
Near threshold heavy quarkonium photoproduction
at large momentum transfer

Peng Sun,1 Xuan-Bo Tong ,2,3 and Feng Yuan 4

1Department of Physics and Institute of Theoretical Physics, Nanjing Normal University,
Nanjing, Jiangsu 210023, China

2School of Science and Engineering, The Chinese University of Hong Kong,
Shenzhen, Shenzhen, Guangdong 518172, People’s Republic of China

3University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
4Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 30 November 2021; accepted 11 March 2022; published 30 March 2022)

Perturbative QCD is applied to investigate the near threshold heavy quarkonium photoproduction at
large momentum transfer. We take into account the contributions from the leading three-quark Fock states
of the nucleon. The dominant contribution comes from the three-quark Fock state with one unit quark
orbital angular momentum (OAM) whereas that from zero-quark OAM is suppressed at the threshold. From
our analysis, we also show that there is no direct connection between the near threshold heavy quarkonium
photoproduction and the gluonic gravitational form factors without additional approximation. Based on the
comparison between our result and recent GlueX data of J=ψ photoproduction, we make predictions for ψ 0

and ϒ (1S,2S) states which can be tested in future experiments.
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I. INTRODUCTION

Exclusive heavy quarkonium production in high energy
photon-proton scattering,

γð�Þ þ N → V þ N0; ð1Þ

where the incoming photon can be real or virtual, has
attracted great attention in the hadron physics community.
This process is dominated by the two-gluon exchange [1,2]
and can be formulated in the generalized parton distribution
(GPD) [3,4] framework [5–9]. The theory advance has also
pushed the perturbative QCD computation of these proc-
esses to the next-to-leading order [9–11].
Recently, there has been a strong interest in this process

at the lower end of the energy range near the threshold
[12–30]. In particular, it was argued in Refs. [12,13] that
this process can provide a direct access to the so-called
trace anomaly contribution to the proton mass, while the
origin of the proton mass is fundamental in QCD strong
interaction theory [31–39].
In experiments, J=ψ photoproduction from the

nuclear targets near the threshold have been investigated

before [40,41]. More recently, high-precision measure-
ments have been carried out by the GlueX collaboration
at Jefferson Lab [16]. Future experiments will explore both
J=ψ and ϒ near threshold photoproduction in great detail
[42], including JLab-12 GeV [43,44] and electron-ion
colliders [45–47].
In this paper, we will focus on one of the key aspects of

the threshold kinematics that the momentum transfer is
relatively large: −t ∼ 2 GeV2 and 10 GeV2 for J=ψ and ϒ,
respectively. Here, t is the momentum transfer squared
from the nucleon target. Because of this large momentum
transfer, we can apply the QCD factorization argument to
compute the scattering amplitude. This factorization fol-
lows that of the hadron form factor calculations in pertur-
bative QCD [48–55]. For the heavy quarkonium production
in the final state, the nonrelativistic QCD (NRQCD) [56]
will be adopted and the associated color-singlet matrix
element of the quarkonium state is responsible for its
production in the exclusive process.
In the perturbative calculations, the quark/gluon propa-

gators in the scattering amplitudes lead to the power
behavior for the differential cross section at large momen-
tum transfer [57–59], which has been commonly assumed
in the phenomenological studies of near threshold heavy
quarkonium production; see, e.g., Refs. [16,24,25,60]. In
the following, we will provide an explicit calculation to
demonstrate this power behavior.
The hard exclusive processes at large momentum

transfer depend on the nonperturbative distribution
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amplitudes [48]. In our derivations, we take into account
the contributions from the leading-twist and higher-twist
terms of the nucleon distribution amplitudes [61,62]. They
correspond to the three-quark Fock state light-cone wave
functions of the nucleon with zero orbital angular momen-
tum (OAM) and one-unit OAM components [63], respec-
tively. Their contributions lead to different power behaviors
at large (−t), similar to the nucleon’s form factors [54,55].
We will also take the heavy quark mass limit and apply

the following hierarchy in scales:

W2
γp ∼M2

V ≫ ð−tÞ ≫ Λ2
QCD; ð2Þ

where ΛQCD for the nonperturbative scale. In addition,
throughout the following analysis, we take the threshold
limit, i.e., Wγp ∼MV þMp, where Wγp represents the
center of mass energy and MV and Mp for the heavy
quarkonium and proton masses, respectively. To determine
the leading contribution, we introduce a parameter [64],

χ ¼ M2
V þ 2MpMV

W2
γp −M2

p
; ð3Þ

which goes to 1 at the threshold. We will expand the
amplitude in terms of (1 − χ). By applying this expansion,
we find that the commonly used 1=ð−tÞ4 power term for the
differential cross section is suppressed by (1 − χ). The
dominant contribution at the threshold actually comes from
the higher-twist term with 1=ð−tÞ5 power behavior.
As mentioned above, the exclusive heavy quarkonium

production has been extensively studied in the GPD
framework and the scattering amplitude can be written
in terms of the gluon GPDs. In Refs. [18,26,29], the
GPD formalism was applied in the threshold kinematics,
where the connection to the gluonic gravitational form
factors was explored. In particular, the QCD factorization
in terms of the gluon GPDs has been systematically argued
for the threshold kinematics in Ref. [29]. One of the major
objectives of this paper is to check the connection between
the near threshold heavy quarkonium photoproduction and
the gluonic gravitational form factors. To do that, we
compare the differential cross section derived in this paper
and those of the gluonic gravitational form factors of the
nucleon at large momentum transfer in Ref. [55]. We will
show explicitly that there is no direct connection between
them without additional approximations. A brief summary
of our results has been published in Ref. [65]. In the
following, we provide more detailed derivations. In addi-
tion, we will compare our result to the GPD formalism and
show explicitly that they are consistent with each other.
A simpler process of near threshold photoproduction on
the pion target will be demonstrated as well. All these
derivations will help to build a solid foundation to study
nucleon structure through near threshold heavy quarko-
nium photoproduction.

The rest of the paper is organized as follows. In Sec. II,
we will examine the threshold kinematics and apply the
expansion method mentioned above to simplify the deri-
vation. In Sec. III, we take the example of photon scattering
off a pion target. The leading Fock state of the pion contains
quark and antiquark and the derivation is much simpler
compared to the nucleon case. Sections IV and V will be
dedicated to the nucleon case. In Sec. IV, we study the
contribution from the leading component of the nucleon
distribution amplitude and show that its contribution is
actually suppressed in the threshold limit. In Sec. V, we
perform the analysis of higher-twist component of the
nucleon distribution amplitude and show that its contribu-
tion to the differential cross section does not vanish at the
threshold. In Sec. VI, we discuss the interpretation and
consequence of our derivations. We conclude that there
is no direct connection between the near threshold photo-
production of heavy quarkonium and the gluonic gra-
vitational form factors of the nucleon. In Sec. VII, we
provide phenomenological applications of our derivations.
Predictions on ψ 0 and ϒ will be presented for future
experiments based on the comparison between our results
and the GlueX data on near threshold J=ψ production at
JLab. Finally, we summarize our paper in Sec. VIII.

II. NEAR THRESHOLD KINEMATICS

The typical Feynman diagram of the two-gluon
exchange contributions to the near threshold heavy quar-
konium photoproduction is shown in Fig. 1,

γðkγÞ þ Nðp1Þ → J=ψðkψÞ þ N0ðp2Þ; ð4Þ
where we have used J=ψ as an example. In order to make
the near threshold expansion more evident, it is useful to
examine the relevant kinematics for the scattering ampli-
tude. The center of mass energy and momentum transfer
squared can be written as

W2
γp ¼ ðkγ þ p1Þ2 ¼ ðkψ þ p2Þ2 ∼M2

V; ð5Þ
jtj ¼ jðp2 − p1Þ2j ≪ M2

V: ð6Þ

Therefore, we will have the following approximations
around the threshold kinematics:

FIG. 1. Schematics of two-gluon exchange contribution to the
threshold heavy quarkonium production.
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p1 · kγ ∼ p1 · kψ ∼M2
V; ð7Þ

p2 · kγ ∼ p2 · kψ ≪ M2
V: ð8Þ

In addition, applying the heavy quark mass limit of
M2

V ≫ ð−tÞ, we find that the invariant mass of the
t-channel two gluons is much smaller than heavy quarko-
nium mass. We will also take the approximation of Mc ≈
MV=2 in the nonrelativistic limit of the heavy quarkonium
system.
The quark propagators in the upper part of the Feynman

diagram of Fig. 1 are all in order of 1=MV . For example,
one of the quark propagators can be simplified as

1

ðk1 − kψ=2Þ2 −M2
c
¼ 1

−k1 · kγ − k1 · k2

≈
1

−k1 · kγ
; ð9Þ

where we have applied jk21j ∼ jk22j ∼ jk1 · k2j ∼ jtj ≪ M2
V .

Because k1 carries certain momentum fraction of the
incoming nucleon, k1 · kγ will be order of M2

V . Similarly,
we have

1

ðk2 − kψ=2Þ2 −M2
c
≈

1

−k2 · kγ
: ð10Þ

The following propagator will also show up in some of the
Feynman diagrams:

1

ðk − kψ=2Þ2 −M2
c
¼ 1

−k · kγ
≈

2

−M2
V
; ð11Þ

where k ¼ k1 þ k2 ¼ p1 − p2. In the center of mass frame,
k is dominated by p1 because p2 is soft.
Applying the above approximations, we can simplify the

photon-heavy quarkonium transition amplitude. Let us
define μ and ν for the polarization indices for k1 and k2,
respectively, and ϵγ and ϵψ for the photon polarization and
J=ψ polarization vectors, respectively. To further simplify
the derivation, we choose the physical polarization for the
incoming photon,

ϵγ · kγ ¼ 0; ϵγ · p1 ¼ 0: ð12Þ
With this choice, we notice that the contributions from ϵγ ·
k1 and ϵγ · k2 are also suppressed in the heavy quark mass
limit. Therefore, we will drop these terms as well. We
emphasize, all these approximations have been cross-
checked by a full computation.
Finally, we have the following expression for the

amplitude from the heavy quarkonium side:

Mμν
ψ ;ab ¼

δabNψ ½ϵ�ψ · ϵγW
μν
T þ ϵ�ψ · kWμν

L þWμν
S �

k1 · kγk2 · kγ
; ð13Þ

where a and b represent the color indices for the t-channel
gluons. In the above equation, Nψ is defined as

Nψ ¼ −
4eceg2sffiffiffiffiffiffiffiffiffiffiffiffiffi
NcM3

V

p ψJð0Þ; ð14Þ

where ψJð0Þ is the wave function of J=ψ at the origin and is
related to the NRQCD matrix element [56]. The tensor
structures Wμν

T;L;S are defined as

Wμν
T ¼ −k1 · kγk2 · kγgμν − k1 · k2k

μ
γkνγ

þ k1 · kγk
μ
2k

ν
γ þ k2 · kγkν1k

μ
γ

Wμν
L ¼ k1 · kγϵνγk

μ
2 þ k2 · kγϵ

μ
γkν1

Wμν
S ¼ −k1 · k2ðk1 · kγϵ�μψ ϵνγ þ k2 · kγϵ�νψ ϵμγ

þ k1 · ϵ�ψkνγϵ
μ
γ þ k2 · ϵ�ψk

μ
γ ϵνγÞ; ð15Þ

where WT and WL represent the amplitudes for a trans-
versely polarized and longitudinal polarized heavy quar-
konium in the final state, respectively, whereas WS for a
subleading term.
Clearly the above amplitude is symmetric under k1,

μ ↔ k2, ν. In the above equation, the first term is the leading
contribution in the heavy quark mass limit at the threshold.
The second and third terms are subleading contributions.
We have also carried out an important cross-check for the

above results. We compute the full amplitude without any
approximation. We then take the leading contribution of
the differential cross section (the amplitude squared) in the
heavy quark mass limit and threshold limit, and obtain the
same result.

A. Vanishing of three-gluon exchange contribution

Before we start our derivations of the threshold scattering
amplitudes, we would like to comment on the three-gluon
exchange contributions. The two-gluon and three-gluon
exchange diagrams were considered in Ref. [64] for the
threshold production of J=ψ and it was argued that the
three-gluon exchange diagrams dominate the differential
cross-section contributions.
However, we find that the three-gluon exchange dia-

grams do not contribute in our framework, due to the
C-parity conservation. This is because the three gluons
from the nucleon side carry symmetric color structure (such
as dabc) while those from the heavy quarkonium (J=ψ) side
are antisymmetric (such as fabc), where a, b, and c
represent the color indices for the three gluons in the t
channel, respectively. Explicitly, from the nucleon side, we
have, as shown in Fig. 2,

ϵijkϵlmnTa
ilT

b
jmT

c
kn ∝ dabc; ð16Þ

where ijk and lmn represent the color indices for the initial
and final three quarks, respectively. Here, we have applied
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the antisymmetric color structure for the three-quark Fock
state wave function of the nucleon [63]. On the other hand,
for the heavy quarkonium side, we have, instead

Tr½TaTbTc� ¼ 1

4
ðdabc þ ifabcÞ: ð17Þ

However, because J=ψ is in the 1−− state, the photon-J=ψ
transition amplitude vanishes for the symmetric color
configuration with three gluons, i.e., dabc term from the
above vanishes. Combining this with the color structure
from the nucleon side, we conclude the three-gluon
exchange diagrams do not contribute.

III. PION CASE

In this section, we take the example of pion case to show
the details of our derivations. In this case, we have photon
scatters on the pion target and it produces a J=ψ in the final
state close to the threshold,

γ þ π → J=ψ þ π; ð18Þ

where the dominant contribution is again a two-gluon
exchange diagram. The two gluons attach to the two quark
lines from the pion target, as shown in Fig. 3.
Considering the leading Fock component of the pion, we

have

jπþiud̄ ¼
Z

d½1�d½2�ψud̄ð1; 2Þ
δijffiffiffi
3

p ½u†↑ið1Þd̄†↓jð2Þ

−u†↓ið1Þd̄†↑jð2Þ�j0i; ð19Þ

where i and j ¼ 1, 2, 3 are the color indices, and ↑ and ↓
label quark light-cone helicity þ1=2 and −1=2, respec-
tively. The color factor δij=

ffiffiffi
3

p
is normalized to 1. The

light-cone wave-function amplitude ψud̄ð1; 2Þ is a function
of quark momenta with argument 1 representing x1 and
q1⊥ and so on. Since the momentum conservation implies
q⃗1⊥ þ q⃗2⊥ ¼ 0 and x1 þ x2 ¼ 1, ψud̄ð1; 2Þ depends on
variables x1 and q1⊥ only. The integration in the above
equation is defined as

Z
d½1�d½2� ¼

Z
d2q1⊥
ð2πÞ3

dx1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1ð1 − x1Þ

p : ð20Þ

From the light-cone wave function, we obtain the distri-
bution amplitude:

ϕðxÞ ¼
Z

d2q1⊥
ð2πÞ3 ψud̄ð1; 2Þ: ð21Þ

The final scattering amplitude of γ þ πþ → J=ψ þ πþ can
be computed in terms of the above distribution amplitude of
pion,

Aπ ¼
Z

dx1dy1ϕ�ðy1Þϕðx1ÞMμν
ψ ðϵγ; ϵψ ; x1; y1Þ

×
−g2sCF

2k21k
2
2

Tr½=p2γ
μ=p1γ

ν�; ð22Þ

where Mμν
ψ has been given in the previous section.

A. Threshold expansion

At the threshold, the amplitude squared can be further
simplified as

jAπj2 ¼ GψGπðtÞG�
πðtÞ; ð23Þ

where the spin sum and average have been applied. Here,
Gψ is defined as

Gψ ¼ jNψ j2 ¼
384π2e2cαð4παsÞ2

N2
cM3

ψ
h0jOψð3Sð1Þ1 Þj0i; ð24Þ

where h0jOð3S1Þj0i is the color-singlet NRQCD matrix
element for J=ψ. GπðtÞ is defined as

GπðtÞ ¼
8παsCF

t

Z
dx1dy1ϕ�ðy1Þϕðx1Þ

1

x1x̄1y1ȳ1
; ð25Þ

where CF ¼ ðN2
c − 1Þ=2Nc, x̄1 ¼ 1 − x1, and ȳ1 ¼ 1 − y1.

Here, we have neglected high-order corrections of
tψ ¼ −t=M2

V .

FIG. 2. Typical Feynman diagram from three-gluon exchange.
These diagrams vanish because of the C-parity conservation.

FIG. 3. The Feynman diagram contribution to the exclusive
γπ → πJ=ψ at large momentum transfer. The two gluons attach to
the quark and antiquark lines, respectively.
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B. Comparison to the gravitational form factors

We now compare the above result to the gluonic
gravitational form factors at large momentum transfer,
which have been computed in Ref. [55]. For convenience,
we list the results below. The gluonic gravitation form
factors of the pion are defined as

hp2jTμν
g jp1i ¼ 2P̄μP̄νAπ

gðtÞ þ
1

2
ðΔμΔν − gμνΔ2ÞCπ

gðtÞ
þ 2m2gμνC̄π

gðtÞ; ð26Þ

where Tμν
g is the gluonic energy-momentum tensor in QCD

and m represents the pion mass. Here, P̄ ¼ ðp1 þ p2Þ=2 is
the average momentum, Δ ¼ p2 − p1 is the momentum
transfer, and hence t ¼ Δ2. From the results of Ref. [55],
we find

Aπ
gðtÞ ¼ Cπ

gðtÞ ¼
4m2

t
C̄π
gðtÞ

¼ 4παsCF

−t

Z
dx1dy1ϕ�ðy1Þϕðx1Þ

�
1

x1x̄1
þ 1

y1ȳ1

�
:

ð27Þ

From the above results, we find that there is no direct
connection between GπðtÞ of Eq. (25) and any of the
gravitational form factors of Aπ

gðtÞ, Cπ
gðtÞ, or C̄π

gðtÞ
[Eq. (27)]. This indicates that we cannot directly interpret
the near threshold heavy quarkonium photoproduction in
terms of the gluonic gravitational form factors.

C. Comparison to the GPD formalism

As mentioned in the Introduction, the photoproduction
of heavy quarkonium has been derived in the GPD
framework. If we extend these derivations to the near
threshold kinematics, we obtain

Aπ ¼ Nψϵ
�
ψ · ϵγ

Z
1

−1
dx

Hπ
gðx; ξ; tÞ

ðxþ ξ − iεÞðx − ξþ iεÞ ð28Þ

for the pion target, whereNψ has been given in Eq. (14) and
ξ is the skewness parameter. In the threshold limit we take
ξ ¼ 1. In the above equation,Hπ

g represents the GPD gluon
distribution of the pion. The GPD gluon distribution at
large momentum transfer can be calculated in terms of the
distribution amplitudes as that of the quark GPD in
Ref. [66], which we list in Appendix A. If we substitute
the result of Hπ

gðx; ξ; tÞ from there, we will be able to
reproduce the scattering amplitude result from the direct
computation in the above subsection III A. This provides a
useful cross-check for our derivations.

IV. NUCLEON CASE: TWIST-THREE
CONTRIBUTIONS

Now we turn to the proton cases. We show the typical
Feynman diagram in Fig. 4. To compute these diagrams, we
follow the factorization argument for the hard exclusive
processes [49], where the leading contributions come from
the three-quark Fock state of the nucleon. The three-quark
states can be further classified into zero orbital angular
momentum (OAM) and nonzero OAM components [63].
We will first examine the contribution from zero OAM
component. This corresponds to the twist-three contribu-
tion from the nucleon’s distribution amplitude.

A. Three-quark Fock state with zero OAM

Because there is no quark OAM, the total quark spin
equals to the nucleon spin. The associated light-cone wave-
function amplitude is defined as

jP ↑i1=2 ¼
Z

d½1�d½2�d½3�ðψ̃ ð1Þð1; 2; 3ÞÞ

×
ϵijkffiffiffi
6

p u†i↑ð1Þðu†j↓ð2Þd†k↑ð3Þ − d†j↓ð2Þu†k↑ð3ÞÞj0i;

ð29Þ
where ijk represent the color indices for the three quarks,
respectively, and the measure for the quark momentum is

d½1�d½2�d½3� ¼
ffiffiffi
2

p dx1dx2dx3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x12x22x3

p d2q⃗1⊥d2q⃗2⊥d2q⃗3⊥
ð2πÞ9

× ð2πÞ3δð1 − x1 − x2 − x3Þ
× δð2Þðq⃗1⊥ þ q⃗2⊥ þ q⃗3⊥Þ: ð30Þ

By integrating over the transverse momenta qi⊥, we obtain
the twist-three distribution amplitude [61]:

Φ3ðx1; x2; x3Þ ¼ −2
ffiffiffi
6

p Z
½dq⊥�ψ̃ ð1Þð1; 2; 3Þ; ð31Þ

where ½dq⊥� ¼ d2q⃗1⊥d2q⃗2⊥d2q⃗3⊥
ð2πÞ9 δð2Þðq⃗1⊥þ q⃗2⊥þ q⃗3⊥Þ. In this

configuration, the three quarks only carry longitudinal

FIG. 4. Typical Feynman diagram contributions to the thresh-
old J=ψ photoproduction at large momentum transfer from two-
gluon exchange.
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momenta to form the nucleon state. The above paramet-
rization applies to both initial and final-state nucleons. Of
course, their momenta are different. In addition, because
the quark helicities are conserved, the nucleon helicity is
also conserved.

B. Partonic scattering amplitude

Schematically, we can write the helicity-conserved
amplitude as

A3 ¼ hJ=ψðϵψÞ; N0
↑jγðϵγÞ; N↑i

¼
Z

½dx�½dy�Φðx1; x2; x3ÞΦ�ðy1; y2; y3Þ

×Mμν
ψ ðϵγ; ϵψ Þ

1

ð−tÞ2 H
μνðfxg; fygÞ; ð32Þ

where fxg ¼ ðx1; x2; x3Þ represent the momentum frac-
tions carried by the three quarks, ½dx� ¼ dx1dx2dx3δ ×
ð1 − x1 − x2 − x3Þ, and Φ3ðx1; x2; x3Þ is the twist-three
distribution amplitude of the proton [61,67]. The partonic
amplitude Hμν is calculated from the lower part of Fig. 4,
where the incoming three quarks carry momenta of x1p1,
x2p1, and x3p1 and outgoing quarks with momenta of y1p2,
y2p2, and y3p2, respectively.
There are a total of 12 diagrams (lower part) for theHμν.

However, all the diagrams can be generated by only two
specific diagrams with different helicity configurations and
arrangement (permutation) of the momenta for the quark
lines. First, all these diagrams have the same color factor,

C2
B ≡ δac

1

6
ϵijkϵi0j0k0 ðTaÞi0iðTcTbÞj0jðTbÞk0k

¼
�
2

3

�
2

: ð33Þ

For these diagrams, a pair of quarks has zero total helicity.
One can combine these two fermion lines into a Dirac trace,
by applying the following identity:

Ū↑=↓ðp2ÞΓU↑=↓ðp1Þ ¼ Ū↓=↑ðp1ÞΓRU↓=↑ðp2Þ; ð34Þ

where ΓR is a γ-matrix chain obtained by reversing the
order in Γ. This leads to the typical Dirac algebra for the
partonic amplitude Hμν,

Ū↑ðp2ÞΓ1U↑ðp1ÞŪ↑ðp1ÞΓ2RU↑ðp2ÞŪ↑ðp2ÞΓ3U↑ðp1Þ:
ð35Þ

It is easy to find that the first two factors can be combined
into a Dirac trace, and we obtain the following expression:

Tr

�
1þ γ5

2
=p2Γ1

1þ γ5
2

=p1Γ2R

�
Ū↑ðp2ÞΓ3U↑ðp1Þ: ð36Þ

We will apply the above simplification to all the diagrams.
Furthermore, by examining the two gluon kinematics,

we realize that one of the gluons’ kinematics is determined
completely by the quark line to which the gluon attaches.
Let us identify that gluon as “k1.” Therefore, k1 ¼ xip1 −
yip2, where i represents the quark line in thediagram.With k1
determined, we immediately deduce that k2 ¼ x̄ip1 − ȳip2.
Therefore, we can classify the partonic scattering ampli-

tudes into two groups: k1 ¼ xip1 − yip2 attaches to the
helicity-up quark line (type I) and k1 attaches to the helcity-
down quark line (type II). The derivations for both types are
similar but differ in some details.
The typical diagrams of type I are shown in Fig. 5, where

we include all possible attachments of k2 and the additional
gluon exchange between the two quark lines. The con-
tributions of all these four diagrams can be evaluated at
the same time and will be grouped together. For these
diagrams, it is easy to show that the amplitude can be
written as

Ū↑ðp2ÞγμU↑ðp1ÞTr
�
1þ γ5

2
=p2 � � � γν � � �

1þ γ5
2

=p1 � � �
�
:

ð37Þ

Because there is no other vector than p1, p2, and ν, we
conclude that the trace of the second factor is proportional
to pν

1 or pν
2. Explicitly, these four diagrams contribute

pν
2

x3y3x̄1
;

pν
1

x3y3ȳ1
;

pν
2

x2y2x̄1
;

pν
1

x2y2ȳ1
: ð38Þ

Adding them together, we have

1

x1y1x̄1ȳ1

�
1

x2y2
þ 1

x3y3

�
x̄1pν

1 þ ȳ1pν
2

x̄1ȳ1
; ð39Þ

where we have also included the t-channel gluon
propagators.

FIG. 5. Partonic scattering amplitude for the type I configura-
tion: k1 is determined by the quark line with helicity-up state.
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Typical type-II diagrams are shown in Fig. 6. The
calculations are a little bit involved. For example, the
amplitude can be written in the following form:

Ū↑ðp2ÞγρU↑ðp1ÞTr
�
1þ γ5
2

=p2 � � �γν � � �
1þ γ5
2

=p1 � � �γρ � � �
�
:

ð40Þ

Now the trace of the Gamma matrices can lead to a term
like ϵp1p2νρ, which can be simplified by applying the
following identity:

Ū↑ðp2ÞγμU↑ðp1Þ ¼
iϵμνp1p2

p1 · p2

Ū↑ðp2ÞγνU↑ðp1Þ: ð41Þ

In the end, we find that there is cancellation between
different terms and the type-II diagrams vanish.
To derive the final result for the amplitude, we need to

contract theMμν withHμν in Eq. (32). The final results can
be summarized as

A3 ¼ hJ=ψðϵψÞ; N0
↑jγðϵγÞ; N↑i

¼
Z

½dx�½dy�Φðx1; x2; x3ÞΦ�ðy1; y2; y3Þ
1

ð−tÞ2
× Ū↑ðp2Þ=kγU↑ðp1ÞMð3Þðϵγ; ϵψ ; fxg; fygÞ: ð42Þ

The spinor structure in the above equation is a consequence
of the leading-twist amplitude which conserves the nucleon
helicity. This is similar to the A form-factor calculation
in Ref. [55].

C. Threshold expansion

In the threshold limit, we find that Mð3Þ can be further
simplified as

Mð3Þ ¼ ϵ�ψ · ϵγ
8eceg6s

27
ffiffiffiffiffiffiffiffiffiffi
3M7

ψ

q ψJð0Þð2H3 þH0
3Þ: ð43Þ

The coefficient H3 can be summarized as

H3 ¼ I13 þ I31 þ I12 þ I32; ð44Þ

where

Iij ¼
1

xixjyiyjx̄2i ȳi
ð45Þ

and H0
3 ¼ H3ðy1 ↔ y3Þ.

Similar to the pion case, we can reproduce the above
result by applying the GPD gluon distribution Hgðx; ξ; tÞ
at large momentum transfer in the GPD formalism. For
reference, we list the GPD gluon distribution Hg in
Appendix B.
The final result for the differential cross section will

depend on the threshold limit of the amplitude squared.
In the limit of χ → 1 we find the following result:

jA3j2 ¼ ð1 − χÞGψGp3ðtÞG�
p3ðtÞ; ð46Þ

which actually vanishes at the threshold. In the above, the
spin sum and average has been performed, andGψ has been
defined in Eq. (24). Gp3 follows the form-factor factori-
zation and can be written as

Gp3ðtÞ ¼
8π2α2sC2

B

3t2

Z
½dx�½dy�Φ3ðfxgÞΦ�

3ðfygÞ½2H3þH0
3�;

ð47Þ

where H3 and H0
3 are given above, and C2

B ¼ ð2=3Þ2 is the
color factor related to partonic amplitudes. Combining Gp3

and G�
p3, this leads to 1=ð−tÞ4 power behavior for the

amplitude squared, which is consistent with the conven-
tional power counting analysis. However, this contribution
is suppressed at the threshold.
The suppression factor (1 − χ) comes from the spinor

structure in Eq. (42). In order to obtain a nonvanishing
contribution at the threshold, we have to go beyond the
leading-twist contributions. In the following section, we
consider the three-quark Fock states with one-unit OAM,
which are related to the twist-four distribution ampli-
tudes [61,63].

V. NUCLEON CASE: TWIST-FOUR
CONTRIBUTIONS

The twist-four contribution comes from the three-quark
Fock state with one unit quark OAM. Two important
features emerge for nonzero OAM contributions. First,
the partonic scattering amplitudes conserve the quark
helicities. However, because of a nonzero OAM for one
of the three-quark states, the helicity of the nucleon states
will be different. This contributes to the hadron helicity-flip
amplitude. Second, in order to get a nonzero contribution,
we have to perform the intrinsic transverse momentum

FIG. 6. Partonic scattering amplitude for the type-II configu-
ration: k1 is determined by the quark line with helicity-down
state.
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expansion for the hard partonic scattering amplitudes [54],
which will introduce an additional suppression factor
of 1=ð−tÞ.
The twist-four distribution amplitudes are related to the

three-quark Fock states with one unit of OAM. This can
comes from either the initial or final state. For example, if
we consider the contribution from the initial state of spin-
down nucleon, we can parametrize the Fock state as [63]

jp1↓i1=2¼
Z

d½1�d½2�d½3�ððqx1− iqy1Þψ̃ ð3Þð1;2;3Þ

þðqx2− iqy2Þψ̃ ð4Þð1;2;3ÞÞϵ
ijkffiffiffi
6

p

×ðu†i↓ð1Þu†j↑ð2Þd†k↑ð3Þ−d†i↓ð1Þu†j↑ð2Þu†k↑ð3ÞÞj0i;

where the total quark helicity equals þ1=2 with
nucleon helicity −1=2. With this choice, the final-state
nucleon’s Fock state can be taken as that in the previous
section.
An important step in the computation of twist-four

contribution is to perform the collinear expansion of the
partonic scattering amplitude in terms of the transverse
momenta qi⊥. In particular, the linear term of qi⊥ will lead
to the twist-four distribution amplitudes when we integrate
over the qi⊥ [54],

Ψ4ðx1; x2; x3Þ ¼ −
2

ffiffiffi
6

p

x2M

Z
½dq⊥�q⃗2⊥

· ½q⃗1⊥ψ̃ ð3Þð1; 2; 3Þ þ q⃗2⊥ψ̃ ð4Þð1; 2; 3Þ�;
ð48Þ

Φ4ðx2; x1; x3Þ ¼ −
2

ffiffiffi
6

p

x3M

Z
½dq⊥�q⃗3⊥

· ½q⃗1⊥ψ̃ ð3Þð1; 2; 3Þ þ q⃗2⊥ψ̃ ð4Þð1; 2; 3Þ�:
ð49Þ

To extract the linear dependence of the transverse momen-
tum qi⊥ from the partonic amplitudes, one can first expand
the spinor as

Uðxip1 þ q⃗i⊥Þ ≈Uðxip1Þ þ
q⃗i⊥p2

2xip2 · p1

Uðxip1Þ: ð50Þ

After the evaluation of the Dirac structures in the ampli-
tudes following the strategy in the last section, all the linear
dependence of q⃗i is explicit and straightforward to find. For
the contributions associated with the initial OAM, it will
yield a structure like

Γ1ðfxg; fygÞðqx1 þ iqy1ÞŪ↑ðp2ÞU↓ðp1Þ þ Γ3ðfxg; fygÞðqx3
þ iqy3ÞŪ↑ðp2ÞU↓ðp1Þ; ð51Þ

where the transverse momentum conservation q⃗2⊥ ¼
−q⃗1⊥ − q⃗3⊥ is used, and the identities γxU↑ðpÞ¼U↓ðpÞ,
γyU↑ðpÞ ¼ iU↓ðpÞ have been applied.
Applying Eqs. (48) and (49) with the linear terms of qi⊥

from the partonic amplitudes, we obtain the twist-four
contribution to the scattering process of γp → J=ψp as

A4 ¼ hJ=ψðϵψÞ; N0
↑jγðϵγÞ; N↓i

¼ Ū↑ðp2ÞU↓ðp1Þ
Mp

ð−tÞ3
Z

½dx�½dy�Φ�
3ðfygÞ

× ½Ψ4ðfxgÞMð4Þ
Ψ þΦ4ðfxgÞMð4Þ

Φ �; ð52Þ

whereΨ4 andΦ4 are the twist-four distributions introduced

above and Mð4Þ
Ψ;Φ from the partonic amplitudes. From this

equation, we can clearly see that the nucleon helicity flip is
manifest in the spinor structure. This amplitude is negli-
gible at high energy, but will be important at the threshold,
because it is not suppressed in the limit of χ → 1. The
amplitude squared along with the associated spin sum and
average can be written as

jA4j2 ¼ m̃2
t GψGp4ðtÞG�

p4ðtÞ; ð53Þ

where m̃2
t ¼ M2

p=ð−tÞ, Gψ is the same as above. Gp4

depends on the twist-three and twist-four distribution
amplitudes [61,62],

Gp4ðtÞ ¼
C2
Bð4παsÞ2
12t2

Z
½dx�½dy�Φ3ðy1; y2; y3Þ

× fx3Φ4ðx1; x2; x3ÞT4Φðfxg; fygÞ
þ x1Ψ4ðx2; x1; x3ÞT4Ψðfxg; fygÞg; ð54Þ

where the hard function has the following form:

T4Ψ ¼ 2T 4Ψ þ T 0
4Ψ;

T4Φ ¼ 2T 4Φ þ T 0
4Φ; ð55Þ

and T 0
4 is obtained from T 4 by interchanging y1 and y3.

Then we have

T 4Ψ ¼ x3K1ð1þ y2=ȳ1Þ þ 2x̄3K̃1

þ 2x3ðK̃2 − K2Þ − K3=ȳ1

þ x3ðK4 þ K5Þ=x̄1 þ 2ðK̃4 þ K̃5Þ;
T 4Φ ¼ T 4Ψð1 ↔ 3Þ; ð56Þ

where the functions Ki and K̃i are defined as
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K1 ¼
1

x1x23y1y
2
3x̄

2
1ȳ1

; K2 ¼
1

x1x2x23y2y
2
3x̄2ȳ2

;

K3 ¼
1

x1x2y1y2x̄21ȳ1
; K4 ¼

1

x1x23y1y3x̄1ȳ
2
1

;

K5 ¼
1

x1x2x3y1y2x̄1ȳ21
; K̃i ¼ Kið1 ↔ 3Þ: ð57Þ

As mentioned above, the twist-four distribution amplitudes
can come from both initial and final-state nucleons.
Because of the symmetric property of the partonic scatter-
ing amplitudes, these two contributions are the same and
have been included in the above final result.
Equations (53) and (46) are the final results of our

analysis. Comparing these two, we find that the twist-four
contribution is suppressed in 1=t but enhanced at the
threshold. These two features can be used to disentangle
their contributions in experiments. If we limit our dis-
cussions in the threshold region, the only contribution
comes from the twist-four term.

VI. INTERPRETATION IN TERMS OF
GRAVITATIONAL FORM FACTOR?

As mentioned in the Introduction, the near threshold
heavy quarkonium production has been argued to provide a
direct access to the gluonic gravitational form factors of the
nucleon. From the results in previous sections, we have
calculated the near threshold photoproduction of heavy
quarkonium on the nucleon target at large momentum
transfer. The gluonic form factors at large (−t) have been
recently calculated in Ref. [55]. We conclude that there is
no direct connection between them.

A. Construction of the gluonic operator

The above conclusion can be understood from a detailed
analysis of the photon-quarkonium transition amplitude. As
discussed in Sec. II, this amplitude can be simplified in the
heavy quark mass limit, M2

V ≫ ð−tÞ,

Mμν
ψ ¼ Nψϵ

�
ψ · ϵγ

kγ;αkγ;β
k1 · kγk2 · kγ

Wαβμν
T : ð58Þ

Here, we only keep the leading term in this limit. For
simplicity, we have also dropped the associated color
factors associated with the t-channel gluons. In the above,
Wαβμν

T is defined as

Wαβμν
T ¼ −kα1k

β
2g

μν − k1 · k2gαμgβν þ kν1k
β
2g

αμ þ kμ2k
α
1g

βν;

ð59Þ
which can be identified as gluonic operator of Fα

ρFβρ

acting on the nucleon state. However, the complete scatter-
ing amplitude involves the integral of the momenta k1 and
k2 with the associated propagators depending on them. In

the end, the γN → J=ψN0 amplitude can be schematically
written as

A ¼ Nψϵ
�
ψ · ϵγ

Z
d4k1d4k2

kγ;αkγ;β
ðk1 · kγ − iεÞðk2 · kγ − iεÞ

×
Z

d4η1d4η2eik1·η1þik2·η2hN0jFa;α
ρðη1ÞFa;βρðη2ÞjNi:

ð60Þ
Due to the explicit k1 and k2 dependence in the prefactor of

1
ðk1·kγ−iεÞðk2·kγ−iεÞ, the above equation cannot be identified as

a gluonic gravitational form factor of the nucleon state
directly. This prefactor comes from the quark propagators
in the photon-quarkonium transition amplitude as we
showed in Sec. II. Of course, the complete calculation
will have a full dependence on the momentum fractions of
the incoming nucleon p1 carried by the two gluons k1 and
k2. However, with certain approximations similar to those
discussed in Refs. [26,29], the above amplitude can be
written in terms of the gluonic gravitational form factors. In
the sense, there exists an indirect connection between them.

B. Comparison to the GPD formalism

It is interesting to find out that the above Wμν
T can be

directly compared to that for the gluon GPD calculations.
Gluon GPD is defined through the matrix element
hN0jFþαFþ

α jNi. The amplitude associated with this can
be written as

−n · k1n · k2gμν − nμnνk1 · k2 þ nμkν1n · k2 þ nνkμ2n · k1;

ð61Þ
where n is the light-cone vector used in the GPD definition
with n · k ¼ kþ for any momentum k. Here, k1 and k2
represent the gluon momenta that couple to the nucleon
state, and μν for their polarization indices. Clearly, this is
the same structure as Wμν

T of the previous subsection if we
identify n ∝ kγ.
Following this argument, the scattering amplitude of

γN → J=ψN0 can be formulated in terms of the gluon
GPDs [6,7,9,18,26,29]:

A ¼ Nψϵ
�
ψ · ϵγ

Z
1

−1
dx

1

ðxþ ξ − iεÞðx − ξþ iεÞ

×
1

P̄þ

Z
dη−

2π
eixP̄

þη−hN0jFa;þ
α

�
−
η−

2

�
Fa;αþ

�
η−

2

�
jNi;

ð62Þ
where the last factor defines the associated gluon GPDs. In
previous sections, we have given explicit examples that
demonstrate the consistency between our calculations with
the GPD formalism.
Clearly, from the above GPD formalism, one can only

link to the gluonic gravitational form factors by making
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approximations of no x dependence in the prefactor
1

ðxþξ−iεÞðx−ξþiεÞ [26,29]. This is the same as we discussed

in the previous subsection.

VII. PHENOMENOLOGY APPLICATIONS
AND PREDICTIONS FOR ψ 0 AND ϒ

FOR FUTURE EXPERIMENTS

The phenomenoloical application of the above derivation
to the GlueX data has been carried out in our previous paper
[65]. In particular, the twist-four contribution is fitted to the
GlueX data [16] with the following parametrization of the
differential cross section:

dσ
dt

jtwist−4 ¼ N0

ð−tþ Λ2Þ5 ; ð63Þ

where Λ2¼1.41�0.20GeV2 and N0¼51�22 nb�GeV8.
The current data from the GlueX can be well described by
the above parametrization. In the following, we will apply
this result to the future experiments for the threshold
photoproduction of ψ 0 and ϒ.
We have also made an order of magnitude estimate of the

differential cross section by applying the twist-four con-
tribution of Eq. (53) with model assumptions for the twist-
three and twist-four distribution amplitudes of the nucleon
[61,62]. There have been great efforts to compute these
distribution amplitudes from various methods [53,68–85],
including the lattice QCD, the light-cone sum rule, and
model calculations. The differential cross sections calcu-
lated from the distribution amplitudes with realistic model
assumptions, e.g., those from Ref. [76], are consistent with
the experimental data around −t ¼ 1.5 GeV2 and the fitted
result of Eq. (63),1 whereas the results from the asymptotic
distribution amplitudes are an order of magnitude smaller.

A. Predictions for ψ 0 and ϒðnSÞ production
Extending our analysis to other heavy quarkonium states

is straightforward and similar formulas can be derived. As a
first step, we take the differential cross section from the
twist-four contribution at the threshold,

dσðγp → VpÞ
dt

jthreshold ¼
NV

0

ð−tþ Λ2Þ5 ; ð64Þ

for a heavy quarkonium state V. In the heavy quark mass
limit, the t dependence only comes from the nucleon side.
Therefore, we will assume the aboveΛ parameter should be
the same for all heavy quarkonium states. On the other
hand, the normalization factor NV

0 will depend on the

quarkonium state in the final state. From the derivations in
the previous section, we know that the differential cross
section is proportional to

dσ
dt

∝
α2sðMVÞh0jOVð3Sð1Þ1 Þj0i

M7
V

; ð65Þ

from which we derive the ratio between different heavy
quarkonium states,

NV
0

N0

¼ α2sðMVÞh0jOVð3Sð1Þ1 Þj0i=M7
V

α2sðMψ Þh0jOψð3Sð1Þ1 Þj0i=M7
ψ

: ð66Þ

Substituting the associated NRQCD matrix elements for
J=ψ , ψ 0, and ϒ (1S, 2S) from, e.g., Refs. [86,87], we find
the following values for the normalization factors:

Nψ 0
0 ¼ 0.20N0; ð67Þ

Nϒð1SÞ
0 ¼ 5 × 10−3N0; ð68Þ

Nϒð2SÞ
0 ¼ 2.5 × 10−3N0: ð69Þ

In Fig. 7, we show the threshold cross sections for γp → ψ 0p.
As comparison, we also show the results for J=ψ. For
Upsilon production, the results are plotted in Fig. 8.
The comparison between different quarkonium states

will provide an important confirmation for the production

FIG. 7. Differential cross sections for J=ψ and ψ 0 photo-
production as functions of the momentum transfer t and the
total cross sections near the threshold as functions of Wγp.

FIG. 8. The differential cross sections for ϒð1SÞ and ϒð2SÞ
photoproduction as functions of the momentum transfer t and the
total cross sections as functions Wγp near the threshold.

1In the numeric calculation of the Gp4ðtÞ in Eq. (54), a lower
cutoff [ð∼ ð0.17 GeVÞ2=ð−tÞ] on the momentum fractions xi and
yi in the integral is imposed to avoid the end-point singularity.
This is similar to the Pauli form-factor calculation at large
momentum transfer in Ref. [54].
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mechanism. The comparison between Charmonium and
Bottomonium, in particular, will test the heavy quark limit
we have employed in this paper. Meanwhile, the momen-
tum transfer range is much higher for ϒ as compared to
J=ψ . This provides a unique opportunity to explore the
large momentum transfer region.

VIII. CONCLUSION

In this paper, we have carried out a detailed derivation of
near threshold heavy quarkonium photoproduction at large
momentum transfer. We have taken into account the three-
quark Fock state of the nucleon with zero and one unit of
quark OAM. We found that the contribution from the Fock
state with zero-quark OAM is suppressed at threshold. The
differential cross section is dominated by the contribution
from nonzero OAM Fock state and has a power behavior
of 1=ð−tÞ5.
Our power counting predictions are consistent with

recent experimental data of near threshold photoproduction
of J=ψ from the GlueX collaboration at JLab. Based on the
comparison between our derivation and the experimental
data, we have made predictions for ψ 0 and ϒð1S; 2SÞ. All
these predictions can be tested at future facilities including
the electron-ion colliders [45–47].
Although there is no direct connection between the near

threshold photoproduction of heavy quarkonium state and
the gluonic gravitational form factors, an indirect connec-
tion can be built through GPD gluon distributions. For
example, we can parametrize the gluon GPDs and fit to the
experimental data, which, in return, can constrain the
associated gravitational form factors.
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APPENDIX A: GLUON GPD FOR PION

The gluon GPD for pion is defined as

Z
dη−

2π
eixP̄

þη−hp2jFþμ
a

�
−
η−

2

�
Lab

�
−
η−

2
;
η−

2

�
Fþ
μ;b

�
η−

2

�
jp1i

¼ P̄þHðπÞ
g ðx;ξ;tÞ; ðA1Þ

where the gluon field strength tensor is Fa
μν ¼ ∂μAa

ν −
∂νAa

μ − gsfabcAb
μAc

ν, and the gauge link in the adjoint
representation is

Lab½z2; z1� ¼ P exp
�
gs

Z
z2

z1

dz−Gþ;cðz−Þfacb
�
: ðA2Þ

P denotes the path-ordering operation. In the definition of
GPD, P̄ ¼ ðp1 þ p2Þ=2 is the average momentum, Δ ¼
p2 − p1 is the momentum transfer, and t ¼ Δ2. The
skewness parameter ξ is defined as the projection of the
momentum transfer Δ along P̄ direction, ξ ¼ − Δþ

2P̄þ.
In the large (−t) limit, the gluon GPD of the pion has the

following factorization formula:

HðπÞ
g ðx; ξ; tÞ ¼

Z
dx1dy1ϕðy1Þϕðx1ÞHðπÞðx1; y1Þ; ðA3Þ

where ϕ represents the leading-twist distribution amplitude
of pion. The perturbative function at the leading order can
be written as

HðπÞðx1; y1Þ ¼
g2sCF

−t

�ð1− ξÞ2
x1x̄1

þð1þ ξÞ2
y1ȳ1

�

× ðδ½x− ðx1 − y1þ ξðx1þ y1− 1ÞÞ�
þ δ½xþðx1− y1þ ξðx1þ y1− 1ÞÞ�Þ: ðA4Þ

The above result is similar to that of the quark GPD
calculated in Ref. [66] for the pion.

APPENDIX B: GLUON GPD FOR NUCLEON

The gluon GPD of nucleon is defined fromZ
dη−

2π
eixP̄

þη−hp2; s0jFþμ
a

�
−
η−

2

�
Lab

�
−
η−

2
;
η−

2

�

× Fþ
μ;b

�
η−

2

�
jp1; si

¼ 1

2

�
Hgðx; ξ; tÞŪðp2; s0ÞγþUðp1; sÞ

þ Egðx; ξ; tÞŪðp2; s0Þ
iσþαΔα

2Mp
Uðp1; sÞ

�
; ðB1Þ

where sμ denotes the covariant spin vector of the proton.
Following the strategy in [55,66], the GPD Hg can be

extracted from the helicity-conserved amplitude, and one
can show that at the large momentum transfer Hg follows
the following factorization formula:

Hgðx; ξ; tÞ ¼
Z

½dx�½dy�Φ�
3ðy1; y2; y3ÞΦ3ðx1; x2; x3Þ

×Hðfxg; fygÞ; ðB2Þ
where Φ3 is the twist-three proton light-cone amplitude
[61], and H is the hard coefficient and perturbatively
calculable. At the leading order, we obtain
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Hðfxg; fygÞ ¼ 2H̃þ H̃ðy1 ↔ y3Þ; ðB3Þ

where

H̃¼4π2α2sC2
B

3t2

��
x1þy1þξðx1−y1Þ

x̄1ȳ1x1x3y1y3
þx1þy1þξðx1−y1Þ

x̄1ȳ1x1x2y1y2

�

×ðδ½x−ðx1−y1þξðx1þy1−1ÞÞ�
þδ½xþðx1−y1þξðx1þy1−1ÞÞ�Þ

þ
�
x3þy3þξðx3−y3Þ

x̄3ȳ3x3x1y3y1
þx3þy3þξðx3−y3Þ

x̄3ȳ3x3x2y3y2

�

×ðδ½x−ðx3−y3þξðx3þy3−1ÞÞ�

þδ½xþðx3−y3þξðx3þy3−1ÞÞ�Þ
�
: ðB4Þ

Similar results for the quark GPDs Hq of the nucleon have
been calculated in Ref. [66]. They share the same power
behavior at large (−t).

On the other hand, the GPD Eg at large (−t) is calculated
from the nucleon helicity-flip amplitude, and the related
factorization formula can be written as

Egðx;ξ; tÞ ¼
Z

½dx�½dy�fx3Φ4ðx1; x2;x3ÞEΦgðfxg;fygÞ

þx1Ψ4ðx2;x1; x3ÞEΨgðfxg;fygÞgΦ3ðy1; y2;y3Þ;
ðB5Þ

where Ψ4 and Φ4 are the twist-four distribution amplitude
of the proton [62]. Eg can be written as

Eg ¼ 2Ẽ þ Ẽ0; ðB6Þ

where Ẽ0 is obtained from Ẽ by interchanging y1 and y3.
The detailed calculation yields

ẼΨðfxg; fygÞ ¼
−C2

BM
2
p

12ð−tÞ3 ð4παsÞ
2½x3K1δ̃½x1; y1�ðð1þ ξÞ2x1x̄1 þ 2ð1 − ξ2Þy3x̄1 þ ð1 − ξÞ2y1y2Þ

þ x̄3K̃1δ̃½x3; y3�ðð1þ ξÞ2x3x̄3 þ ð1 − ξÞ2y3ȳ3Þ þ x3ðK̃2 − K2Þδ̃½x2; y2�
× ðð1þ ξÞ2x2x̄2 þ ð1 − ξÞ2y2ȳ2Þ þ K3δ̃½x1; y1�ð2ð1 − ξ2Þx̄1 − ð1 − ξÞ2y1Þ þ x3ðK4 þ K5Þ
× δ̃½x1; y1�ð2ð1 − ξ2Þȳ1 þ ð1þ ξÞ2x1Þ þ ðK̃4 þ K̃5Þδ̃½x3; y3�ðð1þ ξÞ2x3x̄3 þ ð1 − ξÞ2y3ȳ3Þ� þ ðξ ↔ −ξÞ;

ðB7Þ

and ẼΦ ¼ ẼΨð1 ↔ 3Þ. Here we have used the following notation to express the delta function of x:

˜δ½a; b�≡ δ½x − ða − bþ ξðaþ b − 1ÞÞ� þ δ½xþ ða − bþ ξðaþ b − 1ÞÞ�: ðB8Þ

The functions Ki are the same as those defined in Eq. (57).
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