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We calculate the masses of JPC ¼ 1−þ light exotic mesons by QCD sum rules; the masses are extracted
from four-quark–hybrid mixing correlation functions. We construct several 1−þ four-quark currents and
hybrid currents, and get two masses around 1.2–1.4 GeV and 1.45–1.67 GeV; they can be identified as
π1ð1400Þ and π1ð1600Þ.
DOI: 10.1103/PhysRevD.105.054030

I. INTRODUCTION

The study of exotic meson states has a long history.
Glueball, hybridmeson (quark-antiquarkwith excited gluon),
and multiquark were predicted after the establishment of
quantum chromodynamics. Many heavy exotic hadrons have
been confirmed experimentally in the last decade. There are
also two light exotic mesons with JPC ¼ 1−þ that have been
found since the end of the last century. However, the structure
of these two mesons is still unclear.
Lattice QCD and most phenomenological methods show

that the mass of 1−þ hybrid is around 1.7–2.1 GeV [1–4],
and it prefers to decay into S- and P-wave mesons. However,
the corresponding candidates π1ð1400Þ and π1ð1600Þ [5] are
lighter than predictions. Besides, π1ð1400Þ only decays into
ηπ, while Ref. [6] indicates that in the limit of SUð3Þ flavor
symmetry, the 1−þ hybrid decay into ηπ is forbidden. This
result implies π1ð1400Þ may be a multiquark state.
Some authors consider the1−þ exoticmesons as tetraquark

(diquark-antidiquark structure) or four-quark molecule (mes-
ons bound state). Reference [7] exhausts all 1−þ tetraquark
configurations and get two masses around 1.6 GeV and
2.0 GeV for two types of quark contents. Reference [8] gives
1−þ four-quark molecule mass around 1.4–1.5 GeV, but the
result receives large uncertainty from the instanton density.
Reference [3] reexamines the studies about 1−þ exotic
mesons, and predicts 1.7 GeV for tetraquark configuration
and 1.3 GeV for molecule configuration.

However, if π1ð1400Þ is a four-quark state,1 then there
should be unobserved mesons with strangeness 2 and
2 units of charge [6]. Besides, there is a subtle problem
for the study about four-quark state. The four-quark
current, which usually can be identified as two meson
currents, may easily couple to two mesons. It then causes
difficulty to extract the correct information about the
resonance when the two-mesons states give large contri-
butions to the correlator. Reference [9] indicates that the
four-quark diagrams with no singularity at s ¼ ðP4

i¼1 miÞ2
are not relevant to the four-quark state but relevant to two
free mesons (mi is the quark mass). But the validity of this
criterion is not clear up to now.
Since the gluon can couple to quark-antiquark pair, the

four-quark states may easily mix with the hybrid state, as
long as the symmetry permits, especially for light four-
quark and hybrid, since g≳ 1 in the low energy scale.
Reference [3] conjectures that the mixing of four-quark
molecule with tetraquark and/or hybrid can explain the
strange decay model of π1ð1400Þ. The mixing scenario
may also explain two 1−þ states with close masses and the
absence of four-quark states with strangeness 2 and 2 units
of charge.
In this paper, we will try to evaluate the mass of 1−þ

mesons from four-quark–hybrid correlation functions. The
off-diagonal correlator certainly is weaker than the diagonal
correlators. However, since the four-quark and hybrid
have different decay models, the background contribution
of two free mesons is strongly suppressed, which relatively
enhances the contribution of the resonance that couples to
both currents. This approach is not sensitive to the mixing
strength, but our goal is to extract the state with the most
prominent resonance signal in the correlators. We will give
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1We call both tetraquark and molecule configurations as four-
quark states when the distinction between them is not important
in discussion.
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further discussion at the end of this paper. We think the
mass evaluation based on four-quark–hybrid correlation
function is convincible, and we get the masses of 1−þ states
consistent with experiments.

II. QCD SUM RULES FOR FOUR-QUARK–HYBRID

A. Currents and renormalization

The QCD sum rules [10–12] are an effective way to
research hadron properties. For mass evaluation, the main
task is to calculate the correlation function of two currents.
By decay models of π1ð1400Þ and π1ð1600Þ [5], we choose
ηπ, η0π, ρπ, and b1π as four-quark current configurations.
The currents for ηπ and η0π in the SUð3Þ flavor limit are

Jμ
ηð0Þπ

¼ ðūγ5γμuþ d̄γ5γμdþ θs̄γ5γμsÞðūγ5u − d̄γ5dÞ;
Jμν
ηð0Þπ ¼ ðūγ5γμuþ d̄γ5γμdþ θs̄γ5γμsÞðūγ5γνu − d̄γ5γνdÞ

þ fμ ↔ νg; ð1Þ

with θ ¼ −2 for ηπ and 1 for η0π. The currents couple to
1−þb1π are

Jμb1π ¼ ϵμαβηðūσαβdd̄γ5γηu − d̄σαβuūγ5γηdÞ;
Jμνb1π ¼ iϵμναβðūσαβdd̄γ5u − d̄σαβuūγ5dÞ: ð2Þ

And the current couples to ρπ [8] is

Jμνρπ ¼ iϵμναβðūγαdd̄γ5γβu − d̄γαuūγ5γβdÞ: ð3Þ

Here ϵ0123 ¼ þ1, σμν ¼ i
2
½γμ; γν�. The hybrid currents are

JμH ¼ iðūGμνγνu − d̄GμνγνdÞ;
JμνH ¼ ūðGμασα

ν − Gνασα
μÞu − fu ↔ dg: ð4Þ

Here we always write gTaGaμν as Gμν for simplicity.
The four-quark currents need to be renormalized [13,14].

The general four-quark current can be written as:

J4q ¼ Ψ̄aΓAΨbΨ̄cΓBΨd: ð5Þ

Here a, b, c, d are flavor indices; ΓA, ΓB are general γ
and color matrices. The 1=ϵ-pole at OðgÞ exist when b ¼ c
and/or a ¼ d. Assuming b ¼ c and a ≠ d, we consider the
zero-momentum insertion Green function:

h0jJ4qΨm
a;iA

rμΨ̄n
d;jj0i: ð6Þ

Here, i, j are spin indices; m, r, n are color indices. The
1=ϵ-pole is canceled by (see Fig. 1):

h0jðJ1 þ J2ÞΨm
a;iA

rμΨ̄n
d;jj0i; ð7Þ

with:

J1 ¼ −
1

ϵ

m
32π2

Ψ̄aΓAGαβσαβΓBΨd;

J2 ¼
1

ϵ

1

48π2
Ψ̄aΓADαGαβγβΓBΨd: ð8Þ

Here, m is the mass of the quark in the loop, Dab
α ¼

∂αδ
ab þ gfacbAc

α is covariant derivative at adjoint represen-
tation. Equation (8) is evaluated at dimension D ¼ 4 − 2ϵ.
As the J1 vanishes at massless limit, we use it only for
evaluating mhq̄qi contributions in this paper.
The renormalized four-quark current atOðgÞ then can be

written as:

ðJ4qÞR ¼ J4q þ J1 þ J2: ð9Þ
By Eqs. (8) and (9), the renormalized currents for ηð0Þπ, b1π,
and ρπ can be easily obtained.

B. Four-quark–hybrid correlation functions

By operator product expansion [10–12] (OPE), the corre-
lation function can be expressed as a sort of condensates with
Wilson coefficients. Before evaluating the correlation func-
tions,we first discuss thedispersion relation [10–12],which is
slightly modified when two currents are different. Consider
the correlation function of currents Ja and Jb; for simplicity,
assuming the involved states have same quantum number
JPC, suppressing the Lorentz indices, we have:

ΠðqÞ ¼ i
Z

d4xeiqxh0jTfJaðxÞJ†bð0Þgj0i;

¼
Z

∞

0

dsρðsÞ PðqÞ
s − q2 − iϵ

;

¼ PðqÞ
�
PP

Z
∞

0

ds
ρðsÞ
s − q2

þ iπρðq2Þ
�
: ð10Þ

Here PP means principal part. We write:

h0jJað0ÞjnihnjJ†bð0Þj0i ¼ PðqÞfaðq2Þf�bðq2Þ: ð11Þ
Here jni are on-shell states with momentum q; PðqÞ

corresponds to the tensor structure of ΠðqÞ; faðq2Þ and
fbðq2Þ are coupling constants of the two currents to jni
respectively. Define a factor:

P ¼ ð−1ÞðNþMÞ: ð12Þ

FIG. 1. Renormalization of four-quark current at OðgÞ. The
4-quark vertex is split a little to make it clear how quark lines are
connected. Left (right) diagram corresponding to Eq. (6) [Eq. (7)].
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Here N ¼ 0, 1, 2 is the number of anti-Hermitian
currents; M ¼ 0 (1) if ΠðqÞ is even (odd) under exchange
q ↔ −q. Then we can write:

ρðsÞ ¼
X
n

δðs −m2
nÞRe½faðsÞf�bðsÞ�; ð13aÞ

for P ¼ 1, and:

ρðsÞ ¼
X
n

δðs −m2
nÞiIm½faðsÞf�bðsÞ�; ð13bÞ

for P ¼ −1.
When Ja ¼ Jb, the ρðsÞ reduces to the familiar

form jfaðsÞj2 by Eq. (13a). We give the derivation of
Eq. (10)–(13) in Appendix A, which is based on Ref. [12].
When Ja ≠ Jb, ρðsÞ or ImρðsÞ may not be positive, and
may even change the sign when s variant.
For currents given by Eq. (1)–(4), to extract the 1−þ

vector state contribution, we can generally write:

h0jJμað0ÞjVi ¼ ϵμfaðq2Þ;
h0jJμνb ð0ÞjVi ¼ ðqμϵν � qνϵμÞfbðq2Þ: ð14Þ

Here, jVi is a vector state with momentum q and
polarization ϵμ, the � refers to symmetry or antisymmetry
tensor currents. Then we have:

Πμνρ
a;b ðqÞ ¼ i

Z
d4xeiqxh0jTfJμνa ðxÞJ†ρb ð0Þgj0i;

¼ ðqμPνρ � qνPμρÞΠT;V
a;b ðq2Þ þ � � � : ð15Þ

Here, Pμν ¼ gμν − qμqν

q2 , the ellipsis refers to terms irrel-

evantwith vector states. The superscriptsT andV inΠT;V
a;b ðq2Þ

indicate that Ja is a tensor current and Jb is a vector current.
In the massless limit, for currents given by Eqs. (1)–(4), only
the correlation functions with one vector current and one
tensor current have nonvanishing perturbative diagrams. We
only consider this type of correlation function. By Eq. (10)
and (13), isolating the lowest resonance pole, we have:

1

π
ImΠa;bðsÞ ≃ δðs −m2ÞReðfaf�bÞ þ θðs − s0ÞρðsÞ: ð16Þ

Here, s0 is the continuum threshold, P ¼ 1 in this case.
For hGGi term, the two-loop renormalization of the

four-quark currents should be considered, which is far
beyond the scope of this paper. Since our purpose is only to
evaluate the mass, we only need to extract the correspond-
ing counterterms to cancel the nonlocal pole log =ϵ (cor-
responding to the last diagram in Fig. 2). This diagram
originates from the current:

Ψ̄ð∇⃖Gþ G∇⃗ÞΨ ¼ ∂ðΨ̄GΨÞ þ iΨ̄DGΨ; ð17Þ
which is the counterterm that emerges in the renormalization
at two-loop level [atOðg3Þ]. Here, the γ-matrices andLorentz

indices are suppressed, ∇μ is covariant derivative. The term
∂ðΨ̄GΨÞ gives a nonzero contribution to the correlation
function. For Jμ

ηð0Þπ and J
μ
b1π

, the corresponding counterterms

are not unique (see Table III), but different choices did not
cause any visible difference in mass prediction.
For dimension-10 condensate, some diagrams need the

identity (in massless limit):

ð∇μ∇νΨiÞa ¼
igΓμναβ

ij

2ðdþ 2ÞG
n
αβðTnÞabΨb

j ; ð18aÞ

with:

Γμναβ ¼ −ðd2 − 4dþ 8Þgμαgνβ þ γμναβ þ gμνγαβ

þ ðd − 4Þγμαgνβ − ðd − 2Þγναgμβ: ð18bÞ

Here, γμναβ ¼ γ½μγνγαγβ�.
Since the ImΠa;bðq2Þ in Eq. (15) is not positive definite,

we define the spectrum density by requiring the perturba-
tive part is positive, i.e., ρðsÞ > 0when s → ∞. We give the
OPE results, counterterms, and all diagrams in Tables II,
III, and Fig. 6 respectively in Appendix B. The OPE
calculations are performed up to dimension-10 conden-
sates; we write aMathematica package [15] to deal with the
tedious calculation. The results are obtained at MS scheme,
and the γ5 is treated by BMHV scheme [16,17].

C. Numerical analysis

To evaluate the mass of the lowest resonance, it com-
monly uses the Borel (Laplace) transformation [11,18,19].
By Eq. (16), we have:

1

π

Z
∞

0

dse−sτImΠa;bðsÞ

≃ Reðfaf�bÞe−m
2τ þ

Z
∞

s0

dse−sτρðsÞ: ð19Þ

And one can get the mass from the ratio of moments:

Rn ¼
Mnþ1ðτ; s0Þ
Mnðτ; s0Þ

≃m2; ð20Þ

with:

Mnðτ; s0Þ ¼
Z

s0

0

dssne−sτImΠa;bðsÞ: ð21Þ

FIG. 2. Typical diagrams. The 4-quark vertices are split a little
to make it clear how quark lines are connected.
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Here, two free parameters τ and s0 are involved. The
typical s0 is around the mass square of the next resonance.
The range of τ is determined by requiring M0ðτ; s0Þ=
M0ðτ;∞Þ > 0.7, and the contribution of the highest
dimensional condensate is less than 10% to satisfy sin-
gle-pole dominance and convergence of OPE. This gives
the Borel window [11] τ1 < τ < τ2. The stability criteria
[20] is also used to constraint the value of s0 and τ.
To evaluate the mass, we use the value of condensates by

Ref. [20]:

ðmu þmdÞhūuþ d̄di ¼ −f2πm2
π; fπ ¼ 130 MeV;

hūui ¼ hd̄di ¼ −ð0.276 GeVÞ3;
hGGi ¼ 0.07 GeV4;

hq̄Gqi ¼ 0.8 GeV2hq̄qi; q ¼ u; d: ð22Þ

And Λ ¼ 0.353 GeV by Ref. [3]. For dimension-6, -8,
and -10 condensates, the factorization deviation factors
must be included:

hq̄qi2 → k6hq̄qi2;
hq̄qihq̄Gqi → k8hq̄qihq̄Gqi;

hq̄Gqi2 → k10hq̄Gqi2: ð23Þ

Here, k6 ≈ 3 by Ref. [21],2 the k8 and k10 are not clear;
Ref. [22] indicate they are around 2-5. We first choose

k8 ¼ k10 ¼ 3.5 to fix the Borel window and s0, then
consider two extremes k8 ¼ k10 ¼ 2 and k8 ¼ k10 ¼ 5 to
get conservative results. We show the results for k8 ¼
k10 ¼ 3.5 in Fig. 3, and the result for k8 ¼ k10 ¼ 2 and
k8 ¼ k10 ¼ 5 in Figs. 4 and 5 respectively in Appendix B.
The conservative ranges of masses are given in Table I.
Since the s-quark cannot couple to the hybrid currents
given by Eq. (4) directly, the contribution of s-quark is
small. Our results are insufficient to distinguish ηπ and η0π.
To obtain the mass, for specific s0, if the Borel window

exists, we choose the average value in the Borel window.
If the Borel window does not exist, we determine the
mass by stability criteria. We then get the range of mass
spanned by s0.
ForΠV;T

ηð0Þπ;H
ðq2Þ andΠT;V

b1π;H
ðq2Þ, the Borel window and s0

stability do not exist. The τ-stability is achieved when
s0 ≈ 5.5 for ΠV;T

ηð0Þπ;H
ðq2Þ, and when s0 ≈ 4.5 for ΠT;V

b1π;H
ðq2Þ

(the curve for different τ intersect at these s0). We choose
4 ≤ s0 ≤ 6 for these configurations. The s0 stability at
s0 ≈ 2 in Fig. 3(b) and s0 ≈ 1 in Fig. 3(e) are not physical,
because these s0 are lower than the corresponding mass
squared.
When s0 ¼ 4, the ΠT;V

ηð0Þπ;H
ðq2Þ has Borel window around

0.33–0.36, while the ΠV;T
b1π;H

ðq2Þ has τ1 ≈ τ2 ≈ 0.38.
We treat the latter one as no Borel window. The τ stability
is achieved when s0 ≈ 3 [Fig. 3(e)], but the τ stability
becomes worse when s0 ≈ 5 [Fig. 3(d)]. We choose
3 ≤ s0 ≤ 5 for these configurations.
The ΠT;V

ρπ;Hðq2Þ has no dimension-8 and -10 contributions
at leading order, and is dominated by dimension-6 con-
densate. The result is then sensitive to factorization

(a) (b) (c)

(d) (e) (f)

FIG. 3. Mass predictions and moments for different correlation functions. Here we set k8 ¼ k10 ¼ 3.5. The colors represent the four-
quark configurations: red for ηπ, green for η0π, and blue for b1π. (a): Mass versus τ for ΠV;T

ηð0Þπ;H
ðq2Þ and ΠT;V

b1π;H
ðq2Þ; (b): mass versus s0

for ΠV;T
ηð0Þπ;H

ðq2Þ and ΠT;V
b1π;H

ðq2Þ; (c): M0ðτ; s0Þ versus s0 for ΠV;T
ηð0Þπ;H

ðq2Þ and ΠT;V
b1π;H

ðq2Þ; (d): mass versus τ for ΠT;V
ηð0Þπ;H

ðq2Þ and

ΠV;T
b1π;H

ðq2Þ; (e): Mass versus s0 for ΠT;V
ηð0Þπ;H

ðq2Þ and ΠV;T
b1π;H

ðq2Þ; (f):M0ðτ; s0Þ versus s0 for ΠT;V
ηð0Þπ;H

ðq2Þ and ΠV;T
b1π;H

ðq2Þ; ρðsÞ change the
sign at s around 7–10 GeV2.

2The ραshψ̄ψi2 in Ref. [20] already contains the deviation
factor. But we find it is less stable to fix αs first, so we will not use
this value.
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deviation; it is hard to get a convincible value. It is interesting
to mention that the 1−þ hybrid decays into f1π and b1π, but
not to ρπ by the flux-tube model [23]. These facts imply the
1−þ hybrid may prefer to couple to b1π than ρπ.
The main uncertainties in Table I are from the factori-

zation deviation factors, which cause a small overlap
between π1ð1400Þ and π1ð1600Þ interpretation. For the
same deviation factors, there is a roughly 0.2 GeV gap
between them. So we conclude there are two 1−þ states.
Recall that we fix the sign of ρðsÞ by requiring the

perturbative contribution is positive. However, for
ΠT;V

ηð0Þπ;H
ðq2Þ and ΠV;T

b1π;H
ðq2Þ, the ρðsÞ is negative for

s≲ 8. A closer look finds that for τ in the Borel window,
the moment M0ðτ; s0Þ is always negative. That means the
contribution of the resonance is negative. It should not be
surprising since Re½faf�b� for different intermediate states
may have different signs.
In Table I, the mass prediction from ΠV;T

b1π;H
ðq2Þ is close

to π1ð1400Þ, while the b1π is absent in the decay of
π1ð1400Þ. Since b1π is just on the mass threshold of
π1ð1400Þ, b1π channel may be forbidden or suppressed
by little kinematic phase space in π1ð1400Þ’s decay.
It should note that in Eq. (16), we assume only one

resonance pole dominates, but there have two close 1−þ
states: π1ð1400Þ and π1ð1600Þ. However, different currents
may prefer to couple to a certain one, and it is unlikely that
all currents in Eqs. (1)–(4) couple to these two states with
the same preference. By results in Table I, we think each
case is dominated by one state.

III. DISCUSSION AND CONCLUSION

As we mentioned in the Introduction, we think the mass
evaluation based on the four-quark–hybrid correlation is
convincible. Since whatever jJðxÞi is, it can always be
written as a sort of physical states. We can write:

JðxÞ ∼
X

AðxÞ þ
XZ

d4q1d4q2e−iðq1þq2Þx

× ψðq1; q2Þϕ1ðq1Þϕ2ðq2Þ þ…: ð24Þ

Here, the AðxÞ, ϕ1ðq1Þ, and ϕ2ðq2Þ are effective fields of
mesons; the ψðq1; q2Þ is a certain wave function of two free
mesons in momentum space; the ellipsis refers to three and
more particle states. In principle, the free mesons terms
should not be excluded. The correlation function then can
be expressed as:

ð25Þ

Here, sum over the different particles for each term is
understood; the empty dots refer to two free mesons.
Consider the energy scale around the mass of 1−þ mesons,

for Ja ¼ Jb ¼ four-quark current, since it can be identified
as two meson currents, the last term in Eq. (25) may
contribute considerably. For Ja ¼ Jb ¼ hybrid current,
one may safely ignore the multimesons terms in Eq. (24)
at first approximation. There are many studies about the 1−þ
hybrid [3,4,24] based on the first current of Eq. (4).
However, if there are two exotic mesons with close masses,
focusing on one current is not enough.
To compromise, one can choose Ja ¼ four-quark current

and Jb ¼ hybrid current. As long as the second term in
Eq. (25) is small, it is reasonable only to consider the first
term. Since different currents may prefer to couple to
different exotic mesons, and it is easy to construct many
four-quark currents, it is possible to extract a certain exotic
meson from these correlators. By comparing the results with
experiments, one can check the validity of this argument.
The results in Table I and Fig. 3 show that the two 1−þ

states can be identified as π1ð1400Þ and π1ð1600Þ. Since the
results are obtained from four-quark–hybrid correlators, these
states may be mixed states of four-quark and hybrid. The
mixing strength cannot be obtained merely from the off-
diagonal correlators, which needs the information of the
diagonal correlators.However, itmaybe contaminated by two
free mesons.
By Eq. (5)–(9), the mixing of four-quark and hybrid may

be quite common. For the correlators in this paper, the
contribution of perturbative diagrams is quite small, which
implies the mixing is highly nonperturbative. The mixing
scenario of 1−þ four-quark and hybrid may also explain the
absence of four-quark stateswith strangeness 2 and 2 units of
charge: the pure light four-quark state is unstable, itmustmix
with the hybrid to get stability. If it is true, the isoscalar four-
quark state should mix with the hybrid or glueball to get
stability. Our calculations is an attempt to test this scenario.
In conclusion, the Table I gives mass predictions

with 1.2–1.4 GeV for π1ð1400Þ and 1.45–1.67 GeV for
π1ð1600Þ, which agree with PDG[5] (1.35 GeV for
π1ð1400Þ and 1.66 GeV for π1ð1600Þ). But it should note
that a recent coupled channel analysis of COMPASS data
concluded that there is only one 1−þ state with mass

TABLE I. Mass predictions by each correlation function in the
unit of GeV. The lower bound is obtained by using the lower
bound of s0 and set k8 ¼ k10 ¼ 2; the upper bound is obtained by
using the upper bound of s0 and set k8 ¼ k10 ¼ 5.

(a) Results can be interpreted as π1ð1600Þ.
ΠV;T

ηπ;Hðq2Þ ΠV;T
η0π;Hðq2Þ ΠT;V

b1π;H
ðq2Þ

1.45–1.77 1.45–1.77 1.36–1.67

(b) Results can be interpreted as π1ð1400Þ.
ΠT;V

ηπ;Hðq2Þ ΠT;V
η0π;Hðq2Þ ΠV;T

b1π;H
ðq2Þ

1.18–1.41 1.19–1.43 1.17–1.46
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1.56 GeV [25]. So there are large uncertainties that need to be cleared both in theory and experiments; this topic is beyond
this paper.

ACKNOWLEDGMENTS

This work is supported by NSFC (No. 11175153).

APPENDIX A: DISPERSION RELATION IN GENERALIZED SITUATION

Consider the correlation function of two currents (suppress the Lorentz indices):

ΠðqÞ ¼ i
Z

d4xeiqxh0jTfJaðxÞJ†bð0Þgj0i;

¼ i
Z

d4xeiqx½θðx0Þh0jJaðxÞJ†bð0Þj0i þ θð−x0Þh0jJ†bð0ÞJaðxÞj0i�: ðA1Þ

Inserting a complete set of on-shell states:

X
n

Z
d4p
ð2πÞ3 θðp

0Þδðp2 −m2
nÞjnihnj ¼ 1: ðA2Þ

We obtain:

ΠðqÞ¼
X
n

Z
d4xeiqx

Z
d4p
ð2πÞ3PnðpÞðiθðx0Þθðp0Þδðp2−m2

nÞe−ipxAðp2Þþ iθð−x0Þθðp0Þδðp2−m2
nÞeipxA†ðp2ÞÞ: ðA3Þ

Here we write h0jJað0ÞjnihnjJ†bð0Þj0i ¼ PnðpÞAðp2Þ, p is the momentum of state jni, PnðpÞ is only relevant with the
tensor structure of ΠðqÞ.
Separating real and imaginary parts, and changing the integral variable, we write the terms in big parenthesis as:

½iθðx0Þθðp0Þδðp2 −m2
nÞ þ ð−1ÞNþMiθð−x0Þθð−p0Þδðp2 −m2

nÞ�e−ipxRe½Aðp2Þ�
þ ½iθðx0Þθðp0Þδðp2 −m2

nÞ − ð−1ÞNþMiθð−x0Þθð−p0Þδðp2 −m2
nÞ�e−ipxiIm½Aðp2Þ�: ðA4Þ

Here N ¼ 0, 1, 2 is the number of anti-Hermitian currents; Pnð−pÞ ¼ ð−1ÞMPnðpÞ, or equivalently Πð−qÞ ¼
ð−1ÞMΠðqÞ. Equation (A3) then can be written as ΠðqÞ ¼ ∬PnðpÞðReþ ImÞ briefly. Under replacement x → −x,
p → −p, and q → −q, it becomes:

ð−1ÞMΠðqÞ ¼ ð−1ÞNþ2M

ZZ
PnðpÞRe − ð−1ÞNþ2M

ZZ
PnðpÞIm: ðA5Þ

Thus for N þM ¼ even, the Im½Aðp2Þ� term vanishes, while for N þM ¼ odd, the Re½Aðp2Þ� term vanishes. By:Z
d4p
ð2πÞ3 ðiθðx

0Þθðp0Þδðp2 −m2
nÞ þ iθð−x0Þθð−p0Þδðp2 −m2

nÞÞe−ipx ¼
Z

d4p
ð2πÞ4

e−ipx

m2
n − p2 − iϵ

; ðA6Þ

we then can write:

ΠðqÞ ¼
X
n

PnðqÞ
m2

n − q2 − iϵ

�
1þ ð−1ÞNþM

2
Re½Aðq2Þ� þ 1 − ð−1ÞNþM

2
iIm½Aðq2Þ�

�
;

¼
Z

∞

0

ds
X
n

δðs −m2
nÞ

PnðqÞ
m2

n − q2 − iϵ

�
1þ ð−1ÞNþM

2
Re½Aðq2Þ� þ 1 − ð−1ÞNþM

2
iIm½Aðq2Þ�

�
: ðA7Þ

So for N þM ¼ even, the dispersion relation is

1

π
Im½ΠðqÞ� ¼

X
n

δðq2 −m2
nÞRe½Aðq2Þ�; ðA8Þ

and for N þM ¼ odd, the dispersion relation is

1

π
Re½ΠðqÞ� ¼ −

X
n

δðq2 −m2
nÞIm½Aðq2Þ�: ðA9Þ
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APPENDIX B: ADDITIONAL TABLES AND FIGURES

TABLE II. The OPE Results. Here m ¼ mu þmd, hGGi ¼ g2hGnμνGn
μνi, hq̄Gqi ¼ ghq̄TnGn

μνσ
μνqi. The values in each column are

the factors of corresponding terms, e.g., ΠT;V
ηπ;Hðq2Þ ¼ −1=12960π5 αsq6 logð−q2=μ2Þ þ � � �. For ΠV;T

ηð0Þπ;Hðq2Þ and ΠV;T
b1π;H

ðq2Þ, the
relevant counterterms are not unique, the values in parenthesis corresponding to hGGi term are obtained by replacing ∂αðq̄GμβσαβqÞ by
∂αðq̄Gαβσ

μβqÞ in Table III. The diagrams are shown in Fig. 6.

ΠT;V
ηπ;Hðq2Þ ΠT;V

η0π;Hðq2Þ ΠV;T
ηπ;Hðq2Þ ΠV;T

η0π;Hðq2Þ ΠV;T
b1π;H

ðq2Þ ΠT;V
b1π;H

ðq2Þ ΠT;V
ρπ;Hðq2Þ

αsq6 logð− q2

μ2
Þ −1

12960π5
−1

12960π5
−1

8640π5
−1

8640π5
−1

4320π5
−1

8640π5
−1

8640π5

αsq2 logð− q2

μ2
Þ2mhq̄qi 1

72π3
1

72π3
−1
72π3

−1
72π3

1
36π3

−1
36π3

0

αsq2 logð− q2

μ2
Þmhq̄qi −101

432π3
−101
432π3

23
216π3

23
216π3

−47
108π3

29
108π3

−1
18π3

αsq2 logð− q2

μ2
Þ2hGGi 247

995328π5
−509

995328π5
281

497664π5
65

497664π5
113

248832π5
223

248832π5
181

248832π5

αsq2 logð− q2

μ2
ÞhGGi −20147

5971968π5
14269

5971968π5
−8861ð−8765Þ
1492992π5

−3407ð−2015Þ
1492992π5

−3137ð−2033Þ
746496π5

−5899
746496π5

−3547
746496π5

αs logð− q2

μ2
Þhq̄qi2 56

81π
56
81π

−8
27π

−8
27π

32
27π

−20
27π

4
27π

1
q2 hq̄qihq̄Gqi 1

18
1
18

−1
36

−1
36

1
18

−1
18

0
1
q4 hq̄Gqi2 49

432
49
432

−67
648

−67
648

55
324

−79
432

0
1
q4 hq̄qi2hGGi 1

1944
1

1944
−1
7776

−1
7776

1
3888

−1
3888

0

TABLE III. Two-loop level counterterms (at Oðg3Þ). Here, e.g., g2

ϵ864π4
∂αðq̄GμβσαβqÞ is counterterm for Jμηπ; q ¼ ðu; dÞT , and

q̄ ¼ ðū;−d̄Þ. For Jμ
ηð0Þπ

and Jμb1π , the counterterms are not unique. One can replace ∂αðq̄GμβσαβqÞ by ∂αðq̄Gαβσ
μβqÞ, which gives small

change for hGGi terms in Table II, but does not affect the mass prediction.

Jμνηπ Jμνη0π Jμηπ Jμη0π Jμb1π Jμνb1π Jμνρπ

∂μðq̄GναγαqÞ þ fμ ↔ νg −7g2
ϵ3456π4

161g2

ϵ13824π4∂μðq̄GναγαqÞ − fμ ↔ νg 17g2

ϵ6912π4
−g2

ϵ1728π4∂αðq̄GμβσαβqÞ g2

ϵ864π4
29g2

ϵ1728π4
23g2

ϵ864π4

(a)

(c)

(b)

(d)

FIG. 4. Mass predictions for different correlation functions. Here we set k8 ¼ k10 ¼ 2. The colors represent the four-quark
configurations: red for ηπ, green for η0π, and blue for b1π. (a): Mass versus τ for ΠV;T

ηð0Þπ;H
ðq2Þ and ΠT;V

b1π;H
ðq2Þ; (b): mass versus s0 for

ΠV;T
ηð0Þπ;H

ðq2Þ and ΠT;V
b1π;H

ðq2Þ; (c): mass versus τ for ΠT;V
ηð0Þπ;H

ðq2Þ and ΠV;T
b1π;H

ðq2Þ; (d): Mass versus s0 for ΠT;V
ηð0Þπ;H

ðq2Þ and ΠV;T
b1π;H

ðq2Þ.
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(a) (b)

(c) (d)

FIG. 5. Mass predictions for different correlation functions. Here we set k8 ¼ k10 ¼ 5. The colors represent the four-quark
configurations: red for ηπ, green for η0π, and blue for b1π. (a): Mass versus τ for ΠV;T

ηð0Þπ;H
ðq2Þ and ΠT;V

b1π;H
ðq2Þ; (b): mass versus s0 for

ΠV;T
ηð0Þπ;H

ðq2Þ and ΠT;V
b1π;H

ðq2Þ; (c): mass versus τ for ΠT;V
ηð0Þπ;H

ðq2Þ and ΠV;T
b1π;H

ðq2Þ; (d): Mass versus s0 for ΠT;V
ηð0Þπ;H

ðq2Þ and ΠV;T
b1π;H

ðq2Þ.

FIG. 6. Diagrams for four-quark–hybrid correlation functions, up to permutations of background gluons. For the first diagram in the
second row, the identity hΨ̄iðxÞGαβð0ÞΨjðxÞi ¼ −g2hΨ̄Ψi2=ð36ðD − 1ÞÞðxμγν − xνγμÞji is used. The diagrams in the last row are
relevant with renormalization at two-loop level; the last diagram comes from the counterterms.

LI, CHEN, JIN, and CHEN PHYS. REV. D 105, 054030 (2022)

054030-8



[1] C. Amsler and N. A. Trnqvist, Mesons beyond the naive
quark model, Phys. Rep. 389, 61 (2004).

[2] C. Meyer and E. Swanson, Hybrid mesons, Prog. Part. Nucl.
Phys. 82, 21 (2015).

[3] S. Narison, 1−þ light exotic mesons in QCD, Phys. Lett. B
675, 319 (2009).

[4] Z.-R. Huang, H.-Y. Jin, and Z.-F. Zhang, New predictions
on the mass of the 1−þ light hybrid meson from QCD sum
rules, J. High Energy Phys. 04 (2015) 004.

[5] P. Zyla et al. (Particle Data Group), Review of particle
physics, Prog. Theor. Exp. Phys. (2020), 083C01.

[6] S. Chung, E. Klempt, and J. Krner, SU(3) classification of
p-wave ηπ and π systems, Eur. Phys. J. A 15, 539 (2002).

[7] H.-X. Chen, A. Hosaka, and S.-L. Zhu, IGJPC ¼ 1−1−þ
tetraquark states, Phys. Rev. D 78, 054017 (2008).

[8] Z. F. Zhang and H. Y. Jin, Zero mode effect in the 1−þ four
quark states, Phys. Rev. D 71, 011502(R) (2005).

[9] W. Lucha, D. Melikhov, and H. Sazdjian, Tetraquark-
adequate formulation of QCD sum rules, Phys. Rev. D
100, 014010 (2019).

[10] M. Shifman, A. Vainshtein, and V. Zakharov, QCD and
resonance physics. Theoretical foundations, Nucl. Phys.
B147, 385 (1979); QCD and resonance physics. Applica-
tions, Nucl. Phys. B147, 448 (1979).

[11] P. Colangelo and A. Khodjamirian, QCD sum rules, a
modern perspective, in At The Frontier of Particle Physics
(World Scientific, 2001), 10.1142/9789812810458_0033.

[12] E. Rafael, An introduction to sum rules in QCD, ar-
Xiv:9802448.

[13] T.Muta, Foundations of QuantumChromodynamics, 3rd ed.
(World Scientific, Singapore, 2009), 10.1142/6766.

[14] J. C. Collins, Renormalization: An Introduction to
Renormalization, the Renormalization Group and the
Operator-Product Expansion, Cambridge Monographs on

Mathematical Physics (Cambridge University Press, Cam-
bridge, England, 1984), 10.1017/CBO9780511622656.

[15] QSSRHelper, a Mathematica package for QCD sum rules
calculation, https://github.com/QSSRHelper/QSSRHelper
.git.

[16] M. Pernici, Seminaive-dimensional renormalization, Nucl.
Phys. B582, 733 (2000).

[17] V. Shtabovenko, R. Mertig, and F. Orellana, New develop-
ments in feyncalc 9.0, Comput. Phys. Commun. 207, 432
(2016).

[18] R. Bertlmann, G. Launer, and E. de Rafael, Gaussian sum
rules in quantum chromodynamics and local duality, Nucl.
Phys. B250, 61 (1985).

[19] V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I.
Zakharov, Calculations in external fields in quantum
chromodynamics. Technical review, Fortschr. Phys. 32,
585 (1984).

[20] S. Narison, Mini-review on QCD spectral sum rules, Nucl.
Part. Phys. Proc. 258–259, 189 (2015).

[21] S. Narison, Power corrections to αsðmτÞ, jvμsj and m̄s, Phys.
Lett. B 673, 30 (2009).

[22] S. Narison, Va hadronic tau decays: A laboratory for the qcd
vacuum, Phys. Lett. B 624, 223 (2005).

[23] F. E. Close and P. R. Page, The production and decay of
hybrid mesons by flux-tube breaking, Nucl. Phys. B443,
233 (1995).

[24] I. I. Balitsky, D. I. Dyakonov, and A. V. Yung, Exotic
mesons with JPC ¼ 1−þ, strange and non-strange, Z. Phys.
C Part. Fields 33, 265 (1986).

[25] A. Rodas, A. Pilloni, M. Albaladejo, C. Fernández-Ramírez,
A. Jackura, V. Mathieu, M. Mikhasenko, J. Nys, V. Pauk, B.
Ketzer, andA. P. Szczepaniak (Joint PhysicsAnalysis Center),
Determination of the Pole Position of the Lightest Hybrid
Meson Candidate, Phys. Rev. Lett. 122, 042002 (2019).

MASS OF 1−þ FOUR-QUARK–HYBRID MIXED STATES PHYS. REV. D 105, 054030 (2022)

054030-9

https://doi.org/10.1016/j.physrep.2003.09.003
https://doi.org/10.1016/j.ppnp.2015.03.001
https://doi.org/10.1016/j.ppnp.2015.03.001
https://doi.org/10.1016/j.physletb.2009.04.012
https://doi.org/10.1016/j.physletb.2009.04.012
https://doi.org/10.1007/JHEP04(2015)004
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1140/epja/i2002-10058-0
https://doi.org/10.1103/PhysRevD.78.054017
https://doi.org/10.1103/PhysRevD.71.011502
https://doi.org/10.1103/PhysRevD.100.014010
https://doi.org/10.1103/PhysRevD.100.014010
https://doi.org/10.1016/0550-3213(79)90022-1
https://doi.org/10.1016/0550-3213(79)90022-1
https://doi.org/10.1016/0550-3213(79)90023-3
https://doi.org/10.1142/9789812810458_0033
https://doi.org/10.1142/6766
https://doi.org/10.1017/CBO9780511622656
https://github.com/QSSRHelper/QSSRHelper.git
https://github.com/QSSRHelper/QSSRHelper.git
https://github.com/QSSRHelper/QSSRHelper.git
https://doi.org/10.1016/S0550-3213(00)00268-6
https://doi.org/10.1016/S0550-3213(00)00268-6
https://doi.org/10.1016/j.cpc.2016.06.008
https://doi.org/10.1016/j.cpc.2016.06.008
https://doi.org/10.1016/0550-3213(85)90475-4
https://doi.org/10.1016/0550-3213(85)90475-4
https://doi.org/10.1002/prop.19840321102
https://doi.org/10.1002/prop.19840321102
https://doi.org/10.1016/j.nuclphysbps.2015.01.041
https://doi.org/10.1016/j.nuclphysbps.2015.01.041
https://doi.org/10.1016/j.physletb.2009.01.062
https://doi.org/10.1016/j.physletb.2009.01.062
https://doi.org/10.1016/j.physletb.2005.08.007
https://doi.org/10.1016/0550-3213(95)00085-7
https://doi.org/10.1016/0550-3213(95)00085-7
https://doi.org/10.1007/BF01411145
https://doi.org/10.1007/BF01411145
https://doi.org/10.1103/PhysRevLett.122.042002

