
Constraints imposed by the partial wave amplitudes on the
decays of J = 1, 2 mesons

Vanamali Shastry * and Enrico Trotti †

Institute of Physics, Jan Kochanowski University, ul. Uniwersytecka 7, P-25-406 Kielce, Poland

Francesco Giacosa ‡

Institute of Physics, Jan Kochanowski University, ul. Uniwersytecka 7, P-25-406 Kielce, Poland
and Institute for Theoretical Physics, Johann Wolfgang Goethe–University,

Max von Laue–Strasse 1 D-60438 Frankfurt, Germany

(Received 2 September 2021; accepted 14 February 2022; published 21 March 2022)

We study the two-body decays of mesons using the covariant helicity formalism. In particular, we show
how the partial wave analysis of decays constrains the interacting terms entering the Lagrangian describing
the decays of mesons with J ¼ 1 and J ¼ 2. We use available information on partial wave analysis to study
specific mesonic decays and to make predictions for not yet measured quantities as well as to investigate
the isoscalar mixing angle in the axial-vector, pseudovector and pseudotensor sectors. In particular, in the
axial-vector sector our result agrees with the LHCb one, and in the pseudotensor sector we confirm a quite
large (and negative) angle in the nonstrange-strange basis, which is compatible with a large contribute of
the axial anomaly.
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I. INTRODUCTION

The study of mesons and their decays can provide a
wealth of information regarding the interactions between
the various states as well as the internal dynamics of the
states involved, and ultimately, the strong interactions.
On the experimental front, a lot of effort has been

dedicated to the study of mesonic decays (e.g., Refs. [1–9]),
as these decays are a way to generate and observe new
states as well as portals to possible new physics. On the
theoretical front too, a wealth of knowledge has been
gained using various field theoretic models, quarks models,
and effective field theories [10–14].
A vast majority of the phenomenological models for-

mulated till date estimate the coupling constants by
analyzing the mass of the mesons, their widths, and the
branching fractions of their decays. One crucial set of data
points available in the PDG, the ratio of the partial wave
amplitudes (PWAs, see for instance Ref. [15]), is usually
not taken into account. We demonstrate in the present work

how this particular data can be used to build more robust
field theoretic phenomenological models and to put a
tighter constraint on their parameters.
In order to set the frame of our work, let us consider a

decay of the type

A → BC;

where A, B, C are certain mesonic fields with definite total
spin JA, JB, and JC. The corresponding interaction
Lagrangian that describes this decay process should fulfill
the basic constraint such as Lorentz as well as, for QCD
processes, parity and charge-conjugation invariance. It can
be expressed as

LABC ¼ Lc
ABC þ Ld

ABC þ… ð1Þ

where Lc
ABC contains the lowest possible number of

derivatives, while Ld
ABC is the next term with two additional

derivatives, etc.
Various approaches, based on the realization of flavor

symmetry or, more generally, on the linear realization of
chiral symmetry consider the first term as dominant, e.g.,
Refs. [16–21], while approaches based on the nonlinear
realization of chiral symmetry typically contain terms with
higher derivatives (see for instance, Refs. [22–28]).
An important aspect of the decays A → Bþ C is that

different waves for the final product are possible. Denoting
with l the relative orbital angular momentum between
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B and C, the possible values of l range between
jJA − ðJB þ JCÞj up to JA þ ðJB þ JCÞ. For instance, in
the decay a1ð1260Þ → ρπ the waves l ¼ 0 and l ¼ 2 are
allowed, while in the π2ð1670Þ → f2ð1270Þπ decay one
may have l ¼ 0, 2, 4. The ratio between two allowed
l-values can be determined by an appropriate PWA
analysis [1].
A natural question regards the connection of the

interaction terms in Eq. (1) to the ratio of partial waves.
In general, each interaction Lagrangian gives a nonzero
contribution to each partial wave. For instance, one may ask
for a certain decay if the term with the lowest number of
derivatives is sufficient do describe data or not. Conversely,
the possibility that the derivative interaction term domi-
nates can be also addressed.
In this work, we study, in a systematic framework, the

PWA of the decays of the axial-vector, pseudovector, and
pseudotensor mesons by using model Lagrangian(s) of the
type of Eq. (1). Our aim is to understand the role played by
the various interactions in the decays of these mesons.
Within this respect, the information gained by PWA turns
out to be very useful. We thus can—on the one hand—
reproduce previous results on the subject (in particular
Ref. [29], in which also a model Lagrangian was used), and
on the other hand, extend the procedure to the whole class
of unstable high-spin mesons mentioned above. Moreover,
we shall analyze (to our knowledge for the first time using
PWA) the mixing in the isoscalar sector of the investigated
mesonic nonets. Namely, the question about the role of the
anomaly, besides the well-known case of the pseudoscalar
sector, is on its own an interesting aspect of nonperturbative
QCD [30–32].
Our results about the PWA shall be compared to those

of other approaches, such as the PWA analysis of the 3P0

model and the lattice calculations. We find that our results
agree with those of the 3P0 model in the J ¼ 1 sector [33].
On the lattice front, the b1ð1235Þ → ωπ decay was studied
by the Hadron Spectrum collaboration recently [34]. Their
inference that the b1ð1235Þ couples strongly to the S–wave
ωπ compared to the D–wave is in line with experimental
results [1].
This paper is organized into four sections. In Sec. II, we

discuss the formalism used in deriving the PWAs and the
construction of the polarization tensors. In Sec. III we derive
the partial wave amplitudes for the different decays dis-
cussed in the paper, and analyze their behavior. In Sec. IV,
we discuss the results of the work and their consequences.
Finally, we summarize the entire work in Sec. V.

II. PARTIAL WAVE AMPLITUDES

Much research has been conducted on the partial wave
decomposition of the decay processes. One of the earliest
works in this direction was the tensor formalism by Zemach
[35,36]. In this formalism, the decay amplitude is written
in terms of the noncovariant 3-dimensional spin tensors

defined in the rest frame of each decaying particle. This
results in a frame dependent decay width which leads to
hurdles in interpreting the square of the amplitude as the
decay probability.
An alternative approach to analyzing the partial waves

is the helicity formalism. Initiated by Jacob and Wick [37],
the helicity formalism has been used extensively to
study the decay processes. In this formalism, the angular
dependence of the decay process is captured in the Wigner
D-matrices DJ

mm0 . The remaining part of the decay ampli-
tude forms the helicity coupling amplitude. In a typical
scenario, where experimental data has to be analyzed, the
helicity amplitudes are constructed empirically using the
Breit-Wigner functions and the centrifugal functions—
which are nothing but the moduli of the Zemach tensors.
This approach makes the formalism noncovariant, making
it unsuitable for practical applications as the decay ampli-
tude must be a Lorentz invariant.
Chung proposed a covariant form of the helicity for-

malism in which the helicity coupling amplitude is con-
structed from the polarization tensors and hence is a
function of the ratio E=m (E and m are the energy and
mass of the particles involved in the decay process, as
measured in the rest frame of the parent) making it a
Lorentz scalar [38,39]. In the present work, we make use of
model Lagrangians to write down the amplitude of the
decays. We then derive the helicity coupling amplitudes
from the decay amplitudes which we find to be functions of
the energy (or 3–momentum) of the daughter mesons and
rest masses of the mesons involved, as measured in the rest
frame of the parent.
In the following subsection, we discuss briefly the

covariant helicity formalism.

A. The covariant helicity formalism

Consider the two-body decay process, A → BC. Let the
total angular momentum states of the particles A, B, and C
be jJ;MJi, js; λi, and jσ; νi respectively. Also, let the sum
of the total spin quantum numbers of the daughter states be
given by S, i.e.,

jS;msi ¼ js; λi ⊕ jσ; νi; ð2Þ

where ⊕ implies that the jS;msi state is constructed from
js; λi and jσ; νi by following the rules of addition of the
angular momenta. The spin of the parent can then be
constructed by adding the total spin of the daughters
with the relative orbital angular momentum (l) carried
by them, i.e.,

jJ;MJi ¼ jl; mli ⊕ jS;msi: ð3Þ

Thus, unlike a two-body scattering process where an
infinity of angular momentum channels are available,
the number of angular momentum channels available for
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a two-body decay is limited by the spins of the parent and
daughter states. The value of l must satisfy the condition
that J ∈ ½jl − Sj;lþ S�. Also, since we are interested only
in the strong decays, an additional constraint of parity
conservation has to be imposed. This determines if l has to
be even or odd (for a given value of S), further reducing the
available number of angular momentum channels.
The amplitude for a two-body decay can be written as

MJðθ;ϕ;MJÞ ∝ DJ�
Mδðϕ; θ; 0ÞFJ

λν; ð4Þ

whereDJ�
Mδðϕ; θ; 0Þ is the complex conjugate of the Wigner

D–matrix, FJ
λν is the helicity amplitude, and δ ¼ λ − ν.

Equation (4) is a general result, and any model dependence
will appear in the exact form of the helicity amplitudes.
As a special case, if the frame of reference is such that
the decay products are aligned along the �z–axis, the
decay amplitude becomes proportional to only the helicity
amplitude:

MJ
λδð0; 0;MJÞ ∝ FJ

λν: ð5Þ

When the decay products are massive, the helicity ampli-
tudes can be expanded in terms of the lS coupling
amplitudes (GJ

lS) through the relation

FJ
λν ¼

X
lS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

2J þ 1

r
hl0SδjJδihsλσ − νjSδiGJ

lS; ð6Þ

where h� � � j � � �i represent the Clebsch-Gordan coefficients.
As explained above, the allowed values of l are determined
by the spin and parity of the parent and the decay products.
Some comments regarding the validity of the above

relation are in order. First, the lS coupling amplitudes can
be chosen in two ways: (i) empirically, by using the rule
GJ

lS ∝ jk⃗jl, where jk⃗j is the magnitude of the break-up
momentum; (ii) from the polarization vectors. In the former
case, the helicity amplitudes become noncovariant due
to the frame dependence introduced by the choice of GJ

lS.
The helicity amplitudes can be made Lorentz scalar using
the latter method, if the polarization vectors are boosted
to the appropriate frame [39,40]. The ratio of GJ

lS gives us
the ratio of the partial wave amplitudes.
Alternatively, one can expand the decay amplitude in

terms of the spherical harmonics as

iMðθ;ϕ;MJÞ ¼ i
X
l

Xl
ml¼−l

GlhlmlSmsjJMJiYlml
ðθ;ϕÞ:

ð7Þ

The PWAs so derived will be proportional to the PWAs
derived using the covariant helicity formalism, i.e.,

Gl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α

ð2J þ 1Þ
r

GJ
lS; ð8Þ

where α is a numerical factor dependent on the normali-
zation of the spherical harmonics. For the normalizationR
dΩjYlml

j2 ¼ 1, α ¼ 4π. The advantage of using the
covariant helicity formalism is that, by choosing the
helicity amplitudes suitably, we obtain

X
lS

jGJ
lSj2 ¼

X
spins

jMj2: ð9Þ

B. Polarization states

The present study is concerned with the decay of mesons
with J ≥ 1 in to states with one of them having J ≥ 1. We
detail the construction of the polarization vectors (PV) and
polarization tensors (PT) in this subsection.
The PVs of a spin–1 state in its rest frame are given by

ϵμð0⃗;þ1Þ ¼ −
1ffiffiffi
2

p
�
0; 1; i; 0

�
;

ϵμð0⃗;−1Þ ¼ 1ffiffiffi
2

p
�
0; 1;−i; 0

�
;

ϵμð0⃗; 0Þ ¼
�
0; 0; 0; 1

�
: ð10Þ

These PVs satisfy the following orthonormality conditions:

kμϵμðk⃗; mÞ ¼ 0 ð11Þ

ϵ�μðk⃗; mÞϵμðk⃗; m0Þ ¼ −δmm0 : ð12Þ

Further, the projection operator is given by the identity

g̃μν ¼
X
m

ϵμðk⃗; mÞϵ�νðk⃗; mÞ ¼ −gμν þ
kμkν
M2

0

; ð13Þ

where kμ and M0 are the 4-momentum and mass of the
corresponding state respectively. The PTs for higher spin
states can be constructed from the PVs using a standard
algorithm. The PTs for a spin-J state can be constructed
using the master formula

ϵμ1μ2…μJð0⃗;mÞ¼
X

m1m2…

h1m11m2j2n1ih2n11m3j3n2i…

×hJ−1nJ−21mJjJmi
⊗ ϵμ1ð0⃗;m1Þϵμ2ð0⃗;m2Þ…ϵμJð0⃗;mJÞ: ð14Þ

The states constructed using this algorithm satisfy the
following orthonormality relations:
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kμiϵ
μ1μ2…μJðmÞ ¼ 0 ð15Þ

ϵ�μ1μ2…μJðmÞϵμ1μ2…μJðm0Þ ¼ ð−1ÞJδmm0 ð16Þ

and transform under rotations as

ϵμ1μ2…μJðmÞ →
X

m
0ϵμ1μ2…μJðm0ÞDJ

m0mðϕ; θ;ψÞ: ð17Þ

We list below the explicit expressions for spin–2 states:

ϵμνðk⃗;þ2Þ ¼ ϵμðk⃗;þ1Þϵνðk⃗;þ1Þ ð18Þ

ϵμνðk⃗;þ1Þ ¼ 1ffiffiffi
2

p ½ϵμðk⃗;þ1Þϵνðk⃗; 0Þ þ ϵμðk⃗; 0Þϵνðk⃗;þ1Þ�

ð19Þ

ϵμνðk⃗; 0Þ ¼ 1ffiffiffi
6

p ½ϵμðk⃗;þ1Þϵνðk⃗;−1Þ þ ϵμðk⃗;−1Þϵνðk⃗;þ1Þ�

þ
ffiffiffi
2

3

r
ϵμðk⃗; 0Þϵνðk⃗; 0Þ: ð20Þ

The PTs for states with m ¼ −1;−2 can be obtained
similarly by using the PVs with m ¼ −1. The above
definitions are valid for any particle moving with any
3-momentum k⃗ provided that the corresponding PVs
are boosted appropriately before arriving at the PTs.
Alternatively, one can construct the PTs using the
PVs defined in the rest frame of the meson, and then boost
the resultant PTs to the required frame.

III. DERIVING THE PWAs

In this section, we derive the PWAs for three decay
processes viz., a1ð1260Þ → ρπ, π2ð1670Þ → f2ð1270Þπ,
and π2ð1670Þ → ρπ. In principle, the following discussions
can be extended to the decays of all the members of the
corresponding nonets. The general results derived for the
decay of the a1ð1260Þ can also be extended to the decays of
the b1ð1235Þ meson.

A. The a1ð1260Þ → ρπ decay

The decay of the a1ð1260Þ to ρπ can be represented by
the Lagrangian

L ¼ igAc ha1;μρμπi þ igAdha1;μνρμνπi; ð21Þ
where gAc and gAd are the coupling constants, and
a1;μν ¼ ∂μa1;ν − ∂νa1;μ, ρμν ¼ ∂μρν − ∂νρμ and hi repre-
sents trace over the isospin. The Lagrangian consists of two
types of interactions1: local (contact) interactions and

nonlocal (derivative) interactions. As we discuss in a
while, the local interactions are sufficient to reproduce
theD=S–ratio of the a1ð1260Þ → ρπ decay. We write down
the full amplitude (including both interactions) as

iM¼ gAc ϵμð0;MJÞϵμ�ðk⃗; λÞ þ 2gAd ½k0 · k1ϵμð0⃗;MJÞϵ�μðk⃗1; λÞ
− kν0k1;μϵ

μð0⃗;MJÞϵ�νðk⃗1; λÞ�

¼ −

8>><
>>:

gAc þ 2gAdMa1Eρ MJ ¼ λ¼�1

γðgAc þ 2gAdMa1Eρ

−2gAdMa1βkÞ MJ ¼ λ¼ 0

; ð22Þ

where kμ0 ¼ ðMa1 ; 0⃗Þ is the 4-momentum of the decaying
meson, kμ1 ¼ ðEρ; 0; 0; kÞ is the 4-momentum of the vector
decay product, Ma1 is the mass of the decaying meson,Mρ

and Eρ are the mass and energy of the vector decay product
respectively, and k is the magnitude of the 3-momentum
carried by the vector decay product. Notice that the last
term in the Eq. (22) contributes only when MJ < jJj. This
statement is true for all the decays we have studied in this
paper. The momentum dependence of the amplitude comes
from the interaction terms as well as the polarization
vectors. Thus, a simple Lagrangian with only contact
interactions can also give rise to higher angular momentum
partial waves in the amplitude, even though these higher
partial waves will be suppressed. Conversely, derivative
interaction may also lead to lowest-order partial wave
contributions
We now proceed with the analysis of the a1ð1260Þ → ρπ

decay. The permitted values for the angular momentum
quantum number are l ¼ 0 and 2. Hence, from Eq. (4),

F1
10 ¼

1ffiffiffi
3

p G0 þ
1ffiffiffi
6

p G2 ð23Þ

F1
00 ¼

1ffiffiffi
3

p G0 −
ffiffiffi
2

3

r
G2; ð24Þ

whereG0 ¼ G1
01 andG2 ¼ G1

21. We note that, if the helicity
amplitudes F1

10 ¼ F1
00, then the decay is entirely due to

the S–wave, and if F1
00 ¼ 2F1

10, the decay is entirely due to
D–wave. From the amplitude [Eq. (22)], we see that

F1
10 ¼ ðgAc þ 2gAdMa1EρÞ ð25Þ

F1
00 ¼ γðgAc þ 2gAdMa1Eρ − 2gAdMa1βkÞ ð26Þ

(up to a common multiplier). Now, we can invert the above
relations to get the PWAs as2

1Here, and in the following, we use the term “contact
interactions” or “local interactions” to refer to operators without
derivatives. Conversely, we call “derivative interactions” or
“nonlocal interactions” for the other terms.

2Here, and everywhere else, the partial wave amplitudes are
derived up to an overall phase since the ratios of the PWAs do not
depend on them.
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G2 ¼
ffiffiffi
2

3

r �
gAc

�
Mρ − Eρ

Mρ

�
þ 2gAdMa1ðEρ −MρÞ

�
ð27Þ

G0 ¼
1ffiffiffi
3

p
�
gAc

�
2Mρ þ Eρ

Mρ

�
þ 2gAdMa1ð2Eρ þMρÞ

�
: ð28Þ

If we ignore the derivative interactions (gAd ¼ 0), the ratio of
the PWAs for the decay of a1ð1260Þ → ρπ is

G2

G0

¼
ffiffiffi
2

p �
Mρ − Eρ

2Mρ þ Eρ

�
: ð29Þ

Since in any frame of reference other than the rest frame
of the ρ–meson Eρ > Mρ, G2 is negative, and hence
jG2j < jG0j. Substituting the values of the masses of the
mesons involved and the magnitude of the 3-momentum
carried by the decay products, we get G2=G0 ¼ −0.045,
which is in good agreement with the value reported by the
FOCUS collaboration [41] and within the error margin of
the PDG value of −0.062� 0.02 [1]. In Fig. 1, we have
shown the D=S–ratio for the a1ð1260Þ → ρπ decay
obtained by various experiments along with the uncertain-
ties compared to our work and the PDG average. Even
when the derivative interactions are absent, our value is
within the error estimate of the value obtained by the E852
collaboration (“Chung, 2002” [42]), and is in good agree-
ment with that from the FOCUS experiment (“Link,
2007A” [41]). The values extracted by the OPAL collabo-
ration (“Ackerstaff, 1997R” [43]) and the ARGUS
(“Albrecht, 1993C” [44]) collaborations are significantly
larger than our value. The experimental values and the
corresponding uncertainties differ from each other signifi-
cantly, as can be seen in Fig. 1. Hence, through out this
study, we have used the PDG averages to estimate the
parameters wherever needed.
The a1ð1260Þ is a broad state with a width of 250–

600 MeV [1]. Since it is close to the ρπ threshold, the width

of the unstable ρ–meson can significantly influence the
width of the a1ð1260Þ → ρπ decay. This can be estimated
by performing a spectral integration of the decay width.
However, we find that the decay width does not change the
qualitative picture (see the Appendix A for details).
Finally, the decay width is given by

Γa1→ρπ ¼fa1ρπ
k

24πM2
a1

�
ðgAc Þ2

�
k2

M2
ρ
þ3

�
þ12gAc gAdEρMa1

þ4ðgAdÞ2M2
a1M

2
ρ

�
2k2

M2
ρ
þ3

��
; ð30Þ

where fa1ρπ is the isospin symmetry factor. The decay
widths for the other members of the nonet can be obtained
by using the corresponding values for the masses, energy,
and isospin symmetry factor. The first term in the decay
width arises purely from the contact interactions. The third
term arises from the derivative interactions and adds to the
contributions from the contact interactions. The second
term is the interference between the contact and derivative
interactions. The sign of gAd indicates that the contact and
derivative interactions interfere destructively.
The ratios of the PWAs for the decays of the pseudo-

vector mesons can be calculated via the expressions given
in Eq. (27) and Eq. (28) by using the appropriate masses
and energies. The b1ð1235Þ → ωπ decay is comparable to
the a1ð1260Þ → ρπ decay, in that, the masses of the mesons
involved and the 3-momenta carried by the decay products
are nearly equal. Thus, one would expect the ratios of
the PWAs to be nearly the same for both the decays. The
Lagrangian with only contact interactions when extended
to the b1ð1235Þ → ωπ decay, in fact, gives the value of the
ratio as −0.043. However, the experimentally observed
value is much different at 0.277� 0.027 [1].
This discrepancy can be addressed by including nonlocal

interactions in the Lagrangian. The observed value of the
magnitude of the D=S–ratio for the b1ð1235Þ → ωπ decay
can be explained if the coupling constants have the ratio
gBd=g

B
c ¼ −0.659 GeV−2, as given the Table II (see also the

discussions in Sec IV). We observe that this ratio is
very close to 1=M2

b1
in magnitude. Such a relation between

the ratio of the coupling constants and the mass of the
decaying state occurs in all the decays we have studied in
this paper.

B. The π2ð1670Þ → f 2ð1270Þπ decay

We introduce the following Lagrangian to describe the
decay of the π2ð1670Þ to f2ð1270Þπ

L ¼ cos βtðgPTc hπ2;μνfμν2 πi þ gPTd hπ2;αμνfαμν2 πiÞ; ð31Þ

where π2;αμν ¼ ∂απ2;μν − ∂μπ2;αν, fαμν2 ¼ ∂αfμν2 − ∂μfαν2 ,
and βtð¼ 5.7°Þ is the angle of mixing between the 2þþ
iso-singlets [1] (already included for later convenience).

Our work Contact only

PDG

Ref. [41]

Ref. [42]

Ref. [43]

Ref. [44]

0.2 0.1 0.0 0.1

D S

FIG. 1. D=S–ratio for the a1ð1260Þ → ρπ decay from various
experiments and the uncertainties as listed in the PDG. For the
sources of the values, see text.
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The experimental value of D=S–ratio for this decay is
−0.18� 0.06 [1]. The amplitude for this decay is

iM ¼ i cos βt½gPTc ϵμνð0⃗;MJÞϵμν�ðk⃗; λÞ
þ 2gPTd ðk0 · k1ϵμνð0⃗;MJÞϵμν�ðk⃗1; λÞ
− k0;αkν1ϵμνð0⃗;MJÞϵαμ�ðk⃗1; λÞÞ� ð32Þ

¼ i cosβt

8>>>>><
>>>>>:

gPTc
ðM2

f2
þ2E2

f2
Þ

3M2
f2

þ 2gPTd
Mπ2

M2
f2

Ef2 MJ ¼ λ¼ 0

gPTc
Ef2
Mf2

þ gPTd
Mπ2
Mf2

ðk2 þ 2M2
f2
Þ MJ ¼ λ¼�1

gPTc þ 2gPTd Mπ2Ef2 MJ ¼ λ¼�2

:

ð33Þ

For the π2ð1670Þ → f2ð1270Þπ decay, the allowed
values of the relative angular momentum are l¼0, 2, 4.
Thus, from Eq. (4), we get

F2
20 ¼

1ffiffiffi
5

p G0 þ
ffiffiffi
2

7

r
G2 þ

1ffiffiffiffiffi
70

p G4

F2
10 ¼

1ffiffiffi
5

p G0 −
1ffiffiffiffiffi
14

p G2 −
ffiffiffiffiffi
8

35

r
G4

F2
00 ¼

1ffiffiffi
5

p G0 −
ffiffiffi
2

7

r
G2 þ

ffiffiffiffiffi
18

35

r
G4; ð34Þ

where G0, G2, and G4 are the lS coupling amplitudes for
l ¼ 0, 2, 4 respectively. The Gl’s can be calculated by
solving the matrix equation

0
BBBBBB@

1ffiffi
5

p
ffiffi
2
7

q
1ffiffiffiffi
70

p

1ffiffi
5

p − 1ffiffiffiffi
14

p −
ffiffiffiffi
8
35

q

1ffiffi
5

p −
ffiffi
2
7

q ffiffiffiffi
18
35

q

1
CCCCCCA

0
B@

G0

G2

G4

1
CA ¼

0
B@

F2
20

F2
10

F2
00

1
CA: ð35Þ

Solving for G’s, we get explicitly:

G0 ¼
1

3
ffiffiffi
5

p
M2

f2

cos βt½gPTc ð2E2
f2
þ 6Ef2Mf2 þ 7M2

f2
Þ

þ gPTd Mf2Mπ2ð6E2
f2
þ 18Ef2Mf2 þ 6M2

f2
Þ� ð36Þ

G2 ¼ −
1

3M2
f2

ffiffiffi
2

7

r
cos βt½gPTc ð2E2

f2
þ 3Ef2Mf2 − 5M2

f2
Þ

þ gPTd Mf2Mπ2ð3E2
f2
− 6Ef2Mf2 þ 3M2

f2
Þ� ð37Þ

G4 ¼
2

M2
f2

ffiffiffiffiffi
2

35

r
cos βt½gPTc ðE2

f2
− 2Ef2Mf2 þM2

f2
Þ

− gPTd Mπ2Mf2ð2E2
f2
− 4Ef2Mf2 þ 2M2

f2
Þ�: ð38Þ

The D=S–ratio can be used to estimate the ratio
(gPTd =gPTc ) of the coupling constants. We find that, in the
absence of nonlocal interactions, G2=G0 ¼ −0.018, which
is an order of magnitude smaller than the experimentally
extracted value. Thus, nonlocal interactions become
essential to explain the D=S–ratio for this decay. For the
D=S–ratio to be equal to the value mentioned in the PDG,
the ratio of the coupling constants must be gPTd =gPTc ¼
−0.209 GeV−2. This ratio is also of the same order of
magnitude as 1=M2

π2 .
Finally, the decay width is given by

Γπ2→f2π ¼ fπ2f2π
kcos2βt
40πM2

π2

�
ðgPTc Þ2

�
4k4

9M4
f2

þ 10k2

3M2
f2

þ 5

�

þ 2ðgPTd Þ2M2
π2M

2
f2

�
k4

M4
f2

þ 10k2

M2
f2

þ 10

�

þ 20

3
gPTc gPTd Ef2Mπ2

�
k2

M2
f2

þ 3

��
; ð39Þ

where fπ2f2π is the isospin symmetry factor. The contact
and derivative interactions interfere destructively to give the
above decay width, as evidenced by the fact that when
gPTd < 0, the last term is negative.

C. The π2ð1670Þ → ρπ decay

The vector mode of decay is described by a dimension–4
operator that has a single derivative and generates “vector”
interactions, and a dimension–6 operator that has three
derivatives and gives rise to “tensor” interactions. The
Lagrangian including these operators is

L ¼ igPTv hπ2;μνρμ∂νπi þ igPTt hπ2;αμνραμ∂νπi; ð40Þ

where gPTv and gPTt are the respective coupling constants.
The amplitude for the vector decay mode is

iM ¼ −gPTv ϵμνð0⃗;MJÞϵμ�ðk⃗1; λÞkν2
− gPTt ½2k0 · k1ϵμνð0⃗;MJÞϵμ�ðk⃗1; λÞkν2
− 2k0;μkα1ϵανð0⃗;MJÞϵμ�ðk⃗1; λÞkν2� ð41Þ

¼ kffiffiffi
2

p

8>><
>>:
ðgPTv þ2gPTt Mπ2EρÞ MJ¼ λ¼�1

2ffiffi
3

p
�

Eρ

Mρ
gPTv þ2gPTt Mπ2Mρ

�
MJ¼ λ¼0

: ð42Þ
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The helicity amplitudes can be derived using Eq. (5) and
Eq. (6) just like the previous two cases. In this case,
however, the allowed values of angular momentum are
l ¼ 1, 3. The helicity amplitudes are related to the PWAs
through the equations

F2
10 ¼

ffiffiffiffiffi
3

10

r
G1 þ

1ffiffiffi
5

p G3 ð43Þ

F2
00 ¼

ffiffiffi
2

5

r
G1 −

ffiffiffi
3

5

r
G3: ð44Þ

Thus, we have two PWAs, G1 and G3, given by

G1¼−
ffiffiffiffiffi
1

15

r
k
Mρ

½gPTt Mπ2Mρð4Mρþ6EρÞþgPTv ð2Eρþ3MρÞ�

ð45Þ

G3 ¼
ffiffiffi
2

5

r
k
Mρ

½gPTt Mπ2Mρð2Mρ − 2EρÞ þ gPTv ðEρ −MρÞ�:

ð46Þ

In order to reproduce the measured F=P–ratio
(−0.72� 0.16, the coupling constants must have opposite
sign: gPTt =gPTc ¼ −0.255 GeV−2, which is of the same
order of magnitude as 1=M2

π2 .
The decay width is given by

Γπ2→ρπ¼fπ2ρπ
k

40πM2
π2

k2

3

�
ðgPTv Þ2

�
2k2

M2
ρ
þ5

�

þ4ðgPTt Þ2M2
ρ

�
3k2

M2
ρ
þ5

�
þ20gPTv gPTt EρMπ2

�
; ð47Þ

where fπ2ρπ is the isospin symmetry factor. Again, destruc-
tive interference between the different interaction types
takes place.

D. Analysis of the PWAs

We now look at the partial wave amplitudes G0—G4. To
study the behavior of the PWAs, we look at the l ¼ 0, 2, 4
amplitudes mentioned in Eq. (37)—Eq. (38) and the
l ¼ 1, 3 amplitudes given in Eq. (45) and Eq. (46).
Below, we rewrite these equations in terms of the
Lorentz factor3 (γ). In all these expressions, we have used
the symbols Mp, and Md;1 to denote the masses of the
decaying (parent, p) state and the heavier decay product
(vector/tensor meson, daughter, d; 1) respectively.

G0 ¼
1

3
ffiffiffi
5

p ½gcð2γ2 þ 6γþ 7Þ þ gdMd;1Mpð6γ2 þ 18γþ 6Þ�

ð48Þ

G2 ¼ −
1

3

ffiffiffi
2

7

r
½gcð2γ2 þ 3γ − 5Þ þ gdMd;1Mpð3γ2 − 6γþ 3Þ�

ð49Þ

G4 ¼ 2

ffiffiffiffiffi
2

35

r
½gcðγ2 − 2γ þ 1Þ − gdMd;1Mpð2γ2 − 4γ þ 2Þ�

ð50Þ

G1 ¼−
ffiffiffiffiffi
1

15

r ffiffiffiffiffiffiffiffiffiffiffiffi
γ2− 1

q
Md;1½gvð2γþ 3Þþ gtMpMd;1ð4þ 6γÞ�

ð51Þ

G3 ¼
ffiffiffi
2

5

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q
Md;1½gvðγ − 1Þ þ gtMpMd;1ð2γ − 2Þ�

ð52Þ

These expressions are valid for the decay of any J ¼ 2
state to any J ¼ 2 or J ¼ 1 state, irrespective of their
charge conjugation quantum number or the states being
ground states or excited states. For example, the 2−− →
1þ−0−þ decays proceed with l ¼ 1, 3, and hence, the
corresponding PWAs will be given by Eq. (51) and
Eq. (52). Similarly, the 2−− → 2þþ0−þ decays proceed
with l ¼ 0, 2, 4 and their amplitudes will be given by
Eq. (48)–(50). The difference between these decays and the
ones studied in the present work lies in the value of the
coupling constants. The following observations are
in order:
(1) In the absence of the derivative/tensor interactions,

the PWAs depend only on the Lorentz factor.
(2) The amplitudes mentioned in Eq. (48)—Eq. (51) are

plotted in Fig. 2. The plots on the top row show the
contributions of the contact and derivative inter-
actions to the PWAs as functions of β. On the bottom
row are the corresponding vector and tensor con-
tributions to the vector mode of the pseudotensor
decay. All the higher partial waves (G1, G2, G3, and
G4) vanish as the momentum carried by the decay
products goes to zero (i.e., nonrelativistic limit). In
this limit, the S–wave has the amplitude proportional
to

ffiffiffi
5

p ðgc þ 2gdMpMd;1Þ. We infer from Eq. (51)
that the P–wave amplitude also vanishes in the
nonrelativistic limit, due to an overall multiplying
factor of

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
.

(3) In the ultrarelativistic limit (i.e., β → 1), the higher
partial waves dominate over the S–wave and the
P–wave. In this case, the D=S, G=S, and the F=P–
ratios become much larger than 1, as can be seen

3All the figures discussed in this subsection are plotted as
functions of β, which is related to γ as γ ¼ Ed;1

Md;1
¼ 1ffiffiffiffiffiffiffiffi

1−β2
p . This is

because the range of β is [0, 1], whereas that of γ is ½1;∞Þ.
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from Fig. 3. In the tensor mode of the decay of the
pseudotensor meson, the G=S–ratio becomes larger
than the D=S–ratio. The behavior of the PWAs in
this region is dominated by the derivative/tensor
interaction (i.e., higher order contributions to the
Lagrangian).

IV. COUPLING CONSTANTS, ISOSCALAR
MIXING ANGLES, AND THEIR CONSEQUENCES

In this section, we employ the formalism described in the
previous section in order to evaluate PWA for various nonet
members, to determine the coupling constants, the strange-
nonstrange mixing angle of the isoscalar members of a
given nonet, and to discuss their consequences.

A. JPC = 1+ +

In this subsection, we demonstrate the working of our
model by applying it to the JPC ¼ 1þþ nonet. In this sector,
the Lagrangian h as three parameters: the coupling con-
stants gAc and gAd , and the isoscalar mixing angle4 θa. The
mixing angle enters the Lagrangian through the scheme

� jf1i
jf01i

�
¼

�
cos θa sin θa
− sin θa cos θa

�� jn̄nia
js̄sia

�
; ð53Þ
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FIG. 2. Plots of the partial wave amplitudes (scaled appropriately) as functions of β: lower order terms (left), higher order terms (right);
tensor decay mode (above), vector decay mode (right). See Sec (III D) for a detailed description.
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FIG. 3. The D=S–, G=S–, and the F=P–ratios (left, center, and right respectively) as functions of β for representative values of
gd
gc
MpMd;1 and gt

gv
MpMd;1.

4Here, and everywhere else, the Lagrangian describing the
decays of the isoscalars is identical to that for the decays of the
isovectors, except for the isospin symmetry factors.
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where js̄sia and jn̄niað¼ 1ffiffi
2

p ðjūuia þ jd̄diaÞÞ, where the

subscript “a” represent axial-vector states, are the strange
and nonstrange isosinglet states respectively. We also
have three data points: the D=S–ratio and the width of
the a1ð1260Þ → ρπ decay, and the width of the f01ð1420Þ →
K�K decay. The PDG lists the D=S–ratio for
the a1ð1260Þ → ρπ decay as −0.062� 0.02 [1]. Since
the ρπ channel is the dominant channel for the
decay of the a1ð1260Þ, we take the total width
(420� 35 MeV) of the a1ð1260Þ as the width of this
channel. The width of the f01ð1420Þ → K�K decay can be
estimated as 44.5� 4.2 MeV, using the branching fraction
listed in the PDG [1]. Since the number of unknowns is the
same as the number of data points available, the values of
the parameters can be estimated without resorting to a
statistical fit. We, however, define the χ2 function so as to
calculate the errors in the values of the parameters and those
in the widths and PWA ratios. The input values are listed in
Table I and the values of the parameters so obtained are
listed in Table II.
We use the values of the parameters thus obtained to

estimate the D=S–ratios and the widths for the kaonic
decays of f1ð1285Þ and f01ð1420Þ. These values are listed
in Table III. Of these two decays, the f1ð1285Þ → K�K is
decay is sub-threshold and hence kinematically suppressed.
We perform a spectral integration over the final K� to
obtain the width and the D=S–ratio for this decay (see
Appendix A for details). We make the following
observations:
(1) The small value of theD=S–ratio for the 1þþ decays

indicate that the D–wave interactions, which are
predominantly derivative interactions, play only a
minor role. Correspondingly, the coupling constant
gAd has a small value (compatible with zero). In other
words, gac=gAd ≪ M2

a1 .
(2) Themixing of the isoscalars is an important feature of

QCD. The value of the 1þþ isoscalar mixing angle
obtained in the present work (θa ¼ ð24.9� 3.2Þ∘) is
consistentwith the experimental value (�ð24.0þ3.7

−3.4Þ∘)

reported in [45] as well as the lattice results
(ð31� 2Þ∘) [46] (see also Refs. [47,48] for compari-
son). The isosinglet mixing angles in the J ¼ 1 sector
are sensitive to the masses and mixing angle of the
corresponding kaons, if viewed through the Gell-
Mann-Okubo (GMO) mass relations. However, the
B̄0 → J=ψf1ð1285Þ and the B̄0

s → J=ψf1ð1285Þ de-
cays provide a much cleaner view into the mixing
between f1ð1285Þ and f01ð1420Þ. The ratio of the
branching fractions of these two decays is propor-
tional to tan2 θa and, more importantly, independent
of the kaonicmixing angle [45,49]. However, we note
that, thismeasurement cannot give us the information
regarding the sign of the mixing angle.

(3) We compare the values of the D=S–ratios we obtain
with those extracted using the 3P0 model [33]. A
brief review of the 3P0 model is presented in
Appendix B and the corresponding results are listed
in Table XIV. We see that, for the a1ð1260Þ → ρπ
decay, our value agrees with PDG average [1], where
as the 3P0 values are compatible with the values
obtained by the E852 [42], OPAL [43], and the
ARGUS [44] collaborations. Our value is nearly 2.5
times smaller than the 3P0 one. This carries over to
the decay of the isoscalar meson as well. Our
estimate for the D=S–ratio of the f01ð1420Þ →
K�K decay is nearly 3.5 times smaller than that
from the 3P0 model.

B. JPC = 1+ −
We now turn our attention to the decays of the pseudo-

vector mesons. The Lagrangian describing the 1þ− →
1−−0−þ decays is similar to the one written in Eq. (21).
Thus, we have three parameters: the coupling constants gBc
and gBd , and the isoscalar mixing angle θpv. Similar to the
case of axial-vectors, the mixing angle is defined through
the relation

� jh1i
jh01i

�
¼

�
cos θpv sin θpv
− sin θpv cos θpv

�� jn̄nipv
js̄sipv

�
; ð54Þ

TABLE I. Input values used to extract the values listed in
Table II.

Decay Width (MeV) D=S [1]

a1ð1260Þ → ρπ 420� 35 −0.062� 0.02
f01ð1420Þ → K�K 44.5� 4.5 − − −

TABLE II. Values of the parameters used in the decays of the
axial-vector mesons.

gAc (GeV) gAd (GeV−1) θa

3.89� 0.75 −0.32� 0.37 ð24.9� 3.2Þ∘

TABLE III. Predictions based on the parameters listed in
Table II. See text for details of the calculations.

Wdith (MeV)

Decay Theory PDG [1]

f1ð1285Þ → K�K 4.78� 0.57 not seen

D=S–ratio
Decay Theory PDG [1]

f1ð1285Þ → K�K −ð0.436� 0.87Þ × 10−3 − − −
f01ð1420Þ → K�K −0.0116� 0.005 − − −
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where the subscript pv implies psuedovector. The values of
these three parameters can be obtained using the width and
D=S–ratio of the b1ð1235Þ → ωπ decay, and the width of
the h01ð1415Þ → K�K decay. The values of the input
parameters are listed in Table IV. We note that, the PDG
does not list the partial widths of the decays of the 1þ−

mesons. Hence, we have used the values obtained in an
earlier work [17] for the width of the b1ð1235Þ → ωπ
decay, and the total width of the h01ð1415Þ as the width
of the h01ð1415Þ → K�K decay, as this is the only observed
channel [1]. The values of the parameters obtained
using these data and the associated errors are listed in
Table V.
(1) In the decays of the pseudovector mesons, the

D–waves interfere largely constructively with the
S–waves. It should be noted that there exists a small
phase difference of ð10� 5Þ∘ between the D–wave
and the S–wave in the b1ð1235Þ → ωπ decay [1].
However, we have not been able to reproduce
this phase difference. Further, in the absence of
the derivative interactions, the D=S–ratio of the
b1ð1235Þ → ωπ decay is negative and is nearly
equal to the corresponding ratio for the a1ð1260Þ →
ρπ decay. The nonlocal interactions introduced in
the form of the dimension–5 operators contribute a
large amount to the D=S–ratio to make it signifi-
cantly large and positive. This signifies that the
nonlocal interactions play a crucial role in the
pseudovector sector.

(2) The values of the parameters listed in Table V are
significantly different from the values derived in
Ref. [17]. This can be attributed to two reasons: the
introduction of the derivative interactions in the
pseudovector sector, and the mixing of the isosinglet
states. Derivative interactions were used to analyze
the decay of b1ð1235Þ in [29]. The coupling con-
stants g1 and g2 mentioned there have been rendered
dimensionless by the multiplying/dividing mass
term. The ratio of the two coupling constants used
in our work, gBd=g

B
c matches the corresponding value

from Ref. [29],5 as can be seen from Table II. The
absolute values of the coupling constants are slightly
different as we have included the isosinglet states as
well in our work as opposed to only the isotriplet in
[29]. However, as far as the D=S–ratio is concerned,
only the ratio of the coupling constants matters.
Further, we have taken the partial decay width for
the b1ð1235Þ → ωπ decay as 110� 7 MeV, instead
of the full width of 142� 9 MeV.

(3) The value of the coupling constant gBc is nearly twice
that of gAc , as shown in Table II. This is particularly
interesting, as the pseudovector states differ from the
axial-vector states only in the charge conjugation,
the decay products belong to the same set of nonets,
and the 3-momenta carried by the decay products in
both the cases are nearly the same.

(4) We also note that, in general, the influence of the
D–wave on the decay of the mesons reduces as the
3-momenta of the decay products decreases, as seen
by the decreasing values of the D=S–ratio. This is a
feature we observe irrespective of the spin of the
decaying state. This indicates that, when a meson
decays into a closely lying state (specifically, if the
associated 3-momentum is small) the angular dis-
tribution of the decay products is mostly spherical,
and one may not lose much information if the higher
partial waves are not included while analyzing the
experimental data.

(5) The mixing angle between the pseudovector iso-
scalars comes out to be larger than the value
extracted by the BESIII collaboration [50]. Our
estimate of the mixing angle is ð25.2� 3.1Þ∘, where
as the BESIII collaboration reports a nearly zero
mixing among the strange and nonstrange states
(θpv ¼ ð0.6� 2.6Þ∘), which agrees with the lattice
results (ð3� 1Þ∘) [46]. One should however note
that, the analysis of the BESIII is based on the mass
of the h1ð1415Þ and is very much sensitive to the
value of the kaonic mixing angle which, in turn, is
based on the GMO mass relations [51]. Thus, a
better avenue, similar to the case of the axial-vector,
is needed to get a good insight into the mixing of
pseudovector isosinglets. According to our analysis,
a significantly large mixing angle is necessary to
explain the smaller width of h1ð1415Þ. With the
mixing angle we obtain, the h1ð1415Þ can be seen as
a mixture of approximately 83% js̄si and 17% jn̄ni
and vice versa for the h1ð1170Þ.

(6) The parameters obtained have been used to calculate
the D=S–ratio and the width of the h1ð1170Þ → ρπ
decay as well as the D=S–ratio of the h01ð1415Þ →
K�K decay. These values are listed in Table VI. We

TABLE IV. Input values used to extract the values listed in
Table V.

Decay Width (MeV) D=S [1]

b1ð1235Þ → ωπ 110� 7[17] 0.277� 0.027
h01ð1415Þ → K�K 90� 15[1] − − −

TABLE V. Values of the parameters used in the decays of the
pseudovector mesons.

gBc (GeV) gBd (GeV−1) θpv

6.36� 0.72 −4.37� 0.37 ð25.2� 3.1Þ∘

5We point out a misprint in [29], i.e., the value of g1 must be
−8.37 instead of the −1.34 given in the article.

SHASTRY, TROTTI, and GIACOSA PHYS. REV. D 105, 054022 (2022)

054022-10



observe that the D=S–ratio for the h1ð1170Þ → ρπ
decay is marginally higher than that for the
b1ð1235Þ → ωπ decay even though the ωπ carry
significantly larger 3-momentum (348 MeV) than
the ρπ (303 MeV). This is because, the S–wave
amplitude in the b1ð1235Þ → ωπ decay is nearly
36% higher than that of the h1ð1170Þρπ decay
whereas theD–wave amplitude is only ∼33% larger.

(7) We compare our estimates of the D=S–ratios of the
decays of the pseudovector mesons with those
obtained from the 3P0 model. Unlike the values
for the decays of the axial-vector mesons, our values
are nearly in good agreement with those from the 3P0

model (see Appendix B and the Table XIV therein).

C. JPC = 2− +

We now turn our attention to the decay of the 2−þ
mesons. Here, we have analyzed two kinds of decays:
2−þ → 2þþ0−þ (tensor mode) and 2−þ → 1−−0−þ (vector
mode). The tensor decay mode is described by the
Lagrangian given in Eq. (31) and the vector mode by
Eq. (40). Each of the Lagrangians contain two parameters:
the tensor mode coupling constants gPTc and gPTd , and the
vector mode coupling constants gPTv and gPTt , the values of
which are listed in Table VII. The data used as inputs to
derive the values of these parameters are listed in
Table VIII. The decay widths listed in Table VIII have

been calculated using the branching fractions listed in the
PDG [1]. The values of the parameters can be estimated
similar to the case of the JP ¼ 1þ nonets. Using these
parameters, we calculate the ratios of the PWAs and the
widths for the π2ð1670Þ → f02ð1520Þπ, and π2ð1670Þ →
K�K decays. These values are listed in Table IX. We make
the following observations:
(1) In the absence of derivative interactions, the D=S–

ratio for the π2ð1670Þ → f2ð1270Þπ decay is an
order of magnitude smaller than the experimentally
extracted value. In the case of the π2ð1670Þ → ρπ
decay, in the absence of the tensor interactions, the
value of the F=P–ratio comes out to be less than
1=5th of the experimental value. Thus, the nonlocal/
tensor interactions contribute to a large extent to the
decay of the tensor mesons. A closer inspection of
the amplitudes of the individual partial waves
[Eq. (37)–(38)] show that the coupling constant
for the derivative interactions decides the sign of
each amplitude in case of the tensor decay mode.

(2) According to our analysis, the contributions of the
l ¼ 4 wave to the decay of tensor mesons is nearly
two orders of magnitude smaller than the l ¼ 2
waves. But, the D–waves and the G–waves interfere
destructively. Here again, the nonlocal interactions
play an important role in deciding the phases of
these waves relative to the S–wave.

(3) The J ¼ 2 isosinglets pose a special problem. The
nature of η2ð1870Þ is still a mystery. The absence of
evidence for the K�K decay mode makes it difficult
to interpret it as the heavier sibling of the η2ð1645Þ
[14,52]. Without this state, though, the 2−þ nonet is
incomplete. Further, the angle of mixing between the
two isosinglet is still an open problem. The mixing
angle (βpt), given by the scheme

� jη2i
jη02i

�
¼

�
cos βpt sin βpt
− sin βpt cos βpt

�� jn̄nipt
js̄sipt

�
ð55Þ

where pt stands for pseudotensor, is expected to be
large in this sector as the 2−þ mesons are hetero-
chiral states [30]. A recent work [53] reported that
the mixing angle for the η2ð1645Þ and η2ð1870Þ to
has to be larger than the value (14.8°) derived using
the GMO relations to properly fit the decay widths.
The value of the mixing angle was found to be
−42°[53]. However, this failed to reproduce the ratio
of branching fractions of the decays η2ð1870Þ →
a2π to η2ð1870Þ → f2η. The value of this ratio
calculated in Ref. [53] was 23.5, which is an order
larger than the value 1.7� 0.4 accepted by PDG [1]
(but, close to the value extracted by the WA102
collaboration [54]). For the present analysis, we
proceed assuming that the η2ð1870Þ is the isosinglet
of the pseudotensor nonet. The Lagrangian that

TABLE VI. Predictions based on the parameters listed in
Table V. See text for details of the calculations.

Width (MeV)

Decay Theory PDG [1]

h1ð1170Þ → ρπ 146� 14 seen

D=S–ratio
Decay Theory PDG [1]

h1ð1170Þ → ρπ 0.281� 0.035 − − −
h01ð1415Þ → K�K 0.021� 0.001 − − −

TABLE VII. Values of the parameters used in the decays of the
pseudotensor mesons.

gPTc (GeV) gPTd (GeV−1) gPTv gPTt (GeV−2)

39� 13 −8.16� 2.95 −9.44� 1.24 2.41� 0.50

TABLE VIII. Input values used to extract the values listed in
Table VII.

Decay Width (MeV) D=S [1] F=P [1]

π2ð1670Þ → f2ð1270Þπ 146.4� 9.7 −0.18� 0.06 × × ×
π2ð1670Þ → ρπ 80.6� 10.8 × × × −0.72� 0.16
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describes the decays of these isoscalars are similar to
the ones given in Eq. (31) and Eq. (40), except for
the mixing and the isospin factors. In Fig. 4, we have
plotted the ratio of the widths of the η2ð1645Þ →
a2ð1320Þπ and η2ð1645Þ → K�K decays as func-
tions of the mixing angle. The dashed horizontal line
in the Fig. 4 represents the experimental value of this
ratio (0.07� 0.03) [1,55]. We see that two values of
mixing angle can reproduce this data: βpt ¼
−ð44.2þ11

−15Þ∘ and þð67.3þ2.5
−4.1Þ∘. The uncertainties

in the allowed values of βpt arise from the uncer-
tainties in the experimental data. Calculating the
widths of these decays of the η2ð1645Þ will allow us
to narrow down the value of the mixing angle
further. The values of the decay widths, given in
Table X, show that the positive mixing angle under-
estimates the width of the η2ð1645Þ by nearly a
factor of 3.5. Assuming that the a2π channel is the
dominant channel for the decay of the η2ð1645Þ, the
sum of its width along with that of the K�K channel
must be close to the total width of the η2ð1645Þ. This
sum comes out be ≈198� 15 MeV for the negative
mixing angle and ≈58� 5 MeV for the positive
angle. These observations hint that the isoscalar
mixing angle in the 2−þ sector must be negative and
close to 45°, consistent with the earlier study
reported in Ref. [53].

(4) The ratios of the PWAs for the above discussed
decays of the η2ð1645Þ are listed in Table XI. These
ratios are independent of the mixing angle. It can be

seen from the table that the ratios of PWAs have the
same behavior as of those for the decays of
the π2ð1670Þ. The D–waves are less pronounced in
the decay of the η2ð1645Þ to the a2π compared to the
case of π2ð1670Þ → f2π as the η2ð1645Þ is margin-
ally lighter than its isovector sibling and the decay
product is slightly heavier than f2ð1270Þ resulting in
the 3-momentum carried by the a2π being smaller.
But, in the vector mode of the decay, theF=P–ratio is
comparable to that of the π2ð1670Þ → K�K, as the
3-momenta are nearly the same.

(5) We plot the ratio of the widths of the η2ð1870Þ →
a2ð1320Þπ and η2ð1870Þ → f2ð1270Þη decays in
the Fig. 5. The value of this ratio was reported as
1.7� 0.4 in the PDG [1]. From the Fig. 5, we see
that, for this ratio to be small, the mixing angle must
be close to zero. It should be noted that, a conven-
tional q̄q model of the η2ð1870Þ predicts the a2π,
f2η, and the K�K channels to be dominant and the
mixing angle to be close to zero [56].

(6) As shown in the Fig. 5, the local and nonlocal
interactions taken separately contribute nearly iden-
tically. However, when combined, the width of the
f2ð1270Þη channel (which appears in the denomi-
nator) becomes very small leading to a large ratio
except when the mixing angle is very small. When
the mixing angle takes the values mentioned in point
3 above, the decay widths of the three channels of
η2ð1870Þ become significantly smaller than its total
width. Specifically, the width of the f2ð1270Þη

TABLE IX. Predictions based on the parameters listed in Table VII. See text for details of the calculations.

Decay Width (MeV) D=S G=S F=P

π2ð1670Þ → f2ð1270Þπ Input Input 0.0042� 0.0014 × × ×
π2ð1670Þ → f02ð1520Þπ 0.43� 0.21 0.00925� 0.0031 −ð7.49� 2.7Þ × 10−6 × × ×
π2ð1670Þ → K�K 5.11� 1.4 × × × × × × −0.447� 0.099
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FIG. 4. Plot of ratio of the partial widths of the two modes of decays of η2ð1645Þ discussed in the text, as a function of the mixing
angle: (left) including higher order terms and (right) without the higher order terms. The shaded region represents the uncertainty in the
experimental value.
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channel becomes very close to zero (see Table X).
On the other hand, if the mixing angle is taken to be
small and nonzero (βpt ¼ −1.17° or βpt ¼ 1.42°),
then the width of the η2ð1645Þ → a2π decay is
approximately 368 MeV, which is nearly twice
the total width of the η2ð1645Þ. Thus, it appears
from our analysis that the heavier sibling of the
η2ð1645Þ cannot have a mass close to the mass of the
η2ð1870Þ. This indicates that the η2ð1870Þ is not a
member of the 2−þ q̄q-nonet, consistent with the
earlier analyses [10,33,52,57].

(7) Finally, we compare our results with the results from
the 3P0 model (Table XIV). We observe that accord-
ing to the 3P0 model, all the allowed partial waves
(i.e., the S–, D–, and the G–waves) interfere con-
structively in the tensor mode of the decay of the 2−þ
mesons. However, this is in contrast with the exper-
imental observations, where, the D–waves interfere
destructively with the S–waves as indicated by the
negativeD=S–ratio. Unfortunately, no information is
available about the nature of the G–waves. But for
this difference in the sign of the ratios,we find that our
value for the π2ð1670Þ → f2ð1270Þπ decay agrees
very well with that from the 3P0 model. However, for
the other two decays we observe large deviations
(factors of 1.5 and 4) from the values of the 3P0

model. In the vector decay mode, our values agree
fairly well with those of the 3P0 model, assuming
similar errors in both the sets of values.

D. Effects of form factors

The virtual cloud of quarks and antiquarks surrounding
the constituent quarks and/or antiquarks enhance their
masses and contribute significantly to the charge radii of

the hadrons and hence give rise to finite sizes of hadrons
[58,59]. The nonpointlike nature of the mesons brings forth
the question of whether a tree-level analysis captures the
physics of their decays effectively. In the absence of a
fundamental theory or a systematic effective theory, we are
forced to use empirical form factors to include the finite-
size effects on the decays. Various types of form factors
have been used in the past to model the structure of the
mesons including, but not limited to Gaussian, exponential,
multipole, etc. Specifically, the Gaussian form factors have
been used in nonrelativistic quark models to study the
decays and interactions of mesons [33,60], the interactions
between the nucleons [61,62] as well as in field theoretic
models to study line shapes of various mesons [63]. We
make use of the Gaussian form factor of the form [33,60]

Fðk; βÞ ¼ e
− k2

12β2 : ð56Þ

The form factor contributes to the decay width in the form

ΓF ¼ ΓjFðk; βÞj2; ð57Þ

where ΓF and Γ are the decay widths with and without
form factors respectively. This is based on the assumption
that the decay amplitudes (iM) must be modified to
iMFðk; βÞ. Thus, the ratios of PWAs are unaffected by
the inclusion the form factor. The typical value of β used
in the quark model calculations (e.g., the 3P0 model) is
0.4–0.5 GeV [60]. In the present work, we use the value
β ¼ 0.4 GeV. We then extract the values of the parameters
using the procedure described in the previous subsections.
The values of these parameters are listed in Table XII. Since
the value of the form factor for nonzero 3-momentum is
always less than one, the parameters become slightly larger
when form factor is included. However, the new values and
the old values overlap significantly. Thus, even though the
form factor modifies the decay widths, the change is not
drastically large.
The need to include nonlocal/tensor interactions to

explain the properties of the mesons discussed in this
paper tells us that the internal dynamics of the mesons play
a crucial role in their decays. Naively speaking, the need for
the higher dimension operators indicate the possibility of
a scale associated with these processes. Along these lines
we would like to note that, the magnitude of the ratios
of the parameters gPTv =gPTt is approximately 3.92 GeV2

(∼1.5M2
π2) for the pseudotensor coupling constants. For the

tensor modes, the ratio jgPTc =gPTd j is 4.78 GeV2 (∼2M2
π2) for

TABLE XI. The ratios of the PWAs for the decays of η2ð1645Þ discussed in the text.

Decay D=S G=S F=P

η2ð1645Þ → a2ð1320Þπ −0.089� 0.029 0.0011� 0.0004 −−
η2ð1645Þ → K�K −− −− −0.32� 0.07

TABLE X. Widths of the of decays of η2ð1645Þ and η2ð1870Þ
studied in this work. The uncertainties are from the uncertainties
in the coupling constants. The uncertainties in the mixing angle
have not been considered.

Decay

Width (MeV)

βpt ¼ −ð44.2þ11
−15 Þ∘ βpt þ ð67.3þ2.5

−4.1Þ∘
η2ð1645Þ → a2π 185� 12 54.1� 3.6
η2ð1645Þ → K�K 12.9� 3.28 3.78� 0.95
η2ð1870Þ → a2π 50.7� 9.2 87� 23
η2ð1870Þ → f2ð1270Þη 0.16� 0.84 0.56� 2.1
η2ð1870Þ → K�K 0.65� 0.15 15.8� 3.2
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pseudotensor coupling constants. Similarly, the corre-
sponding ratio in the pseudovector sector is jgBc =gBd j is
approximately 1.52 GeV−2 (∼M2

b1
). From these, we deduce

that, for the pseudotensors gPTv ∼M2
PTg

PT
t , gPTc ∼M2

PTg
PT
d ,

and gBc ∼M2
Bg

B
d for the pseudovectors, implying that non-

local interactions play an important a role.

V. SUMMARY AND OUTLOOK

In this work, we have studied the vector decays of the
axial-vector, pseudovector, and pseudotensor mesons, and
the tensor decays of the pseudotensor mesons. We have
derived the partial wave amplitudes for these decays using
the covariant helicity formalism. We have demonstrated
that the nonlocal interactions play a crucial role in these
decays, except in the decays of the axial-vector mesons,
where, contact interactions can reproduce the decay widths
and the ratio of the PWAs up to a reasonable accuracy. The
partial decay widths can be reproduced within the limits of
experimental errors and theoretical uncertainties using our
approach.
We also have estimated the mixing angle between the

isosinglets in the J ¼ 1 sector. The angle of mixing
between the axial-vector isosinglets agrees with the exper-
imentally derived value. But, our model disagrees with the
experiments in the pseudovector sector.

Similarly, in the decays of the pseudotensor isovectors,
the derivative/tensor interactions play a major role and are
essential to describe the ratios of the PWAs. We have also
studied the isoscalar mixing and we find that the mixing
angle must be large and negative (≈ − 44°). Further, we
find that the interpretation of the η2ð1870Þ as the heavier
partner of the η2ð1645Þ needs further studies. More
information about the η2 states, in the form of the values
of the branching ratios, can help us pin down the mixing
angle as well as the nature of the η2ð1870Þ.
As reported in [64], the decay of the π1ð1600Þ into

b1ð1235Þπ is know to receive a significant contribution
from the D–waves. A study along these lines can help in
revealing the nature of the hybrid. Also of interest are the
J ¼ 1, 2 kaons, which are known to exhibit internonet
mixing. Investigation of the partial waves of the kaonic
decay can possibly settle the debate on the angle of mixing
between these states [65].
Moreover, in the future one can extend the present study

in various directions, e.g., to higher spin as J ¼ 3 [66,67],
where the results can be compared to the lattice results [68],
and to baryonic decays. Quite interestingly, the study of
PWA is not confined to the strong interaction only. Another
important future works include the link of PWA to loop
effects, thus going beyond tree-level studied in this work.
This can be achieved by taking into account the widths of
the unstable states, both in the initial and the final states.
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FIG. 5. Plot of the ratio partial widths of the two modes of decays of η2ð1870Þ discussed in the text: (above, left) as a function of
mixing angle; (above, right) with the sign of the coupling constant for derivative interaction flipped; (below) contributions of the local
(left) and nonlocal interactions (right) as a function of mixing angle.
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In conclusion, partial wave analysis of the decay proc-
esses can provide deeper insights into the structure and
properties of conventional mesons as well as exotic states
and can be of great use in future studies of resonances.
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APPENDIX A: UNSTABLE STATES IN
DECAY PRODUCTS

Some of the decays discussed in this paper involve
unstable final states, e.g., a1ð1260Þ → ρπ, h1ð1170Þ → ρπ,
and π2ð1670Þ → ρπ. Modeling these decays using only
the tree level diagrams, prima facie, does not capture the
complete dynamics of the decay process. The instability of
the final state can be taken into account by integrating
the decay width weighted by the spectral function of the
unstable state. Accordingly, for the decay process A → BC
with B unstable, the actual decay width can be written as

ΓT ¼
Z

∞

sth

dsΓtreeðsÞdBðsÞ; ðA1Þ

where dBðsÞ is the spectral function of B,
ffiffiffi
s

p ¼ MB, and
sth is the threshold for the decay of B. In spite of this
apparent shortcoming, we find that the decay widths do not
vary significantly from their tree-level values, as we show
using the three decays mentioned earlier.
Typically, the Breit-Wigner form of the spectral function

is used to model the unstable state. In this work, we use a
different parametrization of the spectral function, called the
Sill distribution, which, is normalized to unity and has a built-
in threshold [69]. In all the example decays, the final unstable
states is the ρ–meson which decays primarily into two pions.

Thus, it is sufficient if we use the single channel Sill
distribution. The explicit form of distribution function is [69]

dB¼ρðsÞ ¼
1

π

Γ̃ ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sth

p
ðs −m2

ρÞ2 þ ðΓ̃ ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sth

p Þ2 ; ðA2Þ

where Γ̃ ¼ Γρmρffiffiffiffiffiffiffiffiffiffiffi
m2

ρ−sth
p ,mρ is the mass of the ρ–meson and Γρ is

its total width. The decay width mentioned in the integrand
of Eq. (A1) is given by the Eq. (30) and Eq. (47) with the
mass Mρ ¼

ffiffiffi
s

p
. We list the decay widths obtained in the

Table XIII. The errors listed are based on the assumption that
the fractional errors before and after spectral integration are
the same. The widths of the decays do not vary greatly after
spectral integration.

APPENDIX B: COMPARISON WITH
THE 3P0 MODEL

In this Appendix, we compare our results with those
obtained using the 3P0 model. Before presenting the results,
we briefly describe the 3P0 model, and list the PWAs given
in [33].
The 3P0 model is essentially a flux-tube breakingmodel. In

this model, the mesons are assumed to have quark-antiquark
pairs with chromoelectric or chromomagnetic flux lines
between them. The strong decays of these mesons occur
when these flux tubes break and create a quark-antiquark pair.
The two quarks and two antiquarks then rearrange into two
quark-antiquark pairs which are interpreted as two mesons
[70]. The Hamiltonian for such a decay is based on the
Hamiltonian of the lattice QCD and is given by:

Ĥjr⃗1; r⃗2i ¼ γFðr⃗; w⃗ÞΨ†ðR⃗Þα⃗ · ∇↔ΨðR⃗Þjr⃗1; r⃗2i; ðB1Þ

where ΨðR⃗Þ is the wave function of the q̄q pair created at
position R⃗ with (quark model) quantum numbers 3P0, γ is a

TABLE XII. Values of the parameters when form factor is included.

gAc (GeV) gAd (GeV−1) θa gBc (GeV) gBd (GeV−1) θpv

4.08� 0.79 −0.34� 0.39 ð26.1� 3.0Þ∘ 6.67� 0.75 −4.58� 0.38 ð26.5� 3.0Þ∘
gPTc (GeV) gPTd (GeV−1) gPTv gPTt (GeV−2)

41� 13 −8.51� 3.10 −11.1� 1.46 2.83� 0.59

TABLE XIII. Comparison of the tree-level widths of the three
decays with the integrated widths.

Decay
Tree-level

width (MeV)
Integrated

width (MeV)

a1ð1260Þ → ρπ 420� 35 354� 30
h1ð1170Þ → ρπ 146� 14 142� 14
π2ð1670Þ → ρπ 80.6� 10.8 93.5� 13
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parameter that captures the strength of flux-tubebreakingand,
in the wide flux-tube approximation, the function Fðr⃗; w⃗Þ ¼
1 [71]. In the nonrelativistic limit, the Hamiltonian for the
decay P → D1D2 reduces to

hD1D2jĤjPi ¼ γ

Z
d3rd3y

ð2πÞ3=2 e
iðp⃗1·r⃗Þ=2ΨPðr⃗Þhσ⃗i

× ði∇⃗1i∇⃗2 þ p⃗1ÞΨ�
1

�
r⃗
2
þ y⃗

�
Ψ�

2

�
r⃗
2
− y⃗

�
;

ðB2Þ

where the subscripts P, 1, and 2 represent the parent and
the product states respectively, hσ⃗i is the expectation value
of the Pauli spin-vector for the 3P0 q̄q pair, and p⃗1 is the
3-momentum of the jD1i state [33]. In the above expression,
the wave functions of the states involved are taken as
Harmonic oscillator wave functions, which contain the
oscillator size parameter β. The two parameters (γ and β)
are fitted to the decay widths of the mesons. We have used
value β ¼ 0.4 GeV, as given inRef. [33]. Since γ is an overall
factor multiplying the decay amplitude, the PWAs depend
only on the oscillator size parameter. The amplitudes for the
decay of the axial-vector and pseudovector mesons to vector
and pseudoscalar mesons are given by [33]

Alð1þþ → 1−−0−þÞ ¼
8<
:

fS l ¼ 0

−
ffiffi
5
6

q
fD l ¼ 2

ðB3Þ

Alð1þ− → 1−−0−þÞ ¼
8<
:

− 1ffiffi
2

p fS l ¼ 0

−
ffiffi
5
3

q
fD l ¼ 2

; ðB4Þ

where

fS ¼
25ffiffiffiffiffi
35

p
�
1 −

2

9

k2

β2

�
ðB5Þ

fD ¼ 26

34
ffiffiffi
5

p k2

β2
: ðB6Þ

For the decaysof thepseudotensormesons, the amplitudes are
given by

Alð2−þ→2þþ0−þÞ¼

8>>>>>><
>>>>>>:

− 26ffiffiffiffi
37

p
�
1− 5

18
k2

β2
þ 1

135
k4

β4

�
l¼0

−
ffiffiffiffiffiffiffi
2935
311

q
k2

β2

�
1− 4

105
k2

β2

�
l¼2

−
ffiffiffiffiffiffi
213

3117

q
1
5
k4

β4
l¼4

ðB7Þ

Alð2−þ → 1−−0−þÞ ¼
8<
:

1
2
fP l ¼ 1

−
ffiffi
7
5

q
fF l ¼ 3

; ðB8Þ

where

fP ¼
ffiffiffiffiffiffi
213

p

34
k
β

�
1 −

2

15

k2

β2

�
ðB9Þ

fF ¼ −
26ffiffiffiffiffiffiffiffiffiffi
3935

p k3

β3
: ðB10Þ

These amplitudes are related to the decay amplitude through
the relation,

M ¼ γffiffiffiffiffiffiffiffiffiffiffi
βπ1=2

p Ale−k
2=16β2 ; ðB11Þ

where the final exponential factor represents a form factor for
the decay process. The ratios of the PWAs obtained using
these expressions are listed in Table XIV.

TABLE XIV. Ratios of the PWAs obtained from the 3P0 model compared to the present calculations.

Decay

Present calculation 3P0 model [33]

D=S G=S F=P D=S G=S F=P

a1ð1260Þ → ρπ −0.062 −0.147
f01ð1420Þ → K�K −0.0076 −0.026
b1ð1235Þ → ωπ 0.277 0.284
h1ð1170Þ → ρπ 0.281 0.207
h01ð1415Þ → K�K 0.021 0.039
π2ð1670Þ → f2ð1270Þπ −0.18 0.0042 0.185 0.0065
π2ð1670Þ → f02ð1520Þπ 0.0093 −7.49 × 10−6 0.00697 2 × 10−5

η2ð1645Þ → a2ð1320Þπ −0.089 0.0011 0.378 0.0026
π2ð1670Þ → ρπ −0.72 −0.653
π2ð1670Þ → K�K −0.447 −0.251
η2ð1645Þ → K�K −0.32 −0.193
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