewrite this object in terms of the spectral density, we
should have the Dirac eigenfunctions with contracted quark
indices evaluated at different space points. In other words,
we should introduce a point splitting and consequently
perform an additional four-space integration:

F“72V</d4 /d“

! (y) 3 ui?j ()™ (x)
llk lﬂk/ ’

K

To this purpose, let us define the following multilocal operator:

N,=2 _
Oy ) = i) (15

L4+7s\ 4/ 1+y
L4 15) gaai() (—) () + He.

. (2.4)

where, in order to guarantee the gauge invariance of the multilocal operator, only the color contraction generated by the first
term in Eq. (2.2) (with k; = 1) has been retained. We then define the global U(1) axial condensate Dy as

(x,y))

N
b foi

V<dets, [ / d4xq§(x)< +2“>q,a(x)] + det,, [ / A (x )(1 ‘2“) q?(x)}>.

(2.5)

(N;=2)

The multilocal operator (2.4) transforms under the chiral group exactly as the local operator (2.1), so that also DU(I isa
genuine order parameter of the U(1), symmetry: Moreover, its global feature renders it somewhat similar to the chiral

susceptibilities.

It is now easy to see that, performing the functional integration over the quark fields in the expression (2.5) for the new

(N

global condensate DU({):z), Eq. (2.3) is replaced by

=2 1
U({) =5y ((TrpcGa)? +

D

[Trpes(75Ga))* + Trpex(Ga) + Trpexl(r5G4)?])

(2.6)

where we have used the compact notation Trp, for the trace over the Dirac, color, and spatial indices. By comparing the
four terms of Eq. (2.6) with the expressions (A7) and (A17), we find that

Xo.disc

1
2V</d4x/d4nychA(x»x)TchgA(y’y)> :T

</d4 /d4yTrDC[ngA(x x)]Tch 75gA Y, y

</ d*x /d4)’TrDc Ga(x,y)Ga(y, x
</ d*x /d4nyDC 5G4 (X, ¥)y5Ga(y, x

)( r/ dlsc

)
> xa comn
i)

)(;7 conn

so that, summing the four contributions, the following result is found:
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2.7) contribution to the spectral density is given by p(4,m)|, =

’ Cm?5(2) [see the Appendix, Eq. (A39)]; in fact, substitut-
ing p(A,m) = p(d, m)|y + -+ = Cm*8(4) + - - -, one finds
that

w=2) 1 1
DU({) = Z (Xﬂ.conn - Zo-,conn) + g (X{T,diSC - )(r/,disc) .

It follows, in particular, that, in the chirally restored phase
(T > T., m = 0) where Eq. (A25) holds, the global U(1)
axial condensate Dyy(;y in two-flavor QCD turns out to be

proportional to the U(1),-breaking difference y, — ys and, D(Nf:2) (T>T)=20+- (2.9)
thus, to limm_,oxmp/mQ: u(1)
(Ny=2) ! Yo where the coefficient C is given by Eq. (A39).
Du(i) (T>T,)= 5()(75 —Xs) = 2r1n1£1(1) n;; (2.8)

B. U(1) axial condensates in QCD

Using Eq. (A26) for y, — y5, we can immediately express with N, light flavors

D<Nf )

u() for T > T, in terms of the spectral density:

Let us now consider the case of an arbitrary number
Ny >2 of light flavors. As is well known (see the
D( o )(T > T,) = 4lim ® i 5 Appendix), if Ny > 2, the chiral susceptibilities no longer

m=0Jo (m* +2%) represent good candidates to assess the U(1) , breaking and
their place is taken by the expectation value of proper
2N ;-quark operators, such as the global U(1) axial con-
gets (for 7> T,) anonzero  densate Dyy(), defined by generalizing Eq. (2.5) to the more
contribution from the so-called Dirac zero modes, whose  general case Wlth N light flavors:

|
@ _ay, 1495 ay,
qy, (xl)---%vf (XN,) 5 )9, (XN_,-)

1 1
DU(l)Ev/d4x1"'/d4fo|:<€f] fo‘“l( )( trs

(a0 (52 ) e o) (152 o)) .10

By performing the functional integration over the quark fields, one obtains N ;! possible different Wick contractions. As an
example, let us write the global condensate in the case Ny = 3:

m’p(4, m)

From this expression, one immediately recognizes that the

new global condensate D(lj\gfl)zz)

= 1
ng(‘i) Y- T4y <(TrDngA) + 3TrpcGa [TrDCx(}'SgA)]z + 3{TrDngATrDCx(gi) + TrDngATrDCx[(75gA)2]
+ 2Trpee(r5Ga) Trpex (v593) } + 2{Trpe(Gh) + 3Trpec[Ga(r5Ga)*})- (2.11)

|
In the following, we shall concentrate on the fifth term of  theorem [see the analogous derivation of Eq. (A20) in the
this expression and generalize it to the case of an arbitrary ~ Appendix], the first trace can be expressed in terms of the
number N, of light flavors. Indeed, among the N ! possible  topological charge Q as
different Wick contractions in the general case, we will
always find a term proportional to

1

v <TrDCx(75gA)TrDCx(J/Sng_I)>' (2.12)

Trpe(rs9a) —/d4xTr [Zysuk Mk ] :_%'

(2.13)
By using the anticommutativity of the Euclidean Dirac
operator i) with ys, the orthonormality relation (A8) for
the eigenfunctions u;, and the well-known Atiyah-Singer =~ On the other hand, let us evaluate the following trace:
|

Ysig, (x1) uj (x2) U, (%;) u, (Xie1)
TrDCx(yng) —/d4x1.../d4xNTrDC |:Z ky HZ kl/lk i :|,

ky
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with the boundary condition xy,; = x;. By virtue of the
orthonormality relation (AS8) for the eigenfunctions u,, the
integration over x,,...,xy imposes k; = kVi, and, as a
consequence, we derive that

T
Trpc.(rsGY) = / 5, T, {ZM} __o
k

(m—id )N m
(2.14)

Finally, substituting Egs. (2.13) and (2.14) with N=N;—1
into Eq. (2.12), we find that

1 <Q2> _ Xwop

1 -1
_<TrDCx(7/5gA)TrDCx(YSng ) VN N

Vv

(2.15)

We note that this derivation is valid at any temperature T
and at any value of the (common) quark mass m. At high
temperatures, the so-called dilute instanton gas approxi-
mation (DIGA) [24] predicts that the topological suscep-
tibility yp is different from zero and depends on the
(common) quark mass precisely as m"/ in the small-m limit
(and the same prediction is also derived using chiral
effective Lagrangian models above T, [25,26]): Therefore,
the contribution (2.15) is expected to be different from zero
in the chiral limit m — 0, and we can, thus, argue that it is
responsible for the U(1), breaking of the global condensate
Dy at high temperature, similarly to y, — x5 in the case
N = 2. Indeed, we have already demonstrated that,
for Ny = 2, the whole global condensate Dy(;) becomes
proportional to lim,,_o ¥p/ m? as the chiral symmetry is
restored for T > T, [see Eq. (2.8)]. It might be that the
same thing happens also in the case Ny > 2, i.e., that at
high temperatures (7" > T.) and in the chiral limit m — 0
the whole global condensate Dy, ;) becomes proportional to
lim,,_o ¥iop/m": In the next section, we shall find a
confirmation of this guess.

III. INSTANTON-BACKGROUND COMPUTATION
OF THE LOCAL AND GLOBAL U(1) AXIAL
CONDENSATES

In the previous section (and in the Appendix), the crucial
role of Dirac operator’s zero modes in the U(1), breaking
has been remarked. This can be realized also through the
following reasoning. Let O,, be a 2n-quark operator: After
integrating over the quark fields, its functional average can
be expressed as

(02) = / DAeScAl[det(PIA] + m)¥i Gy, (3.1)

where G} is a simplified notation for the product of n
external gauge-field propagators of the form (A3), with
properly contracted indices. Let us now consider the
contribution of gauge configurations with a single zero

mode ¥, such that [det(P + m)|Nr ~m™s(detp)"Nr, where
det is restricted to the nonzero modes, and G, ~ W, ¥}/m
(apart from terms which are regular in m). In the case of
an instanton (/), according to our conventions (see the
Appendix), the only zero mode is right-handed (i.e.,
rs¥y = —¥() and the topological charge is Q = 1: The
contribution to the functional integral (3.1) in the chiral
limit m — O is then

(s~ [ DA @pla) i (‘PT“PT) (32)

Evidently, if n = N, this contribution can be nonvanishing
in the chiral limit. In particular, the product of two quark
bilinears J of the type given in Eq. (1.1) has n = 2 and can,
thus, receive a nonzero contribution of this type in two-
flavor QCD. The same holds for the U(1) axial condensates
in the case of an arbitrary number of flavors N, as we will
explicitly derive in this section.

A. Instanton-background computation
at zero temperature

Here, we first perform an explicit computation of the
U(1) axial condensates in the instanton-background
approximation at zero temperature, in the case Ny =2
and for an arbitrary number of colors N .. The general case
of an arbitrary number of light flavors N, at a finite
temperature 7 will be considered in the next subsection.
In order to restrict the path integral to the contribution of
the instanton (that we denote as (...),), the integration over
the gauge configurations A, is traded for the one over the
instanton parameters: its orientation into the gauge group
SU(N,), its center x,, and its scale size p, that is,

% / Dae=Se[det(D + m)]Vr...

:>/dn(p)/d4x0/dU...,

where dU is the Haar measure of integration over the SU(N,.)
“rotations” of the instanton and dn(p) is the measure of
integration over the instanton size, defined as [3,27,28]

(3.3)

(3.4)

where the “instanton density” d(p), near the chiral limit and
for equal quark masses, can be approximated as

d(p) = (mp)Nidy(p),  with

8ﬂ'2 2N. _ 82
do(p) = Cy,x, <—)> e 7w,

g (p (33)
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where Cy_y , is a constant depending on both N . and N s and
g(p) is the running coupling constant at the length scale p [see
Eq. (3.19) below].

Let us first consider the generic four-quark correlation
function and integrate over the quark fields:

(@5 (@)gy ()3 () a5 (2))
= Sup0ea( Iy (x. )G ™ (2. )

— Baabep (GY " (2. )G (x.¥), (3.6
where a, b, ¢, and d are flavor indices, while Greek letters
a, f, v, and & stand for color indices, and i, j, k, and [ are
Dirac indices. In the instanton background, the Dirac
operator has a zero mode of the form [3]

Tg’i(x - XOHD) = WO(X - xOvp)va,i’ (37)
where the spinors v, satisfy the following relation:
1—
va,lva, ;T .
; ! 4 /i

and the function y(x — x¢, p) is given by

V2 P
Wo(x — X0.p) = — . (39)
v 7 [p? 4 (x = xo) P
so that the following identities hold:
/d4x[l//o(x —x0.p))* =
/fmmw%mrzl . (3.10)
5”2'04

Near the chiral limit (m — 0), the quark propagator for each
flavor [see Eq. (A3) with f = f’] can be expressed as

a,i B
Pl (x ) = S M (D ()
gyt (xy) zk: p—
m ’ '

where the regular terms in m have been neglected.
Substituting into Eq. (3.6) and making use of Eq. (3.3),
one obtains the following expression for the four-quark
correlation function in the instanton background:

(G5 (@)} ()" ()45 (2))1 = BapOea — 5ad5cb><Uﬂ,j”;i%,lv;k>su(Nc)

x / d’;( 2 / d*xopro(x = xo, p)wo(@ = X0, p)wo(z = X0, P)Wo(y = X0, ),

where (...)gy(y,) is the average over the possible SU(N

(vﬂvgv(gvbsu(,\,) /de’ ’(‘xvév’r where v}, = U,yv,.

(3.12)

.) rotations of the spinor v (and "), i.e.,

va—v(/U, (3.13)

aa’

and dU is the Haar invariant measure over the group SU(N..). Using the following rule of integration over SU(N.) [29]:

/ dUUy U}, Uss U, = =No1

and the relation (3.8), one obtains

¥ T
<Uﬂ, jya,ivé,lvy,k>SU(Nc)

(8pa8p o 85,05, + 03,05 05a050) —

1

m (51505/3’}// 55}’65/&’ + 5ﬂy5ﬂ’a/55a56’7’ ) s
c c

1 1—ys 1—ys a<y
=————— |(N,/63,05, — 164,0, .
4NL.(N3—1) |:( c9pa9sy Pr zia)( ) >ji< ) lk+ P ok

Finally, substituting this expression into Eq. (3.12), one finds the following result:

1

(@a" (@)dy” ()7 (145" (2))1 = (Basbea = Baaber)

AN (N> —1

=9),059),(20)]
N 83u85) — 6,85, [ —22 +
){< Pt ﬂy(s)( 2 )i\ 2 Ju \iek

X/d:;( )/d4xoll/0(x X0, P)Wo(@ = Xo, p)o(z = X0, P)Wo (¥ — X0, p)-

(3.14)

This expression is valid for any number N, of colors, generalizing a relation found by Callan, Dashen, and Gross in

Ref. [30]. (Our result has an extra factor 1/4, due to the fact that the zero mode used in Refs.

[3,30] was
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erroneously normalized to 2, as noted also in Ref. [27],
instead of 1 as in our case.) Moreover, Eq. (3.14) is
valid for any number N, of flavors, although in what
follows we shall use it (at first) in the particular case
Ny =2, since only in this case is Oy a four-quark
operator.

(@3 () gy ()7 (x)g5 (x)),
dn(p) 1

1. Local U(1) axial condensate (in the case Ny=2)

In the local case x = y = z = w, the integration over the
instanton center x, in Eq. (3.14) can be immediately
performed, making use of the second Eq. (3.10), and the
result does not depend on x, as expected from translational
invariance:

l—ys l—ys a<y
= (0,004 — 04d0¢ N 64,05, — 04,0 . 3.15
( abYcd ad cb)/5ﬂ2m2p44NC(N% _ 1) |:( cYpaPsy Py 5(1)( D) )ﬁ( 7 " + Pk ( )

Using this result, we can compute the local U (1) axial condensate Cy(y)|; = (Oy

case Ny = 2. The four-quark operator (9
of the color tensor (2.2), can be expressed as

N;=2 a,i J -7, 3
O3 (x) = Fofen g (x >q€f<x>q5"<x>qff<x>[(

Thus, to compute (05\2{):25 ;» we just need to consider

Eq. (3.15) with a=1, b=s, ¢c=2, and d =1t The
contraction over the flavor indices yields a fac-
tor (81,0 — 81,65)€" = 2.

Contracting the color tensor (2.2) with the two different
color factors appearing in the two terms on the right-hand
side of Eq. (3.15), one obtains F5(N S4ads, — 8p/0sa) =
KIN(NZ—1) in the first term and F5(N 84,85 —
84405,) = kaN (N2 —1) in the second one.

Finally, since the products of different chiral projectors
vanish, when one takes the trace over the Dirac indices, the
term in Eq. (3.16) containing the left projectors
(1”5),-]-(1“5),(, does not contribute to (Oy(y));, and one

2 2
is, thus, left with these two Dirac contractions:

<1 —7/5> <1 —75> (1 —}’5> (1 —7’5>
2 ij 2 ki 2 ji 2 Ik

<1 —75> <1 —75> (1 —}’5> <1 —J’5>
2 ij 2 ki 2 jk 2 li

The computation can be repeated for an anti-instanton (1)
configuration (for which Q = —1) just by replacing ys with
—7s. In both cases, one thus obtains the same result:

dn(p)
.

—5—57 3.17
5m2m?p (3.17)

N N
C<f |1—<f |1—(2’<1+K2)/

' is defined by Eq. (2.1), which, using the properties Fi;; =

))7 in the instanton background, in the
= Fljand Fyl = Fly

1+75> <1+7/s> +<1—75> (1—%) ]
2 ij 2 ki 2 ij 2 K

(3.16)

One can also sum the two contributions and define
C% 2)|inst = Cg\(/i) 2)|1 + C( |1 = 2Cy, N2
tribution resulting from both the 1nstanton (for which
Q =1) and the anti-instanton (for which Q = —1):
Using Egs. (3.4) and (3.5) with Ny =2, it is therefore
given by

| ; as the con-

C(Nf: )

© dp
u(l) ~ 2(2k +’<2)A Wdo(ﬂ)

instm—0

:2(2K1 +K2)Cn, v, /w@ 812 ZN(,E_%
57 o p \g(p) ’

P
(3.18)

where we notice that the dependence on m has canceled
out, so that the result is nonzero in the chiral limit m — 0.
We observe that this integral is, however, affected by an
infrared divergence as p — oo. Indeed, substituting the one-
loop result for the running coupling constant,

1 111 2
2 .
g (p) =———, with f :—<—NC——N ~>,
2f0In(5) T @n2\3 3

(3.19)

2
one finds that e 70 ~ (pAgep)?, with by = (47)fy =
YN, —3Ns:For Ny =2and N, = 3, by ~ 9.6 and, there-
fore, Cy(1)linse diverges as [5° dpp™’
However, we note that Eq. (3.19) is valid only for
p < 1/Aqep: For larger values of the (anti-)instanton size
p, one cannot rely on the perturbative expression for the
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running coupling constant g(p). As is well known (and as
we shall see in the next subsection), this infrared problem
disappears when one considers the theory at a finite
temperature 7, 1/T acting in this case as an infrared cutoff.

2. Global U(1) axial condensate (in the case N;=2)

Using Eq. (3.14) in the case x = w and y = z, we can also
compute the global U(1) axial condensate Dy, defined by
Eq. (2.5) [see also the expression (2.10)] in the particular
case Ny = 2. The only substantial difference with respect to
the computation in the local case is the integration over the
instanton centre x(, which in this case gives

%/délxo/d4x[l//o(x—Xo’ﬂ)]z/d4)’[l//o(y—xo»ﬂ)]z =1,
(3.20)

by virtue of the first Eq. (3.10). Adjusting properly the
passages above (taking x; =1 and x, =0) and using
Egs. (3.4) and (3.5) with Ny =2, one immediately
finds that

(N/=2)| oy (N=2) dn(p) © dp
Dy lins = 2Dy i = 4/ "2 m§o4/o p—3d0(/7)’

(3.21)

1.e., a nonzero result in the chiral limit m — O.
|

dy(p.T) = CN(,,N,- <9§7(TP2)> w exp{—{

where A =7rpT and A(1) diverges logarithmically as
A— oo [if we are interested in only the asymptotic
temperature dependence, the explicit form of A(1) is
irrelevant].

Besides the instanton density, also the zero mode (3.9)
has to be modified at a finite temperature 7 (see below):
However, if one is considering the global U(1) axial
condensate Dy ;) or also the chiral susceptibilities, its
exact expression is irrelevant, since these quantities depend
on the zero mode only through its normalization condition
[see Eq. (3.20) and the first Eq. (3.10)], which is valid at
any temperature 7. In fact, being ys¥, =F ¥, and thus

75sG4 =F G4 [see Eq. (3.11)], in the field of an instanton or
(Ny=2)

anti-instanton, the explicit expressions (2.6) for DUm

and (2.11) for ng\z’i):3), that we have found in the previous

section, reduce (when evaluated in the instanton-background
approximation) to the functional averages of various terms
containing products of factors of the type Trpc,(GY ), which,
by virtue of Eq. (3.11) and the normalization condition

st (55) 4]}

The result (3.21) is consistent with the one found
in Eq. (2.9) by considering the contribution of the zero
modes to the spectral density, taking into account that
[see Eq. (A39) in the case Ny =2] Cz%%—“}, where
now (ng) = (ng); + (ng); = 2V [dn(p). We recall that
Eq. (2.9) was derived above the chiral transition, and
indeed we also expect the instanton-background approxi-
mation to be reliable only above the chiral transition:
Therefore, in the above-reported expressions, dn(p) should
be more properly replaced by its expression at a finite
temperature 7', which will be considered and discussed in
the next subsection.

B. Instanton-background computation
at high temperatures T

In Ref. [24], Gross, Pisarski, and Yaffe demonstrated that
at a finite temperature 7 instantons of size p > % are
suppressed, rendering integrals such as (3.17) convergent
in the infrared and dominated by p ~ %: It follows that as
T — oo all the instantons are suppressed. At high enough
temperatures, one can use perturbation theory, being p < 1
and, thus, g(p) < 1 for the relevant configurations.

Performing a one-loop computation in the instanton-
background approximation, Gross, Pisarski, and Yaffe
found the following expression for the “reduced instanton
density” dy(p, T) at a finite temperature T

(3.22)

[
[ d*x¥{™ (x — x,p)¥a' (x — x,p) = 1 [see Eq. (A8)], is
equal to 1/m".

1. Global U(1) axial condensate and chiral
susceptibilities
Therefore, by virtue of the above-reported considera-
tions, the expression (3.21) for the global U(1) axial
condensate in the case Ny =2 is generalized as follows,
at a finite temperature 7

% d
4/ —fdo(p, T)
o P

(Y

(Ny=2)
DU({) (T)linst =

m—0

= Agep(aT) ™ A A3 e=F et ),

(3.23)
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That is to say, we have found the following asymptotic
temperature dependence of Dy(y) in the case Ny = 2:

(N;=2)

Dy

(T) ~ T? o, (3.24)
where by = (11N, —2N;)/3 = (11N, —4)/3. [Let us
observe that, for N = 2, DU(]) has dimension 2 in natural
units, and indeed the expression above must be intended to
be multiplied by Ag"CD, as explicitly shown in Eq. (3.23).]

Now, recalling that for 7 > T, (in the chiral limit
m — 0) Dy(;) comes out to be proportional to y, — x5

and to lim,,_oyp/ m? [see Eq. (2.8)], we also obtain that

W = 25) (D)2 ~ T, (3.25)

and, for the topological susceptibility,

(N,=2) . (m\?
Fion(T)lyy 2 & DL (T) ~ b0 (7) . (3.26)

which coincides with the well-known DIGA prediction
for the asymptotic temperature dependence of y,, [24] in
the case of Ny = 2 light flavors. [This expression is usually
derived directly from the free energy F(0,T), being
Xiop = é§7§|9:0.] Moreover, let us note the correctness of
the dimensions also in Egs. (3.25) and (3.26), the chiral and
topological susceptibilities having dimensions 2 and 4,
respectively.

It is easy to generalize the asymptotic behaviors
(3.24)—(3.26) to the case of an arbitrary number of light
flavors N. Indeed, as already pointed out, the result (3.14)
is valid also in this more general case, and, therefore, at
high T, the chiral susceptibilities (being expectation values
of certain four-quark operators) are always proportional to
the integral in Eq. (3.21), with dn(p,T) = Z—’s’d(/), T) and

d(p,T) = (mp)Nrdy(p, T):

(e =26 Dl ~ [ dnlp.T)

m

- ) dp 2NNy )
e 2/0 N (pAqcp)0e™ = D)

~ T2 0 (T) Ni=2, (3.27)
T

The contribution of the instantons to the chiral susceptibil-

ities thus vanishes, in the case Ny > 2, as mVr=2 in the

chiral limit m — 0, just as the contribution of the Dirac zero

modes [which give rise to a term p(4,m)|, = Cm"7§(2) in

the spectral density; see the Appendix]. For a comparison,

the contribution of the instantons to the chiral condensate
= —(gq) at high temperatures T turns out to be

2N,
Z|inst = 7 <TrDngA>I

m

[ dp
~ N m! A Ll ).

m—0

(3.28)

which correctly vanishes in the chiral limit m — 0 for
every Ny > 2.

Finally, let us consider the global U(1) axial condensate
Dy for an arbitrary Ny, defined by Eq. (2.10): This
condensate being the expectation value of a certain 2N ;-
quark operator, it will not be proportional (as the chiral
susceptibilities) to the integral [ dn(p, T)/m? but rather to
the integral [ dn(p, T)/m"s, where the factor 1/m"s comes
from the N propagators of the form (3.11). We thus obtain
the following asymptotic behavior:

dn(p,T)
Ny

Dy (D~ [

) dp
~ ———do(p,T) ~ T*Nrbo,
m—»OA ps_Nf O(p’ )

(3.29)
[Let us observe that the dimension of Dy is
3N;—4(N;—1)=4-N,]

We have, thus, found a nonzero result for the global
condensate Dy ;) at high temperatures and in the chiral
limit m — 0: Consistently with the fact that the instantons
are asymptotically suppressed at high temperatures, the
U(1) axial condensate Dy vanishes as T — oo, but it is
anyhow different from zero at any finite temperature.

At the end of the previous section, we have
demonstrated that Dy ) contains a term [see Eq. (2.15)]
proportional t0 yop/ m"s, and we have guessed that the
whole global condensate Dy;(;) might be proportional to
lim,,, 0 Yiop/ m"s above the chiral phase transition, in the
chiral limit m — 0. Indeed, the result (3.29) is consistent
with this guess and with the above-mentioned DIGA
prediction for y, [24], i.e.,

N
Ziop(T) s MY Dy (T) ~ T+ (T)

7 (3.30)

An even more direct confirmation of this result can also be
found by evaluating, in the instanton-background approxi-

Nr=2) and (2.11)

mation, the explicit expressions (2.6) for DU(I)

N;=3 . . .
for ng(fw ) that we have found in the previous section.

Since in the field of an instanton or anti-instanton one has
that ysG4 =F G, [see Eq. (3.11), being ys¥, =F ¥,] and
Q = *£1, one can easily compute the expressions (2.6) and
(2.11) in the instanton-background approximation, making
use of the relations (2.13) and (2.14), finding the following
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results: Dg\éfl)ﬁ)(T)hmt = 21im,, 0 ¥10p(T)/m*  and

(Ny=3) .
DU({) (T)|inst = —61im,, 0 x10p(T)/m?>.

2. Local U(1) axial condensate
Let us now consider the local condensate Cy;) for
Ny =2, which depends on the zero mode ¥,(x,p,T)
through the nontrivial integral [ d*x[¥,¥;]>. For a finite-
temperature instanton, the following expression holds for
the zero mode (in the so-called singular gauge) [24,31]:
Wi 0. T) = wou(xp THE.,  (331)

where the spinor vﬁ'i does not depend on x, p, T, and

1 ®
xp.T)= vIio, | = |. 3.32
ll/()}l( P ) 7[\/20 ”(H) ( )
with
2 .
zp*T sinh (27Tr)
IT T)=1
(x.p.T) T Cosh (27Tr) — cos (22T7)’
cos (zT7)
(I)<.X,p, T) = [H(X,p, T) - 1] m, (333)

7 being the Euclidean time and r = \/x} + x5 + x3.

Being interested only in the asymptotic temperature
dependence of Cy(;), we shall neglect its structure with
respect to the Dirac and colour indices, as it is irrelevant for
our discussion. Let us now evaluate, making use of
Egs. (3.31)-(3.33), the T and p dependence as T — oo
of the integral [ d*x[y,wq,]*, which replaces the second
Eq. (3.10) in the integral (3.18). As T — oo, we obtain

2 2

(x,p, T) ~ ﬂpr L

®(x,p,T) ~ P72 cos (nT7)e™,

and, therefore, neglecting some constant multiplicative
factors,

T
Wou(x,p. T) ~ \/;3,4 [cos (zT7)e™"""]

(where we note that the dependence on p has been
canceled), so that

Vi 0 T3 —2xTr\ 2
/ d4x[l//0ﬂl//0ﬂ]2~ / dt / dramr? <64)
0 0 r

~ 42T’ / " dre=Tr — T4, (3.34)
0

while [ d4x1//0ﬂy/0ﬂ ~ const, as it must be. Therefore, the
expression (3.18) for the local condensate Cy(;) in the

instanton or anti-instanton background in the case Ny = 2
is so modified at asymptotically high temperatures [using
for dy(p,T) the expression (3.22), which renders the
integral convergent in the infrared, and for g(p) the one-
loop perturbative result (3.19)]:

(Ny=2) © dp
CU({) (T) |inst ~ T4 3 d()(ﬂ, T)
0o P

~T /°° d_é) (/’AQCD)h"e_%(”pT)z(N"H)
(O

= T4(7TT)2—boAgoCD /°° dﬂjb0_3e_%/12(N"+]>,
0
(3.35)

where the remaining integral over the dimensionless
variable A yields a constant multiplicative factor. In other
words, the asymptotic temperature dependence of Cyy(y), for
N, =2 light flavors, is

(Ny=2)
u(l)

C (T) ~ T ™, (3.36)
(Let us observe that, for Ny = 2, Cy(;) has dimension 6 in
natural units.)

In conclusion, in the instanton-background approxima-
tion and in the case Ny = 2, the local condensate Cyj) is
different from zero at any finite temperature 7, and
it vanishes asymptotically as 7 — oo, according to
Eq. (3.36): That is, the U(1), symmetry is effectively
restored only asymptotically as 7 — oo.

Finally, let us point out the difficulties of extending this
estimation to the case of an arbitrary number N of light
flavors. In this case, since Oy consists of 2N, quark

fields, instead of Eq. (3.34) we find the following integral:

/d4x[l//0ﬂl//0ﬂ}Nf ~ T3Nf—1/ dr47zr2_N.fe_2Nf”T’,
0

which is clearly divergent in r = 0 for Ny > 2. While this
approximate procedure gave a correct result for Ny =2, it
cannot be used in the general case, making it necessary to
perform a more precise and in-depth analysis. In fact, we
also observe that a simple temperature dependence with a
power law of the kind Cyy)(T) ~ T3Nrb0 = T5(V;=Ne),
obtained by naively extending the result (3.36), using
purely dimensional considerations, would imply an
increase (rather than a decrease) with the temperature in
the case Ny > N,: Since the instantons are expected to be
suppressed as 7 — oo, this divergent high-temperature
behavior of the U(1) axial condensate appears to be really
unnatural.

This problem could actually require some kind of non-
perturbative renormalization: Indeed, let us observe that, at
T =0, being
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00 V2 p) 2Ny
4 2 _ 2 3
[ ot =2 [Zar (]

1
4(N,-1)

where yq(x,p) is given by Eq. (3.9), the result (3.18) is
generalized to the case of N light flavors as follows:

dp

Cu)linst ~ A Wdo(ﬂ)-

For Ny > N, this integral is affected by an ultraviolet
divergence, instead of an infrared one: Indeed, at small
instanton sizes, the integrand diverges as p?o~GN/+1) We
observe that this UV divergence cannot be removed by the
suppression factor in Eq. (3.22) (which introduces only an
infrared cutoff), and it resembles the one obtained in
Refs. [32,33], where the density of instantonic molecules
was found to be affected by a power UV divergence of
nonperturbative nature. To overcome this problem, one
could perhaps introduce some kind of nonperturbative
renormalization (as suggested in the above-mentioned
references) or some UV cutoff on the instanton size.

IV. SUMMARY OF THE RESULTS AND
CONCLUSIONS

In this conclusive section, we summarize our results and
draw our conclusions, discussing also some possible future
developments. The aim of our work was to study, in the
chirally restored phase, some possible local and global
genuine U(1) axial condensates and their relations with
the chiral susceptibilities (1.1) and (1.2) as well as with
the topological susceptibility y ., = (Q?)/V, by means of
two nonperturbative analytical techniques: (i) by express-
ing the functional averages (...) in terms of the spectral
density p(1) of the Euclidean Dirac operator i) and (ii) by
evaluating the functional integrals in the instanton-
background approximation.

In the Appendix, we have briefly reviewed (for the
benefit of the reader) the most relevant results found in the
past literature concerning the analysis of the chiral sus-
ceptibilities through the spectral density, and we have also
extended some of the results to the case of an arbitrary
number of light flavors N. In particular, we have found
that the relation y, — y; o lim,,_o y,op/m* [see Eq. (A35)]
still holds, above T, (in the chiral limit m — 0), also for an
arbitrary N : By virtue of the well-known DIGA prediction
for the quark-mass dependence y,,, = O(m"7) in the chiral
limit m — 0 at high temperatures 7 [24] (the same
prediction is also derived using chiral effective
Lagrangian models above 7. [25,26]), this result shows
that, while for Ny =2 y, — ys represents a good order
parameter of the U(1), symmetry, for N, > 2 the chiral

susceptibilities become U(1), symmetric at high temper-
atures (y, — ys — 0). Indeed, in the chirally restored phase
(T > T,), the U(1), anomaly is expected to affect only the
2n-point correlation functions with n > Ny [34-36]: The
U(1) axial condensates considered in this paper, being
functional averages of 2N ;-quark operators, are, therefore,
the right objects to be studied in order to assess the U(1),

breaking.
The local U(1) axial condensates considered in this
paper are functional averages Cy (1) = (Oy(y)(x)) of local

2N y-quark operators of the form (1.4) [see also Egs. (2.1)
and (2.2) for the particular case Ny = 2]: These operators
are invariant under the whole chiral group except for the
U(1), transformations, so that, differently from the chiral
condensate X and the quantity y, — ys their functional
averages Cy ) are genuine order parameters for the U ()4
symmetry alone (for any number of flavors) [6,21].

In this paper, we have also proposed a new global U(1)
axial condensate DU(I)» which is obtained taking the func-
tional average of a multilocal operator Oy ) (x1, ..., xy,) of
the form (1.5) [see also Eq. (2.4) for the particular case
N = 2] and then integrating over the four-space coordinates
[see Egs. (2.5) and (2.10)]: The multilocal operator trans-
forms under the chiral group exactly as the local operator
Ou) (x), so that also Dy () is a genuine order parameter of
the U(1), symmetry. Moreover, its global feature renders it
somewhat similar to the chiral susceptibilities. The main
motivation for introducing this new condensate is that
[differently from the local U(1) axial condensates] it can
be studied using the spectral-density technique, as we have
shown in detail in Sec. II. [Moreover, the global feature of
this new U(1) axial condensate renders it a promising object
for future numerical studies on the lattice, probably better
than the local counterparts, for which, on the contrary, a
direct numerical determination on the lattice is expected to
be highly problematic; see, e.g., Ref. [22].]

In particular, in Sec. II, we have derived, in the case
N; =2, the exact relation (2.7) between the global U(1)
axial condensate Dyy(;) and the connected and disconnected
components of the chiral susceptibilities, from which it
follows that, in the chirally restored phase (T > T, m = 0)
where Eq. (A25) holds, Dy(;) turns out to be proportional
to the U(1),-breaking difference y, —ys and, thus, to
lim,,,_o ¥iop/m?* [see Eq. (2.8)].

However, while the chiral susceptibilities cease to reveal
the U(1), breaking if Ny > 2, Dy represents a good
order parameter for any N,: We have found that, for any
number N of light flavors, Dy(;) always contains a term
proportional to yqp,/ m™s [see Eq. (2.15)], which (by virtue
of the above-mentioned DIGA prediction for the
quark-mass dependence of y,) is expected to remain
different from zero in the chiral limit m — 0 at high
temperatures.
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In Sec. III, we have explicitly computed the local and
global U(1) axial condensates in the high-temperature phase,
using the instanton-background approximation of the func-
tional integral. In this way, besides proving that these
condensates are indeed different from zero in the high-
temperature regime, we have also derived their asymptotic
temperature dependence and compared it with that of the
chiral and topological susceptibilities. In particular, for an
arbitrary number of light flavors N ¢, we have found a nonzero
result for the global condensate Dy () at high temperatures
and in the chiral limit m — 0, with the following asymptotic
temperature dependence [see Eq. (3.29)]: Dy)(T) ~
T4+Ni=b, where by = (11N, —2N)/3. Consistently with
the fact that the instantons are asymptotically suppressed at
high temperatures, the U(1) axial condensate Dy vanishes
as T — oo, but it is anyhow different from zero at any finite
temperature.

Instead, for the chiral susceptibilities, the following
corresponding result has been found [see Eq. (3.27)]:
(¢r —xs)(T) ~T?20(m/T)Ns=2, which vanishes, in the
case Ny > 2, as m"s=% in the chiral limit m — 0, while
it is nonzero in the particular case Ny = 2.

In the case N, =2, recalling that for 7> T (in the
chiral limit m — 0) Dy(;) comes out to be proportional to
Xr—xs and to lim,,_, ;(top/m2 [see Eq. (2.8)], one also
obtains that [see Eq. (3.26)] xiop(T) & m*Dy1y(T) ~
T4 bo(m/T)?, which coincides with the well-known
DIGA prediction for the asymptotic temperature depend-
ence of yyp, [24] in the case of Ny =2 light flavors
(and which has been verified on the lattice: See, e.g.,
Refs. [37-41]; see also Ref. [42] for a recent review).

More in general, as we have already said, in Sec. II
we have shown that, for an arbitrary N, the U(1) axial
condensate Dy;(;) contains a term proportional to y,,/ mNs
[see Eq. (2.15)], and we have guessed that the whole
global condensate Dy might be proportional to
lim,,, ¢ Yiop/ m™s above the chiral phase transition, in the
chiral limit m — 0: Indeed, the above-reported result
for the asymptotic temperature dependence of Dy is
consistent with this guess and with the above-mentioned
DIGA prediction for y,,, [24], i.e., [see Eq. (3.30)]
Ztop(T) X meDU(l)(T) ~ T4_h0 (m/T)Nf'

Finally, making use of the finite-temperature expression
for the instanton zero mode, we have also estimated the
asymptotic temperature dependence of the local U(1) axial
condensate in the case of N = 2 light flavors, obtaining
the result [see Eq. (3.36)] Cyy1) ~ T (Instead, the case
N > 2 requires a more accurate and in-depth analysis and
eventually the introduction of some kind of nonperturbative
renormalization [32,33] to remove a possible UV diver-
gence that, as in the case at zero temperature, affects the
result for more than two flavors: This issue, together with a
more general and in-depth analysis of the renormalization

of the local and multilocal operators discussed in this paper,
is left to future works.)

In conclusion, making use of the instanton-background
approximation, we have found that these 2N ,-quark U(1)
axial condensates are different from zero at any finite
temperature 7" and vanish only asymptotically as T — oo.

As we have seen, for N > 2, the U(1), anomaly seems
to have no effects on the chiral susceptibilities above T, so
that an effective restoration of the U(1), symmetry at the
level of the ¢gg scalar and pseudoscalar meson mass
spectrum is expected, in spite of the fact that the U(1),
symmetry is manifestly broken by the above-mentioned
2N y-quark condensates (see also Ref. [43]).

Instead, for the (physically most relevant) case N, = 2,
the global U(1) axial condensate Dy, comes out to be
proportional to y, —ys for T'> T, so that, Dy being
nonzero above T, an effective restoration of the U(1),
symmetry at the level of the ¢g scalar and pseudoscalar
meson mass spectrum above 7. is excluded.

Of course, we cannot make more quantitative statements
about the real magnitude of these condensates and so of the
breaking of the U(1), symmetry (which could be obtained
only by numerical calculations), so that we cannot exclude
that an approximate restoration of the U(1), symmetry may
anyhow happen in the vicinity of 7'.. Numerical studies of
these U(1) axial condensates on the lattice (and also a direct
investigation of the quark-mass dependence of y,,, above
the chiral transition) could, of course, allow for a deeper
understanding of this important problem and (hopefully)
provide a first-principle confirmation of the analytical results
found in this paper: The fact that, as we have already said,
present lattice data are in agreement with the DIGA
prediction for the asymptotic temperature dependence of
Xwop already gives, however, indirect support to the results
found in this paper concerning the U(1) axial condensates.

APPENDIX: A REVIEW ON CHIRAL
SUSCEPTIBILITIES AND THEIR
SPECTRAL-DENSITY ANALYSIS

1. Chiral susceptibilities in QCD
with Ny =2 light flavors

In this appendix, we shall review, for the benefit of the
reader, the most relevant relations for the chiral susceptibilities
of all the meson channels in terms of the so-called spectral
density (see, e.g., Refs. [44-46]) of the Euclidean Dirac
operator ip[A] = iyg,D,, where D, =0, + igA, is the
covariant derivative in a given gauge field A, and yg
(u =0, 1,2, 3) are the Hermitian Euclidean gamma matrices™:

>We use the Hermitian Euclidean gamma matrices y g, related
to the Minkowskian gamma matrices y# by the relations y 5z, = y°
and yg = —iy* (k=1,2,3), so that they satisfy the condition

{rewve} = 26,,14sa. We also use the following definition:

Ys = —YeoYe17e2res = —ir°r' vy,
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(A1)

=5 > a0 -4} ).

{A¢|A]} is the set of (real) gauge-field-dependent eigenvalues
of iP[A], ie., iPu, = Ay, u; being the corresponding
eigenvectors, and the brackets at the right-hand side stand
for the following functional integration over the gauge field:

()= % / DAe-SMW[det(PIA] + m)¥r....  (A2)

where Sg[A] is the pure-gauge (Yang-Mills) action and m is
the quark mass, which we assume, for simplicity, to be equal
for all the N quark flavors (the chiral limit m — 0 will be
taken later on).

The key ingredient which allows us to relate the chiral
susceptibilities with the spectral density p(4) is the so-
called spectral decomposition of the quark propagator
Ga(x,y) in an external gauge field A, [44—46]:

a,i P,
ap,ij a,i —p.j u (.X)l/t (y)
G 3) = (a7 DT (a = by D=
k

(A3)

where f and f’ are flavor indices (note that, since we are
assuming equal quark masses, G, is proportional to the
identity matrix in flavor space), @ and f are color indices,
i and j are Dirac indices, and (...) , stands for the functional
integration over the quark fields only, in a given gauge
field A,,.

Let us start with the chiral susceptibility in the isoscalar
(I = 0) scalar channel J, = ggq (the relations that we shall
derive can be also found, for example, in Refs. [14,15,47]):

to=y [ @ [aumiton. a9

Explicitly performing the functional integration over the
quark fields, one obtains

(1o (0)J5(3)) = ~(Tr[Ga(x. ¥)Ga (v, x)])

+ (TrGa(x, x)TrGa(y. y)),  (AS)
where the traces are done with respect to Dirac, color, and
flavor indices and the brackets at the right-hand side stand
for the functional integration (A2).
Substituting this expression into Eq. (A4), one obtains
Xo = Xoconn +)(z7,disc’ (A6)
where ¥, conn and ¥, qisc are defined as the connected and
disconnected components, respectively, of y,, with respect
to the quark lines in an external field (that is, before
averaging over the gauge fields):

Xo,conn = _lv/ d4x/ d4y<Tr[gA(x7 y)gA(y7x)]>’
toase =7, [ [ TG ITG ). (AT

By using the orthonormality condition for the eigenfunc-
tions uy,

/ il ()t (x) = Sy (AS)

and the well-known fact that p(4) is an even function of A

[p(=2) = p(4)], one can easily express the connected term
in terms of the spectral density:

2 1
Xo,conn — _V <Z (m — l/lk)2>

k
0 2 _ /12

Instead, it is not possible to repeat the same calculations for
the disconnected part. In fact, by using the orthonormality
condition (AS), one obtains two independent summations
which cannot be directly written in terms of p(4):

4 1 1
T E : . A10
Xo disc V< m_ilkzm—i,lk/> ( )

k K

Nevertheless, it is possible to relate y,, 4. to a derivative of
the spectral density. In fact, the total susceptibility y, is

related to the chiral condensate £ = —(gq) as follows:
1))
== 4+ Vx2, All
being £ = §2IZ  Since £ = —(/,(0)), Eq. (Al1) can be

rewritten as

[ #5100,009,(0) = 0,0 = 5

It is convenient to redefine the chiral susceptibility as the
left-hand side of this expression, i.e., by subtracting the
disconnected g)roduct of the two expectation values

(/o(x))(16(0))":
)?az/d4x[<‘]0(x)‘]6(o)>_<‘I6('x)><‘]o’(o)>]’ (A12)

*The chiral susceptibility redefined in this way is usually
referred to as “connected” with respect to the full theory. Here,
instead, we shall use the term connected as in Eq. (A7), i.e., with
respect to the quark lines in an external gauge field A,.
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that is,

)?HE)((T_VZZ__ (A13)

-~ Oom’
We also define the connected and disconnected compo-
nents of jy, as, respectively,

)_(a,conn = Xo.conn>
= — 2
Xodisc = Xodisc — VZe.

Clearly, above T, and in the chiral limit m — 0, the chiral
condensate X vanishes, and, therefore, y, = y,. For con-
venience, since we shall mainly consider the chirally
restored phase for T > T, in the following, we shall
continue to use the notation y,. Making use of a well-
known expression for the chiral condensate in terms of the
spectral density [44,46],

©
T = 2me/ LA
0

m? + 72 (A14)

[which in the chiral limit m — O leads to the famous
Banks-Casher relation X = Nzp(0) [48]], we can rewrite
Eq. (A13) as follows:

) & 22— m?
=—=4 dip(A, m) ————
)(o‘ 8m /() p( m) (mz +/12)2
© Op(A,m) m
4 di ,
* /0 om m*+ )2

where the dependence of p on the quark mass m (coming
from the weight [det(p + m)]? in the functional integral
over the gauge fields) has been explicitly indicated. The
first term is just equal to the connected susceptibility (A9),
and, therefore, it follows that

© Op(d,m) m
o = 4 di .
Xodisc /0 om m2 + /12

(A15)

Let us now consider the chiral susceptibility in the isovector
(I = 1) scalar channel J§ = gz,q, corresponding to the
three mesons J,:

1
1o, =y [ [ Eya@EEoN.
where, in this case,

(5 (I3(0))T) = ~(Tr[zaGa (x. ¥)7p9a (v, ¥)])
+ (Tr[z,Ga (x, X)|Tr[z, G4 (v, ¥)])
= =28, (TrpclGa(x, y)Ga(y, X)]).

In the last passage, the trace over the flavor indices has been
explicitly performed: Let us observe that in this case the

disconnected term vanishes, because Tr(z,) =0, and,
using Tr(z,7,) = 28,;, we are left with the above-reported
expression for the connected term, having indicated with
“Trpc” the trace over the Dirac and color indices only and
with G, the quark propagator (A3) with f = f’. Of course,
the isospin symmetry (the quark masses being equal to
the common value m) implies that ys is the same for
a=1,2,3, and, moreover, from a comparison with
Eq. (AS), it is easy to see that x5 = x5, = Yo.conn-

The isoscalar (I = 0) pseudoscalar channel J, = igysq
is associated to the singlet #, which is the two-flavor
version of the meson 5. As in the scalar channel, the
integration over the quark fields gives rise to a connected
and a disconnected term:

<J,7(x)Jj,(y)) = (Tr[ysGa(x.y)rsGa(y. x)])

= (TrlysGa (x, X)[TrlysGa (v, ¥)]).  (A16)

The chiral susceptibility y, is thus given by v, = ¥, conn +
Xn.disc» Where the connected and disconnected terms (with
respect to the quark lines in an external gauge field) are
defined analogously to Eq. (A7), i.e.,

1
)(Vl,conn EV/d4x/d4y<Tr[7/5gA(xvy)75gA(y’x)]>’
1
Xnpdisc = —V/d4x/d4)’<Tr[759A(x,XHTT[YSQA()’,y)]>-
(A17)
By using the fact that ysG,(x,y)ys = g;(y,x) [44], the

connected part can be straightforwardly written in terms of
the spectral density:

2 LN\, [~ p) =
rom= () 8

k

(A18)

Instead, it is not possible to express the disconnected
part straightforwardly in terms of the spectral density.
Nevertheless, one can derive an important relation between
Xndise and the topological susceptibility i, which is
defined in Euclidean space as

ton= [ dxlaa0) = [ @ [ @*slatat)

L2

— (@), (A19)
L PO FS, (With ey = —1) s the
topological charge density and Q = [ d*xq(x) is the topo-
logical charge. As a consequence of the fact that the Euclidean
Dirac operator i) anticommutes with the y5 matrix, it is easy
to see that y, 4isc gets a contribution only from the so-called
zero modes of the Euclidean Dirac operator,

where ¢(x) =
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Apdisc = —

([ e 24,250

oy, [Zk: vs ul:; (f);,z/(y)] >

4 /1 4 Yo
:_V<_2(nL_nR)2>: m—v<Q2> t—zp,

(A20)

where n; and ny are the number of left-handed and right-
handed zero modes, respectively (i.e., ysuy g = Lu; g),
which, as is well known, are related to the topological charge
Q of'the given gauge-field configuration by the Atiyah-Singer
theorem Q = nyp — n;, [49].

Finally, let us consider the isovector (I = 1) pseudoscalar
channel J¢ = igyst,q, corresponding to the three pions z,,.
In the chiral limit m — 0 and in the low-temperature phase
(T < T,), these are the Goldstone bosons generated by the
chiral symmetry breaking of SU(2), ® SU(2), down to
SU(2)y. As for the isovector (I = 1) scalar channel, the
chiral susceptibility y, consists of the connected term only,
and, moreover, it is equal to the connected part of y,:

[Nl

X =Xz, :Zr],connza’ (A21)

as is evident from a comparison of the expression

(Je(x)(J5()T) = (Trlysz,Ga(x. ¥)7575Ga(y. x)])
= 20, (TrpclysGa(x, y)rsGa(y. x)])
(A22)

with Egs. (A16)—(A18). Let us observe that in the chiral limit
m — 0 and for 7 < T, the chiral condensate X is nonzero,
and, therefore, y, diverges, which is consistent with the fact
that the pions are massless in this case.

Let us summarize the expression obtained so far:

0 mZ _12
Xo=Xo.com T Xodiscs Xoconn = _4A dip (iv m) m’
o Ip(d,m) m
X5 =Xo.com» Xo.disc — 4A da om  m2 +/12 ’
p(A,m)
Xn=Xpy.conn +)(q,disc’ Xncomm = — /0 dﬂmz +lz ’
X

Xn=Xnconn»  Xpdisc = —4 nt;zp . (A23)

Stndeed, (Jy (x)71,(0)) = (T3 (1)) (75 (0)) ~ e~ Mutl g x = oo,

where M), is the screening mass of the meson excitation M
interpolated by the operator J,, [7]. We note that (J,,) vanishes in
all the meson channels except for the ¢ one, in which case it
vanishes only in the chirally restored phase 7 > T,.

In the chiral limit m — 0 and for 7 > T, the SU(2), ®
SU(2), chiral restoration implies that [see Eq. (1.3)]

— Xodisc — 0,

Xtop
2 =0. (A24)

X —Xo = Xx —Xs

Xy =X = Xx = X5 —41lim
Therefore, in the chirally restored phase, we can relate the
U(1) ,-breaking difference y, — x5 — Xo.com tO the
topological susceptibility yqp:

= Xy.conn

Xtop

—Xndisc = = 4lim=— -

Xx —Xs = Xn.comn
m—0 m

— Xoconn — Xodisc —

(A25)

We stress that this equation must hold for every 7' > T, as
long as we take the chiral limit m — 0. If the whole chiral
group U(2), ® U(2), were realized a la Wigner-Weyl, all
the chiral susceptibility should be equal and each member
of Eq. (A25) should vanish in the chiral limit. However,
in the so-called DIGA [24], the topological susceptibility
Xiop at high temperatures is expected to be of the order of
O(m"s), in the chiral limit m — 0: As a consequence,
being here N, =2, we expect that the right-hand side of
Eq. (A25) is nonzero and, therefore, that the U(1),
symmetry remains manifestly broken even at high 7" and
that the whole chiral group U(2), ® U(2), is effectively
restored only asymptotically as 7 — oo.

Finally, let us briefly discuss the expression of the
U(1),-breaking difference y, — ys in terms of the spectral
density p. From Eq. (A23), one finds that

m’p(A,m) 8 [  p(mz,m)
X )(58/) d/l(m Yoy mA dz(1+zz)2.
(A26)

Analogously to the case of the SU(2), ® SU(2), sym-
metry, also an eventual U(1), breaking is expected to come
from the low-lying part of the Dirac spectrum. However, in
order for y, — ys to vanish in the chiral limit m — 0, it is
not sufficient that p(A =0,m = 0) = 0, as for the chiral
condensate X, but also the behavior of p(4, m) as 1 — 0 and
m — 0 is important. For example, as noted in Refs. [14,15],
if p(4, m) ~ m*»|A|*» with v,, + v, = 1 as m, A — 0, then,
according to Eq. (A26), the U(1), order parameter y, — x5
is nonzero in the chiral limit. In other words, proper forms
of the function p(4, m) can result in scenarios in which the
U(1), symmetry is manifestly broken even though the

U(2)y ® SU(2), symmetry is restored. Another U(1),-
broken scenario, which is particularly important to our
discussion, is the one obtained by considering the con-
tribution of the discrete Dirac zero modes, as we will
discuss in the last subsection of this appendix.
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2. Chiral susceptibilities in QCD with N light flavors

In this subsection, we extend the study of the chiral
susceptibilities to the case of an arbitrary number N, of
light quark flavors (with a common mass m). In particular,
we determine the new constraints imposed by the chiral
restoration: One cannot straightforwardly extend the con-
ditions (A24) and (A25) of SU(2), ® SU(2), restoration
to the general case of N, flavors, because the mixing
between the meson channels is now much more complicate
than the one shown in Eq. (1.3). The definitions (1.1) of
quark bilinears J,; can be straightforwardly extended to an
arbitrary number of flavors N: In the case N = 2, 7, (with
a=1,2,3) are the Pauli matrices and the =z, channel
corresponds to the three pions, while in the more general
caset, (a=1,..., N% — 1) are the generators of SU(Nf) in
the fundamental representation, normalized as Tr(z,7,) =
28,4, and the z, form a multiplet of N} — 1 pseudoscalar
mesons.

It is easy to see that the U(1), transformations mix the
meson channels in the same way as in Eq. (1.3). Therefore,
Xr—xs # 0 still implies U(1), breaking (but the reverse
implication may not be true). As regards the SU(Ny),
transformations, one can easily derive that

(Ny=2)

SU(Nys) 4 J,=qq—=J, =T+

(Ny=2)

J, = iqysq = J;, = J3+Jy . (A27)

under a rotation of an angle 6 = +x/2, respectively, along
the generator 73, which is the third Pauli matrix in the

subspace of the up and down quarks and zero elsewhere.

We have defined JE;NFZ)

where ¢/~ has the first two components (the up and

down) set equal to zero: Thus, TN ag just Ny —2

terms. The bilinear J,<7Nf ™ s defined analogously. The

restoration of SU(N;), ® SU(N/), implies that

= q(Nf_z)q(Nf_z) =55 + ey

(Ny=2) ;(N;=2)

(Jodo) = (JoJo) = (J32) + {Ja s 7). (A28)

where the mixed terms vanish, as they contain only one
SU(N ) generator 3. Once integrated over the quark fields,
the correlation function (J,J,;) consists of a connected and
a disconnected term, provided with one or two traces over
the quark indices, respectively: Therefore, the first term
gets a factor N, from the trace over the flavor indices, while
the second one gets a factor N7. Conversely, (J3J3) does
not depend (explicitly) on N, since the trace over the
flavor indices yields Tr(73) = 2. Let us rewrite the quan-
tities involved in Eq. (A28) so that the dependence on N,
coming from the trace operation, is made explicit:

(Jod5) = Ny(A) + NH(B).

NNy — (N = 2)(A) + (N —2)2(B),

(J373) = (C), (A29)
where A, B, and C do not depend on N ¢ (However,
their functional average depends on N, through the
determinant of the quark matrix [det(P + m)]"r.)
Substituting these expressions in Eq. (A28), we obtain
the following equation:

A +AN - D(B) = (C).  (A30)
which has to be satisfied if SU(N;), ® SU(Ny), is
restored. In the particular case Ny = 2, Eq. (A30) becomes
2(A) +4(B) = (C), which is nothing else than (J,J,) =
(J2J3), and results in the constraint y, = y,.

Before analyzing the condition (A30) further, let us

redefine the quark correlators in a more convenient manner.
1 4 4 — Xﬁ,conn
Indeed, we note that ¢ [d*x [d*y(A)= e and

§J ' [ d*y(B) =58, o com and 1, g being the con-

nected and disconnected susceptibilities, respectively,
defined as in Egs. (A4)—-(A7).
In order to eliminate these Nf factors, it is convenient to

renormalize the isoscalar channels by a factor , /N%’ so that

they are normalized as the isovector ones:

J, = qroq, Jy = iqystoq, (A31)
where 75 = , /N%_IfoNf and, thus, Tr(z3) = Tr(s2) = 2.
By redefining also the chiral susceptibilities j, and jy, with

these renormalized isoscalar operators, we easily derive the
following generalization of Eq. (A23):

5 y 3 3 0 m2 _12
Xo =Xo.conn +Z¢7,discv Xo.conn = _4A dﬂﬂ(/l, m) (m2 +/12)2 ’

_ . © Jp(A,m) m
X5 =Xo.coms>  Xodisc = 4[) da om m2+2
o 3 . 2% o p(dm)
X =Xn.conn T Xndisc> Xy.conn = N_fE = 4A d/ImZ 4+ 2
- - X
Xz =Xnconn»  Xndisc = _2Nf r:;zp ’ (A32)

where X is still given by Eq. (A14). Now, being 7, = N% Ko

by integrating the condition (A30) over ¢ [d*x [ ay,
we obtain the following relation:

2N, - 1)

Xocom T Nf )N(mdisc =X (A33)
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Again, for Ny =2 this is just the degeneracy condition
Yo = X Starting from Eq. (27), we can repeat all the above
passages also for the # channel, obtaining

2Ny —1)

)N(n,conn + N—)?q,disc = Xs- (A34)
f

We recall that this equation, together with Eq. (A33), must
be valid above 7. and in the chiral limit m — 0. Being
Xz = Xycom a0d Y5 = Y5 conn» We obtain the following
generalization of Eq. (A25):

B 5 2(Ny—1)
Xn—Xs=Xn.conn —Xo,conn — Tfﬂ(mdiso
Z(Nf - 1) - )(top
= _Tf)(r].disc :4( T l)l}‘l—>0 me (A35)

Therefore, y, — x5 & lim,,_o ¥iop/ m? is always valid in the
chirally restored phase. However, for Ny > 2, if we use
the above-mentioned DIGA prediction for y,, = O(m"7)
in the chiral limit m — 0, for high temperatures 7 [24],
we conclude that y, — ys — 0 in the chiral limit at high
temperatures: In this case, therefore, the U(1), anomaly
seems to have no effects on the chiral susceptibilities,
in agreement with the statements of Refs. [34-36].
Nevertheless, the U(1), breaking could still manifest
(and we shall argue that it does) taking the expectation
values of proper operators with a higher number (2N ) of
quark fields. We finally note that, as a result of the chiral
susceptibilities being U(1), symmetric, the condition
(A33) becomes y, =¥ = Xx» s in the case Ny = 2.

)(a,corm

3. Zero-mode contribution

In the chirally restored phase, the U(1) ,-breaking differ-
ence y,—ys; becomes proportional to the topological
susceptibility ., [see Eqgs. (A25) and (A35)], which
receives a nonzero contribution only from the Dirac zero
modes. We recall that these (discrete) modes are associated
to the topological charge Q through the Atiyah-Singer
theorem [49] and that the topologically nontrivial gauge
configurations are the ones that allow the U(1), anomaly
to have physical effects: Therefore, it is natural to expect
the Dirac zero modes to play a fundamental role in the
U(1), breaking. Indeed, these zero modes give rise to the
following contribution in the spectral density, which
explicitly breaks the U(1), symmetry:

p(am)ly =22 ]

5(1)/DA —SG[A][det(D[ ]+m>]anO[A]’

Vz
(A36)

where ng[A] is the number of zero modes of the gauge-field
configuration A,. Now, if the Dirac spectrum is discrete
(see the discussion below), the term [det(P[A] + m)]Ns can
be expressed as

[det(P[A] + m)]¥r = [ [(=iaelA] + m)Ys

k

e Tlon

k

24 2[A)Y, (A37)

where [ [, is restricted to the nonzero modes. The Atiyah-
Singer theorem [49] implies that ny = n; + ng > |Q|, and
in each topological sector (corresponding to a given Q)
of the path integral one can always find a gauge-field
configuration with ny = |Q|, which will dominate in the
chiral limit:

(@Zme/MeAezww

(A38)

The full path integral will then be dominated by the gauge
configurations with |Q| =1 [i.e., the so-called instantons
(Q = 1) or anti-instantons (Q = —1)], resulting in a quark-
mass dependence of the type (ng)~mM . It is then
convenient to express p(4, m)|, as

1
p(A.m)|y = CmM18(2), with C= ‘—/’:’_°>. (A39)

Ny

From the previous discussion, it follows that C is a nonzero
constant in the chiral limit. Furthermore, from Eq. (A38),
ie., (ng)~(|Q]) as m — 0, and since the dominant
contribution comes from the topological sectors Q ==+1,
one can infer that

(no) ~{|QI) ~ (Q*)

in the chiral limit, so that we expect Eq. (A39) to be
nonvanishing in the thermodynamic limit as well.
Moreover, o ~<"—‘})> =Cm"s, in agreement with the
above-mentioned DIGA prediction [24].

The problem with the above reasoning is that, by using
Eq. (A37), we have assumed a discrete Dirac spectrum,
while what we expect in the thermodynamic limit is a
superposition of a continuous spectrum and a discrete one’:
Therefore, the quark-mass dependence could be more
complicated. Still, gauge configurations such that the
Dirac operator P[A] has ny = 1 discrete zero mode give
rise to a term ~m™s§(A) in the spectral density. Of course,

=Vx top (A40)

®In some sense, by considering only the discrete spectrum, we
have taken the wrong order of limits: m — O before V — oo.
Actually, it has been argued that the order of limits no longer
matters above the chiral transition [34], since in this case there is
no spontaneous-breaking phenomenon.
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this contribution must then be averaged in the full path
integral: Nevertheless, this contribution could survive the
integration. Therefore, let us study the effects of the zero
modes on the chiral susceptibilities, supposing that, near
the chiral limit (m — 0) and for 7 > T, the spectral
density can be expressed as

p(Am) =p(A,m)ly+---=CmMi5(A)+---.  (A41)
[This term was proposed in Ref. [S0] and further analyzed in
Refs. [14—16], where the authors found numerical evidences
of the contribution (A41) at high temperature.] Substituting
the expression (A41) into Eq. (A14), one obtains

[e] l’
X= me/ d 51(2 f?z =CNmNi=t ..., (A42)
and then, from Eq. (A32),
2 X
Y nn =——=2C Ny=2 cee A43
Xn.co Nf m m =+ ( )
~ o0 m2 _/12 B
/’{/O',COIH] - _2[m dﬂp(l,m)m frng _2Cme 2 + e
(A44)
LY & ap(/l’ m) m
ise = 2 =2N.CmNr=2 4+ ...
X o disc /_oo dA om m2 n /12 fcm + ,
(Ad5)

so that, in particular,

Xn —Xs = )N(n,conn _)?a,conn =4CmNr2 4. (A46)

Evidently, if Ny = 2, the zero-mode contribution (A41)
results in a U(1),-broken scenario, since the U(1), order
parameter y, — ys differs from zero in the chiral limit
m — 0. Instead, the SU(2), ® SU(2), chiral symmetry
is restored, as it must be for 7 > T ..: In fact, from Eq. (A42)
one sees that the chiral condensate X vanishes in the chiral
limit m — 0, and, moreover, using Eqgs. (A32) and (A32)—
(A45) in the case N; = 2, one can immediately verify that
the 7 and o channels become degenerate (y, = y,) and
(using also the fact that y,q, = Cm? + - --) that the § and 7
channels become degenerate, t00 (ys5 = ).

On the other hand, if Ny > 2, all the expressions (A32)
and (A43)—(A46) for the chiral susceptibilities vanish in the
chiral limit m — 0 (including 7, gisc = —2N f%, being
Xiop = Cm"s + - . .), in agreement with the well-known fact
that only proper n-point quark-field correlation functions
with n > 2N ; can manifest the U(1), breaking [34-36]. In
this case, y, — ys no longer represents an order parameter
for the U(1), symmetry: In order to investigate the fate of
this symmetry, one has to study functional averages of
operators containing at least 2N, quark fields. The U(1)
axial condensates, which we investigate in Secs. II and III
of this paper, are precisely of this kind.
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