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We calculate the masses of J©€

= 177 light exotic mesons by QCD sum rules; the masses are extracted

from four-quark—hybrid mixing correlation functions. We construct several 1=" four-quark currents and
hybrid currents, and get two masses around 1.2—-1.4 GeV and 1.45-1.67 GeV; they can be identified as

7,(1400) and 7, (1600).
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I. INTRODUCTION

The study of exotic meson states has a long history.
Glueball, hybrid meson (quark-antiquark with excited gluon),
and multiquark were predicted after the establishment of
quantum chromodynamics. Many heavy exotic hadrons have
been confirmed experimentally in the last decade. There are
also two light exotic mesons with J7¢ = 1=+ that have been
found since the end of the last century. However, the structure
of these two mesons is still unclear.

Lattice QCD and most phenomenological methods show
that the mass of 1=" hybrid is around 1.7-2.1 GeV [1-4],
and it prefers to decay into S- and P-wave mesons. However,
the corresponding candidates 7, (1400) and 7z, (1600) [5] are
lighter than predictions. Besides, 7, (1400) only decays into
nm, while Ref. [6] indicates that in the limit of SU(3) flavor
symmetry, the 1=" hybrid decay into #nz is forbidden. This
result implies 7, (1400) may be a multiquark state.

Some authors consider the 1~ exotic mesons as tetraquark
(diquark-antidiquark structure) or four-quark molecule (mes-
ons bound state). Reference [7] exhausts all 1~ tetraquark
configurations and get two masses around 1.6 GeV and
2.0 GeV for two types of quark contents. Reference [8] gives
1~ four-quark molecule mass around 1.4-1.5 GeV, but the
result receives large uncertainty from the instanton density.
Reference [3] reexamines the studies about 1-T exotic
mesons, and predicts 1.7 GeV for tetraquark configuration
and 1.3 GeV for molecule configuration.
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However, if z,(1400) is a four-quark state,' then there
should be unobserved mesons with strangeness 2 and
2 units of charge [6]. Besides, there is a subtle problem
for the study about four-quark state. The four-quark
current, which usually can be identified as two meson
currents, may easily couple to two mesons. It then causes
difficulty to extract the correct information about the
resonance when the two-mesons states give large contri-
butions to the correlator. Reference [9] indicates that the
four-quark diagrams with no singularity at s = (>_%_, m;)?
are not relevant to the four-quark state but relevant to two
free mesons (m; is the quark mass). But the validity of this
criterion is not clear up to now.

Since the gluon can couple to quark-antiquark pair, the
four-quark states may easily mix with the hybrid state, as
long as the symmetry permits, especially for light four-
quark and hybrid, since g = 1 in the low energy scale.
Reference [3] conjectures that the mixing of four-quark
molecule with tetraquark and/or hybrid can explain the
strange decay model of z;(1400). The mixing scenario
may also explain two 17" states with close masses and the
absence of four-quark states with strangeness 2 and 2 units
of charge.

In this paper, we will try to evaluate the mass of 17+
mesons from four-quark—hybrid correlation functions. The
off-diagonal correlator certainly is weaker than the diagonal
correlators. However, since the four-quark and hybrid
have different decay models, the background contribution
of two free mesons is strongly suppressed, which relatively
enhances the contribution of the resonance that couples to
both currents. This approach is not sensitive to the mixing
strength, but our goal is to extract the state with the most
prominent resonance signal in the correlators. We will give

'"We call both tetraquark and molecule configurations as four-
quark states when the distinction between them is not important
in discussion.
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further discussion at the end of this paper. We think the
mass evaluation based on four-quark-hybrid correlation
function is convincible, and we get the masses of 17 states
consistent with experiments.

II. QCD SUM RULES FOR FOUR-QUARK-HYBRID

A. Currents and renormalization

The QCD sum rules [10-12] are an effective way to
research hadron properties. For mass evaluation, the main
task is to calculate the correlation function of two currents.
By decay models of 7, (1400) and 7, (1600) [5], we choose
nx, n'x, pr, and b,z as four-quark current configurations.
The currents for nz and 7'z in the SU(3) flavor limit are

I, = @7 "u + dy’y'd + 057°y"s) (i u — dy*d),
Jf;f,)ﬂ = (ay’>y"u + dy>y*d + 057°y"s) (ay’y u — dy’>y*d)
+{u < v}, (1)

with @ = —2 for nz and 1 for #'z. The currents couple to
1="b,x are

J’;lﬂ = "D (16 ,pddy >y, u — dozuity’y,d),
Jpz= i (iio5ddy’ u — dopuity’d). (2)
And the current couples to pz [8] is
Jor = ie"P (wy  ddy>ygu — dy uity’y5d). (3)
Here €%'% = +1, ¢* = [y#,y"]. The hybrid currents are

Y = i(aG"y,u — dG"y,d),
Iy = u(G"6," — G} )u — {u < d}. (4)
Here we always write gT“G** as G* for simplicity.

The four-quark currents need to be renormalized [13,14].
The general four-quark current can be written as:

J4q — lilaFAlelichBlPd. (5)

Here a, b, c, d are flavor indices; I'y, I' are general y
and color matrices. The 1/¢e-pole at O(g) exist when b = ¢
and/or a = d. Assuming b = ¢ and a # d, we consider the
zero-momentum insertion Green function:

(014425, A™ %y 1[0). (6)

Here, i, j are spin indices; m, r, n are color indices. The
1/e-pole is canceled by (see Fig. 1):

(0](J, + Jz)‘PZTiA’”‘i’Z,ﬂO% (7)

with:

%j)i ﬁ\
m r ny m (v nj

FIG. 1. Renormalization of four-quark current at O(g). The
4-quark vertex is split a little to make it clear how quark lines are
connected. Left (right) diagram corresponding to Eq. (6) [Eq. (7)].

1 m

J] - _EW\PaFAGaﬂGaﬂFB‘Pd’
11 .
Jr = EMTaFADaG Py sTpY,. (8)

Here, m is the mass of the quark in the loop, DY =
0,0 + gfPA¢ is covariant derivative at adjoint represen-
tation. Equation (8) is evaluated at dimension D = 4 — 2e.
As the J; vanishes at massless limit, we use it only for
evaluating m(gq) contributions in this paper.

The renormalized four-quark current at O(g) then can be
written as:

(Jag)r = Jag +J1 + /2. 9)

By Egs. (8) and (9), the renormalized currents for 17(’ z, b I\ 7T
and pz can be easily obtained.

B. Four-quark-hybrid correlation functions

By operator product expansion [10-12] (OPE), the corre-
lation function can be expressed as a sort of condensates with
Wilson coefficients. Before evaluating the correlation func-
tions, we first discuss the dispersion relation [10—12], which is
slightly modified when two currents are different. Consider
the correlation function of currents J, and J,; for simplicity,
assuming the involved states have same quantum number
JPC, suppressing the Lorentz indices, we have:

M(g) = i / e (0T, (x)}(0)}0).

:/oo dsp(s)%’
0 s —q° —ie

— P(q) [PPAwds p(s)2+i7rp(q2) . (10)

§—4q

Here PP means principal part. We write:

(01,(0)[m) (n[73,(0)[0) = P(q)fu(¢*)f3(q7). (1)

Here |n) are on-shell states with momentum g; P(q)
corresponds to the tensor structure of I1(g); f,(q?) and
f1»(g?) are coupling constants of the two currents to |n)
respectively. Define a factor:

P = (=1)N+M), (12)
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Here N =0, 1, 2 is the number of anti-Hermitian
currents; M = 0 (1) if I1(g) is even (odd) under exchange
q <> —q. Then we can write:

- >~

DRe[fo(s)f, (). (13a)

for P =1, and:

Jilm{fo(s)f3(s)],  (13b)

Zés—

for P = —1.

When J, =J,, the p(s) reduces to the familiar
form |f,(s)]> by Eq. (13a). We give the derivation of
Eq. (10)—(13) in Appendix A, which is based on Ref. [12].
When J, # J,,, p(s) or Imp(s) may not be positive, and
may even change the sign when s variant.

For currents given by Eq. (1)-(4), to extract the 17+
vector state contribution, we can generally write:

(0172(0)|V) = e"f.(q).
(01757 (0)[V) = (g"e” + g"¢") f,,(g%). (14)

Here, |V) is a vector state with momentum ¢ and
polarization €*, the £ refers to symmetry or antisymmetry
tensor currents. Then we have:

4(q) = i [ dise QT ()7} 0)}0).
= (@"P £ 4¢P (¢) +- (15)

Here, P* = g —

evant with vector states. The superscripts 7 and V in Hg:;/ (%)
indicate that J, is a tensor current and J,, is a vector current.
In the massless limit, for currents given by Egs. (1)—(4), only
the correlation functions with one vector current and one
tensor current have nonvanishing perturbative diagrams. We
only consider this type of correlation function. By Eq. (10)
and (13), isolating the lowest resonance pole, we have:

1
—ImIT, ,(s) ~ (s —
m

%ﬁ’b, the ellipsis refers to terms irrel-

m*)Re(f.f;) + 0(s —so)p(s). (16)

Here, s is the continuum threshold, P = 1 in this case.

For (GG) term, the two-loop renormalization of the
four-quark currents should be considered, which is far
beyond the scope of this paper. Since our purpose is only to
evaluate the mass, we only need to extract the correspond-
ing counterterms to cancel the nonlocal pole log /e (cor-
responding to the last diagram in Fig. 2). This diagram
originates from the current:

P(VG + GV)¥ = 0(PGY) + i¥DGY,  (17)

which is the counterterm that emerges in the renormalization
at two-loop level [at O(g?)]. Here, the y-matrices and Lorentz

oD OO E
S € =2 <

FIG. 2. Typical diagrams. The 4-quark vertices are split a little
to make it clear how quark lines are connected.

indices are suppressed, V¥ is covariant derivative. The term

O(YGY) gives a nonzero contribution to the correlation

function. For J*, and Jj, _, the corresponding counterterms
nm 1

are not unique (see Table III), but different choices did not
cause any visible difference in mass prediction.

For dimension-10 condensate, some diagrams need the
identity (in massless limit):

grﬂva/f
VIV ) = = Gn (Tt (18
(P9, = S G )™ (189
with:
F,uua[} — _(d2 — 44 + S)angvﬁ + },/wa/} + gpuyaﬁ
+(d—4)yreg? — (d - 2)rg”. (18b)

Here, y/waﬂ — ]/[M]/y]/”]/ﬂ]~

Since the ImI1, ,(¢?) in Eq. (15) is not positive definite,
we define the spectrum density by requiring the perturba-
tive part is positive, i.e., p(s) > 0 when s — co. We give the
OPE results, counterterms, and all diagrams in Tables I,
ITI, and Fig. 6 respectively in Appendix B. The OPE
calculations are performed up to dimension-10 conden-
sates; we write a Mathematica package [15] to deal with the
tedious calculation. The results are obtained at MS scheme,
and the y° is treated by BMHV scheme [16,17].

C. Numerical analysis

To evaluate the mass of the lowest resonance, it com-
monly uses the Borel (Laplace) transformation [11,18,19].
By Eq. (16), we have:

1 o
—/ dse™*"ImIl, , (s)
0

T

=Re(fufi)e ™+ [T dse o). (19)

S0
And one can get the mass from the ratio of moments:

MnJrl (77 SO) ~ 2

R, = ~m?,
" Mn(T9s0) "

(20)
with:

M, (7. 50) = / " dss" e Imll, (). (1)
0

054030-3



LI, CHEN, JIN, and CHEN

PHYS. REV. D 105, 054030 (2022)

8

1.9
18 6
17F ‘ 3
Z iiTie > 4
9 16 ;;’
£ B
£ 1.5 io 2
=
14
1.3
15 Soc-- 72035 7=0.25
_ 14F¢
>
g
\g 13
1.2
T[GeV 2 SolGev?] SolGeV?]
FIG. 3. Mass predictions and moments for different correlation functions. Here we set kg = kjy = 3.5. The colors represent the four-

quark configurations: red for 5z, green for 'z, and blue for b, z. (a): Mass versus 7 for H}‘:(

.T

). (g*) and HZ;,‘:H(qz); (b): mass versus s

for H:(;;H(qz) and HZI‘X_H(qZ); (c): My(z.s9) versus sy for H:;(;C[’H(qz) and HZ[Z,H(‘IZ); (d): mass versus 7 for H;(’,)V”’H(qz) and

1,7 11 (¢%); (e): Mass versus s, for H:(',)‘jtﬂ(qz) and I, 7 1 (¢); (F): Mo (7, s9) versus s, for H;('OV ,H(qz) and I, 7 1 (¢); p(s) change the

sign at s around 7-10 GeV?.

Here, two free parameters z and s, are involved. The
typical s, is around the mass square of the next resonance.
The range of 7 is determined by requiring M(z, sy)/
My(r,00) > 0.7, and the contribution of the highest
dimensional condensate is less than 10% to satisfy sin-
gle-pole dominance and convergence of OPE. This gives
the Borel window [11] 7; < 7 < 7,. The stability criteria
[20] is also used to constraint the value of s, and 7.

To evaluate the mass, we use the value of condensates by
Ref. [20]:

g=u,d. (22)

And A = 0.353 GeV by Ref. [3]. For dimension-6, -8,
and -10 condensates, the factorization deviation factors
must be included:

(q9)* = ke(qq)*,
(99)(aGq) — ks(qq)(qGq),
(aGq)* — ki9(qGq)*. (23)

Here, kg ~ 3 by Ref. [21],2 the kg and ky( are not clear;
Ref. [22] indicate they are around 2-5. We first choose

The pa, (ry)? in Ref. [20] already contains the deviation
factor. But we find it is less stable to fix a; first, so we will not use
this value.

4

kg = kjg = 3.5 to fix the Borel window and s(, then
consider two extremes kg = kg =2 and kg = kjp =5 to
get conservative results. We show the results for kg =
kip = 3.5 in Fig. 3, and the result for kg = k;jp =2 and
kg = kjy = 5 in Figs. 4 and 5 respectively in Appendix B.
The conservative ranges of masses are given in Table L.
Since the s-quark cannot couple to the hybrid currents
given by Eq. (4) directly, the contribution of s-quark is
small. Our results are insufficient to distinguish #z and #'x.

To obtain the mass, for specific s, if the Borel window
exists, we choose the average value in the Borel window.
If the Borel window does not exist, we determine the
mass by stability criteria. We then get the range of mass
spanned by s.

For H}‘;(;)Tﬂ (@) and HZ{X, 11(g%), the Borel window and s,

stability do not exist. The z-stability is achieved when
5o~ 5.5 for HX;;H(q2), and when s ~ 4.5 for I}” ,,(¢%)

(the curve for different 7 intersect at these s,). We choose
4 <5y <6 for these configurations. The s, stability at
so ~ 2 in Fig. 3(b) and sy = 1 in Fig. 3(e) are not physical,
because these s, are lower than the corresponding mass
squared.

When s, = 4, the H;(’,)‘; H(q2) has Borel window around

0.33-0.36, while the Tl ,(¢*) has 7;~7,~0.38.
We treat the latter one as no Borel window. The 7 stability
is achieved when s, =~ 3 [Fig. 3(e)], but the 7 stability
becomes worse when sy~5 [Fig. 3(d)]. We choose
3 <59 <5 for these configurations.

The H;,;YH(qZ) has no dimension-8 and -10 contributions

at leading order, and is dominated by dimension-6 con-
densate. The result is then sensitive to factorization

054030-4
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TABLE I. Mass predictions by each correlation function in the
unit of GeV. The lower bound is obtained by using the lower
bound of sy and set kg = k1o = 2; the upper bound is obtained by
using the upper bound of s, and set kg = kjy = 5.

(a) Results can be interpreted as 7;(1600).

" (4 (4 (4%
1.45-1.77 1.45-1.77 1.36-1.67

(b) Results can be interpreted as z;(1400).

.Y (%) ey, (q) % n(4?)
1.18-1.41 1.19-1.43 1.17-1.46

deviation; it is hard to get a convincible value. It is interesting
to mention that the 1=+ hybrid decays into f,x and b, z, but
not to pz by the flux-tube model [23]. These facts imply the
1=" hybrid may prefer to couple to b,z than pz.

The main uncertainties in Table I are from the factori-
zation deviation factors, which cause a small overlap
between 7;(1400) and 7;(1600) interpretation. For the
same deviation factors, there is a roughly 0.2 GeV gap
between them. So we conclude there are two 1~ states.

Recall that we fix the sign of p(s) by requiring the
perturbative contribution is positive. However, for

;(‘,)Vﬂ ’ ,(q%) and TI;7 1 (g%), the p(s) is negative for
s < 8. A closer look finds that for 7 in the Borel window,
the moment M(z, s¢) is always negative. That means the
contribution of the resonance is negative. It should not be
surprising since Re[f, f}] for different intermediate states
may have different signs.

In Table I, the mass prediction from HX{; 4(g?) is close

to 7;(1400), while the b,z is absent in the decay of
71(1400). Since bz is just on the mass threshold of
71(1400), bz channel may be forbidden or suppressed
by little kinematic phase space in z;(1400)’s decay.

It should note that in Eq. (16), we assume only one
resonance pole dominates, but there have two close 17+
states: 1 (1400) and 7, (1600). However, different currents
may prefer to couple to a certain one, and it is unlikely that
all currents in Egs. (1)-(4) couple to these two states with
the same preference. By results in Table I, we think each
case is dominated by one state.

III. DISCUSSION AND CONCLUSION

As we mentioned in the Introduction, we think the mass
evaluation based on the four-quark—hybrid correlation is
convincible. Since whatever |J(x)) is, it can always be
written as a sort of physical states. We can write:

J(X) ~ ZA(X) + Z / d4q1d4q2g_i(‘11+q2)x

X y(q1. q2)P1(q1)h2(q2) + ... (24)

Here, the A(x), ¢1(q,), and ¢, (g, ) are effective fields of
mesons; the y(q,, ¢, ) is a certain wave function of two free
mesons in momentum space; the ellipsis refers to three and
more particle states. In principle, the free mesons terms
should not be excluded. The correlation function then can
be expressed as:

/ d*z &9 (T{J,(2)J5(0)}) ~

o O+ — (>
o (25)

Here, sum over the different particles for each term is
understood; the empty dots refer to two free mesons.

Consider the energy scale around the mass of 1~ mesons,
for J, = J,, = four-quark current, since it can be identified
as two meson currents, the last term in Eq. (25) may
contribute considerably. For J, = J, = hybrid current,
one may safely ignore the multimesons terms in Eq. (24)
at first approximation. There are many studies about the 1=
hybrid [3,4,24] based on the first current of Eq. (4).
However, if there are two exotic mesons with close masses,
focusing on one current is not enough.

To compromise, one can choose J, = four-quark current
and J, = hybrid current. As long as the second term in
Eq. (25) is small, it is reasonable only to consider the first
term. Since different currents may prefer to couple to
different exotic mesons, and it is easy to construct many
four-quark currents, it is possible to extract a certain exotic
meson from these correlators. By comparing the results with
experiments, one can check the validity of this argument.

The results in Table I and Fig. 3 show that the two 1=
states can be identified as 7, (1400) and 7 (1600). Since the
results are obtained from four-quark—hybrid correlators, these
states may be mixed states of four-quark and hybrid. The
mixing strength cannot be obtained merely from the off-
diagonal correlators, which needs the information of the
diagonal correlators. However, it may be contaminated by two
free mesons.

By Eq. (5§)—(9), the mixing of four-quark and hybrid may
be quite common. For the correlators in this paper, the
contribution of perturbative diagrams is quite small, which
implies the mixing is highly nonperturbative. The mixing
scenario of 1~ four-quark and hybrid may also explain the
absence of four-quark states with strangeness 2 and 2 units of
charge: the pure light four-quark state is unstable, it must mix
with the hybrid to get stability. If it is true, the isoscalar four-
quark state should mix with the hybrid or glueball to get
stability. Our calculations is an attempt to test this scenario.

In conclusion, the Table I gives mass predictions
with 1.2-1.4 GeV for 7z;(1400) and 1.45-1.67 GeV for
71(1600), which agree with PDGI[5] (1.35 GeV for
71(1400) and 1.66 GeV for z;(1600)). But it should note
that a recent coupled channel analysis of COMPASS data
concluded that there is only one 17+ state with mass
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1.56 GeV [25]. So there are large uncertainties that need to be cleared both in theory and experiments; this topic is beyond
this paper.
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APPENDIX A: DISPERSION RELATION IN GENERALIZED SITUATION

Consider the correlation function of two currents (suppress the Lorentz indices):
M1(q) = [ des(OIT {1,170 H0).
=i / 5 0(x0){01,(x)7} (0)[0) + O(~) (017} (0), (x)[0)]. (A1)

Inserting a complete set of on-shell states:

Ep o ovsi2 o _
S [ SEsotwatr? =~ miinal = 1. )

We obtain:

d4x€iqx

)(i0(x°)0(p®)5(p* —my)e=P*A(p?) +i0(=x*)0(p°)3(p> —m7)e* AT (p?)).  (A3)

Here we write (0[J,(0)[n)(n|J}(0)[0) = P,(p)A(p?), p is the momentum of state |n), P,(p) is only relevant with the
tensor structure of I1(g).
Separating real and imaginary parts, and changing the integral variable, we write the terms in big parenthesis as:

[10(x")0(p°)8(p? = m7) + (=1)NMi0(=x")0(=p°)5(p* — m3;)|e""*Re[A(p?)]
+[i0(x*)0(p°)5(p* — m3) = (=1)VMi0(=x)0(=p°)(p* — my)]e~"*iTm[A(p?)]. (A4)

Here N =0, 1, 2 is the number of anti-Hermitian currents P, ( p) = (=1)MP,(p), or equivalently TI(—g) =
(=1)T1(g). Equation (A3) then can be written as I(g) = [[P,(p)(Re +1Im) briefly. Under replacement x — —x,

p — —p, and ¢ — —g, it becomes:

(=1)"11(g) = -0V [ Py(pRe = (=172 [[ P, (p)im. (A5)

Thus for N + M = even, the Im[A(p?)] term vanishes, while for N + M = odd, the Re[A(p?)] term vanishes. By:

d‘p . 0 NS(p? —m ; ) 2 _ 2 ))emipr — d*p e
| o 1000)00°)3(02 = i)+ =20 0(= )00 = mi)e e = [ EBe

we then can write:

M(g) =) zP"(Q) : <1+(—21) . Re[A(qz)]-Fil_(_zl) '

_ / 453300 =) Pq(Q)_le<1+(_21)N+MR6[A(q2)]+1_(_1)N+Milm[A(q2)]>. (A7)

, (A6)

So for N + M = even, the dispersion relation is

—Im 25 (¢* — m2)Re[A(g%)]. (A8)
and for N + M = odd, the dispersion relation is

1

—Re[ll(q)] = =Y _3(¢* = m3)Im[A(¢?)). (A9)

054030-6
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APPENDIX B: ADDITIONAL TABLES AND FIGURES

TABLE II.  The OPE Results. Here m = m, + my, (GG) = ¢*(G™*G.,), (qGq) = g(gT"G",0"q). The values in each column are
the factors of corresponding terms, e.g.,

HT,V

nr,H

(¢?) = =1/12960%° a,q®log(=¢*/u®) + -+~ For I[  (¢%) and T 7 ;(¢?), the

relevant counterterms are not unique, the values in parenthesis corresponding to (GG) term are obtained by replacing 0*(§G*’5,5q) by
8"(2]6(,/,0”/’ g) in Table III. The diagrams are shown in Fig. 6.

TV [ 2 TV [ 2 VT 2 VT [ 2 VT [ 2 TV [ 2 TV [ 2
1§ B C70 B R WA (7)) 1, 4(q%) I u(a?) Myon(e?)  Wop(e®)  I,4(q%)
6 7 ) _ =1 =1 =1 ) =1 =1
asq 102(‘,7) 120607° 129607 86407 86400 13207 8640 8640
2 —_ —_ —
a,q*log(— Z—z)zm (99) o T o o T o 0
2 A\ = -101 ~101 23 23 —47 29 -1
asq Og(— ,7)"1<£IIJ> 43273 4327° 21672° 21672° 1087° 1087° 187°
s \2 247 -509 281 65 113 223 181
a,q lOg(—;) (GG) 99532875 9953287 1976647 1976647 24883210 24883270 24883270
) 7 —20147 14269 —8861(-8765) ~3407(=2015) —3137(=2033) —5899 —3547
asq 10g(‘,7)<GG> 59719687 59719687 14929925 14929925 74649675 7464967 7464967
PN/ 0\2 56 56 =8 =8 32 =20 4
a; log(— 7) <CIQ> 81z 81z 27x 27n 27r 27r 27x
L (Gg)(g 1 1 -1 -1 1 -1 0
—~(q9)(aGq) 8 8 % % 8 i
q 3 3
17 2 49 49 =67 =67 55 =79
p (aGq) 32 132 648 648 324 32 0
1 /= \2 1 1 -1 -1 1 -1
(q9)°(GG) 1943 1943 7776 7776 888 3888 0
TABLE III.  Two-loop level counterterms (at O(g*)). Here, e.g., ££—=0*(GG*0,4q) is counterterm for Jiz; g = (u,d)”, and

g = (,—d). For J”; », and J),» the counterterms are not unique. One can replace 0*(GG" 6,5q) by 0*(gG430*" q), which gives small
change for (GG) terms in Table II, but does not affect the mass prediction.

N I Tz Vo Ty Vo Jhe
G”EQG”%q; + }u < vi % % 2 2
0"(qG"aq) —{n < v _bg 7
aa(qcﬂﬂda/}q) L4 29g2 4 23924 €69127 €l728x
8647 el7287 €864r

1.9

st S s=6 DiTiT so5 so=4 ]
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1.3k : : : :
0.0 0.2 0.4 0.6 0.8
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w
JRo [Gev]
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0.2
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FIG. 4. Mass predictions for different correlation functions. Here we set kg = ko = 2. The colors represent the four-quark

configurations: red for nz, green for 5z, and blue for b, z. (a): Mass versus 7 for H";(;)T” . H(qz) and H,f;Z,H(qz); (b): mass versus s, for

H,;/(br,, ~H(qz) and HZ{‘;,H(qZ); (c): mass versus 7 for I'[;(;)V”’H(qz) and HZ{;,H(‘IZ)§ (d): Mass versus s, for HZ(‘,XLH(qz) and HZ{;H(QZ)-
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1.9

18F 2:7111s

1.7F o,

1.6F

JRo [GeV]

15F

14F

JRo [Gevl

FIG. 5.

configurations: red for nz, green for #'x, and blue for b z. (a): Mass versus

v.T
Hr/(' ), H

T[GeVY

JRo [GeV]

JRo [GeV]

SolGevA]

Mass predictions for different correlation functions. Here we set kg = kjg = 5. The colors represent the four-quark
7 for ;"

n(,)ﬂH(qz) and n,f;;,,(qz); (b): mass versus s, for

(¢%) and TI;7 1, (¢%); (c): mass versus t for H;;)V”’H(qz) and 1,7,/ (¢%); (d): Mass versus s, for I'IZ(’,)‘;H(qZ) and TI,'7 ,/(q?).

FIG. 6. Diagrams for four-quark-hybrid correlation functions, up to permutations of background gluons. For the first diagram in the
second row, the identity (¥;(x)G*(0)¥;(x)) = —g*(¥¥)*/(36(D — 1))(x*y* — x*y*);; is used. The diagrams in the last row are
relevant with renormalization at two-loop level; the last diagram comes from the counterterms.
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