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The process of pion axioproduction, aN → πN, with an intermediate Δ resonance is analyzed
using baryon chiral parturbation theory. The Δ resonance is included in two ways: First, deriving the
aΔN-vertices, the axion is brought into contact with the resonance, and, second, taking the results of πN
elastic scattering including the Δ, it is implicitly included in the form of a pion rescattering diagram. As a
result, the partial wave cross section of axion-nucleon scattering shows an enhancement in the energy
region around the Δ resonance. Because of the isospin breaking, the enhancement is not as pronounced as
previously anticipated. However, since the isospin breaking here is much milder than that for usual
hadronic processes, novel axion-search experiments might still exploit this effect.
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I. INTRODUCTION

A model that might resolve two of the known problems
of two different (but related) physical fields—in the present
case the strong-CP problem of quantum chromodynamics
(QCD) and the dark matter issue of astrophysics and
cosmology [1–7]—is clearly worth investigating. Such a
model is the Peccei-Quinn model [8,9] and the theory of the
axion [10,11], especially the “invisble” axion models such
as the Kim-Shifman-Vainstein-Zakharov (KSVZ) axion
model [12,13] and the Dine-Fischler-Srednicki-Zhitnitsky
(DFSZ) axion model [14,15]. However, the time theorists
and experimentalists effortfully spent on the search for
signals that might verify this model now comprises more
than four decades, and still there is no axion in sight.

Because of that it is important to study all kinds of related
processes hoping to figure out some underlying pheno-
menon that might enhance the chance of its detection, if
only for a few percent.
Recently, Carenza et al. [16] have proposed that the pion

axioproduction [17] aN → πN is such a process, because
at certain axion energies, around 200 MeV–300 MeV, an
enhanced axion-nucleon cross section due to the Δ reso-
nance can be expected. This in turn would possibly make
axion detections accessible for underground water
Cherenkov detectors. Such axions might be produced in
protosupernova cores in the presence of pions, where
besides the axion production via axion-nucleon brems-
strahlung NN → aNN, the pion-induced process πN →
aN might play a more important role than previously
thought [16,18], leading to a possible enhancement of the
number spectrum of axions with energies around
200 MeV–300 MeV.
In this study, we take a closer look at exactly this process,

namely aN → πN with theΔ resonance, showing that there
is indeed a region of enhancement. This enhancement is,
however, at least an order of magnitude less pronounced
than that anticipated by Carenza et al. [16], which we will
discuss in more detail below in Sec. IV.
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Having said that, it is important to remind the reader that
the traditional window for the QCD axion as a dark matter
candidate dictates [1,2,19,20]

109 GeV≲ fa ≲ 1012 GeV; ð1Þ

where fa is the axion decay constant which eventually
controls and suppresses the axion mass [21,22]

ma ≈ 5.7

�
1012 GeV

fa

�
× 10−6 eV; ð2Þ

and the axion-nucleon coupling GaN ∝ 1=fa. This means
that despite the possible enhancement due to the presence
of baryon resonances, the reaction cross section still
remains tiny.
A very suitable framework for studying the process at

hand is chiral perturbation theory (CHPT), which has been
successfully extended to the meson-nucleon and Δ-meson-
nucleon sectors, and which in the past also has been applied
to the study of the axion-nucleon interaction [23,24], after
the leading order axion-nucleon interaction had been
studied for years in the context of current algebra, which
is equivalent to a leading-order calculation in CHPT [25–
29]. In this paper we use these results including the thereby
accrued knowledge of the underlying structure of the axion-
nucleon coupling. Moreover, we show how to include the
Δ baryon into the model.
In Sec. II we first give a short discussion of

the kinematics and the general isospin structure of the
aN → πN scattering amplitude, as well as a brief presen-
tation of baryon CHPT with axions and the Δ resonance.
Then we work out the amplitudes of the individual
Feynman diagrams contributing to the pion axioproduction
in Sec. III. Putting the pieces together, we finally discuss
the results in Sec. IV.

II. THEORETICAL FOUNDATION

A. Kinematics

The process under consideration is

aðqÞ þ NðpÞ → πbðq0Þ þ Nðp0Þ; ð3Þ

where a denotes the axion,N is a nucleon (either the proton
or the neutron), and πb is a pion with the isospin index b. As
usual,we define theLorentz-invariantMandelstamvariables

s¼ðpþqÞ2; t¼ðp−p0Þ2; u¼ðp−q0Þ2; ð4Þ

for the four-momenta q, p of the incoming particles and
q0; p0 of the outgoing particles. The invariants of Eq. (4)
fulfill the on shell relation

sþ tþ u ¼ 2m2
N þm2

a þM2
π; ð5Þ

which can be used to eliminate one of the three variables,
which we choose to be u. Throughout this paper we use the
center-of-mass system (c.m.), where for the three-momenta
pþ q ¼ p0 þ q0 ¼ 0. Using thewell-knownKällén function

λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ab − 2ac − 2bc; ð6Þ
the c.m. energies of the incoming and outgoing nucleons can
be written as

Ep ¼
sþm2

N −m2
a

2
ffiffiffi
s

p ; Ep0 ¼ sþm2
N −M2

π

2
ffiffiffi
s

p ; ð7Þ

and one has

jpj ¼ jqj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

N;m
2
aÞ

p
2
ffiffiffi
s

p ;

jp0j ¼ jq0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

N;M
2
πÞ

p
2
ffiffiffi
s

p : ð8Þ

Moreover, setting z ¼ cos θ, where θ is the c.m. scattering
angle, we have

ðp · p0Þ ¼ jpjjp0jz; ð9Þ
so we can reexpress the second Mandelstam t variable as

t ¼ 2ðm2
N − EpEp0 þ jpjjp0jzÞ: ð10Þ

Before discussing how these kinematic quantities enter the
scattering amplitudes, we briefly take a look at the isospin
structure of the process.

B. Isospin structure

For the πN elastic scattering, it is common to decompose
the scattering amplitude Tab

πN→πN , where a is the isospin
index of the incoming pion and b for the outgoing one,
according to the isospin structure. In the isospin limit, the
decomposition reads

Tab
πN→πN ¼ Tþδab þ T− 1

2
½τa; τb�; ð11Þ

where τa and τb are the Pauli matrices and ½; � denotes the
commutator. However, for the present process aN → πbN
we are particularly interested in transitions including the Δ
resonance, as suggested in Ref. [16], which is an isospin-3

2

particle. As the axion is an isoscalar, no isospin symmetric
aN interaction can lead to the appearance of the Δ
resonance, so we are especially interested in isospin-
breaking interactions. Indeed, the isovector axial-vector
current aμ (see below) introduces such isospin breaking
pieces into the axion-baryon interaction, which can be seen,
for instance, below in Eqs. (27) and (33).
As it turns out, it is possible to decompose the scattering

amplitude Tb
aN→πN into
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Tb
aN→πN ¼ Tþδ3b þ T3þτ3 þ T− 1

2
½τb; τ3�; ð12Þ

which is comparable to the case of πN scattering with
isospin violation, see, e.g., Refs. [30,31]. Any of the four
possible amplitudes can be expressed by means of the three
objects Tþ; T3þ, and T−,

Tap→π0p ¼ Tþ þ T3þ;

Tan→π0n ¼ Tþ − T3þ;

Tap→πþn ¼
ffiffiffi
2

p
ðT3þ þ T−Þ;

Tan→π−p ¼
ffiffiffi
2

p
ðT3þ − T−Þ: ð13Þ

The part of the amplitude that leads to isospin violation and
thus to possible enhancement due to the Δ resonances,
which we denote by T3=2, is found by taking the difference

T3=2 ¼ Tþ − T−; ð14Þ

or alternatively,

T3=2 ¼ Tap→π0p −
1ffiffiffi
2

p Tap→πþn

¼ Tan→π0n þ
1ffiffiffi
2

p Tan→π−p; ð15Þ

where the latter expressions have the advantage that one
can also easily account for differences in the charged and
neutral pion masses, which improves the accuracy of the
calculation.

C. Partial wave decomposition

It is known from πN scattering that the Δ resonance
chiefly affects the P33 partial wave (where we, as usual,
make use of the spectroscopic notation l2I;2j, l ¼
S; P;D;… being the orbital angular momentum, I being
the isospin, and j ¼ lþ s the total angular momentum).
Therefore, it is expedient to also focus on the P33 partial
wave in the present study of the aN → πN reaction.
To this end, we decompose any of the amplitudes given

above as

T ¼ ūðp0Þ
�
Aðs; tÞ þ Bðs; tÞ 1

2
ð=qþ =q0Þ

�
uðpÞ; ð16Þ

where we make use of the well-known notation, q ¼ γμqμ.
One then can project out any partial wave of definite total
angular momentum j ¼ l� 1=2, abbreviated as l�, by

Tl�ðsÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EpþmN

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep0 þmN

p
2

fAlðsÞþð ffiffiffi
s

p
−mNÞBlðsÞgþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep−mN

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep0 −mN

p
2

f−Al�1ðsÞþð ffiffiffi
s

p þmNÞBl�1ðsÞg;
ð17Þ

where

AlðsÞ ¼
Z þ1

−1
Aðs; tðs; zÞÞPlðzÞdz;

BlðsÞ ¼
Z þ1

−1
Bðs; tðs; zÞÞPlðzÞdz; ð18Þ

using the well-known Legendre polynomials PlðzÞ.

D. Partial wave cross section

For experiments, the most useful quantity is the cross
section

dσ ¼ 1

F
jMj2dΠ2; ð19Þ

with the flux factor

F ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp · qÞ −mNma

p
¼ 4jpj ffiffiffisp

; ð20Þ

and the two-body phase space

Z
dΠ2 ¼

Z
d3p0

ð2πÞ3
d3q0

ð2πÞ3
1

2Ep02Eq0
ð2πÞ4δ4ðpþq−p0−q0Þ

¼
Z

dΩ
1

16π2
jp0jffiffiffi
s

p ; ð21Þ

where in both cases the right-most expressions are valid in
the c.m. frame. The total cross section is hence given by

σ ¼ 1

64π2s
jp0j
jpj
Z

dΩjMj2; ð22Þ

which can be expanded in terms of partial wave cross
sections as
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σ ¼
X
l

σl�: ð23Þ

The inverse of Eq. (17) is given by

T ¼ 2mNχ
†
f

X
l

�
½ðlþ 1ÞTlþ þ lTl−�PlðzÞ

− iσ · ðq̂0 × q̂ÞðTlþ − Tl−Þ
dPl

dz

�
χi; ð24Þ

where χi and χf are the Pauli spinors of the incoming and
outgoing nucleons, respectively, and q̂ð0Þ ¼ qð0Þ=jqð0Þj. For
the j ¼ 3

2
case, one finds

σ1þ ¼ 1

8πs
jp0j
jpj jT1þj2: ð25Þ

The bottom line of the previous elaborations then is that
we will derive the amplitudes A�;3þðs; tÞ and B�;3þðs; tÞ
for any Feynman diagram of interest and use Eqs. (12) and
(17) in order to determine the P33 partial wave amplitude
T33
aN→πN for the pertinent processes. This amplitude in turn

is used to ascertain the corresponding cross section via
Eq. (25). The theoretical framework of determining
A�;3þðs; tÞ and B�;3þðs; tÞ is CHPT.

E. Baryon chiral perturbation theory with axions

The way of incorporating the axion into CHPT is
discussed in detail in Ref. [24]. Here, we will only outline
the major steps. First, recall that in the standard QCD axion
models, the KSVZ and DFSZ ones, the axion-quark
couplings Xq appearing in the QCD Lagrangian after the
spontaneous breakdown of Peccei-Quinn symmetry are
flavor diagonal and given by

XKSVZ
q ¼ 0;

XDFSZ
u;c;t ¼ 1

3

x−1

xþ x−1
¼ 1

3
sin2β;

XDFSZ
d;s;b ¼ 1

3

x
xþ x−1

¼ 1

3
cos2β ¼ 1

3
− XDFSZ

u;c;t ; ð26Þ

where x ¼ cot β is the ratio of the vacuum expectation
values of the two Higgs doublets in the DFSZ model. After
a chiral rotation removing the axion-gluon coupling terms
in the Lagrangian, the whole axion-quark interaction can be
decomposed into isovector and isoscalar parts with the
couplings

cu−d ¼
1

2

�
Xu − Xd −

1 − z
1þ zþ w

�
;

cuþd ¼
1

2

�
Xu þ Xd −

1þ z
1þ zþ w

�
;

cs ¼ Xs −
w

1þ zþ w
;

cc;b;t ¼ Xc;b;t; ð27Þ

where z ¼ mu=md and w ¼ mu=ms are the quark mass
ratios of the three light quarks. In what follows, the ci,
ði ¼ f1;…; 5g), refer to the isoscalar couplings fuþ d; s;
c; b; tg and in any equation a summation over repeated i is
implied. It is these couplings that enter the Lagrangian of
CHPT in the form of external currents [32]

aμ ¼ cu−d
∂μa

2fa
τ3; aðsÞμ;i ¼ ci

∂μa

2fa
1: ð28Þ

The transition to CHPT is phenomenologically related to
the confinement of quarks and gluons into mesons and
baryons at low energies and the observation that the QCD
Lagrangian is approximately invariant under the chiral
symmetry SUðNfÞL × SUðNfÞR, with Nf the number of
light quark flavors, which is spontaneously broken into the
vector subgroup. Hence, in SU(2) baryon CHPT nucleons
and pions are the relevant degrees of freedom rather than
the more fundamental quarks and gluons. The application
of power counting rules then leads to a systematic pertur-
bative description of any low-energy strong interaction
process, as long as the applied Lagrangian respects all
pertinent symmetries, as first worked out by Weinberg [33].
For the meson-nucleon sector that we are interested in,

we follow the description of baryon CHPT given in
Ref. [34]. The pions enter the theory in the form of a
unitary 2 × 2 matrix

u ¼
ffiffiffiffi
U

p
¼ exp

�
i
πaτa
2Fπ

�
; ð29Þ

where Fπ is the pion decay constant. Strictly speaking, this
should be the pion decay constant in the chiral limit, F, but
to the order we are working on we can use the physical
value. With this unitary matrix and the external currents aμ
and aðsÞμ , see Eq. (28), one forms the following basic
building blocks

uμ ¼ i½u†∂μu − u∂μu† − iu†aμu − iuaμu†�;
uμ;i ¼ i½−iu†aðsÞμ;iu − iuaðsÞμ;i u

†� ¼ 2aðsÞμ;i ;

Dμ ¼ ∂μ þ Γμ

¼ ∂μ þ
1

2
½u†∂μuþ u∂μu† − iu†aμuþ iuaμu†�: ð30Þ
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Note that we only introduce and show the axial-vector

currents aμ (isovector) and aðsÞμ (isoscalar) (and not the
corresponding vector currents) as these are the only
external currents that are of interest in what follows. The
last object in Eq. (30), Dμ, is the so-called chiral covariant
derivative. At leading order, the axion only enters the model
via these building blocks. At higher order, it also enters in
the form of nonderivative interactions by means of terms
involving the complex phase of the quark mass matrix.
In what follows, we only need the leading order pion-

nucleon Lagrangian, which is given by

LπN ¼ N̄

�
i=D −mN þ gA

2
=uγ5 þ

gi0
2
=uiγ5

�
N; ð31Þ

where N ¼ ðp; nÞT is an isodoublet containing the proton
and the neutron spinors, mN is the nucleon mass in the
chiral limit, and gA and the gi0’s are the axial-vector and
corresponding isoscalar coupling constants, all also in the
chiral limit. Again, to the order we are working, we can
identify these parameters with their physical values.
In Ref. [24], we already worked out and used the relevant

vertices that can be derived from this Lagrangian and which
are also needed for the present study. Denoting the
momentum of an incoming axion with qμ and setting b
as the pion isospin index, one finds for the relevant vertices,

aNN∶
gaN
2fa

=qγ5;

aπbNN∶i
cu−d
4faFπ

=q½τ3; τb�: ð32Þ

The latter contact interaction is often ignored in studies of
the aN reaction, which are mainly based on the former
vertex, but has recently been included in the study of axion
production in supernovae [35].
The axion-nucleon coupling appearing in Eq. (32) is a

2 × 2 matrix in isospin space defined as

gaN ¼ cu−dgAτ3 þ cigi01; ð33Þ

from which one can directly read off the couplings of the
axion to the proton, gap, and the neutron, gan, respectively.

F. The Δ resonance in chiral perturbation theory

The free-field Lagrangian of the four Δ baryons is given
by [36–41]

LΔ ¼ Δ̄μΛμνðAÞΔν; ð34Þ

where

Δμ ¼

0
BBBBB@

Δþþ
μ

Δþ
μ

Δ0
μ

Δ−
μ

1
CCCCCA ð35Þ

is the spin-3
2
and isospin-3

2
vector-spinor field, and

ΛμνðA ¼ −1Þ ¼ −ði=∂ −mΔÞ þ iðγμ∂ν þ γν∂μ − γμ=∂γνÞ
−mΔγ

μγν: ð36Þ

Here, mΔ denotes the mass of the Δ and A is a nonphysical
parameter that for convenience has been set to −1. The
propagator for theΔwith four-momentumpμ is then given by

−i
=pþmΔ

p2−m2
Δ

�
gμν−

1

3
γμγνþ 1

3mΔ
ðpμγν−γμpνÞ− 2

3m2
Δ
pμpν

�
:

ð37Þ

The πNΔ and the aNΔ interactions are derived from the
general leading-order interaction Lagrangian given by
[37,42]

Lint: ¼
g
2
Δ̄μ;iðgμν þ z0γμγνÞhτiuνiN þ H:c:; ð38Þ

where H:c: stands for the Hermitian conjugate and hi denotes
the trace in flavor space. Furthermore, we make use of the
isospurion representation Δμ;i ¼ T iΔμ with the 2 × 4 iso-
spin-1

2
-to-isospin-3

2
transition matrices [37,43]

T 1 ¼
1ffiffiffi
6

p
�
−
ffiffiffi
3

p
0 1 0

0 −1 0
ffiffiffi
3

p
�
;

T 2 ¼
−iffiffiffi
6

p
� ffiffiffi

3
p

0 1 0

0 1 0
ffiffiffi
3

p
�
;

T 3 ¼
ffiffiffi
2

3

r �
0 1 0 0

0 0 1 0

�
; ð39Þ

such that

Δμ;1 ¼
1ffiffiffi
2

p
 1ffiffi

3
p Δ0

μ − Δþþ
μ

Δ−
μ − 1ffiffi

3
p Δþ

μ

!
;

Δμ;2 ¼ −
iffiffiffi
2

p
 1ffiffi

3
p Δ0

μ þ Δþþ
μ

Δ−
μ þ 1ffiffi

3
p Δþ

μ

!
;

Δμ;3 ¼
ffiffiffi
2

3

r �Δþ
μ

Δ0
μ

�
: ð40Þ
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The interaction Lagrangian Eq. (38) contains two coupling
constants g and z0, the latter being an off shell parameter. N
again denotes the nucleon doublet and uμ has been given
already above in Eq. (30). Note that this interaction
Lagrangian only allows for isovector interactions with
external axial currents aμ, whereas isoscalar interactions with

aðsÞμ;i vanish as a consequence of the trace operation. This
reflects what has been said already above; any aNΔ inter-
actionmust comewith isospinviolation,which is only present

in aμ, not in aðsÞμ;i .

III. RELEVANT DIAGRAMS AND THEIR
CONTRIBUTIONS

A. Contact contribution and intermediate nucleon

Having set up the kinematic environment and the
theoretical framework, we can now explore several con-
tributions to the aN → πN scattering amplitude. We start
with the tree-level contact and Born graphs shown in Fig. 1.
The results can be obtained in a rather straightforward
fashion by using the vertices of Eq. (32) and the πN vertex
of the Lagrangian Eq. (31).
The contact interaction, Fig. 1(a), only gives a contri-

bution to B− and is free of any kinematic variable,

B−
1a ¼

cu−d
2faFπ

: ð41Þ

This means that the contact interaction is solely present in
the ap → πþn and an → π−p processes, but absent in any
process involving the neutral pion. For the diagrams of
Figs. 1(b) and 1(c), one gets

Aþ
1b;1c¼

g2Acu−dmN

faFπ
;

Bþ
1b;1cðs;tÞ¼−

g2Acu−dm
2
N

faFπ

�
1

s−m2
N
−

1

u−m2
N

�
;

A3þ
1b;1c¼

gAgi0cimN

faFπ
;

B3þ
1b;1cðs;tÞ¼−

gAgi0cim
2
N

faFπ

�
1

s−m2
N
−

1

u−m2
N

�
;

A−
1b;1c¼0;

B−
1b;1cðs;tÞ¼−

g2Acu−dmN

2faFπ

�
1þ2mN

�
1

s−m2
N
þ 1

u−m2
N

��
;

ð42Þ

where u needs to be understood as uðs; tÞ via Eq. (5). In the
Appendix, we give a different expression of these con-
tributions in terms of the axion-nucleon coupling constants
gan and gap for each of the four possible aN → πN
channels. However, for the study of the P33 partial wave,
it is not expedient to rewrite them in terms of gan and gap,
because after forming the difference Eq. (14), one can

nicely see that the isoscalar terms ∝ ci stemming from aðsÞμ;i

drop out, leaving only the isospin violating portion ∝ cu−d
that originates from aμ. This fact makes it easy to show (as
will be done below) that in the case of the P33 partial wave
the KSVZ axion can be treated as a special case of the
DSFZ axion.

B. Intermediate Δ resonance

Including theΔ leads to the diagrams shown in Fig. 2. As
the two diagrams are related by crossing, it is convenient to
define

AΔðs; tÞ ¼
2g2cu−d
3faFπ

�
2z0
3m2

Δ
½mΔ þ ðmN þ 2mΔÞz0�ðs −m2

NÞ þ
1

s − μ2Δ

�
ðmN þmΔÞ

�
1

2
½m2

a þM2
π − t� − 1

3
½s −m2

N �
�

−
1

6m2
Δ

�
ðmN þmΔÞð½m2

a þM2
π�½s −m2

N � þm2
aM2

πÞ þm2
aM2

πmΔ þmNðs −m2
NÞ2
���

; ð43Þ

and

FIG. 1. Tree-level contributions to aN → πN without the Δ intermediate state. (a) contact interaction, (b) s channel, and (c) crossed
channel.
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BΔðs; tÞ ¼
2g2cu−d
3faFπ

�
−

z0
3m2

Δ

�
m2

a þM2
π þ 2ðs −m2

NÞð1þ z0Þ þ 4mNmΔð1þ z0Þ þ 4mNðmN þmΔÞz0
�

þ 1

s − μ2Δ

�
1

2
½m2

a þM2
π − t� − 1

6
m2

a þ
1

6mΔ
ðmN þmΔÞð4mNmΔ −M2

πÞ

−
1

6m2
Δ
½ðm2

a þM2
π þ 2mNmΔÞðs −m2

NÞ þm2
aðmNmΔ þM2

πÞ þ ðs −m2
NÞ2�

��
: ð44Þ

Here the axion mass terms are kept explicitly though
they, being tiny for the standard QCD axion models, can be
safely neglected.
Then one can combine both diagrams and obtains the

following expressions

Aþ
Δðs; tÞ ¼ AΔðs; tÞ þ AΔðu; tÞ;

Bþ
Δðs; tÞ ¼ BΔðs; tÞ − BΔðu; tÞ;

A−
Δðs; tÞ ¼ −

1

2
½AΔðs; tÞ − AΔðu; tÞ�;

B−
Δðs; tÞ ¼ −

1

2
½BΔðs; tÞ þ BΔðu; tÞ�; ð45Þ

where again u ¼ uðs; tÞ. Note that there is no contribution
to T3þ. Equations (43) and (44) have a pole appearing at
c.m. energies around the Δ mass squared. In order to
circumvent any unnecessary subtleties related to this, we
use a Breit-Wigner propagator with a complex mass
squared

μ2Δ ¼ m2
Δ − imΔΓΔ ð46Þ

with mΔ ≈ 1232 MeV and ΓΔ ≈ 117 MeV the Breit-
Wigner mass and width of the Δ resonance. A more
refined treatment could e.g., be given by including the Δ
self-energy in the complex mass scheme, but that is not
required here.

C. Pion rescattering

Another sort of diagram that contributes is shown in
Fig. 3. As in the previous diagrams, the left (smaller) vertex
leads to an axion-pion conversion (so this vertex basically
comprises the contributions of Fig. 1). This pion conse-
quently gets rescattered in the ordinary πN scattering. The

latter (larger) vertex treated in a proper way also includes
contributions from the Δ baryon. As this is an often studied
process, we can base the treatment of this diagram on
previous results. In particular, wewill adopt the method and
results of Refs. [44,45].
The diagrams that contribute to the πN scattering at this

order are basically the same as the ones discussed in the
previous subsections, but with the axion replaced by
another pion. Using Eqs. (11) and (17) leads to a projection
to the P33 partial wave. We do not repeat the results for the
diagrams here, they can be found in Ref. [44], Eqs. (3.4)
and (3.9) [46]. Moreover, we also adopt the results for the
renormalized chiral pion loops obtained in heavy baryon
CHPT (HBCHPT) from [47] (which are needed for the
unitarization, see below).
As the πN scattering above threshold and below the

appearance of inelastic reactions fulfills the unitarity
relation (here W ¼ ffiffiffi

s
p

, the c.m. energy)

ImTI
l�ðWÞ ¼ jqj

8πW
jTI

l�ðWÞj2; ð47Þ

the pole in the Δ propagator can be treated in a more
systematic way than the one we used in Sec. III B for the
aN → πN reaction. In particular, a suitable unitarization
technique can be used to restore unitarity which is other-
wise only fulfilled perturbatively in CHPT. The method
used in Ref. [44] is the N=D method [48,49]. In a nutshell,

FIG. 2. Tree-level contributions to aN → πN with an intermediate Δ state. (a) s channel and (b) crossed channel.

FIG. 3. The pion-rescattering diagram for aN → πN.
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it is based on the observation that the unitarity relation leads
to a right-hand cut in the partial wave T-matrix such that
one can write down a dispersion relation for the inverse
amplitude with some extra terms which are free of any
right-hand cuts. These can be matched to the amplitudes
obtained from CHPT. This effectively corresponds to a
resummation of the relevant diagrams. Possible double
counting can be avoided by the matching procedure
discussed in Ref. [45]. The integral of the dispersion
relation can be performed analytically and is basically
given by the known two-point loop function involving one
pion and one nucleon,

gðsÞ ¼ 1

16π2

�
a0ðμÞ þ

�
1 −

w
mN

�
log

�
M2

π

μ2

�

−xþ log

�
xþ − 1

xþ

�
− x− log

�
x− − 1

x−

��
; ð48Þ

at a renormalization scale μ. We take μ as the nucleon mass,
and any change in μ can be reabsorbed by the subtraction
constant a0ðμÞ. Furthermore, w is the c.m. pion energy and

x� ¼ sþm2
N −M2

π

2s
� 1

2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

N;M
2
πÞ

q
: ð49Þ

The matching procedure for unitarizing the leading one-
loop Oðp3Þ amplitude with the Δ resonance leads to

TI;l�
πN

¼ 1�
TI;l�
tree þTI;l�

loopþTI;l�
Δ þ 2

ffiffi
s

p
EpþmN

ðTI;l�
LO Þ2gðsÞ

�
−1
þgðsÞ

;

ð50Þ

which indeed fulfills Eq. (47). Note that the tree contribu-
tions TI;l�

tree and TI;l�
Δ for the resonance are taken as being the

full relativistic ones, whereas TI;l�
LO is only the very leading-

order HBCHPT amplitude.
Returning to pion axioproduction, we performed a full

reanalysis of the phase shift δIl� defined by

TI
l�ðWÞ ¼ 8πW

jqj expðiδIl�Þ sinðδIl�Þ ð51Þ

in order to use these results for the rescattering diagram and
in order to determine accurate values for the coupling
constants g and z0 of Eq. (38) and a0 of Eq. (48). The latter
goal is achieved by fitting the resultingP33 phase shift to the
results of the Roy-Steiner analysis of the πN scattering [50].
As input values we used the isospin-averaged nucleon mass
mN ¼ ðmn þmpÞ=2 ¼ 938.92 MeV, the isospin-averaged
pion mass Mπ ¼ 138.03 MeV, Fπ ¼ 92.4 MeV, and
mΔ ¼ 1232 MeV. The value of gA is given below in

Sec. IV where we discuss the determination of the axion-
baryon couplings, see Eq. (55). The fit to the phase shift
values at W ≲ 1.3 GeV yields

g¼1.249ð16Þ; z0¼−0.21ð56Þ; a0¼−0.959ð12Þ; ð52Þ

and is shown in Fig. 4.
Finally, the rescattering diagram is evaluated by

T33
rescatt:ðsÞ ¼

�
T33;tree
ap→π0p

ðsÞgðs;Mπ0Þ

−
1ffiffiffi
2

p T33;tree
ap→πþnðsÞgðs;MπþÞ

�
T33
πNðsÞ; ð53Þ

where gðs;Mπþ;0Þ is the pion-nucleon loop function
Eq. (48) with the meson (nucleon) mass being the charged
and neutral pion (neutron and proton) mass, respectively.
T33;tree
aN→πN denotes the partial wave projected amplitudes of

Sec. III A and T33
πN the unitarized P33 partial wave

amplitude just discussed. We consider the usage of the
latter appropriate even though it is derived using on
shell kinematics, as the off shell effects are certainly
subleading [51].
The expression in the parentheses is the proper way of

getting the isospin violating part of the amplitude, as
discussed in Sec. II B, see Eq. (15), i.e., by taking the
difference of the amplitudes and the difference in the
charged and neutral pion/nucleon masses. If one neglects
this mass difference, one might as well use Eq. (14) instead
yielding

T33
rescatt:ðsÞ ¼ T33;tree

aN→πNðsÞgðs;MπÞT33
πNðsÞ; ð54Þ

where T33;tree
aN→πN now is the j ¼ 3

2
projection of TI¼3=2,

Eq. (14), and Mπ is the isospin-averaged pion mass. In
fact, this latter approximation gives an average deviation of
only ≲2% in comparison to Eq. (53), which is valid for the
KSVZ axion and the DFSZ axion at sin2 β ≲ 0.95. Only for

FIG. 4. The πN phase shift δ in the P33 channel (solid line)
fitted to the results of the Roy-Steiner analysis (dots) from [50].
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values sin2 β → 1 the deviation becomes more pronounced
at c.m. energies W ≳ 1.15 GeV reaching a maximum of
about 15%. This means that Eq. (54) is a very good
approximation for the vast majority of cases.

IV. RESULTS

Let us take the last result of theprevious section as a starting
point for the discussion of the overall results of this study. If
one indeed takes the approximation of equal pion/nucleon
masses, then Eq. (12) causes that any dependence on the
isoscalar couplings gi0ci is canceled and any dependence on
the axion-nucleon coupling gaN in this process reduces to a
dependence on gAcu−d only, which reflects that this part of the
coupling enforces the isospinviolation needed to enable theΔ
resonance appearance. For the same reason, the diagrams of
Fig. 2with the explicitΔ solely dependon cu−d and not on the
ci’s. This has two consequences: First, the total amplitude for
the DFSZ axion with sin2 β in the interval [0, 1] and that for
the KSVZ model will be∝ cu−d; they have entirely the same
shape, and only the magnitude changes as sin2 β is varied.
Second, as cu−d only depends on the differenceXu − Xd, one
can easily determine a value for sin2 β such that
cDFSZu−d ðsin2 βÞ ¼ cKSVZu−d , which is accomplished when
sin2 β ¼ 1

2
[see Eq. (26)]. The aN → πN scattering amplitude

in the P33 channel for the KSVZ axion is hence exactly the
same as that for the DFSZ axion at sin2 β ¼ 1

2
. As the

deviation from this approximation is only≲2%, this remains
basically true even if one considers Eq. (53) instead
of Eq. (54).
For the calculation of the final scattering amplitude, we

make use of the nucleon matrix elements in order to
determine the isovector and isoscalar axial-vector couplings

gA ¼ Δu − Δd;

guþd
0 ¼ Δuþ Δd;

gq0 ¼ Δq; for q ¼ s; c; b; t; ð55Þ

where sμΔq ¼ hpjq̄γμγ5qjpi, with sμ the spin of the proton.
Of course, for the approximation discussed in the previous
paragraph, only thevalue of gA is of interest. For thesematrix
elements and z and w appearing in Eq. (26), we take the
recent values from Ref. [52],

Δu ¼ 0.847ð50Þ;
Δd ¼ −0.407ð34Þ;
Δs ¼ −0.035ð13Þ;
z ¼ 0.485ð19Þ;
w ¼ 0.025ð1Þ; ð56Þ

and ignore Δq for q ¼ c; b; t.

In Fig. 5, we show the partial wave cross sections
σ33aN→πN consisting of all the contributions discussed in
Sec. III, for both with the approximation Eq. (54) and
without it. Actually, the cross sections are multiplied by the
factor f2a in order to get rid of the unknown prefactor 1=f2a.
This unknown quantity also appears implicitly in the terms
containing the axion mass in Eqs. (43) and (44), but has
practically no effect as the axion mass ∝ 1=fa can safely be
neglected for the typical QCD axion window [Eq. (1)].
However, this prefactor has to be kept in mind when
considering the strength of the amplitudes in Fig. 5.
As anticipated, the curves for different values of sin2 β are

identical up to the order of magnitude. As the absolute value
of cu−d is a linearly-decreasing function of sin2 β, the
magnitude steadily decreases, which makes a DFSZ axion
with sin2 β → 1 the most unfavorable candidate for detec-
tion. As expected from the description at the end of the
previous section, there is almost no visual deviation of the
curves with approximation Eq. (54) and without it. Only for
sin2 β ¼ 1 this deviation becomes recognizable but is still a
minor effect. Note that the figures for the limit values of
sin2 β ¼ f0; 1g are given rather for illustrative purposes, as
in realistic DFSZ models perturbative constraints from the
heavy quark Yukawa couplings yield an allowed range
[0.25, 170] for cot β [22] corresponding to approximately
sin2 β ∈ ½0.00; 0.94�.
As a result, there is indeed a considerable enhancement of

the P33 partial wave cross section in the region of the Δ
resonance, but this enhancement is considerably weaker than
previously assumed by Carenza et al. [16], who estimated
the cross section via f2aσaN→πN ≈ F2

πσπN→πN taking a value
of 100 mb for σπN→πN [53]. This estimation suggests a peak
value f2aσaN→πN ≈ 1 mbGeV2. The discrepancy between
the results of Fig. 5 and such estimation can be explained by
the fact that aN → πN in theΔ sector is primarily an isospin
breaking process, which always comes with an extra
suppression. It is worthwhile to notice that the suppression
of the isospin breaking here, characterized by the factor
ð1 − zÞ=ð1þ zÞ ¼ ðmd −muÞ=ðmd þmuÞ ≈ 0.34 for the
model-independent part of cu−d [see Eq. (27)], is much
milder than that for usual isospin breaking in hadronic
processes, characterized by ðmd −muÞ=ms or ðmd −muÞ=
ΛQCD. Thus, the results given in Ref. [16] are to be
multiplied by a factor 10−1 to 10−5, depending on the value
of the model-dependent factor sin2 β, that is a suppression by
at least one order of magnitude. Then the number of pions
produced via aN → πN through the Δ resonance in a
megaton water Cherenkov detector will be at most
Oð100Þ using the axion luminosity estimated in Ref. [16]
for axions emitted from a supernova at 1 kiloparsec.

V. SUMMARY

In this study we presented an analysis of the pion
axioproduction aN → πN with an intermediate Δ
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resonance. We included the Δ resonance in two different
ways: First, we used the chiral interaction Lagrangian for
the Δ to bring the axion explicitly into contact with the
resonance, and, second, we used the well-known results of
πN elastic scattering with Δ to include it implicitly in the
form of the rescattering diagram in Fig. 3.
As theΔ is a spin-3

2
and isospin-3

2
particle, it shows its full

leverage effect in the P33 partial wave, which is why we
concentrated on a study of this particular partial wave. For
the same reason, this interaction is essentially an isospin
violating process, as the axion is an isosinglet. We have
shown that an approximation that concentrates on this
isospin violation and that neglects any isoscalar coupling,
while at the same time ignoring the pion and nucleon
isospin mass splittings, is still very accurate unless sin2 β
approaches 1 in the DFSZ axion model (where it still gives
quite good results). In this way, it is shown that the partial
wave amplitude for the KSVZ axion equals that for the
DFSZ axion at sin2 β ¼ 1

2
.

Finally, the enhancement of the amplitude anticipated by
Carenza et al. [16] is indeed present in the region of the Δ
resonance, although it is considerably weaker than their
naive estimation by at least an order of magnitude. This is
basically a consequence of the isospin breaking suppres-
sion which is much milder than that for usual isospin
breaking hadronic processes. Therefore, it might be

interesting to check whether other isospin-1=2 resonances
such as the N�ð1440Þ Roper resonance would provide an
additional enhancement of the aN → πN cross section, as it
is accessible without isospin breaking. The next step would
hence be to investigate the impact of such resonances on the
aN → πN reaction and consequently on the axion produc-
tion in stellar objects, and whether this might be exploited
to give fresh perspectives on experimental axion searches.
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APPENDIX: AMPLITUDES OF THE
LEADING-ORDER TREE GRAPHS

In this appendix we give the full expression of the
leading-order tree graph amplitudes of the four aN → πN
channels. Using the abbreviation

Rμ ¼
1

2
ðqμ þ q0μÞ; ðA1Þ

the contact contribution reads

T1a
aN→π0N ¼ 0; ðA2Þ

T1a
ap→πþn ¼

cu−dffiffiffi
2

p
faFπ

ūðp0Þ=RuðpÞ; ðA3Þ

T1a
an→π−p ¼ −

cu−dffiffiffi
2

p
faFπ

ūðp0Þ=RuðpÞ; ðA4Þ

where the superscript refers to Fig. 1. For the other two
diagrams Figs. 1(b) and 1(c) one gets

T1b;1c
ap→π0p

¼ gAmNgap
faFπ

ūðp0Þ
�
1 −mN

�
1

s −m2
N
−

1

u −m2
N

�
=R

�
uðpÞ; ðA5Þ

T1b;1c
an→π0n

¼ −
gAmNgan
faFπ

ūðp0Þ
�
1 −mN

�
1

s −m2
N
−

1

u −m2
N

�
=R

�
uðpÞ; ðA6Þ

T1b;1c
ap→πþn ¼

gAffiffiffi
2

p
faFπ

ūðp0Þ
�
2mNgi0ci −

�
gAcu−d þ 2m2

N

�
gap

s −m2
N
−

gan
u −m2

N

��
=R

�
uðpÞ; ðA7Þ

T1b;1c
an→π−p ¼ gAffiffiffi

2
p

faFπ

ūðp0Þ
�
2mNgi0ci þ

�
gAcu−d − 2m2

N

�
gan

s −m2
N
−

gap
u −m2

N

��
=R

�
uðpÞ: ðA8Þ

Here, gan and gap are the usual axion-nucleon couplings given in Eq. (33).
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