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We describe a heavy and exotic tetraquark state as a holographic molecule, by binding the lightest heavy-
light meson ð0−; 1−Þ multiplet to a flavored sphaleron, in the bulk of the Witten-Sakai-Sugimoto model.
Bound tetraquark states emerge as Efimov states in the heavy quark limit, with a binding energy for a charm
tetraquark comparable to the Tþ

cc recently reported by the LHCb collaboration, but with a substantially
smaller width, for a large but finite ’t Hooft coupling. Fixing the parameters of the model at the empirical
mass of Tþ

cc, allows for a prediction of the bindings of the undiscovered bottom-charm and bottom
tetraquarks.
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I. INTRODUCTION

Hadrons composed of heavy (Q) and light (q) quarks
have received considerable interest lately, due to the flurry
of results stemming from electron and hadron colliders
[1–6]. These hadrons embody in a remarkable way some
key aspects of QCD: the spontaneous breaking of chiral
symmetry for the light quarks, and a heavy quark spin flip
symmetry [7,8]. In the heavy quark mass limit, a heavy
hadron with spin up is degenerate with its counterpart with
spin down, and the resulting doublets with even and odd
parity are chiral partners of each other [9,10]. The result
is the chiral doubling phenomenon first observed by the
BABAR collaboration [11], and then confirmed by the
CLEO collaboration [12]. Chiral doubling of heavy-light
hadrons is likely more remarkable with b-quarks at LHCb
and BESIII.
The many discoveries by several collaborations have

led to renewed interest in exotic heavy-light hadrons.
Spectacular discoveries are the χc1ð3872Þ, directly at the

D�0 and D0 threshold (minimal quark content cc̄qq̄),
the family of Z states Zcð3900; 4020; 4050; 4200; 4430Þ
(minimal quark content cc̄ud̄), some of their strange
cousins Zcsð3985; 4000; 4220Þ, and bottom analogues
Zbð10610; 10650Þ. These exotica (tetraquarks) are thought
to be bound deuteronlike molecules of the type ðQq̄ÞðQ̄qÞ
[13–20], although alternative explanations have been
presented [8,21–25]. In the molecular scenario, the chemi-
cal-like bonding is thought to be mediated mostly by pion-
exchange, and perhaps at the origin of the newly discovered
and exotic charmed baryon-meson molecules of the type
ðQ̄qÞðQqqÞ such as the triplet Pcðð4312Þ; ð4440Þ; ð4457ÞÞ
and the newly noticed Pcð4380Þ, (although at the level
of 3-4σ only), all with a minimal, pentaquark content
cc̄uud. Their strange cousin Pcsð4459Þ has been also
discovered. Note that all these states have a hidden heavy
flavor.
The recent discovery of doubly heavy baryons of the ccq

type suggests that an approximate Savage-Wise symmetry
[26] may be at work, where a heavy and compact diquark
QQ would be equivalent to a heavy anti-quark Q̄. This
heavy diquark-anti-quark supersymmetry allows for mass
relations not only between heavy baryons and mesons such
as Q̄q and QQq, but also between heavy baryons and
tetraquarks with hidden heavy flavor such as Qqq and
Q̄ Q̄ qq. The recent quark model estimates for this last state
are remarkable [27,28]. It is suggested that for a compact
b̄ b̄ qq tetraquark, the binding energy is significant and
about 200 MeV. If confirmed, this would be the first,
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nonmolecular and truly exotic tetraquark state outside the
standard quark model classification.
Exploratory lattice QCD simulations appear to support the

quark model prediction of a strongly bound b-tetraquark
[29]. Given the difficulty to analyze QCD in the confining
regime, it is not easy to identify the mechanism at work in
the formation of these exotics. In recent years, holography
has proven to be a useful framework for discussing
QCD for a large number of colors Nc and strong coupling

λ]30–32 ]. For hadrons, the formulation confines and
breaks spontaneously chiral symmetry through geometry
[33–38]. Its extension to a heavy quark exhibits explicit
heavy-quark symmetry [39] (for earlier approaches see
[40,41]). Light holographic baryons are instantons in
bulk, while heavy holographic baryons are bound states
of a heavy meson multiplet to the instanton. This mecha-
nism is the dual of the Callan-Klebanov mechanism [42]
in the context of the Skyrme model [43] which we will
review for clarity below. For completeness, we note that
tetraquarks in the context of a holographic string con-
struction have been discussed in [44,45], and using light
cone holographic QCD in [46].
In this work we revisit our recent holographic analysis of

the charm and bottom tetraquark states [47], by refining
their mass analysis and assessing their strong decay widths.
We take advantage of the fact, that the first open charm
exotic state has just been discovered. Our results are shown
to be compatible, with the newly reported charmed tetra-
quark Tþ

cc by LHCb as shown in Fig. 1, for a large value of
the ’t Hooft coupling. Using this experimental value, more
precise estimate of the masses are given for the mixed
charm-bottom and bottom tetraquark states, yet to be
observed. We also provide generic arguments, why the
width of the Tþ

cc is so narrow.

II. STRANGE SOLITONIC BARYONS

In the large number of colors limit, QCD truncates to an
effective theory of weakly coupled mesons where baryons
are solitons. The meson effective theory is chiefly chiral,
consisting of the light mesons. Once the effective mesonic
description is fixed, the baryonic description follows with
no new parameters. The soliton is usually characterized by
a moduli following from the set of zero modes associated to
the classical solution. The quantum numbers of the baryon
follows by quantizing the moduli using the so-called
collective coordinate method. This construction works well
for two light flavors up-down, but when extended to
strangeness, the method fails phenomenologically.
Callan and Klebanov [42] argued that the strange mass is

somehow large, and therefore a strange quark as a kaon
cloud is more likely to bind to the soliton owing to its short
Compton wavelength. Specifically, the fast vibrational
modes (kaon) do not decouple from the slow rotational
moduli (soliton), and generate an effective potential (non-
Abelian Berry phase) in the Born-Oppenheimer approxi-
mation. As a result, the spin of the rotating soliton is shifted
by the isospin of the kaon. This construction fares better
phenomenologically.
This construction has been extended to charm and

bottom heavy baryons [49,50]. The difference with strange-
ness though is that the partners of the kaon, i.e.,
ð0−; 1−Þ ¼ ðDðBÞ; D�ðBÞÞ, are degenerate leading to a
degenerate baryon multiplet ð1

2
þ; 3

2
þÞ, in the heavy quark

limit. Parity doubling suggests a nearby baryon multiplet
ð1
2
−; 3

2
−Þ by binding to the chiral partners ð0þ; 1þÞ ¼

ðD̃ðBÞ; D̃�ðBÞÞ [51].

III. HOLOGRAPHIC LIGHT BARYONS

In holographic QCD, confinement and chiral symmetry
breaking can be addressed simultaneously for instance in
the Witten-Sakai-Sugimoto model [33]. Confinement fol-
lows from a stack of colored D4-branes, in the double limit
of a large number of colors and strong coupling, with the
string tension fixed by the apparent horizon. The sponta-
neous breaking of chiral symmetry arises from the geo-
metrical fusion of a pair of flavored D8 − D8-branes in the
probe approximation. The model with only two parameters-
the brane tension κ and the Kaluza-Klein compactification
scale MKK- is in remarkable agreement with phenomenol-
ogy [52].
Holographic baryons are flavor valued instantons in the

probe D8 − D8 branes. Their topological charge is iden-
tified with baryon charge, and their quantization follows
from the quantization of the instanton moduli in bulk. Most
noteworthy is the fact that the instanton size or equivalently
the baryon core is fixed by geometry or equivalently the
BPS condition, making it independent of the nature of the
mesons retained and/or their derivatives thereby solving a
key problem in the Skyrme model.

FIG. 1. Newly measured isoscalar charmed Tþ
cc tetraquark by

LHCb [48].
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The quantum moduli for the flavored instanton is the
standard R4 × R4=Z2 (flat space) [33]. We focus on R4=Z2

which corresponds to the size and global flavor SU(2)
orientations, and denote by yI ¼ ρaI the coordinates on
R4=Z2, with the SU(2) orientations parametrized by aI
subject to the normalization a2I ¼ 1, and ρ the instanton
size. Note that the instanton size ρ is a dynamical variable
playing the role of the radial coordinate in moduli space.
The collective Hamiltonian in polar coordinates on the
R4=Z2 moduli for the light holographic baryon, is [34]

Hk ¼ −
1

2mk

�
1

ρ
3
2

∂2
ρρ

3
2 þ 1

ρ2
ð∇2

S3 − 2mkQðkÞÞ
�
þ 1

2
mkω

2
kρ

2

ð1Þ

All scales are in units of the KK scale MKK which is set to
1. The k ¼ 1 labels the instanton path with topological
charge 1. The inertial parameters are mk¼1 ¼ 16π2aNc,
ω2
k¼1 ¼ 1

6
. The charge Qðk ¼ 1Þ ¼ Nc=ð40π2aÞ with

a ¼ 1=ð216π3Þ, characterizes the U(1) topological self-
repulsion within the instanton. The first two contributions
in (1) are the kinetic Laplacian in R4, and the last harmonic
contribution is the gravitational attraction induced by
the warped holographic direction. A detailed derivation
of (1) can be found in [34] (see Eq. 5.9) and will not be
repeated here.
The eigenstates of (1) are TlðaÞRln, with TlðaÞ as

spherical harmonics on S3 with ∇2Tl ¼ −lðlþ 2ÞTl.

Under SOð4Þ ∼ SUð2Þ × SUð2Þ they are in the symmetric
ðl
2
; l
2
Þ representations, with the two SU(2) identified by the

isometry aI → VLaIVR. The left factor is the isospin
rotation and the right factor is the space rotation with
quantum numbers I ¼ J ¼ l

2
. For instance the proton with

spin-up carries a wave function RðaÞ ∼ ða1 þ ia2Þ with a
rotational tower (M1 ¼ 8π2κ)

M ¼ M1 þ
�ðlþ 1Þ2

6
þ 2

15
N2

c

�1
2 þ 2ffiffiffi

6
p ð2Þ

IV. HOLOGRAPHIC EXOTIC BARYONS

Recently, two of us extended the holographic approach
to the description of heavy-light mesons and baryons with
manifest chiral and heavy quark symmetry [39]. Heavy
baryons emerge by binding a 5-dimensional ð0−; 1−Þ spin-1
multiplet to the flavored instanton in bulk. In the heavy
mass limit, the spin-1 meson transmutes to a spin-1

2
zero

mode, leading to a rich heavy baryon spectrum including
exotics, thereby extending the Callan-Klebanov mecha-
nism to holography.
More specifically, the instanton moduli described above

is extended to include a spin-1
2
Grassmannian χ to account

for the spin 1 → 1
2
transmutation following the binding. The

ensuing moduli for the exotic baryonic molecule follows
also from (1) with the general charge

QðkÞ ¼ Nc

40π2a

�
qðkÞ þ λ

mH

5α0ðkÞ
432π

NQ

Nc
þ 30α1ðkÞ

NQ

Nc
þ 5α2ðkÞ

N2
Q

N2
c

�
ð3Þ

with NQ ¼ χ†χ. For the instanton qð1Þ ¼ 1 (topological
charge) and α0ð1Þ ¼ 0 (self-dual). α1ð1Þ ¼ − 1

8
character-

izes the magnetic interaction of the heavy multiplet to the
instanton, and α2ð1Þ ¼ 1

3
captures the U(1) repulsion

between the bound heavy mesons. NQ ¼ 1; 2;… counts
the number of bound mesons. More details regarding the
charge (3) for k ¼ 1 can be found in [39] [last reference
Eq. (40)].
The binding of any number of heavy mesons and anti-

mesons follows from the substitution NQ → NQ − NQ̄. In
general, the isospin (I) and spin (J) now decouple, with the
identification [39]

J ¼ −Iþ χ†QTχQ ð4Þ

The isospin-spin quantum numbers for the heavy exotic
baryons are now shifted

IJ ≡
�
l
2
;
l
2

�
→

�
l
2
;
l
2
⨁
NQ

i¼1

1

2

�
ð5Þ

V. HOLOGRAPHIC HEAVY TETRAQUARK

The predicted tetraquark in the context of the quark
model is more challenging to describe using a topological
molecular formulation since it is a boson and not a fermion.
Here we propose to bind a heavy multiplet ð0−; 1−Þ to a
sphaleron path as a topological tetraquark molecule, in
total correspondence with the heavy holographic baryons
described above. In the process quantum numbers get
transmuted. This remarkable construction provides a topo-
logical realization for the Savage-Wise symmetry [26]
whereby a fermion is continuously deformed to a boson
along the sphaleron hill, in the holographic dual approach.
With this in mind, we observe that the instanton as an

O(4) gauge configuration belongs to a class of tunneling
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paths with fixed Chern-Simons number, that cross the
sphaleron hill, with the instanton at the bottom and the
sphaleron at the top. These configurations are given by
periodic elliptic functions that solve the same Yang-Mills
equation with maximal O(4) symmetry, with a tunneling
period fixed by a parameter k [53–55]. For k ¼ 1 the period
is infinite and the solution is an instanton with Chern-
Simons or topological charge 1, and for k ¼ 0 the period is
finite and the solution is a sphaleron with Chern-Simons
1
2
[47].
The exact form of this family of solutions and their

period will not be necessary for the rest of the paper as only
the values of the parameters entering the charge (3)
for k ¼ 0 (sphaleron path) are needed, i.e., α0;1;2ð0Þ≈
ðþ6;−0.034;þ0.165Þ. The topological charge qð0Þ ¼ 0,
i.e., the sphaleron carries zero baryon number. It is a boson.
The ratio of the sphaleron mass M0 to the instanton mass
M1 is M0=M1 ¼ 3π=8

ffiffiffi
2

p ¼ 0.83. More details regarding
this construction are presented in [47].
The explicit tetraquark states can now be obtained by

seeking the eigenstates of (1) for k ¼ 0. Specifically,
the radial equation for the reduced wave function Rnl ¼
unl=ρ

3
2 following from (1) after inserting (3), reads

(m0=m1 ¼ M0=M1)

−u00nl þ
glð0Þ
ρ2

unl þ ðm0ω0ρÞ2unl ¼ e0;nlunl ð6Þ

with the charge glð0Þ ¼ lðlþ 2Þ þ 2m0Qð0Þ. The energies
are e0;nl ¼ 2m0ðE0;nl −M0 − NQmHÞ, with the binding
energies as

Δnlð0Þ ¼ E0;nl − NQmH ð7Þ

The 1=ρ2 potential stems from the kinematical centrifu-
gation plus the repulsion from the U(1) charge at the
sphaleron point, and is dominant at small distances.
The parameters λ; mH;M1 are all fixed in the holographic

heavy baryon sector with Nc ¼ 3 [39]. A numerical
analysis shows that only for l ¼ 0, the NQ ≤ 3 states are
bound, i.e., open-flavor tetraquark QQq̄ q̄. The S-wave
tetraquark statesQQq̄ q̄ carry IJ ¼ 00, 01 assignments and
are degenerate. Heavier exotics are discussed more thor-
oughly in [47].

VI. EFIMOV STATES

For small distances and S-waves, (6) reduces to

−u00n0 þ
g0ð0Þ
ρ2

un0 ≈ e0;n0un0 ð8Þ

For g0ð0Þ þ 1
4
< 0, the potential in (8) is singular but

attractive and leads a priori to infinitely many bound
states, due to the conformal or scale invariance. The

quantization condition converts this continuous symmetry
into a discrete one—the states accumulate at the rate

e0;ðnþ1Þ0
e0;n0

¼ e−
2π
ν0 ð9Þ

with ν0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1=4 − g0ð0Þ

p
. This is the essence of the

Efimov phenomenon [56,57].
Historically, the Efimov effect originates from the

Borromean effect, which allows binding of a three-body
state even though the two-body state is unbound. The
Efimov equation is usually written in configuration space,
and the binding depends on the sign of the potential
VðRÞ ¼ 1

R2 ðs2n − 1=4Þ, where R is a hyperspherical coor-
dinate stemming from the Jacobi variables for the three-
body problem [57] (see Eq. 2.32). It is remarkable that a
similar equation appears in a holographic description of an
exotic hadron, especially that the physical origin of the
1=ρ2 term is different—here it comes from the U(1)
Coulomb law in 1þ 4 dimensions. For the details of the
renormalization of the equation for the Efimov states we
refer to [47], and here we only state the main results.
Numerically, the minimal value ν0 ≈ 6

5
occurs on the

sphaleron path, for Nc ¼ 3, NQ ¼ 2 and mH → ∞. The
binding energies for QQq̄ q̄ depend on the strong ’t Hooft
coupling λ as listed in Table I for MKK ¼ 1 GeV [47], and
in Table II for MKK ¼ 0.475 GeV [58,59]. The explicit
dependence of the binding energy versus λ is given in
Figs 2 and 3, for both values of considered values of MKK ,
respectively. For both values of MKK the binding energy
of the charm tetraquark is few MeV for λ ∼ 30. Since
e−2π=ν0 ≈ 10−3, (9) shows that the radially excited states

TABLE I. Binding energies for tetraquarks versus the ’t Hooft
coupling λ ¼ g2YMNc with MKK ¼ 1 GeV.

λ QQq̄ q̄ ðGeVÞ bbq̄ q̄ ðGeVÞ bcq̄ q̄ ðGeVÞ ccq̄ q̄ ðGeVÞ
10 −0.097 −0.088 −0.080 −0.072
15 −0.107 −0.091 −0.077 −0.062
20 −0.108 −0.085 −0.064 −0.041
25 −0.103 −0.073 −0.045 −0.018
30 −0.093 −0.056 −0.024 −0.0016
32 −0.089 −0.048 −0.015 0.00073

TABLE II. Binding energies for tetraquarks versus the ’t Hooft
coupling λ ¼ g2YMNc with MKK ¼ 0.475 GeV.

λ QQq̄ q̄ ðGeVÞ bbq̄ q̄ ðGeVÞ bcq̄ q̄ ðGeVÞ ccq̄ q̄ ðGeVÞ
10 −0.046 −0.044 −0.042 −0.040
15 −0.051 −0.047 −0.044 −0.040
20 −0.051 −0.046 −0.040 −0.035
25 −0.049 −0.042 −0.035 −0.028
30 −0.045 −0.035 −0.027 −0.019
40 −0.031 −0.018 −0.0076 0.0011
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rapidly unbind. The leading λ=mH heavy mass correction in
(3) is repulsive, and penalizes the binding of ccq̄ q̄ more
than bbq̄ q̄.

Theoretical predictions for the charmed tetraquark ccq̄ q̄
are not concise—they vary from binding at the level of
200–300 MeV to unbinding with 200–300 MeV surplus.
Lattice and phenomenological estimates suggest that the
double-bottom tetraquark state is deeply bound withΔBB ¼
−ð0.15–0.2Þ GeV [29] (lattice) and ΔBB ¼ −ð0.17Þ GeV
[28] (quark model). The same lattice analysis suggests that
the mixed charm-bottom tetraquark state is bound
ΔCB ¼ −ð0.061–0.015Þ GeV, but the double-charm tetra-
quark state is not [29]. Our holographic results support
doubly charmed state, provided we fix the value of ’t Hooft
coupling at λ ∼ 30, and allows us to make predictions for
binding for bottom and mixed bottom-charm states (see
Tables I and II for precise numbers).

VII. DECAY WIDTH

Recently LHCb has reported a narrow tetraquark Tþ
cc

with a quark content ccū d̄ and isospin-spin-parity assign-
ment ð01þÞ [48]. This is consistent with the holographic
prediction of bound and degenerate charm tetraquark states
ð00þ; 01þÞ in the heavy quark limit and a strong ’t Hooft
coupling. The empirical binding energyΔCC and width ΓCC
are relatively small and narrow as illustrated in Fig 1, with

ΔCCðTþ
ccÞ ¼ −360� 40 keV

ΓCCðTþ
ccÞ ¼ þ48� 2 keV ð10Þ

The holographic tetraquarks is a bound heavy-light
vector multiplet ½0−; 1−� to a flavor sphaleron core in bulk
with ð00þÞ assignment. This is the holographic dual to a
molecule composed of heavy-light ½D;D��mesons strongly
bound by light meson exchanges on the boundary. The
strong decay mode of this molecule is natural through

½Tccð3880Þð01þÞ� → ½CoreðM0Þ½00þ�� þ
�
Dð1870Þ 1

2
0−

�
þ
�
D�ð2010Þ 1

2
1−

�
ð11Þ

The unbound isoscalar-scalar flavor sphaleron core ½00þ� is
unstable and decays subsequently to multipions, say
minimally to two pions as illustrated in Fig. 4. Formally,
the decay width is

ΓTðSÞ ¼
3g2HV

2

ð2Sþ 1Þ ð2πÞ
4

Z
dΦ3jAðk⃗; p⃗Þj2; ð12Þ

with gH ∼ 0.67, the D†∂iπDi coupling [60]. Here S is the
total spin of the QQ system, and we have used the
condition l ¼ 0. We now estimate the 3-body phase space
dΦ3, the decay amplitude A, and the coupling V to the
sphaleron core ½00þ� → ππ.
The first part of the decay process TQQ → ½00þ� þDþ

D⋆ is described by the bulk Chern-Simons term [59]

−
i

16π2
ϵMNPQΦ†

MΦNΦ†
P∂tΦQ þ c:c:; ð13Þ

5 10 15 20 25 30

–0.10

–0.08

–0.06

–0.04

–0.02

FIG. 2. Tetraquarks binding energies in GeVas a function of the
’t Hooft coupling λ for MKK ¼ 1 GeV: The upper-blue curve is
for Tcc, the middle-orange curve is for Tbb and the lower-green
curve is for infinitely heavy quarks.

10 20 30 40

–0.05

–0.04

–0.03

–0.02

–0.01

0.01

FIG. 3. Tetraquarks binding energies in GeVas a function of the
’t Hooft coupling λ forMKK ¼ 0.475 GeV: The upper-blue curve
is for Tcc, the middle-orange curve is for Tbb and the lower-green
curve is for infinitely heavy quarks.

FIG. 4. The holographic tetraquark TQQ decay process takes
place in two steps: first into coreþDþD⋆, then intoDþDþ π
when the unstable flavor sphaleron core decays core → π þ π,
following the recombination D⋆ þ π → D. The incoming-double
line denotes the tetraquark TQQ, the outgoing double line the
core, the solid lines denote the out-going heavy-mesons and the
dotted lines the pions.
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in leading order in λ and mH. It is of order 1=mH
since ΦM → ΦM=

ffiffiffiffiffiffiffi
mH

p
, and ∂tΦM → −imHΦM in the

heavy quark limit [39]. The remaining contributions
are suppressed by 1=m2

H. In (13) two of the heavy-light

fields are valued in the moduli, while the remaining
two fields give rise to the decaying heavy-light
mesons. More specifically, using the results in [39],
(13) gives

mH

8π2

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16mHaNc
p

�
2

ϕ2
nðZÞf2k¼0ðX − X̄; Z − Z̄Þu†Q;sσ⃗ϵ · ðu†Q;s0 σ⃗ × p⃗τaϵ0Þa†Q;sa

†
Q;s0 þ c:c; ð14Þ

with a ¼ 1=ð216π3Þ. Here ϕnðZÞ is the wave function for
the heavy-light mesons [39]

ϕnðZÞ ¼
1ffiffiffiffiffi
2κ

p 1ffiffiffiffiffiffiffiffiffi
2nn!

p
� ffiffiffi

2
p

mH

2π

�1
4

e−
ffiffi
2

p
Z̃2
4 HnðZ̃Þ ð15Þ

with Z̃ ¼ ffiffiffiffiffiffiffi
mH

p
Z, and

f2k¼0ðX; ZÞ ¼
ρ3

ðX2 þ Z2Þ32 ; ð16Þ

the profile function of the fermionic zero mode at the
sphaleron point with k ¼ 0. In (14), the collective sphaleron
positions are ðX̄; Z̄Þ, ϵ and ϵ0 are the polarization-isospin
vectors for the heavy-light doublet ð0−; 1−Þ, and a†Q;s is the
creation-operator for the heavy-quarks in the bound state.
The second part of the decay process stems from the

produced sphaleron core which is unstable once the
heavy quarks are released (recall that stability follows
from heavy quark binding). As a result the isoscalar-scalar
flavor core decays through ½00þ� → π þ π, for a core mass
M0=M1 ¼ 3π=8

ffiffiffi
2

p ¼ 0.83. This decay is captured by the

standard chiral Lagrangian at the boundary, with the
sphaleron core with k ¼ 0, described by the monodromy
along the holographic direction [33]

Uk¼0ðxÞ ¼ ei
R

∞
0

dzAzðx⃗;z;k¼0Þ ¼ eiπτ⃗·x̂: ð17Þ

The minimal ππ-coupling to the monodromy is through
the chiral symmetry breaking term in the standard chiral
Lagrangian, with Vππ ∼m2

π , hence V ∼
ffiffiffiffiffiffiffiffiffi
2M0

p
Vππ . This is

an estimate, since the breaking of chiral symmetry in bulk
is expected to modify the monodromy for the sphaleron at
the boundary, away from the chiral limit (much like for the
instanton at k ¼ 1 [33]).
Finally, combining the two decay processes, and using

the identity

X
M

ju†Q;sσ⃗ϵ · ðu†Q;s0 σ⃗ × a⃗τaϵ0ÞCSM
ss0 j2 ¼ 6ja⃗j2; ð18Þ

with the spin-isospin modular wave functions Tlða4; a⃗Þ
defined in [47], the spin-isospin averaged squared decay
amplitude for the total process shown in Fig. 4, reads

jMðTQQ → DðkÞ þDðk0Þ þ πðpÞÞj2 ¼ g2HV
2

2ð2Sþ 1Þ × 12MT × jAðk⃗; p⃗Þj2 ð19Þ

with

Aðk⃗; p⃗Þ ¼
Z

d4p0

ð2πÞ4
Fðp⃗0 þ p⃗Þ
128π2aNc

p⃗0

ðk − p0Þ2 −m2
D� þ i0

1

ðp0Þ2 −m2
π þ i0

≡ λ
ffiffiffi
π

p
64πκ

hNQ ¼ 2jρ3jNQ ¼ 0i

×
Z

d3p⃗0

4ð2πÞ3Ep⃗0Ek⃗−p⃗0
e
1
8

ffiffi
3
2

p
ðp⃗þp⃗0Þ2K0

�
1

8

ffiffiffi
3

2

r
ðp⃗þ p⃗0Þ2

��
p⃗0

Ek⃗ − Ep⃗0 − Ek⃗−p⃗0
−

p⃗0

Ek⃗ þ Ep⃗0 þ Ek⃗−p⃗0

�
; ð20Þ

and κ ¼ λaNc in units of MKK . Here K0ðxÞ is a modified
Bessel function. The momentum dependence of the tran-
sition form factor is independent of the modular wave
function in the ρ-direction. Also the formfactor decays as
1=jpj at large p, which is sufficient for the integral to
converge, both at large p⃗0 and p⃗0 ¼ −p⃗. The ensuing decay
width ΓT is given by (12), with the three-body phase space
measure

dΦ3 ¼
d3p⃗

ð2πÞ32Ep⃗

d3k⃗
ð2πÞ32Ek⃗

δðMT − Ek⃗ − Ep⃗ − Ek⃗þp⃗Þ
ð2πÞ32Ek⃗þp⃗

:

ð21Þ
For an estimate of the amplitude, let us consider the

special point in the phase space where the pion in the final
state is at rest, or p⃗ ¼ 0. In this case the momentum of the
D mesons are opposite in direction and equal in absolute
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value: jkj ¼ jk0j ¼ 8.20 MeV, assuming that the tetra-
quark mass MT ¼ 3880 MeV and the pion mass is
mπ ¼ 139 MeV. Furthermore, since the mass of the D⋆
meson is much larger than the pion and the final state

momentum, and that the pion mass is also much lager than
the final state momentum, the momentum p⃗0 can be
approximated by mD�

mD�þmπ
k⃗ ≈ k⃗. Therefore,

Z
d3p⃗0e

1
8

ffiffi
3
2

p
ðp⃗0Þ2

4ð2πÞ3Ep⃗0Ek⃗−p⃗0
K0

�
1

8

ffiffiffi
3

2

r
ðp⃗0Þ2

��
p⃗0

Ek⃗ − Ep⃗0 − Ek⃗−p⃗0
−

p⃗0

Ek⃗ þ Ep⃗0 þ Ek⃗−p⃗0

�
¼ −

mD�k⃗
mD� þmπ

6.2
4ð2πÞ2 ≈ −0.4k⃗; ð22Þ

which is about 3.2 MeV in magnitude. A is about constant, and the phase space volume is then generic

ð2πÞ4
Z

dΦ3 ¼
0.156
32π3

MeV2 ð23Þ

which amounts to the following contributions to the decay width

ΓTðSÞ ≈
�
3g2HV

2

2Sþ 1

�
× ½h2jρ3j0ij2� ×

�
0.4jk⃗j ffiffiffi

π
p

64πκ=λ

�
2

×

�
0.156
32π3

MeV2

�
: ð24Þ

The first bracket is from the decay couplings, the second bracket originates from the modular transition vertex, the third
bracket is from the loop integral, and the last bracket is from the integration over the final phase space. κ ¼ aλNc is fixed by
the nucleon massM1 ¼ 8π2κ ≡MN in units ofMKK ¼ mv=

ffiffiffiffiffiffiffiffiffi
0.67

p
∼ 1 GeV [33], where mv is a mass of the vector meson

ρ. An estimate for the ρ3-modular transition matrix element is subtle, since the j0 > solution of the Efimov equation is
singular and depends on the cutoff [47]. With this in mind, we can estimate the modular transition matrix element as

h2jρ3j0i ∼ ðξh2jρj2iÞ3 ∼ ξ3
�

1

m0ω1

�3
2 ð25Þ

where the last equality is set by the range of the conformal potential in [47]. Here ξ sets the range of our estimate, with
ðλm0=2Þ=M1 ¼ M0=M1 ¼ 3π=8

ffiffiffi
2

p ¼ 0.83, and ω1 ¼ 1=
ffiffiffi
6

p
also in units of MKK . Hence

�
0.4jk⃗j ffiffiffi

π
p

64πκ

�
2

≈ 4.9 × 10−6h2jρ3j0i2 ¼ ξ6λ3 × 3.18 GeV−6 V2 ¼ M0 × 7.68 × 10−4 GeV4 ð26Þ

which amounts to a relatively small width

ΓTðSÞ ¼
3λ5g2H
2Sþ 1

×M0 × ξ6 × 1.88 × 10−18 ∼
1 keV
2Sþ 1

ð27Þ

with ξ ∼ 5, M0=MN ¼ 0.83, gH ∼ 0.67 and λ ∼ 30. Note
that increasing the value of the parameter ξ by 50%
increases the width by an order of magnitude. The main
observation is that for any “natural” value of ξ, e.g., not
exceeding 10, the smallness of the observed width stems
mostly from the very small phase space, combined with the
additional suppression of the core due to the chiral limit.
In sum, the final numerical width is very small with

ΓTðSÞ ≈ 1 keV=ð2Sþ 1Þ. Our results should be considered
as an estimate, and not an absolute prediction, taking into
account the large sensitivity of the decay width to the
modular transition matrix element, and the estimate for the
chiral coupling V. However, the qualitative smallness of the
width is generic in our analysis, and results from the very

small available phase-space, and the suppression of the
core decay constant V in the chiral limit. The holographic
tetraquark spectrum to order λ=mH in (3), does not
discriminate between the intrinsic heavy quark spin
S ¼ 0, 1, making the tetraquark assignments ð00þ; 01þÞ
degenerate by heavy quark symmetry. The degeneracy is
lifted by spin-orbit interactions as in [58] for pentaquarks.
However, we note that in our original work on heavy-

baryons, the zero-mode moduli of the heavy-meson field
was quantized as a fermion, mostly due to the fact that the
leading order Lagrangian in 1=mH is linear in time-
derivative. On the other hand, at subleading order, there
are quadratic terms in time derivatives, supporting an
alternative quantization as a boson. In the Appendix, we
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show how this is implemented for k ¼ 1 (instanton point),
as it carries verbatim for k ¼ 0 (sphaleron point). Most
notably, the tetraquark spectrum remains unchanged at
quadratic order (the equation of motion remains the same
linear equation in the two cases). The decay width assess-
ment is also unchanged at this order. However, the
quantization of the χ-moduli as a boson, eliminates the
ð00þÞ tetraquark state (intrinsic spin S ¼ 0 antisymmetric
state), leaving only a single and non-degenerate ð01þÞ
tetraquark state (intrinsic spin S ¼ 1 symmetric state). This
alternative quantization scheme within holography, appears
to be favored by the current experimental reporting of a
single and nondegenerate Tþ

cc state by LHCb.

VIII. DISCUSSIONS AND CONCLUSIONS

We have suggested that a heavy and strongly coupled
tetraquark emerges in holography as an Efimov state by
binding a heavy meson multiplet ð0−; 1−Þ to a sphaleron
path in a D8 − D8, with quantum numbers ð00þ; 01þÞ
(fermionic moduli) or ð01þÞ (bosonic moduli). For a
charmed tetraquark the small binding appears to be con-
sistent with the recently measured tetraquark mass for a
strong ’t Hooft coupling with λ ∼ 30. However, its decay
width is small, mostly due to the smallness of the available
phase space, and the suppression of the remaining core
decay constant V to pions in the chiral limit. The single and
narrow Tþ

cc state recently reported by LHCb is compatible
with the ð01þÞ holographic pentaquark (bosonic moduli).
In our construction, the tetraquark binding mechanism is

the holographic dual of the Callan-Klebanov mechanism,
albeit for heavier mesons around a topological configura-
tion with fractional Chern-Simons number. We have also
found the geometrical analogue of the Savage-Wise “super-
symmetry” between a heavy antiquark, and a heavy diquark
formulated in quark models.
The Efimov effect requires that the modulus of the

scattering wave, is much larger than the range for asymp-
totically weak or power like decaying potentials. In real
physical systems, the infinite Efimov series truncates to few
terms. Actually, the experimental confirmation of the

longer hierarchy of states in the Efimov effect was possible
only after the discovery of artificial quantum systems on
optical lattices, where one can control the range and
scattering length through external parameters [61]. The
Efimov “window” in our case, is very narrow too. It is
limited by the size of the heavy meson Compton wave-
length in relation to the bound state width controlled by the
binding energy. The exponential penalty factor suggests at
most two bound states, and most probably one, with a
typical binding of order few MeV for charm tetraquarks
for λ ∼ 30.
Our holographic tetraquarks are different from the

molecules mediated by pion exchange (deuson with zero
heavy flavor) or baryon-antibaryon states (baryonium) and
if also discovered in the bottom sector, will provide the first
evidence of a nonconventional, strongly bound cluster
different either from a standard meson or a baryon. Our
conclusion is in line with similar recent claims [28], but the
present description is less restrictive (comparing to the
quark models) when it comes to the spin and parity
assignment. The reason is that in our case, the fused heavy
quarks are still very strongly correlated with the light flavor
degrees of freedom. Needless to say that the holographic
construction is predictive and therefore falsifiable.
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APPENDIX: BOSONIC QUANTIZATION
OF THE MODULI

In this appendix we consider an alternative quantization
of the χ-moduli for k ¼ 1 (instanton point). The same
reasoning holds for k ¼ 0 (sphaleron point). To order
1=mH, the full Lagrangian for the quadratic χ-moduli,
can be read from Eqs. (A7) and (A21) in [58],

L ¼ 1

2mH
_χ† _χ þ i

�
1þ 3

2mHmyρ
2

�
χ† _χ þ 3

2myρ
2
χ†χ þ 49

40mHm2
yρ

4
χ†χ þ 33i

40mHmyρ
2
χ†τaχχa −

37þ 12 Z2

ρ2

192mH
χ†χ: ðA1Þ

with all notations defined therein. By the replacement χ → eimHt
ffiffiffiffiffiffiffi
mH

p
, (A1) simplifies

L ¼ 1

2
_χ† _χ þ 3i

2myρ
2
χ†_χ −

m2
H

2
χ†χ þ

�
49

40m2
yρ

4
−
37þ 12 Z2

ρ2

192

�
χ†χ þ 29i

40myρ
2
χ†τaχχa: ðA2Þ

This can be interpreted as a system of two harmonic
oscillators, in a ρ dependent background magnetic field,
coupled by the spin-orbit term. To proceed, we define

χ ¼
�
x1 þ iy1
x2 þ iy2

�
; ðA3Þ
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and (A2) can be rearranged

L ¼ 1

2
ð _x⃗12 þ _x⃗2

2Þ þ 3

2myρ
2
ðy1 _x1 − x1 _y1 þ y2 _x2 − x2 _y2Þ

−
m2

H þΩ2ðρÞ
2

ðx⃗12 þ x⃗22Þ þ Spin-Orbit: ðA4Þ

where x⃗1 ¼ ðx1; y1Þ, x⃗2 ¼ ðx2; y2Þ and

Ω2ðρÞ ¼ −
49

20m2
yρ

4
þ
37þ 12 Z2

ρ2

96
: ðA5Þ

Here we quantize the theory in the Born-Oppenheimer
approximation. We fix the modular coordinates yI and Z,
and first quantize the x⃗1 and x⃗2 coordinates. This can be
justified in the heavy quark limit with mH large, where χ is
fast-moving at frequency mH, while the other degrees of
freedom are in slow motion with a typical frequency
ωy ¼ 1ffiffi

6
p MKK .

For the l ¼ 0 state, the spin-orbit coupling vanishes. In
this case x⃗1 and x⃗2 decouple, and we have two identical
harmonic oscillators in the background field

A⃗ ¼ ωcðy;−xÞ; ωc ¼
3

2myρ
2
: ðA6Þ

The spectrum of this system is readily found

E ¼
�
nþ þ 1

2

�
Ωþ þ

�
n− þ 1

2

�
Ω−; ðA7Þ

with

Ω� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H þΩ2 þ ω2
c

q
� ωc: ðA8Þ

At large mH, one has

Ω� ¼ mH � ωc þ
Ω2ðρÞ þ ω2

c

2mH
þO

�
1

m2
H

�
: ðA9Þ

Clearly, the� solutions can be interpreted asbosonic particle
and antiparticles. To leading order in 1=mH, the two fre-
quencies are identical to the energies following from the
fermionic quantization of χ. To be more explicit, one has

Ω� −mH ¼ � 3

2myρ
2
−

1

10mHm2
yρ

4
þ
37þ Z2

ρ2

192mH
ðA10Þ

and the leading order result 3
2myρ

2 is simply the coefficient of

the quadratic term of the fermionic Lagrangian.
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