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The exact eigenenergies of the T4c ¼ ½cc�½c̄c̄�, T4b ¼ ½bb�½b̄b̄�, and T2½bc� ¼ ½bc�½b̄c̄� tetraquarks are
calculated within the extended transitional Hamiltonian approach, in which the so-called Bethe ansatz
within an infinite-dimensional Lie algebra is used. We fit the parameters appearing in the transitional region
from phenomenology associated with potential candidates of tetraquarks. The rotation and vibration
transitional theory seems to provide a better description of heavy tetraquarks than other attempts within the
same formalism. Our results indicate that the pairing strengths are large enough to provide binding; an
extended comparison with the current literature is also performed.
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I. INTRODUCTION

A system of interacting bosons is a well-studied prob-
lem. Having its roots in the Bose-Einstein condensates
[1–3], the framework has been applied to studies of nuclear
and molecular structure [4–6], and examples of algebraic
methods applied to hadron physics can be found in
Refs. [7–11]. We have recently applied the interacting
boson approximation proposed by Arima and Iachello [12],
which includes two types of bosons (s and d-bosons), to the
computation of wave functions in an interacting sl many-
body boson system [13]. Note herein that, in general, the
building blocks of the boson system are associated with
both s and l bosons for single and quadrupole angular
momentum. Typically, as an extension, the largest dynami-
cal symmetry group generated by s and l operators is
Uð2lþ 2Þ where the total number of bosons is a conserved
quantity. The Hamiltonian of the model can be defined
based on a linear combination of first- and second-order
Casimir operators when only one- and two-body inter-
actions are present.
Quarks can combine to form hadrons such as mesons

(quark-antiquark pair) and baryons (three-quarks). Within

an algebraic framework, the spectrum of hadrons began to
be studied with the seminal work of Iachello in 1989 [7].
He was also able to elucidate some features about the
structure of mesons and baryons, and the emergence of
general patterns. An extension of the interacting boson
approximation for studying eigenenergies of mesons in the
Uð4Þ model was proposed by Pan et al. in 2006 [14]. The
mass spectra ofQQ̄mesons, withQ either c or b quark, has
been recently discussed in the framework of the Uð3Þ →
Oð4Þ transitional theory [7,8,14]. Herein, we want to
extend this model to multiquark states [15], in particular,
tetraquarks with only heavy-quark content. In an extension
of the sl boson system, the largest dynamical symmetry
group is generated by s and l ðl ¼ Q; Q̄;…Þ boson
operators. We examine a similar Hamiltonian, based on
the SUð1; 1Þ algebraic technique [13,16–18] and in a sl
boson system to describe the masses of the ½QQ�½Q̄Q̄�
tetraquarks. Our predictions will provide a new solvable
model in hadron physics. We shall show that the masses of
the ½QQ�½Q̄Q̄� tetraquarks are sensible to the vector quark
pairing strengths.
Fully heavy tetraquarks have recently received consid-

erable attention, both experimentally and theoretically. On
the experimental side, it is thought that all-heavy tetraquark
states will be very easy to spot because their masses should
be far away from the typical mass regions populated by
both conventional heavy mesons and the XYZ states
discovered until now [19]. A search for deeply bound
bbb̄b̄ tetraquark states at the LHC was motivated by
Eichten et al. in Ref. [20], and it was carried out by the
LHCb collaboration [21] determining that no significant
excess is found in the μþμ−ϒð1SÞ invariant-mass
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distribution. Note, however, that a search for exotic mesons
at the CMS experiment reported a potential candidate of a
fully bottom tetraquark T4b ¼ ½bb�½b̄ b̄� around 18–19 GeV
[22]. On the other hand, the LHCb collaboration has
recently released a study of the J=ψ-pair invariant mass
spectrum finding a narrow peak and a broad structure which
could originate from hadron states consisting of four charm
quarks [23].
From the theoretical side, we find fully-heavy tetraquark

computations based on phenomenological mass formulae
[24–26], QCD sum rules [27–30], QCD motivated bag
models [31], NR effective field theories [32,33], potential
models [34–47], phenomenological approaches [26,27,48–
52], nonperturbative functionalmethods [53], and even some
exploratory lattice-QCD calculations [54]. Some works
predict the existence of stable QQQ̄Q̄ (Q ¼ c or b) bound
states with masses slightly lower than the respective thresh-
olds of quarkonium pairs (see, for instance, Refs. [24,25,27–
29,32,33,41]. In contrast, there are other studies that predict
no stable ccc̄ c̄ and bbb̄b̄ tetraquark bound states because
their masses are larger than two-quarkonium thresholds
(see, e.g., Refs. [26,34,36,38,54]). To some extent, a better
understanding of themass locations of fully heavy tetraquark
states would be desirable, if not crucial, for our compre-
hension of their underlying dynamics and their experimental
hunting.

II. THEORETICAL METHOD

Within this framework, diquark clusters must be assumed
in order to describe a tetraquark system. According to this, a
tetraquark

T ¼ Q1Q2Q̄3Q̄4; ð1Þ

contains two point-like diquarks and we extend the interact-
ing boson model to multilevel pairing considering algebraic
solutions of an sl-boson system [13].Note that the dynamical
symmetry group is generated by s and l operators, where l
can be the configuration of the multiquark states. In the
Vibron model, elementary spatial excitations are scalar
s-bosons with spin and parity lπ ¼ 0þ and vector l-bosons
with spin and parity lπ ¼ 1−. In the finite-dimensional
SUð1; 1Þ algebra, we have the generators, which satisfies
the following commutation relations

½Q0ðlÞ; Q�ðlÞ� ¼ �Q�ðlÞ; ð2aÞ

½QþðlÞ; Q−ðlÞ� ¼ −2Q0ðlÞ: ð2bÞ

Now, we apply the affine dSUð1; 1Þ algebra for the Usð1Þ ⊗
UQ1Q2

ð3Þ ⊗ UQ̄3Q̄4
ð3Þ ⊗ UJð3Þ − SOð10Þ transitional

Hamiltonian. It is important to note that Q1Q2Q̄3Q̄4

responds, respectively, to T4c ¼ ½cc�½c̄ c̄�, T4b ¼ ½bb�½b̄ b̄�

and T2bc ¼ ½bc�½b̄ c̄� systems; and also that the quasispin
algebras have been explained in detail in Refs. [13,16–18].
By using Eqs. (2a) and (2b) as generators of the

SUlð1; 1Þ-algebra for tetraquarks, we have

QþðlÞ ¼ 1

2
l† · l†; ð3aÞ

Q−ðlÞ ¼ 1

2
l̃ · l̃; ð3bÞ

Q0ðlÞ ¼ 1

2

�
l† · l̃þ 2lþ 1

2

�
; ð3cÞ

where l† is the creation operator of an l-boson constituting
the tetraquark, and l̃ν ¼ ð−1Þνl−ν.
It is accepted that the basis vectors of Uð2lþ 1Þ ⊃

SOð2lþ 1Þ and Oð2lþ 2Þ ⊃ Oð2lþ 1Þ are simultane-
ously the basis vectors of SUð1; 1Þl ⊃ Uð1Þls and
SUð1; 1Þsl ⊃ Uð1Þsls , respectively. Their complementary
relation for tetraquark states can be expressed as

jQ1; Q2; Q̄3; Q̄4; N; nlνl; nΔJMi
¼ jQ1; Q2; Q̄3; Q̄4; N; κlμl; nΔJMi; ð4Þ

with κl¼ 1
2
νlþ 1

4
ð2lþ1Þ and μl ¼ 1

2
nl þ 1

4
ð2lþ 1Þ, where

N, nl, νl, J, and M are quantum numbers of UðNÞ,
Uð2lþ 1Þ, SOð2lþ 1Þ, SOð3Þ and SOð2Þ, respectively.
The quantum number nΔ is an additional one needed to
distinguish different states with the same J. However,
the pairing models of multilevel are also characterized
by an overlaid Uðn1 þ n2 þ…Þ algebraic structure
which has been described in detail in, for instance,
Refs. [13,14,17,18]. This is to say either

UðnÞ
N
⊃ Uðn − 1Þ

n
; ð5Þ

or

U

�Xm
i¼1

ni

�
⊃
�
SO

�Xm
i¼1

ni

��

⊃ SOðniÞ ⊗ … ⊗ SOðnmÞ
⊃ SOi…mð3Þ: ð6Þ

Affine Lie algebras are famous among the infinite-dimen-
sional Lie algebras and have widespread applications
because of their representation theory. We know that the
affine Lie algebra is far richer than that of finite-dimensional
simple Lie algebras. Hence, in contrast to Eqs. (2a) and (2b),
the operators under the corresponding SUð1; 1Þ irreducible
representations satisfy the following commutation relations:

½Q0
mðlÞ; Q�

n ðlÞ� ¼ �Q�
mþnðlÞ; ð7aÞ
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½Qþ
mðlÞ; Q−

n ðlÞ� ¼ −2Q0
mþnþ1ðlÞ: ð7bÞ

According to the definitions, QΩ
m, with Ω ¼ 0;� and m ¼

0;�1;�2;… generate the affine Lie algebra without central

extension. The infinite dimensional dSUð1; 1Þ Lie algebra is
defined by

Q�
n ¼ c2nþ1

Q1
Q�ðQ1Þ þ c2nþ1

Q2
Q�ðQ2Þ þ c2nþ1

Q̄3
Q�ðQ̄3Þ

þ c2nþ1
Q̄4

Q�ðQ̄4Þ; ð8aÞ

Q0
n ¼ c2nQ1

Q0ðQ1Þ þ c2nQ2
Q0ðQ2Þ þ c2nQ̄3

Q0ðQ̄3Þ
þ c2nQ̄4

Q0ðQ̄4Þ; ð8bÞ

where cQ’s and cQ̄’s are real-valued control parameters for
tetraquarks, and n can be taken to be 1; 2; 3;…
The lowest weight state of fully heavy tetraquarks should

satisfy Q−ðlÞjlwi ¼ 0. Then, we define jlwi by the follow-
ing expression:

jlwi ¼ jQ1; Q2; Q̄3; Q̄4; N; κlμl; nΔJMi; ð9Þ

where N ¼ 2kþ νQ1
þ νQ2

þ νQ̄3
þ νQ̄4

.1 Hence, we have

Q0
njlwi¼Λl

njlwi; Λl
n ¼

X
l

c2nl
1

2

�
nlþ

2lþ1

2

�
: ð10Þ

It is apparent that the system is in the vibrational Uð9Þ
and rotational SOð10Þ transition region as the pairing
strengths, cl, vary continuously within the closed interval
[0, 1]. The quantum phase transition occurs in the all-heavy
tetraquark pairing model. The Uð9Þ limit is fulfilled by
cQ1

¼ cQ2
¼ cQ̄3

¼ cQ̄4
¼ 0 the SOð10Þ limit occurs when

cQ1
¼ cQ2

¼ cQ̄3
¼ cQ̄4

¼ 1. In our calculation, we have
extracted different values for the control parameters
between Uð9Þ and SOð10Þ limits, viz. cQi

and cQ̄i
belong

to the [0, 1] interval with i ¼ 1;…; 4.
The total Hamiltonian is represented in terms of the

Casimir operators Ĉ2 by branching chains. The two first
terms of the Hamiltonian, Qþ

0 Q
−
0 and Q0

1, are related to
the SUð1; 1Þ algebra and the remaining ones are constant
according to the Casimir operators. In the duality relation
for the tetraquarks, the irreducible representations reduce
the quasi-spin algebra chains (8a) and (8b) as well, and the
labels for the chains are connected through the duality
relations. By employing the generators of algebra SUð1; 1Þ,
the proposed Hamiltonian for heavy tetraquark pairing
model is

Ĥ ¼ gQþ
0 Q

−
0 þ αQ0

1 þ βĈ2ðSOð9ÞÞ
þ γ1Ĉ2ðSOð3ÞRÞ þ γ2Ĉ2ðSOð3ÞQ1Q2

Þ
þ γ3Ĉ2ðSOð3ÞQ̄3Q̄4

Þ þ γĈ2ðSOð3ÞJÞ; ð11Þ

where g, α, β, γ1, γ2, γ3, and γ are real-valued parameters.
Note that R stand the rotation for second order Casimir
operator in Hamiltonian.
To find the non-zero energy eigenstates with k-pairs, we

exploit a Fourier Laurent expansion of the eigenstates of
Hamiltonians which contain dependences on several quan-
tities in terms of unknown c-number parameters xi, and
thus eigenvectors of the Hamiltonian for excitations can be
written as

jk; νQ1
νQ2

νQ̄3
νQ̄4

nΔJMi
¼

X
ni∈Z

an1n2…nk

¼ xn11 xn22 xn33 …xnkk Qþ
n1Q

þ
n2Q

þ
n3…Qþ

nk jlwi; ð12Þ
and

Qþ
ni ¼

cQ1

1 − c2Q1
xi
QþðQ1Þ þ

cQ2

1 − c2Q2
xi
QþðQ2Þ

þ cQ̄3

1 − c2Q̄3
xi
QþðQ̄3Þ þ

cQ̄4

1 − c2Q̄4
xi
QþðQ̄4Þ: ð13Þ

The coefficients xi are determined through the following set
of equations

α

xi
¼

X
l

c2l ðνl þ 2lþ1
2
Þ

1 − c2l xi
−
X
j≠i

2

xi − xj
: ð14Þ

A similar structure to (13) was first used by Gaudin as an
ansatz in finding exact solutions of a spin-spin interaction
system [55], which is now confirmed to be a consistent
operator form in building the Bethe ansatz wave function
(14) for the current tetraquark system. The Bethe ansatz
equation (BAE) is a non-linear equation for a k-pair
excitation to get the energy spectra. The quantum number
k-pair excitation corresponds to the total number of bosons
N. This connection is made possible by seniority numbers,
i.e., the quantum number νl of SOð2lþ 1Þ. It is well known
that in Eq. (4), the allowed seniority numbers are νl ¼ nl,
nl − 2, nl − 4, … Further details on the determination of
the model parameters and the way of solving the eigenvalue
problem can be found in Appendix.
Our formalism and methods for masses of heavy tetra-

quarks are the same as the procedure in Refs. [14,17,18].
The representation (11) is totally symmetric, correspond-
ing to the fact that the excitations (vibrations and rotations)
are bosonic in nature. So, we have to define the number
of bosons in our system. Here the boson number value
depicts the total number of vibrational states in the
representation [N].

1We take the many-body system with a k-pair excitation; see
the Appendix for further details.
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The quantum phase transition occurs between vibrational
and rotational limits in the fully heavy tetraquark pairing
model. The quark (antiquark) configuration can perform
vibrations and rotations (Fig. 1) defined by the quantum
numbers νQi

, νQ̄i
, and J. We do not study here bending and

twisting of tetraquarks since these are required to lie at higher
masses. The pure configuration problem of Fig. 1 is slightly
complicated by the fact that quarks and antiquarks have
internal degrees of freedom. Themethod of pairing strengths
is applied herein, following Refs. [7,18]. The stringlike
configuration of the tetraquark is shown in Fig. 1. Within
the two-quarks configuration, the operator Q must be
followed by Q̄. Since we have pairing, for tetraquarks,
one could also have the combinations QQ and Q̄ Q̄.
Finally, the quarks should be combined in such a way that
an appropriate rotation-vibration pattern is provided satisfy-
ing the so-called number of pairing N ¼ 2kþ νQ1

þ νQ2
þ

νQ̄3
þ νQ̄4

.

III. RESULTS

In the diquark–antidiquark pairing model, the tetraquark
mass can be determined by solving the eigenvalue problem
of Eq. (11). Moreover, the quantum numbers that define a
tetraquark state are the spins of diquark and antidiquark
clusters, and the total spin, spatial inversion symmetry and
charge conjugation of the system, i.e., the JPC quantum
numbers. Following Ref. [56], for aQ1Q2Q̄3Q̄4 system, the
quantum labels are JPC ¼ 0þþ, 1þ−, and 2þþ, and thus
we have:
(1) Two states for the scalar system:

j0þþi ¼ j0Q1Q2
; 0Q̄3Q̄4

; J ¼ 0i; ð15aÞ

j0þþ0i ¼ j1Q1Q2
; 1Q̄3Q̄4

; J ¼ 0i: ð15bÞ

(2) Three states for the vector system:

jAi ¼ j0Q1Q2
; 1Q̄3Q̄4

; J ¼ 1i; ð16aÞ

jBi ¼ j1Q1Q2
; 0Q̄3Q̄4

; J ¼ 1i; ð16bÞ

jCi ¼ j1Q1Q2
; 1Q̄3Q̄4

; J ¼ 1i: ð16cÞ

Under charge conjugation, we have different
configurations in which jAi and jBi interchange
while jCi is odd. Thus, the JP ¼ 1þ involves one C-
even and two C-odd states:

j1þþi ¼ 1ffiffiffi
2

p ðjAi þ jBiÞ; ð17aÞ

j1þ−i ¼ 1ffiffiffi
2

p ðjAi − jBiÞ; ð17bÞ

j1þ−0i ¼ jCi: ð17cÞ

Note here that we must select the appropriate values
for the spin of Q1Q̄3 and Q2Q̄4. This means that the
only state with C ¼ þ is the one where Q1Q̄3 has
spin SQ1Q̄3

¼ 1.
(iii) One state for the tensor system:

j2þþi ¼ j1Q1Q2
; 1Q̄3Q̄4

; J ¼ 2i; ð18Þ

where this state has also SQ1Q̄3
¼ 1.

A. The ½cc�½c̄c̄� system
In the pairing tetraquark model, the rigid and nonrigid

phases correspond, respectively, to the SOð10Þ and Uð9Þ
symmetry cases. Both are idealized situations and must
coexist in the real world. Therefore, the Uð9Þ ↔ SOð10Þ
transitional region is where the two phases coexist and
vibrational-rotational modes appear.
The parameters in the transitional region are called the

phase parameters since the case cQi
¼ 1, with i ¼ 1;…; 4,

corresponds to the rotational mode, while the cQi
¼ 0 case

corresponds to the vibrational mode. We first can calculate
the mass spectrum of the pairing tetraquark model with
fixed phase parameters. Then, the transitional spectra from
one phase to the other can be obtained modifying the phase
parameters within the closed interval [0, 1].
From a transitional theory point of view, the ideal

way of extracting the values of the phase coefficients is
looking at the meson-meson thresholds ηcð1SÞηcð1SÞ and
J=ψð1SÞJ=ψð1SÞ for JPC ¼ 0þþ, ηcð1SÞJ=ψð1SÞ for
JPC ¼ 1þ−, and J=ψð1SÞJ=ψð1SÞ for JPC ¼ 2þþ. Our
values are cQ1

¼ 0.92, cQ2
¼ 1, and cQ̄3

¼ cQ̄4
¼ 0, which

results into the following masses

FIG. 1. Schematic representation of the rotational and vibra-
tional degrees of freedom in the studied tetraquark systems.
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j0þþ0i ¼ j1cc; 1c̄ c̄; J ¼ 0i∶M ¼ 5.978 GeV; ð19Þ

j1þ−0i ¼ j1cc; 1c̄ c̄; J ¼ 1i∶M ¼ 6.155 GeV; ð20Þ

j2þþi ¼ j1cc; 1c̄ c̄; J ¼ 2i∶M ¼ 6.263 GeV; ð21Þ

for the T4c tetraquark system.

B. The ½bb�½b̄ b̄� system
The situation here is very similar to the case above. This

time, from a transitional theory point of view, the extraction
phase coefficients must be performed attending to the
meson-meson thresholds ηbð1SÞηbð1SÞ and ϒð1SÞϒð1SÞ
for JPC ¼ 0þþ, ηbð1SÞϒð1SÞ for JPC ¼ 1þ−, and
ϒð1SÞϒð1SÞ for JPC ¼ 2þþ. Our numerical values are
cQ1

¼ 0.97, cQ2
¼ 1, cQ̄3

¼ 1 and cQ̄4
¼ 0, which provide

the following masses:

j0þþ0i ¼ j1bb; 1b̄ b̄; J ¼ 0i∶M ¼ 18.752 GeV; ð22Þ

j1þ−0i ¼ j1bb; 1b̄ b̄; J ¼ 1i∶M ¼ 18.805 GeV; ð23Þ

j2þþi ¼ j1bb; 1b̄ b̄; J ¼ 2i∶M ¼ 18.920 GeV; ð24Þ

for the T4b tetraquark system.

C. The ½bc�½b̄ c̄� system
The final structure analyzed in this work is the T2bc ¼

½bc�½b̄ c̄� tetraquark system. In this case, the ½bc� diquark
spin can be either 0 or 1 and thus all states analyzed at
the beginning of this section are possible. Again, from
a transitional theory point of view, the best extraction
procedure of the control parameters in the T2bc tetraquarks
are the corresponding meson-meson families which deliver
the following values: cQ1

¼ cQ2
¼ 1, and cQ̄3

¼ cQ̄4
¼ 0.

The masses computed in this case can be classified as
follows:

(i) The JPC ¼ 0þþ contains two scalar states with
masses

j0þþi ¼ j0bc; 0b̄ c̄; J ¼ 0i∶M ¼ 12.359 GeV; ð25Þ

j0þþ0i ¼ j1bc; 1b̄ c̄; J ¼ 0i∶M ¼ 12.503 GeV: ð26Þ

(ii) The JPC ¼ 1þ− contains two states with masses

j1þ−i¼ 1ffiffiffi
2

p ðj0bc;1b̄ c̄;J¼ 1i

− j1bc;0b̄ c̄;J¼ 1iÞ∶M¼ 12.896GeV; ð27Þ

j1þ−0i ¼ j1bc; 1b̄ c̄; J ¼ 1i∶M ¼ 12.016 GeV: ð28Þ

(iii) The JPC ¼ 1þþ contains one state with mass

j1þþi¼ 1ffiffiffi
2

p ðj0bc;1b̄ c̄;J¼1i

þj1bc;0b̄ c̄;J¼1iÞ∶M¼12.155GeV: ð29Þ

(iv) The JPC ¼ 2þþ contains one state with mass

j2þþi ¼ j1bc; 1b̄ c̄; J ¼ 2i∶M ¼ 12.897 GeV: ð30Þ

IV. DISCUSSION

In the calculation procedure, we fix the Hamiltonian
parameters and allow the phase parameters to vary during
the transition. In Ref. [8] we showed that the quantum
number of the amount of bosons can be taken in the
N → ∞ limit. Moreover, it was adequate to take N large
enough to cover all known and unknown states up to a
maximum value of the quantum number of the angular
momentum, and other quantum numbers related to the
applications. In the present investigation, we take this to be
the same as that used in Ref. [8] with N ¼ 100.
The trend of the Hamiltonian is similar to that of the

Oð4Þ limit condition proposed in mesons where the control
parameter is taken to be 1. Most importantly, our inves-
tigation shows that the control parameters cQ̄3

and cQ̄4

cannot be taken to be 1 when heavy antiquarks are involved
except for T4b tetraquarks. This is because the masses of
T4b tetraquarks are 2–3 times heavier than T2bc and T4c
ones. In this condition for heavy mass tetraquarks, the
effect of pairing strength is strong, which can be seen in the
fact that cQ1

for T2bc is larger than in the T4c case.

FIG. 2. The resulting parameters of the Hamiltonian when
predicting the tetraquark masses based on the diquark-antidi-
quark pairing model. In the calculation, the effective g-factor is
taken to be 1.
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The values of the parameters in the Hamiltonian for the
mentioned structures are given in Fig. 2. In the transition
region, α is taken to be 1.5. Since the vibrational-rotational
transition within the pairing model is a second-order
quantum phase transition, the masses of the wave functions
in the Uð9Þ model of studied tetraquarks behave smoothly
with respect to changes in the parameters, which allows us
to fix them in the transition region.
Table I shows the difference between the calculated

tetraquark masses and the meson-pair threshold. We present
the values of Δ ¼ Mtetra − Eth, where Mtetra and Eth are the
tetraquark mass and its lowest meson-meson threshold,
respectively. A negative Δ indicates that the tetraquark state
lies below the threshold of the fall-apart decay into two
mesons and consequently should be stable. Besides, a state
with a small positivevalue for theΔ could also be observed as
a resonance since the phase space would suppress its partial
decay width. The remaining states, with large positive Δ
values, are supposed to be broad and challenging to recog-
nize in experimental analyses.
Our analysis confirms that the control parameter cQ1

deviating a little from 1 turns out to be more appropriate in

the extraction of the tetraquark masses, specially for
comprehensive T2bc families. One can also see that, in
the T4b ¼ ½bb�½b̄ b̄� states, the higher contribution comes
from the pairing of cQ̄3

and cQ̄4
quarks. This means that at

high energy, around 18–19 GeV, phase parameters for Q̄3

and Q̄4 quarks begin to play an essential role in computing
tetraquark masses; while in the low energy regime, there is
a competition between the Q1 and Q2.
According to the above definition, it can be claimed that

the energy spectra of the studied fully-heavy tetraquarks in
which cQi

∼ 0.9–1.0 corresponds to a rotational phase.
Note also that a change of�15% in all coefficients produce
a maximum variation of 30%, 23%, 17% in a particular
channel’s mass of T4c, T4b, and T2bc tetraquark systems,
respectively; having that all remaining masses experience
lesser modifications.
Finally, the results obtain herein with the pairing model

are compared with the prediction of previous theoretical
calculations in Tables II and III. One can deduce that the
theory fairly reproduces the other works, indicating that
our solvable model could still play an essential role in the

TABLE I. Masses of fully-heavy tetraquark systems as computed within the theoretical framework presented
herein. The meson-meson threshold is Eth, and Δ ¼ M − Eth represents the energy distance of the tetraquark with
respected its lowest meson-pair threshold. The notation s and a indicates scalar and axial-vector diquarks.

Structure Configuration JPC Mtetra in this work (GeV) Threshold Eth (GeV) Δ (GeV)

T4c ¼ ½cc�½c̄ c̄� aā 0þþ 5.978 ηcð1SÞηcð1SÞ 5.968 0.01
J=ψð1SÞJ=ψð1SÞ 6.194 −0.216

1þ− 6.155 ηcð1SÞJ=ψð1SÞ 6.081 0.074
2þþ 6.263 J=ψð1SÞJ=ψð1SÞ 6.194 0.069

T4b ¼ ½bb�½b̄ b̄� aā 0þþ 18.752 ηbð1SÞηbð1SÞ 18.797 −0.045
ϒð1SÞϒð1SÞ 18.920 −0.168

1þ− 18.808 ηbð1SÞϒð1SÞ 18.859 −0.051
2þþ 18.920 ϒð1SÞϒð1SÞ 18.920 0.0

T2bc ¼ ½bc�½b̄ c̄� aā 0þþ 12.503 ηbð1SÞηcð1SÞ 12.383 0.12
J=ψð1SÞϒð1SÞ 12.557 −0.054

B�
c B

∓
c 12.550 −0.047

B��
c B�∓

c 12.666 −0.163
1þ− 12.016 ηcð1SÞϒð1SÞ 12.444 −0.428

J=ψð1SÞηbð1SÞ 12.496 −0.48
B�
c B

�∓
c 12.608 −0.592

B��
c B�∓

c 12.666 −0.65
2þþ 12.897 J=ψð1SÞϒð1SÞ 12.557 0.34

B��
c B�∓

c 12.666 0.231
1ffiffi
2

p ðas̄� sāÞ 1þþ 12.155 J=ψð1SÞϒð1SÞ 12.557 −0.402
B�
c B

�∓
c 12.608 −0.453

B��
c B�∓

c 12.666 −0.511
1þ− 12.896 ηcð1SÞϒð1SÞ 12.444 0.452

J=ψð1SÞηbð1SÞ 12.496 0.4
B�
c B

�∓
c 12.608 0.288

B��
c B�∓

c 12.666 0.23
ss̄ 0þþ 12.359 ηcð1SÞηbð1SÞ 12.383 −0.024

J=ψð1SÞϒð1SÞ 12.557 −0.198
B�
c B

∓
c 12.550 −0.191

B��
c B�∓

c 12.666 −0.307
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prediction of fully-heavy tetraquark mesons. In order to do
so, a possible improvement is to include the large-N limit of
the pure pairing Hamiltonian to gain a better understanding
of the multiquark dynamics.

V. SUMMARY

Inspired by the problem of solving the interacting sl-
boson system in the transitional region, a solvable extended
Hamiltonian that includes multipair interactions has been

considered to provide the mass spectra of fully-heavy
tetraquarks. Within an algebraic model in which the
Bethe ansatz is adopted, numerical extractions of T4c,
T4b, and T2bc ground state masses were carried out to test
the theory. The results reveal that the Uð9Þ → SOð10Þ
Hamiltonian could predict spectra in fair agreement with
other theoretical approaches.
Finally, the solvable technique introduced in this manu-

script may also be helpful in diagonalizing more general
multiquark systems,whichwill be considered in futurework.

TABLE II. Comparison of our results with theoretical predictions for the masses of T4b ¼ ½bb�½b̄ b̄�, and T4c ¼
½cc�½c̄ c̄� tetraquarks. All results are in GeV.

bbb̄ b̄ ccc̄ c̄

Reference 0þþ 1þ− 2þþ 0þþ 1þ− 2þþ

This paper 18.752 18.808 18.920 5.978 6.155 6.263
[27] 18.460–18.490 18.320–18.540 18.320–18.530 6.460–6.470 6.370–6.510 6.370–6.510
[57] 18.690 … … … … …
[58] 18.748 18.828 18.900 5.883 6.120 6.246
[59] 18.750 … … <6.140 … …
[60,61] 18.754 18.808 18.916 5.966 6.051 6.223
[48,62] 18.826 … 18.956 6.192 … 6.429
[63,64] 18.840 18.840 18.850 5.990 6.050 6.090
[65] 19.178 19.226 19.236 … … …
[66] 19.237 19.264 19.279 6.314 6.375 6.407
[67] 19.247 19.247 19.249 6.425 6.425 6.432
[68,69] 19.322 19.329 19.341 6.487 6.500 6.524
[49] 19.329 19.373 19.387 6.407 6.463 6.486
[70] 19.255 19.251 19.262 6.542 6.515 6.543
[26] 20.155 20.212 20.243 6.797 6.899 6.956
[71,72] … … … 5.969 6.021 6.115
[73] … … … 6.695 6.528 6.573
[74] … … … 6.480 6.508 6.565
[75] 19.666 19.673 19.680 6.322 6.354 6.385
[76] … … … 6.510 6.600 6.708
[77] 18.981 18.969 19.000 6.271 6.231 6.287
[78] 19.314 19.320 19.330 6.190 6.271 6.367
[50] set. I 18.723 18.738 20.243 5.960 6.009 6.100
[50] set. II 18.754 18.768 18.797 6.198 6.246 6.323
[79] 19.226 19.214 19.232 6.476 6.441 6.475

TABLE III. Comparison of our results with theoretical predictions for the masses of T2bc ¼ ½bc�½b̄ c̄� tetraquarks.
All results are in GeV.

aā 1ffiffi
2

p ðas̄� sāÞ ss̄

Reference 0þþ 1þ− 2þþ 1þþ 1þ− 0þþ

This paper 12.503 12.016 12.897 12.155 12.896 12.359
[60] 12359 12424 12566 12485 12488 12471
[58] 12374 12491 12576 12533 12533 12521
[59] <12620 … … … … …
[80] 12746 12804 12809 … 12776 …
[49] 12829 12881 12925 … … …
[68] 13035 13047 13070 13056 13052 13050
[26] 13483 13520 13590 13510 13592 13553
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APPENDIX: ON THE DETERMINATION
OF THE MODEL PARAMETERS

We have distinct bases states with different quantum
numbers νl of SOð2lþ 1Þ (seniority numbers) for tetra-
quarks in which the seniority numbersmake an essential role
in theBethe ansatz equation (BAE), Eq. (14).Moreover, after
fixing and solving the BAE, we have used the least square fit
to get the masses of the tetraquarks. This is because the
second order Casimir operator Ĉ2ðSOð2lþ 1ÞÞ ¼ νlðνl þ
2l − 1Þ is proportional to seniority numbers. In the process of
extraction of the parameters in the Hamiltonian for different
tetaquarks with different quantum labels of seniority num-
bers and angular momentum, it is expedited to get different
values of coefficients. We have used LSF for each group of
tetraquarks, distinctively, considering the fact that three
different nuclear Hamiltonians are used. This means that
the first two terms of the Hamiltonian correspond to the BAE
which are different for each tetraquark. It is clear that due
to different masses for tetraquarks, different values of the
Hamiltonian parameters would correspond to the different
tetraquarks.
A valuable and straightforward numerical algorithm

for solving the BAE (14) and extracting the constants in
comparison with masses of considered tetraquarks is based
on the use of Mathematica software which will be outlined
simultaneously. To get the roots of the BAE with defined
values of seniority numbers, we solve Eq. (14) with fixed
values of α for i ¼ 1 and then use the function FindRoot in
Mathematica to obtain all roots.
Let us explain the numerical algorithm for fixing the

parameters of the Hamiltonian. Eigenenergies and the
corresponding wave functions can easily be determined
for limiting cases; in global problems, Eq. (14) is a set of
nonlinear equations with k unknowns for a k-pair excita-
tion. The method and numerical procedure are related to
two steps: (i) solve the non-linear BAEs, and (ii) extract by

using LSF. Accordingly, the infinite-dimensional algebraic
expansion (12) along with the energy eigenequation defines
the functional SþðxiÞ and the possible values that the
spectral parameters xi can take on.
The challenge is that quantities of physical interest are

expressed in terms of solutions of the BAE; and the solution
of BAE is usually difficult. Many methods have been
introduced for extracting solutions from these equations. A
typical example for solving the BAE is the Hubbard model.
On the other hand, an analysis similar to that used in
[13,14] is helpful in understanding the behavior of the
solutions. Here, a valuable numerical algorithm for solving
the BAE usingMathematicawill be outlined. Also, because
of the Sk symmetry with respect to permutations among the
fx1; x2;…; xkg, in the following we eliminate those sol-
utions that can be obtained by such root permutations,
keeping only one since the others correspond to the same
eigenenergy and wave function. First, we want to identify
various sets of solutions of BAE that exist, excluding those
that can be obtained by permutations of the roots of Sk.
Suppose that the total number of such solutions is p. The
roots in BAE can then be arranged as xðζÞ1 ; xðζÞ2 ;…; xðζÞk , with
ζ ¼ 1; 2;…; p. Now we apply the pairing theorem to
tetraquarks. Each set of roots corresponds to a unique
eigenvector. These eigenvectors span a subspace, which is
called the diagonalized configuration subspace. For k-pair
excitation, besides solutions achieved by root permutations
of the Sk, BAE has kþ 1 different sets of solutions, namely
p ¼ kþ 1. According to the pairing theorem, a k-pair
excitation BAE has ðkþ 1Þ! solutions, while only kþ 1
of them are solutions to the eigenvalue problem of the
tetraquarks.
In what follows, we apply a solid case to prove how to

numerically find all roots of BAE.We take the ccc̄ c̄ system
with a k-pair excitation as an example, in which the
parameters νQ1

¼ 0, νQ2
¼ 1, νQ̄3

¼ 1, νQ̄4¼0, α ¼ 1.5
and cQ1

¼ 0.92, cQ2
¼ 1, cQ̄3

¼ 0, and cQ̄4
¼ 0. Thus,

BAE (14) becomes

1.5
xi

¼ 0.42
1− 0.84xi

þ 2.5
1− xi

−
X
j≠i

2

xi − xj
i¼ 1;2;3;…k:

ðA1Þ

We employ the notation [k] to express this equation. It can
be confirmed that the solutions of ½kþ 1� can be achieved
by applying FindRoot in Mathematica from those for [k].
Starting from ½k ¼ 1�, which can be determined by using
Solve in our code, one can get solutions of ½k ¼ 2�.
Consequently, an iterative method can be set up for
obtaining solutions of ½mþ 1� from those of [m].
Excluding roots that can be obtained from Sk symmetry,
all inequivalent roots up to ½k ¼ 3� are listed in Table IV.
It can easily be seen from Table IV that the roots of [k] have
the following properties:
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(1) The two roots of ½k ¼ 1� are very different.
(2) The two roots of ½k ¼ 1� are fundamental because

all other roots of [k] are in the vicinity of these
two roots.

(3) Assume that the larger root of ½k ¼ 1� corresponds to
the basis vector Q1 and others from larger to smaller
corresponds to the basis vector Q2, Q3, and Q4,
respectively.

Now a is the largest root and b, c and d are smaller roots
of [k] corresponding to the basis vector of tetraquarks
Qa

1Q
b
2Q

c
3Q

d
4 ðaþ bþ cþ d ¼ kÞ in the k-dimensional

diagonalized subspace. These properties can be used to
set up a procedure for finding all inequivalent roots of [k]
using a solvable code.
While we have seen the exact solution for a particular

numerical example, the conclusions apply to the cases with
α > 0, and 0 < cQ < 1 as well. In all of these cases the
roots of BAE are real. After getting these roots, we have
inserted to the Hamiltonian with considering the seniority
numbers and total angular momentum. Here is half of the
method for optimizing the set of parameters. A detailed
discussion of the numerical results in the Hamiltonian
includes carrying out the least square fit in the excitation
masses of selected states from tetraquarks. We have
repeated these processes with different values of considered
quantities to optimize the values.
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