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We calculate the electric conductivity σ in deconfined QCD matter using a holographic QCD model, i.e.,
the Sakai-Sugimoto model with varying magnetic field B and chiral anomaly strength. After confirming
that our estimated σ for B ¼ 0 is consistent with the lattice-QCD results, we study the case with B ≠ 0 in
which the coefficient α in the Chern-Simons term controls the chiral anomaly strength. Our results imply
that the transverse conductivity σ⊥ is suppressed to be≲70% at B ∼ 1 GeV2 as compared to the B ¼ 0 case
when the temperature is fixed as T ¼ 0.2 GeV. Since the Sakai-Sugimoto model has massless fermions,
the longitudinal conductivity σk with B ≠ 0 should diverge due to production of the matter chirality. Yet, it
is possible to extract a regulated part out from σk with an extra condition to neutralize the matter chirality.
This regulated quantity is interpreted as an Ohmic part of σk. We show that the longitudinal Ohmic
conductivity increases with increasing B for small α, while it is suppressed with larger B for physical
α ¼ 3=4 due to anomaly-induced interactions.
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I. INTRODUCTION

Chiral anomaly has been a profitable probe to the
nonperturbative sector of quantum field theories such as
quantum chromodynamics (QCD) since its discovery dated
back in the 1960s [1]. The resolution of the partially
conserved axial current puzzle [2] via anomalous π0 → γγ
is the most well-known example. The virtue of the chiral
anomaly is not limited to a specific calculation of the decay
rate, and the chiral anomaly has gone on to manifest itself in
various QCD phenomena. Another famous example is the
η − η0 puzzle or the Uð1ÞA puzzle; that is, the η0 mass is
significantly heavier than other pseudoscalar mesons
belonging to the same nonet. It was ’t Hooft who gave
the explanation by the instanton mechanism [3] associated
with the chiral anomaly. A more recent example is found in
discussions on the QCD phase diagram, and a hypothetical
critical point may emerge from the quark-quark and quark-
antiquark coupling induced by the chiral anomaly [4]. We
should emphasize that the chiral anomaly exists not only in
QCD but in a wider class of gauge theories with chiral
fermions. The establishment of three-dimensional materials
with relativistic fermionic dispersions, namely, the Weyl
semimetals and the Dirac semimetals, has expanded the

relevance of the chiral anomaly to physics of condensed
matter.
In QCD, it has been a longstanding problem how to

reveal topologically nontrivial aspects of the QCD vacuum
experimentally, though we are theoretically familiar with
the QCD vacuum structure well; for example, Dashen’s
phenomenon [5] is textbook knowledge, but there is no way
to verify it by nuclear experiments. Along these lines, the
chiral magnetic effect (CME) has been proposed as an
experimental signature of the chiral anomaly detected in
nuclear experiments [6], which was formulated in terms of
the chiral chemical potential μ5 field theoretically later [7].
The CME predicts anomalous generation of the electric
current in parallel to an applied magnetic field B (see
Ref. [8] for magnetic effects in the heavy-ion collision
experiments) if a medium has imbalanced chirality; see also
Refs. [9,10] for reviews on nontrivial magnetic field effects.
Interestingly, the electric current is anomaly protected and
not renormalized with interactions, which also indicates that
the current is nondissipative. We can understand this non-
dissipative nature from the fact that the coefficient in
response to B is T even, making a sharp contrast to the
Ohmic conductivity which is T odd, since the electric fieldE
has the time reversal property opposite to B. Interested
readers can consult a comprehensive review [11] for theo-
retical backgrounds and experimental prospects of the CME
and related chiral effects such as the chiral separation effect,
the chiral vortical effect, etc. (see also Ref. [12] for the
ongoing projects of the nuclear experiments).
It was an ingenious idea that the electric conductivity

could exhibit characteristic dependence on the magnetic
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field to signify the CME: The longitudinal electric con-
ductivity σk involves chirality production due to parallel E
and B, and the produced chirality gives rise to the CME in
response to B again. Thus, in total, σk is expected to have a
CME-induced contribution that increases as ∝ B2. This
increasing behavior of σk ∝ B2 (i.e., the decreasing behav-
ior of the resistance ∼σ−1k ∝ B−2) is referred to as negative
magnetoresistance [13]. In fact, in condensed matter
systems, negative magnetoresistance has been observed,
and it is believed that the CME has an experimental
confirmation, as first reported in Ref. [14], but there are
two major gaps between theory and experiment.
First, for undoubted establishment, it is crucial to make

reliable theory estimates for the anomaly-related σk. In both
Refs. [13,14], the relaxation time approximation was
employed with a strong assumption that the relaxation
time is B independent. In principle, fermion interactions at
the microscopic level may have significant B dependence
which may, in turn, change the B dependence of σk.
Theoretical studies hitherto concentrated only on extreme
regions of the parameters. In the strongmagnetic field regime
at high enough temperatureT, perturbativeQCDcalculations
become feasible in the lowest Landau level (LLL) approxi-
mation [15]. This LLL approximation was relaxed later, and
the full Landau level sum was taken in Ref. [16]. However,
highT is still required to justify theweak coupling treatment.
InQCD, the asymptotic freedom, in principle, guarantees the
validity of theweak coupling treatment at sufficiently highT,
but hot and dense matter created in the heavy-ion collision
belongs to a nonperturbative regime. Besides, the condensed
matter system may not have the asymptotic freedom. We
therefore need to gain some insights into nonperturbative
computations.
Second, it would be indispensable to quantify the B

dependence in other pieces of the electric conductivity.
Because the fermion interactions are generally affected by
B, even without the chiral anomaly, the Ohmic part of σk
should be B dependent. If its dependence looks similar to
what is expected from the chiral anomaly, the physical
interpretation of negative magnetoresistance would become
subtle. We should then discuss not only whether the B
dependence is positive or negative, but we must go through
quantitative comparisons. Besides, it is anyway an inter-
esting theory question how the Ohmic σk may be changed
by the chiral anomaly. If the chirality production process is
discarded (which will be discussed in this work), no CME
contribution of σk ∝ B2 arises, but still a finite Ohmic part
can be sensitive to the strength of the chiral anomaly. One
might think that the anomaly is dictated by the theory and it
is unrealistic to control its strength. In the holographic QCD
model, as we will explain soon, we have a parameter to
control it. Intuitively, this manipulation of changing the
anomaly parameter is analogous to exploring the effect of
the Uð1ÞA-breaking interaction in QCD, i.e., the

Kobayashi-Maskawa-’t Hooft interaction in chiral effective
models. For example, the fate of the QCD critical point may
differ depending on how much the effective restoration of
Uð1ÞA symmetry occurs [17]. The point is that the axial
Ward identity itself is intact, but its expectation value could
be changed by the instanton density accommodated by the
considered state [18]. In principle, it should arise from
systematic calculations, but we will use a probe approxi-
mation in which backreactions are dropped. In this
approximation, we do not know how much the chirality
production would be affected by medium effects, and we
will emulate such effects by modifying a control parameter.
For our present purpose to resolve the aforementioned

problems, the Sakai-Sugimoto model (SSM) is an advanta-
geous choice [19] (see Ref. [20] for a review for nuclear
physicists, Ref. [21] for a review on holographic QCD
matter at finite B, and also Ref. [22] for a related work on
the baryon operator). The SSM is one of the most
established holographic QCD models, and the physical
degrees of freedom in the SSM below the compactified
scale called the Kaluza-Klein mass are the same as QCD,
namely, gluons and quarks, and unwanted superparticles
decouple. The most notable feature of the SSM is that it
realizes exactly the same pattern of chiral symmetry
breaking. This model has been quite successful in repro-
ducing the hadron spectrum as shown in the original
proposal [19], and the applications cover even the glueball
physics [23]. These are applications in the confined phase,
and examples more relevant to our present study are
analyses in the deconfined phase with strong B. It was
shown in Ref. [24] that deconfined quark matter exhibits
inverse magnetic catalysis in the SSM, and this behavior is
consistent with other chiral model predictions. Importantly,
magnetic catalysis is correctly described in the SSM as
clarified in Ref. [25]. The finite-T phase diagram under B
has also been explored in the SSM [26], but it is still an
open question how to account for the inverse magnetic
catalysis, which needs a refined treatment beyond the probe
approximation. For an attempt to improve a holographic
QCD model to reproduce the inverse magnetic catalysis,
see Ref. [27]. In the context of the CME physics, chiral
magnetic conductivity in the presence of μ5 was first
reproduced correctly in Ref. [28], but the treatment of
μ5 caused some problematic complications, which was
clearly pointed out in Ref. [29]. In contrast, negative
magnetoresistance would not need μ5, and what should
be calculated is the B dependence of σk. Interestingly, there
are preceding works, Ref. [30] at B ¼ 0 and Ref. [31] at
B ≠ 0, for the holographic conductivity estimates in the
SSM. See Refs. [32,33] for discussions in a different
holographic setup. We also mention that nontrivial
behavior of the magnetoresistance (including a positive
value) has been found by holographic calculations in
Refs. [34,35]. A more recent calculation of the conductivity
in a Einstein-dilaton-three-Maxwell holographic model is
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found in Ref. [36]. It is highly nontrivial to compare our
results to preceding ones due to model and convention
differences, but a solid conclusion of Ref. [31] is that the
longitudinal conductivity diverges with massless fermions.
This is naturally understood within the framework of the
SSM; in the massless theory, the produced chirality does
not decay. So, the chirality charge increases proportional to
the time t, and the CME current increases also as ∝ t, which
makes the conductivity at the zero frequency limit diverge.
Thus, the divergence of the conductivity is a physically
sensible behavior. It should be noted that the chirality can,
in principle, relax even in the massless theory [37], but its
relaxation timescale scales as Nc, and in our calculation at
the leading order in the large-Nc limit this effect is
negligible. In the present work, we argue that a particular
choice of an additional condition allows us to extract a
finite piece of the conductivity, which, we interpret, is an
Ohmic part. Here, our considerations are limited to QCD
matter, but we mention that there are already proposals for
holographic models for the Weyl semimetals [38–41], and
our methodology should be applicable there for further
investigations.
This paper is organized as follows. In Sec. II, we make a

brief overview of the SSM, introducing some notations, and
explain how the chiral anomaly is implemented in the
model. We will convert all the expressions in the physical
units in the end, and we will here make clear model
parameters. In Sec. III, we will present the B ¼ 0 result and
compare it to the lattice-QCD calculations. In Sec. IV, we
will generalize our calculations to the finite-B case, and we
will see that the transverse conductivity is suppressed by
large B as physically expected. Our main finding is that the
finite part of the longitudinal conductivity has nonmono-
tonic and complicated dependence on B and the anomaly
parameter. We will summarize our discussions in Sec. V.

II. FORMULATION

The Sakai-Sugimoto model consists of Nf D8/D8 branes
for the left- and the right-handed quarks, respectively, and
Nc D4 branes for the gluons wrapped around an S1 of
radius M−1

KK in the x4 direction [19]. Because of the
presence of MKK which eventually corresponds to ΛQCD

in QCD, conformality is lost, and a periodic boundary
condition for bosons and antiperiodic condition for fer-
mions in the x4 direction break supersymmetry. The
massless quarks exhibit chiral symmetry identical to
QCD symmetry, i.e., UðNfÞL × UðNfÞR among which
Uð1ÞA is broken by the axial anomaly. When the two
D8 branes are parallelly separated, the model represents
chiral symmetry restoration in the deconfined phase, while
the confining geometry inevitably leads to chiral symmetry
breaking in this model, and this feature is consistent with
the expected interplay between chiral symmetry and con-
finement. In the present work, we will consider only the

chiral symmetric case at T > Tc, where Tc ¼ MKK=ð2πÞ
represents a critical temperature of the confinement-decon-
finement phase transition. We note that the phase transition
is of the first order in the large Nc limit, which is
reminiscent of the pure Yang-Mills theory but is qualita-
tively different from continuous behavior of crossover in
three-color QCD.
In the SSM on the D8 brane, an effective five-dimen-

sional form with the Dirac-Born-Infeld (DBI) action and
the Chern-Simons term accounting for the topological
source [19,20,28] are considered as

S ¼ SYM þ SCS

¼ N
Z

d4xdu

�
−u1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgαβ þ FαβÞ

q

þ α

3!
ϵμνρστAμFνρFστ

�
: ð1Þ

Here, the extra coordinate u connects the UV limit at
u → ∞, where the quantum field theory lives and the IR
boundary condition. In the presence of the anti–de Sitter
(AdS) black hole, the IR boundary at u ¼ uT sets the
temperature scale. We note that all the coordinates and the
gauge fields are rescaled by the AdS radius R as

x ¼ x̃
R
; A ¼ 2πα0

R
Ã; F ¼ 2πα0F̃; ð2Þ

where tilde quantities are original variables with mass
dimensions and α0 ¼ l2s with ls being the string length
scale. The overall normalization constant is given by

N ¼ NfNcR6

12π2ð2πα0Þ3 : ð3Þ

It would be convenient to express a combination of α0 and R
in terms of the Kaluza-Klein mass through

MKK ¼ λα0

2R3
; ð4Þ

where λ ¼ g2Nc is the ’t Hooft coupling. We also note that
the Chern-Simons coefficient α in Eq. (1) is fixed as
α ¼ 3=4, which stems from a compact expression of
SCS ¼ ðNc=24π2Þ

R
ω5ðÃÞ. In our expression the u inte-

gration in Eq. (1) runs only on D8, and the overall
coefficient should be doubled including the D8
contribution.
For T > Tc the induced metric on the D8 brane takes the

following form:
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ds2 ¼ u3=2½−fðuÞdt2 þ dx2�

þ
�
u3=2x04ðuÞ2 þ

1

u3=2fðuÞ
�
du2; ð5Þ

where u denotes the radial coordinate transverse to the D4
branes and fðuÞ ¼ 1 − ðuT=uÞ3 with uT ¼ ð4π=3Þ2R2T2. It
should be noted that the above metric has no B dependence
in the probe approximation. In the QCD language, the
probe approximation corresponds to the quench approxi-
mation. As long as Nf=Nc is small in the large-Nc limit, our
treatment is legitimate, but for a phenomenological appli-
cation to QCD with Nc ¼ 3, the probe approximation
would break down for large B. In fact, if B is so large
that it affects the gluonic medium, the backreaction should
be taken into account to describe anisotropic plasma, as
considered in other holographic approaches; see
Refs. [21,27,42–44], and also see Ref. [45] for a related
formulation. For our purpose to estimate the electric
conductivity in the linear response regime, we need to
keep the (time-dependent) vector potential up to the
quadratic order in the action, while we should retain full
B dependence to cover the scope of strong B regions. To
make it clear that A and F are small except for B, they are
denoted by a and f hereafter. We should solve a differential
equation to fix x4ðuÞ that represents the flavor configura-
tion, but x4ðuÞ in the deconfined phase is know to be a
constant, so that we can drop x04ðuÞ. Without loss of
generality, we can choose B along the z axis. Then, in
the au ¼ 0 gauge, the explicit form of rescaled gαβ þ Fαβ

reads

gαβ þ Fαβ ≃

0
BBBBBB@

−u3=2fðuÞ f0x f0y f0z −a00
−f0x u3=2 B 0 −a0x
−f0y −B u3=2 0 −a0y
−f0z 0 0 u3=2 −a0z
a00 a0x a0y a0z 1

u3=2fðuÞ

1
CCCCCCCCA
:

ð6Þ

We note that the prime represents ∂=∂u. We should solve
the equations of motion (EOMs) for ax;y;z with a boundary
condition that we will explain later. For ax the EOM is, with
the action (1), given as

∂y
δS
δB

− ∂0

δS
δf0x

− ∂u
δS
δa0x

¼ 0: ð7Þ

For this case of ax, the Chern-Simons action SCS produces
only higher-order terms beyond the linear response regime.
Since we consider a spatially homogeneous situation only,
we can safely drop the spatial derivative and simplify the
differential equations. Below, we will drop terms involving
∂x, ∂y, and ∂z. The EOM for ay has a similar structure with

x replaced with y. Because of the presence of B, the EOM
for az has an extra contribution from the Chern-Simons
action as

−∂0

δS
δf0z

− ∂u
δS
δa0z

þ δS
δaz

¼ 0: ð8Þ

The last term arises from SCS, which is proportional to
FxyFu0 ∼ Ba00. These EOMs should be coupled with a
constraint from a0, i.e.,

−∂u
δS
δa00

þ δS
δa0

¼ 0: ð9Þ

Again, the Chern-Simons action yields the last term, which
is proportional to FxyFzu ∼ Ba0z. Also, one more constraint
appears from au (which is needed even for the au ¼ 0
gauge in a way analogous to the Gauss law even in theWeyl
gauge), that is,

−∂0

δS
δ∂0au

þ δS
δau

¼ 0: ð10Þ

Here, because the action depends on au only through
f0u ¼ ∂0au − ∂ua0, we can replace δS=δ∂0au with
−δS=δa00. This last constraint is quite interesting from
the point of view of the chiral anomaly. In fact, we can
identify the current from

jμL=R ¼∓ δSYM

δ∂uÃμ

����
u¼�∞

: ð11Þ

Here, our notation may look a little sloppy; in the action (1),
u runs only on D8, but in the above concise expression u is
extended toward −∞. It is easy to find:

δSCS

δÃu
¼ NcNf

32π2
ϵμνρσF̃μνF̃ρσ; ð12Þ

where we took account of the derivatives of Ãμ via the
integration by part [and there is no need to consider
contributions from the first term in Eq. (10)]. The flavor
Nf appears from the trace in ω5ðÃÞ. Therefore, adding both
left and right sectors up, Eq. (10) at juj → ∞ immediately
recovers (dropping all spatial derivatives):

∂0n5 ¼ −
NcNf

16π2
ϵμνρσF̃μνF̃ρσ ð13Þ

in the case without axial vector components. For the setup
with axial vector fields, in contrast, more careful treatments
are crucial as discussed in Refs. [29,46]. For the present
purpose within only the vector gauge fields, this simple
identification of Eq. (10) as the chiral anomaly works
straightforwardly.
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For later convenience, though it is a little lengthy
expression, we shall write down the expanded form of
SYM up to the quadratic order, i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgαβ þ FαβÞ

q

≃ u9=4
ffiffiffiffi
B

p
þ u9=4

2
ffiffiffiffi
B

p ½fða02x þ a02y Þ

− Bða020 − fa02z Þ� −
u−3=4ðf20x þ f20y þ Bf20zÞ

2f
ffiffiffiffi
B

p ; ð14Þ

where we introduced a shorthand notation (see also
Ref. [47] for notation) as

B ¼ 1þ B2u−3: ð15Þ

With these expressions and notations, we are ready
to proceed to concrete calculations of the electric
conductivity.

III. ZERO MAGNETIC FIELD CASE AND
CONSISTENCY CHECK WITH THE LATTICE-

QCD ESTIMATE

Before considering the full magnetic dependence, let us
solve these equations in a much simpler case at B ¼ 0. This
exercise would be useful to explain the procedures in a
plain manner, and, also, we can make a quantitative
comparison to the electric conductivity from the lattice-
QCD results which are available for the B ¼ 0 case only.
In this case ofB ¼ 0, all the contributions from the Chern-

Simons terms are simply droppedoff, and also theDBI action
significantly simplifies withB ¼ 1. Then, the constraints (9)
and (10) become, respectively,

−∂uðu5=2a00Þ ¼ 0; ∂0ðu5=2a00Þ ¼ 0: ð16Þ

One obvious solution is a00 ¼ cu−5=2 with a constant c. We
recall that our calculations are at finite T but zero chemical
potential, so the density should be zero leading to c ¼ 0, and
then a0 ¼ 0 is entirely chosen.
In the absence of B, there is no preferred direction, and

all EOMs for ax;y;z are equivalent. A simple calculation
gives

−u−1=2f−1∂0f0i þ ∂uðu5=2fa0iÞ ¼ 0: ð17Þ

Under coordinate transformation ξ ¼ uT=u and using the
Fourier transformed variable aiðξ;ωÞ, we can rewrite the
EOM as

ξ−3=2
Ω2

1 − ξ3
ai þ ∂ξ½ξ−1=2ð1 − ξ3Þ∂ξai� ¼ 0: ð18Þ

Here, we defined the dimensionless frequency as
Ω2 ¼ ω2=uT .
As discussed in Ref. [48], we should impose the infalling

boundary condition near the black hole horizon at u ∼ uT or
ξ ∼ 1. We can approximate the EOM near ξ ∼ 1 and
identify the asymptotic form of the solution from

Ω2

3ð1 − ξÞ ai − 3∂ξai þ 3ð1 − ξÞ∂2
ξai ¼ 0; ð19Þ

which is obtained from Eq. (18) near ξ ∼ 1. We can easily
solve Eq. (19) using the asymptotic form ai ∼ ð1 − ξÞδ,
from which ðΩ=3Þ2 þ δþ δðδ − 1Þ ¼ 0 follows, leading to
δ ¼ � iΩ

3
immediately. The infalling direction corresponds

to δ ¼ − iΩ
3
, and we can parametrize the solution as

aiðξÞ ¼ ð1 − ξÞ−iΩ
3 gðξÞ; ð20Þ

where gðξÞ is a regular function near ξ ∼ 1. The normali-
zation of aiðξÞ is conventionally chosen as the unity, i.e.,
aiðξ ¼ 0Þ ¼ 1 or gðξ ¼ 0Þ ¼ 1. We can then expand gðξÞ
for smallΩ, under the condition that gðξ ¼ 1Þ is regular. Up
to the first order inΩ, we can drop the first term in Eq. (18),
and the equation to be satisfied by ai is

∂ξ½ξ−1=2ð1 − ξ3Þ∂ξai� ¼ 0; ð21Þ

which can be solved as

aiðξÞ¼C
Z

ξ

0

dξ
ξ1=2

1−ξ3
þD¼C

3
ln

�
1þξ3=2

1−ξ3=2

�
þD; ð22Þ

where C and D are Ω-dependent constants. We can then
write down a form of gðξÞ for small Ω as gðξÞ≃
½1þ i Ω

3
lnð1 − ξÞ�aiðξÞ. The condition of aiðξ ¼ 0Þ ¼ 1

fixes D ¼ 1, and the regularity of gðξ → 1Þ fixes
C ¼ iΩ. Therefore, we can conclude

gðξÞ ¼ 1þ iΩ
3
ln

�ð1 − ξÞð1þ ξ3=2Þ
1 − ξ3=2

�
þOðΩ2Þ: ð23Þ

In response to the boundary condition at the infrared (IR)
side, the behavior at the ultraviolet (UV) side near ξ ∼ 0 is
fixed, from which the physical information can be
extracted. That is,

aiðξÞ ≃ 1þ 2iΩ
3

ξ3=2 þ � � � : ð24Þ

Now, let us prescribe how to calculate the electric current
expectation value using the Gubser-Klebanov-Polyakov-
Witten relation [49,50]. It is the generating functional
coupled to the gauge potential, which results from the

ELECTRIC CONDUCTIVITY WITH THE MAGNETIC FIELD AND … PHYS. REV. D 105, 054016 (2022)

054016-5



on-shell action in the gravity theory with the UV boundary
condition of aiðξ → 0Þ as the physical vector potential in
the gauge theory.
To calculate the electric current expectation value, thus,

we should take a functional derivative of the gravity action
with respect to ai on the UV boundary. Near the UV
boundary (ξ ∼ 0 or u ∼∞), the action has asymptotic
behavior as follows:

S ∼ −N
Z

d4xduu5=2
1

2
ðf2ux þ f2uy þ f2uzÞ

∼ −
N u3=2T

2

Z
d4xdξξ−

1
2ð∂ξaiÞ2: ð25Þ

Therefore, the dimensionless electric current is

ji ¼
δS

δ∂ξaiðξ ¼ 0Þ

¼ −2
�
−
N u

3
2

T

2

�
ξ−

1
2∂ξaijξ¼0 ¼ iNωuT: ð26Þ

This is an expression in dimensionless units. We note that
ji ¼ σEi translates to ji ¼ iσωAi in frequency space (if σ is a
time-independent constant). We note that our normalization
is aiðξ → 0Þ ¼ 1, and we should add the D8 contribution
multiplying a factor 2. Plugging uT ¼ ð4π=3Þ2R2T2 into ji,
we can derive the electric conductivity:

σ

q2
¼ 2

�
4π

3

�
2

N ð2πα0Þ2R−3T2 ¼ 2λNfNcT2

27πMKK
: ð27Þ

Here, we retrieved 2πα0 from Eq. (2) and also recovered the
electric charge q. This T2 behavior is consistent with
preceding studies; see Ref. [30].
Once the t’ Hooft coupling λ and the Kaluza-Klein mass

MKK are determined to reproduce the physical quantities,
we can express σ in physical units. More specifically, the ρ
meson mass mρ and the pion decay constant fπ can fix
these parameters as [19,20,51]

λ ¼ 16.63; MKK ¼ 0.95 GeV: ð28Þ

To make a quantitative comparison to the lattice-QCD
results for Nf ¼ 2, we should consider normalized σ by the
flavor factor: Ce ¼ ð2e=3Þ2 þ ð−e=3Þ2 ¼ 5e2=9. In our
calculation, we simply treated the electric charge in the
normalization, which implies that the above expression is
already normalized. Then,

σ

CeT
¼ 2λNcT

27πMKK
¼ λ

9π2

�
T
Tc

�
; ð29Þ

where we used the known relation Tc ¼ MKK=ð2πÞ in the
SSM. Table I shows the comparison between our SSM

estimates and the lattice-QCD results from Ref. [52],
indicating consistency. We note that the lattice results are
for massive quarks, while our calculations are in the chiral
limit. In view of Fig. 3 of Ref. [16], the quark mass
dependence of the electric conductivity is expected to be
minor (as compared to the large error bar in the lattice data),
and the comparison with different quark masses makes
sense. Our estimates are also consistent with the lattice-QCD
results with dynamical quarks in Ref. [53]; however, one
should not take the quantitative comparison too seriously.
The physical setups with and without dynamical quarks are
different. As we noted, the probe approximation corresponds
to the quench approximation, and it could be justified in the
Nc → ∞ limit, but QCD has only Nc ¼ 3, and Nf=Nc
corrections are expected beyond the probe approximation.

IV. FINITE MAGNETIC CASE

We can repeat the same procedures including full B
effects. First, let us consider the transverse degrees of
freedom, i.e., the x and y directions perpendicular to B. For
ax;y, as seen from Eq. (7), there is no contribution from the
Chern-Simons term, and the analysis is easier than the
longitudinal direction. The EOM for ax is

−u−1=2f−1B−1=2∂0f0x þ ∂uðu5=2fB−1=2a0xÞ ¼ 0: ð30Þ

In the same way as the B ¼ 0 case, in frequency space and
in terms of ξ ¼ uT=u, we can rewrite the above into

ξ−3=2
Ω2

1 − ξ3
B−1=2ax þ ∂ξ½ξ−1=2ð1 − ξ3ÞB−1=2∂ξax� ¼ 0:

ð31Þ

Near ξ ∼ 1, the asymptotic behavior is determined by the
singular part of the above EOM, which is the same as the
B ¼ 0 case. Then, we can take the form of the solution to be
axðξÞ ¼ ð1 − ξÞ−iΩ

3 gðξÞ and expand gðξÞ for small Ω. Some
calculations similar to previous ones lead us to the
following solution:

axðξÞ ¼ C
Z

ξ

0

dξ
ξ1=2B1=2

1 − ξ3
þD: ð32Þ

The integration is analytically possible, but the expression
is highly intricate. Nevertheless, the previous exercise at

TABLE I. Comparison between our estimates and the lattice-
QCD results from Ref. [52] for the dimensionless electric
conductivity for three different temperatures above Tc.

σ=ðCeTÞ 1.1Tc 1.3Tc 1.5Tc

This work 0.206 0.243 0.281
Lattice-QCD [52] 0.201–0.703 0.203–0.388 0.218–0.413
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B ¼ 0 tells us that C is fixed to cancel the singularity of
lnð1 − ξÞ around ξ ∼ 1, which requires

C ¼ iΩB−1=2
0 ; D ¼ 1; ð33Þ

where B0 ¼ 1þ B2u−3T . Once these constants are known,
we can expand axðξÞ near ξ ∼ 0 as

axðξÞ ≃ 1þ 2iΩ
3

B−1=2
0 ξ3=2 þ � � � : ð34Þ

Therefore, the correction due to B is simply B−1=2
0 , and the

conductivity is, thus,

σ⊥ ¼ σðB ¼ 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2u−3T

p ; ð35Þ

where σðB ¼ 0Þ is given by Eq. (29). The transverse
conductivity is suppressed by large B, and this makes
physical sense. The external magnetic field restricts the
transverse motion of charged particles, and the charge
transport along the transverse directions needs a jump
between different Landau levels. In the strong B limit,
therefore, the electric conductivity should be vanishing. We
note that the drift motion of charged particles under B may
change the scenario. In the probe approximation of the
SSM, the drift motion effect (whose timescale ∝ Nc=Nf ) is
negligible, and our calculations are justified. For ac
conductivity, for which the drift frequency can be smaller
than the electric frequency, the transverse conductivity
should not be vanishing even in the strong B limit; see
Ref. [32] for details.
Next, we shall find the longitudinal conductivity. To this

end, we consider the constraints and then solve the EOMs
as we did for the B ¼ 0 case. From Eq. (9), we have

−∂uðu5=2B1=2a00Þ − 4αBa0z ¼ 0; ð36Þ

which means that u5=2B1=2a00 þ 4αBaz is a u-independent
constant. The chiral anomaly in Eq. (10) in the presence of
B ≠ 0 reads

∂0ðu5=2B1=2a00Þ þ 4αBf0z ¼ 0: ð37Þ

Because f0z ¼ ∂0az (dropping ∂z), the above two equa-
tions are summarized into

u5=2B1=2a00 þ 4αBaz ¼ c; ð38Þ

where c is a t- and u-independent constant. We note that,
unlike the B ¼ 0 case, a0 takes a nonvanishing value.
Physically speaking, u5=2B1=2a00 is proportional to the
matter chirality, while Baz is the magnetic helicity up to
an overall factor. We can interpret the chiral anomaly as a
conservation law of the matter chirality and the magnetic

helicity. It should be noted that the magnetic helicity plays
an important role in the description of magnetohydrody-
namical evolutions [54]. Now it is clear that c physically
means a net chirality charge in the system and it should be,
in principle, fixed by an initial condition.
The longitudinal EOM is

−u−1=2f−1B1=2∂0f0z þ ∂uðu5=2fB1=2a0zÞ þ 4αBa00 ¼ 0;

ð39Þ

and we can eliminate a0 by combining Eqs. (38) and (39),
so that we can find a differential equation for az only. Then,
we convert the equation into the one in frequency space.
The resultant differential equation reads

ξ−3=2
Ω2

1 − ξ3
B1=2az þ ∂ξ½ξ−1=2ð1 − ξ3ÞB1=2∂ξaz�

− 16α2ðB0 − 1ÞB−1=2ξ1=2ðaz − 1 − c̄Þ ¼ 0: ð40Þ

Here, c̄ represents a Fourier transform of the sum of
c=ð4αBÞ and the zero mode of az, which should be singular
as δðΩÞ, since c as well as B is time independent. It should
be noted that az − 1 is of the order of Ω in our choice of the
normalization, and so this combination is free from the zero
mode. Thus, in the SSM at finite B, the longitudinal electric
conductivity diverges. This conclusion is consistent
with Ref. [31].
We can give an intuitive physical interpretation to

c̄ ∝ δðΩÞ. In the strict limit of Ω ¼ 0, we are looking at
the long time behavior of physical observables, and then the
electric conductivity must diverge in this model. The reason
is quite simple: Quarks are massless in the SSM, and there
is no other process to destroy chirality. Thus, the matter
chirality results from the chiral anomaly and eventually
blows up under the long time limit. In other words, due to
the chirality production, the electric carriers increase with
increasing time. Then, the CME current grows up linearly
as a function of time, and the electric conductivity
corresponding to the linear time dependence is divergent
by definition.
This argument implies that a nonzeroΩ piece in az could

still be well defined. Even though the strict zero mode is
singular, let us keep our normalization of az → 1 at Ω → 0
for convenience, and az − 1 in the above expression is a
contribution from the nonzero mode. It is now quite
interesting that our calculations can evade a pathological
singularity as long as Ω ≠ 0 (including Ω → 0þ for strictly
static B), for which we can drop c̄. We can also give an
intuitive interpretation to dropping c̄ in physical terms. We
can drop the zero mode if c in Eq. (38) happens to cancel
az, which occurs when the zero mode of the matter chirality
is forced to be zero. In fact, this matter chirality directly
couples to the chiral anomaly, and it should be reasonable
to define a finite Ohmic part of the electric conductivity by
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imposing an extra condition to neutralize the matter
chirality. This is our working definition of the Ohmic
electric conductivity denoted by σOhmic.
Let us try to evaluate the electric current under the

condition of c̄ ¼ 0. It is difficult to find an analytical
expression of azðξÞ, in general, but the calculation is quite
simple in the α ¼ 0 case (in which there appears no
divergence), that is, the case with the full suppression of
the chiral anomaly. In this special limit of α ¼ 0, first, we

can easily solve the differential equation as að0Þz ðξÞ ¼
azðξ; α ¼ 0Þ ¼ ð1 − ξÞ−iΩ

3 gðξ; α ¼ 0Þ with

að0Þz ðξÞ ¼ C
Z

ξ

0

dξ
ξ1=2B−1=2

1 − ξ3
þD

≃ 1þ 2iΩ
3

B1=2
0 ξ3=2 þ � � � ð41Þ

with C ¼ iΩB1=2
0 and D ¼ 1. We see that the difference

from axðξÞ in Eq. (32) is only the power of B, and it is
almost obvious that the magnetic dependence is

σkðα ¼ 0Þ ¼ σðB ¼ 0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2u−3T

q
: ð42Þ

Therefore, in this special case with α ¼ 0, the longitudinal
conductivity is enhanced by the effect of increasing B.
Now, to see quantitative behavior in the physical units, we
convert B2u−3T into a GeV quantity using

B2u−3T ¼ 9

�
4π

3

�
−4M2

KKB̃
2

λ2T6
; ð43Þ

where B̃ is the physical magnetic field. In Fig. 1, we plot
ΔσðBÞ ¼ σðBÞ − σð0Þ in the unit of CeT (where the tilde is

omitted) for the transverse conductivity in Eq. (35) and the
longitudinal conductivity at α ¼ 0 in Eq. (42) using
Eq. (29) with T ¼ 0.2 GeV and Tc ¼ 0.15 GeV. From
this, it is evident that the modification is sizable for B at the
order of GeV2. The transverse conductivity σ⊥ (solid curve
in Fig. 1) numerically looks consistent with the lattice-
QCD data as shown in Fig. 2 in Ref. [53]. The comparison
of the longitudinal conductivity σk needs subtle discus-
sions. The dashed curve in Fig. 1 represents the longi-
tudinal conductivity at α ¼ 0 (without the anomaly), while
the lattice-QCD data are supposed to contain the anomaly
effects. Actually, our results at α ¼ 0 are almost half of the
lattice-QCD results. They do not have to match, since they
are different quantities.
Next, we can consider the full α dependence numerically.

For actual procedures, it is convenient to introduce a function
ηðξÞ ¼ ð1 − ξÞ∂ξazðξÞ, and then the infalling boundary
condition can be expressed as ηðξ ∼ 1Þ ¼ iΩ

3
azðξ ∼ 1Þ.

The set of two differential equations can be integrated with
an initial condition azðξ ∼ 0Þ ¼ 1, and ηðξ ∼ 0Þ should be
fixed to satisfy the infalling boundary condition. We per-
formed the numerical calculation by means of the shooting
method for various α and B, and the results are summarized
in Fig. 2.
For α ¼ 0, our numerical results in Fig. 2 correctly

reproduce the increasing behavior as in Fig. 1. Also, there is
no α dependence at all for B ¼ 0, since the Chern-Simons
action has no contribution, which is confirmed in Fig. 2. It
is intriguing to observe that the qualitative tendency of the
B dependence is changed as α increases. Indeed, for α ¼
3=4 (i.e., the physical value), σOhmic

k ðBÞ decreases with

increasing B, and this is our central finding.
Actually, for α ¼ 0, we can give a simple account for the

increasing behavior of σk. In the limit of strong B, the LLL
approximation should be justified, and the fermion dynam-
ics is reduced to (1þ 1) dimensions along the longitudinal
direction. Then, massless fermions cannot scatter in (1þ 1)
dimensions (see discussions in Ref. [55]), and the transport
coefficients are inevitably divergent [15]; see more

-0.2

0

0.2

0.4

0 0.5 1 1.5 2

Longitudinal
(no anomaly)

Transverse

FIG. 1. Magnetic dependence of the transverse electric con-
ductivity σ⊥ and the longitudinal electric conductivity σk at
α ¼ 0. The physical scale is set at T ¼ 0.2 GeV and Tc ¼
0.15 GeV using Eq. (29).

FIG. 2. Longitudinal electric conductivity σk normalized by its
value σ0 at α ¼ B ¼ 0. The physical value of α is 3=4, for which
σk decreases with increasing B.
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specifically Fig. 3 in Ref. [16]. This phase space argument
has nothing to do with the chiral anomaly, so that it is
applied to the α ¼ 0 case. At the algebraic level, we can
understand σk → ∞ at strong B from Eq. (40). For α ¼ 0

and small Ω, the differential equation to be solved corre-
sponding to Eq. (21) is

∂ξ½ξð1 − ξ3Þ∂ξaz� ¼ 0 ð44Þ

after we replace B → B2u−3T ξ3. The integration near ξ ∼ 0 is
singular, which makes σk divergent.
The situation is drastically changed by the third term

∝ α2 in Eq. (40). In the large B limit, again, the differential
equation simplifies, and the general solution can be
expressed in terms of the hypergeometric functions. To
meet the boundary condition near ξ ∼ 1, the conductivity
should come along with a normalization factor that is
suppressed by α. The third term in Eq. (40) was originally
4αBa00, and this is proportional to the matter chirality [i.e.,
the first term in Eq. (38)]. It is, therefore, the matter
chirality that allows for fermion scatterings even at strong
B. We have subtracted the zero mode (and divergent)
contribution from the chiral anomaly, and, yet, the nonzero
mode (that is, az − 1 is of the order of Ω) still plays a role.
This is a sensible scenario; the anomaly can generate the
chirality, which, in turn, means that the chirality can decay
via the anomaly. This is extremely interesting. We iden-
tified the Ohmic electric conductivity, but its properties
reflect interactions induced by the chiral anomaly. A very
favorable feature is that the anomaly dependence in the
Ohmic part is opposite to the negative magnetoresistance
expected in the zero mode.

V. SUMMARY

We calculated the magnetic field dependence of the
electric conductivity in deconfined QCD matter using a
holographic QCD model, namely, the Sakai-Sugimoto
model. For simplicity, we considered only the high-temper-
ature environment at T > Tc and solved the equations of
motion in the presence of external magnetic field B within
the probe approximation.
We first checked the qualitative consistency between the

SSM results and the lattice-QCD data of the electric
conductivity σ at B ¼ 0. Because of a mass scale, the
Kaluza-Klein mass MKK, the T dependence is found to be
σ ∝ T2=MKK, but, as long as T ≳ Tc, we have verified that
our estimates are consistent with the lattice-QCD values.
We then proceed to the finite B case, and we found that

the transverse conductivity σ⊥ is suppressed by larger B,
which is understandable from the Landau quantization
picture. In contrast, the longitudinal conductivity σk is an
increasing function of B if we drop the Chern-Simons
action with α ¼ 0. This is also intuitively understandable

from the phase space argument in the lowest Landau level
approximation. Massless fermions cannot scatter in effec-
tively reduced (1þ 1) dimensions, and transport coeffi-
cients generally diverge. However, our numerical results for
α ≠ 0 show a turnover; that is, σk decreases with increasing
α and B. We gave a plain explanation for this numerical
observation. That is, the zero mode contribution from the
chiral anomaly yields the negative magnetoresistance (and
it is divergent for massless fermions unless a relaxation
time is introduced), and the nonzero mode contribution
from the chiral anomaly can significantly affect the fermion
interactions and even the Ohmic part of the electric
conductivity. Fortunately, however, the B dependence that
we discovered in the Ohmic part is opposite to the negative
magnetoresistance, and it would not impede a common
interpretation of the negative magnetoresistance as a
signature for the chiral magnetic effect.
We emphasize that this common interpretation of the

negative magnetoresistance as a signature for the chiral
magnetic effect implicitly assumes that the Ohmic part is B
independent. Therefore, it is a very important check how
the Ohmic part could have B dependence. Our finding of
the positive magnetoresistance in the Ohmic part can
strengthen this common interpretation. We also point out
an intriguing possibility that a part of our predictions could
be tested in a lattice simulation. Because of the Nielsen-
Ninomiya theorem, naïve fermions (or unrooted staggered
fermions) generate doublers, and the chiral anomaly is
exactly canceled out by doublers. Then, such a situation
would correspond to our calculation at α ¼ 0. It would be
an interesting test for the lattice-QCD simulation to make a
comparison of σkðBÞwith and without doublers that kill the
chiral anomaly.
There are several interesting directions for future inves-

tigations. To strengthen our claim, it would be an important
check to make quantitative comparisons of thermodynamic
quantities between the SSM and the lattice-QCD data. For
this purpose, Nf=Nc corrections would be important.
Actually, B-dependent backreactions to the metric would
quantitatively affect the results, and we should check
whether our claim is robust against backreactions in future
work. In the present work, we did not include a finite
density effect, but the introduction of the chemical potential
is feasible enough. Another improvement is to generalize
the formulation to lower temperatures in the confined
phase. In this case, one needs to solve the equation of
motion for x4, and the calculations become technically
involved but still possible.
For more quantitatively serious discussions, we should

compare the zero mode and the nonzero mode contribu-
tions, and for this an extension to massive fermions is
needed. Instead of it, one might think of introducing a
parameter corresponding to a relaxation time in the
equations of motion by hand, but the relaxation time
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may have nontrivial dependence on B, and such a hand-
waving treatment would lose predictive power. In fact, the
holographic model we employed here was the top-down
one, and we believe that our results are robust in some
particular limit of QCDİn the bottom-up approach, on the
other hand, some B dependence may be hidden in model
parameters and assumed geometries, and the predictive
power would be limited.
Recently, we learned about a very interesting result in

Ref. [56]; they found a positive magnetoresistance from
hydrodynamic fluctuations. The claim seems to be con-
sistent with what we found in Fig. 2 at α ¼ 3=4. It is an

interesting question whether their mechanism is totally
distinct or has some connection to ours.
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