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One can use more than one scale variable to specify the family of surfaces in the space of parton
splitting parameters that define the evolution of a parton shower. Considering eþe− annihilation,
we use two variables, with shower evolution following a special path in this two dimensional space.
In addition, we treat in a special way the part of the splitting function that has a soft emission singularity but
no collinear singularity. This leads to certain advantages compared to the usual shower formulation with
only one scale variable.
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I. INTRODUCTION

In a parton shower event generator, one can view the
parton state as evolving according to an operator based
renormalization group equation. Starting with a state with
just a few partons, the shower evolves as a scale μs changes
from a large value μH characteristic of the hard scattering
state at the start of the shower to a low value μf on the order
of 1 GeV. As the shower evolves, more and more partons
are emitted. The function of the shower scale μS is to divide
possible parton splittings into resolvable splittings, with
scales μ > μS, and unresolvable splittings, with scales
μ < μS. There is substantial freedom to choose exactly
what this means. The space of possible splittings is divided
into the resolvable and unresolvable regions by a surface
labeled by μS. Many different choices are possible for
defining this surface. For instance, one can use a measure
of the transverse momentum in the splitting to define the
surface or one can use a measure of the virtuality in the
splitting.
In this paper, we explore the possibility of using more

than one variable to define a family of surfaces. Instead of
one μS, we use μ⃗ ¼ ðμ1; μ2;…Þ. Then evolution means
moving from large values of the component scales μn to
small values along a path μ⃗ðtÞ with 0 < t < ∞. Defining
this path is then part of defining the shower algorithm.

There is an additional freedom available when multiple
scales are involved. It may be possible to divide the shower
splitting functions into separate terms such that one of the
terms is not sensitive to one of the scales in the sense that no
singularity is encountered when this scale approaches zero.
When this happens, we can modify the definition of the
unresolved region for this term in a way that makes this
term exactly independent of this scale. This redefinition can
simplify the shower evolution.
In this paper, we explore the additional freedom obtained

by using two scales instead of one.
This general concept works for proton-proton, e�-proton,

and eþe− collisions. The simplest case is eþe− collisions, so
we consider eþe− collisions in this paper, reserving cases
involving incoming hadrons for future work.
We begin in Secs. II and III with a general description of

multivariable evolution in the framework of shower split-
tings defined at any order of perturbation theory and
matched to perturbative QCD at any order of perturbation
theory [1]. This will help us to understand the path
dependence in general. In existing parton shower programs
[2–5], including ours [6–18], the shower splitting operators
are only defined at order α1s , although some higher order
contributions may be included by adjusting the scale
argument of αs.
In Sec. IV, we turn to parton splitting operators truncated

to order α1s , possibly with more than one scale. Then in
Sec. V, we define the unresolved region for first order
splittings with one scale, based either on transverse
momentum or on virtuality or on angle. In Sec. VI we
generalize this to two scales. One of these scales is one of
the previously considered scales based on transverse
momentum, virtuality, or angle. We make a specific useful
choice for the second scale, a special choice for the
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unresolved region for part of the splitting operator, and a
corresponding specific choice for the path. In Sec. VII, we
examine the form of shower evolution in this scheme. In
particular, we find that this gives us a different way of
understanding an angular ordered shower within the con-
text of the general formalism of Ref. [1]. In Sec. VIII, we
find that the choices made in the previous sections give us a
substantially improved treatment of SU(3) color within the
context of a first order parton shower. In Sec. IX, we
discuss the possibility of a more complex path μ⃗ðtÞ within
the two scale space previously defined. In Sec. X, we
provide a numerical example for eþe− annihilation at
10 TeV. Finally, we provide a short summary in Sec. XI.
There are two appendices, A with details about kinematics
and splitting functions and B with some results about the
summation of large logarithms.

II. GENERAL STRUCTURE
OF UNRESOLVED REGIONS

This paper generally concerns the definition of the
unresolved region in the space of parton momenta in a
parton shower. We will concentrate in the following
sections on a single emission in a first order shower, but
we begin with a discussion of the general case of a shower
algorithm at an arbitrary order of perturbation theory. We
use the general framework presented in Ref. [1]. This
general framework allows for substantial freedom in
choosing the functions that define a particular parton
shower algorithm. We have developed particular realiza-
tions of these choices for a first order shower [6]. It remains
an open problem to realize these choices for a parton
shower with splitting functions beyond order αs. The
general theory applies to hadron-hadron collisions, lep-
ton-hadron collisions, and eþe− collisions, but in this paper
we restrict our analysis to eþe− annihilation so as to present
the methods that we have in mind in the simplest possible
context.
Denote by Q the total momentum of the electron and

positron. At some stage in the shower, there are m partons
with momenta and flavors fp; fgm ¼ fp1; f1;p2; f2;…;
pm; fmg, with

Xm
i¼1

pi ¼ Q: ð1Þ

We consider operators that create parton splittings and the
exchange of virtual partons. After the action of one of
these operators, we have partons with momenta and
flavors fp̂; f̂gm̂ with m̂ ≥ m. Momentum is conserved,
so that

X̂m
i¼1

p̂i ¼ Q: ð2Þ

The general theory is expressed using linear operators
that act on a vector space that we call the statistical space.
Basis vectors for this space have the form jfp; f; c;
c0; s; s0gmÞ. Here ðc; c0Þ and ðs; s0Þ represent the quantum
colors and spins of the m partons. We use the apparatus
of quantum statistical mechanics, with the color and
spin part of jfp; f; c; c0; s; s0gmÞ representing the density
matrix jfc; sgmihfc0; s0gmj.
The general theory of Ref. [1] is based on what is

called the infrared sensitive operator Dðμ2R; μ2SÞ. Here μR is
the standard renormalization scale and μS is called
the shower scale. In this paper, we contemplate the
possibility of having more than one independent shower
scale, μ⃗ ¼ ðμ1; μ2;…Þ. The infrared sensitive operator is
expanded in operators DðnR;nVÞðμR; μ⃗Þ,

DðμR; μ⃗Þ ¼ 1þ
Xk
n¼1

�
αsðμ2RÞ
2π

�
n Xn

nR¼0
nRþnV¼n

Xn
nV¼0

DðnR;nVÞðμR; μ⃗Þ:

ð3Þ

The operator DðnR;nVÞðμR; μ⃗Þ creates nR real emissions and
nV virtual exchanges. An example graph for Dð1;1Þ is
illustrated in Fig. 1.
We propose a straightforward structure for the operator

DðnR;nVÞ:

FIG. 1. A contribution to Dð1;1Þ. The partons next to the final
state cut are on shell with momenta fp̂gmþ1 and spins fŝgmþ1 on
the left and fŝ0gmþ1 on the right. At the ⊗ symbols, some of the
parton lines are off shell propagators. The ⊗ vertices connect
these propagators to partons with momenta fpgm and spins fsgm
on the left and fs0gm on the right.
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ðfp̂; f̂; ĉ; ĉ0; ŝ; ŝ0gmþnR
jDðnR;nVÞðμR; μ⃗Þjfp; f; c; c0; s; s0gmÞ

¼
X

G∈Graphs

X
I∈TermsðGÞ

Z
ddflgnV

ðfp̂; f̂gmþnR
jPðG; IÞjfp; fgmÞ

× Dhfĉ; ŝgmþnR
jVLðG; I; fp̂; f̂gmþnR

; flgnV
; μRÞjfc; sgmi

× hfc0; s0gmjV†
RðG; I; fp̂; f̂gmþnR

; flgnV
; μRÞjfĉ0; ŝ0gmþnR

iD
× ΘðG; I; fp̂; f̂gmþnR

; flgnV
; μ⃗Þ: ð4Þ

There are nV virtual exchanges, so there is an integration
over the space of loop momenta l for these exchanges.
There is a sum over Feynman graphs like that in Fig. 1.
It may be desirable to break the Feynman graphs into
separate terms with different sorts of singularity structures.
For this reason, there is a sum over terms I of each graph.
The factor ðfp̂; f̂gmþnR

jPðG; IÞjfp; fgmÞ consists of delta
functions that fix fp; fgm in terms of fp̂; f̂gmþnR

according
to the momentum mapping chosen for the shower, as in
Appendix A at first order. The effects of the graphs acting
on the ket state (L) and the bra state (R) are encoded in VL

and V†
R, which are operators on the quantum color and

spin space.1 An example at first order is worked out in
Ref. [6], while providing examples beyond first order
remains an open problem.
The final factor in Eq. (4) is of most interest for this

paper. It defines the unresolved region. The parton splitting
functions VL and V†

R are singular in a surface in the space
of momenta ffp̂gmþnR

; flgnV
g in which some of the

momenta are exactly collinear to each other or some are
zero. We illustrate this singular surface conceptually by the
red lines in Fig. 2. The unresolved region is a region in the
space of momenta that surrounds the singular surface. We
illustrate this unresolved region by the blue area in Fig. 2.
The singular surface must not extend outside of the
unresolved region. That is, to borrow a phrase from general
relativity, there can be no naked singularity. The idea
behind this is that a measurement using an infrared safe
measurement algorithm (such as a jet algorithm) cannot
distinguish between a single parton and a set partons, some
of which are carry very small momenta and the others of
which carry momenta that are very nearly collinear. One
can then say that the difference between these two states is
unresolvable. The parton shower version of an unresolvable
region incorporates this idea without referring to any
specific infrared safe observable. In designing a shower
algorithm, there is then great freedom in choosing the
unresolved region. We let the boundary of the unresolved
region depend on one or more scale parameters μS;i

such that increasing any of the μS;i makes the unresolved

region larger and decreasing μS;i makes the unresolved
region smaller. The function ΘðG; I; fp̂; f̂gmþnR

; flgnV
; μ⃗Þ,

equals 1 when ffp̂gmþnR
; flgnV

g is in the unresolved
region and equals 0 otherwise. The complement of the
unresolved region is the resolved region, colored yellow
in Fig. 2.

III. MULTIPLE SHOWER SCALES

With multiple shower scales μ⃗, the singular operator
depends on these scales and on the renormalization scale
μR. We can let the renormalization scale μR be some
function of the shower scales,2

μR ¼ μRðμ⃗Þ: ð5Þ

Then we can simplify the notation by writing

Dðμ⃗Þ ¼ DðμRðμ⃗Þ; μ⃗Þ: ð6Þ

The shower will evolve from hard scales μ⃗H that are
characteristic of the hard scattering that initiates the shower
to soft scales μ⃗f that are on the order of 1 GeV.
For eþe− annihilation, we define the shower evolution

operator by

Uðμ⃗2; μ⃗1Þ ¼ D−1ðμ⃗2ÞDðμ⃗1Þ: ð7Þ

We should note that this is special to eþe− annihilation. For
hadron-hadron collisions, there are initial state singularities
and we need parton distribution functions. Then there is a
mismatch between the evolution equation for the parton
distribution functions and the shower evolution. This
mismatch requires the introduction of an operator V that
accounts for threshold logarithms [1,12,13]. For eþe−
annihilation, one can arrange that V ¼ 1. We will return to
the analysis of multiple scale evolution for hadron-hadron

1The subscripts D denote dual basis vectors, Dhc0s0jc; si ¼
δc0;cδs0;s [6].

2In a first order shower, one can modify the shower splitting
functions by adjusting the argument of αs to be not μ2R but an
approximation to k2T. This is intended to incorporate terms
from higher order splitting functions into the first order
splitting function, but it is separate from the general formalism
discussed here.
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collisions in a later paper. In this paper, we restrict the
analysis to eþe− annihilation.
Using Eq. (7), to go from the hard scales to the final soft

scales we have

Uðμ⃗f ; μ⃗HÞ ¼ D−1ðμ⃗fÞDðμ⃗HÞ: ð8Þ

We choose a path μ⃗ðtÞ from μ⃗H to μ⃗f ,

μ⃗ð0Þ ¼ μ⃗H;

μ⃗ðtfÞ ¼ μ⃗f : ð9Þ

We define the shower splitting operator

SðtÞ ¼ −D−1ðμ⃗ðtÞÞ d
dt

Dðμ⃗ðtÞÞ: ð10Þ

That is

SðtÞ ¼ −
X
j

dμjðtÞ
dt

Sjðμ⃗ðtÞÞ; ð11Þ

where3

Sjðμ⃗Þ ¼ D−1ðμ⃗Þ ∂
∂μjDðμ⃗Þ: ð12Þ

Then

d
dt

Uðμ⃗ðtÞ; μ⃗ðt1ÞÞ ¼ SðtÞUðμ⃗ðtÞ; μ⃗ðt1ÞÞ: ð13Þ

We can write the solution of this differential equation with
boundary condition Uðμ⃗ðt1Þ; μ⃗ðt1ÞÞ ¼ 1 as

Uðμ⃗ðt2Þ; μ⃗ðt1ÞÞ ¼ Uðt2; t1Þ; ð14Þ

where, using T to indicate ordering of operators along
the path,

Uðt2; t1Þ ¼ T exp

�Z
t2

t1

dtSðtÞ
�
: ð15Þ

The operator Uðt2; t1Þ depends on the chosen path. We
illustrate schematically the possibility of two paths in Fig. 3
between μ⃗ð0Þ ¼ μ⃗H and μ⃗ðtfÞ ¼ μ⃗f . If SðtÞ is defined
exactly according to Eq. (10), then Uðtf ; 0Þ does not depend
on μ⃗ðtÞ for intermediate values of t, 0 < t < tf . This
follows simply because of the definition Eq. (7) of U.
However, it is often useful to use an approximation for SðtÞ,
for instance by using only a finite number of terms in its
perturbative expansion. If SðtÞ is approximated in any way
and Uðtf ; 0Þ is obtained by solving the differential equa-
tion (13), then Uðtf ; 0Þ can depend on the whole path.
To understand the dependence on the path, we can

consider an altered path between the same endpoints as
illustrated in Fig. 3:

μjðt; εÞ ¼ μjðtÞ þ εηjðtÞ; ð16Þ

where

FIG. 3. Two paths in the space of scales from μ⃗ð0Þ to μ⃗ðtfÞ.
FIG. 2. Resolved and unresolved regions. The red lines
represent the singularities. The unresolved region for the mo-
menta is the blue region.

3Following the notation in Ref. [1] when there is only one
shower scale μ, we would have defined μ2ðd=dμ2ÞD ¼ DS, but
with more than one scale it is more convenient to use a simple
derivative with respect to μj.
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ηjð0Þ ¼ ηjðtfÞ ¼ 0: ð17Þ

We can let Uεðtf ; 0Þ denote the shower evolution operator
over the path that has been deformed by an amount ε.
We evaluate this operator between the two fixed points at
which the deformation vanishes. Then after a little analysis
we find

�
d
dε

Uεðtf ; 0Þ
�
ε¼0

¼
Z

tf

0

dtUðtf ; tÞ
X
i;j

dμiðtÞ
dt

ηjðtÞ

×

�∂Sjðμ⃗ðtÞÞ
∂μi −

∂Siðμ⃗ðtÞÞ
∂μj

þ ½Siðμ⃗ðtÞÞ; Sjðμ⃗ðtÞÞ�
�
Uðt; 0Þ: ð18Þ

The expression in square brackets vanishes if we use
Eq. (12) exactly to define Sjðμ⃗ðtÞÞ, but not otherwise. If the
perturbative expansion of Sjðμ⃗ðtÞÞ is truncated at order αNs ,
then the expression in square brackets will be of order αNþ1

s .
In this paper, we work with a first order shower, in which

the perturbative expansion of Sjðμ⃗ðtÞÞ is truncated at order
α1s . The most straightforward choice of path in the first
order shower is computationally difficult because of non-
commuting color matrices. We use the freedom to specify a
path μ⃗ðtÞ to create a first order shower algorithm that is
computationally simpler than with the more straightfor-
ward choice of path. The computationally difficult parts of
the more straightforward approach are eliminated because,
with the chosen path, they would appear only at order α2s.

IV. SPLITTING AT FIRST ORDER

We now turn to the description of the unresolved region
for eþe− annihilation with total momentum Q in a first
order parton shower, such as DEDUCTOR. In the description
that we use in this paper, the partons carry color,4 but, as in
the current version of DEDUCTOR, we average over spins so
that there are no spin states represented in the parton states.
We begin with m partons, in a state jfp; f; c; c0gmÞ. The
singular operator Dðμ⃗Þ has a perturbative expansion

Dðμ⃗Þ ¼ 1þD½1�ðμ⃗Þ þOðα2s Þ; ð19Þ

where D½1�ðμ⃗Þ contains a factor of αs,

D½1�ðμ⃗Þ ¼ αsðμ2Rðμ⃗ÞÞ
2π

Dð1Þðμ⃗Þ: ð20Þ

The operator D½1�ðμ⃗Þ consists of two terms,

D½1�ðμ⃗Þ ¼ D½1;0�ðμ⃗Þ þD½0;1�ðμ⃗Þ: ð21Þ

InD½1;0�ðμ⃗Þ one of the partons splits into two. InD½0;1�ðμ⃗Þ, a
virtual parton is exchanged, leaving the number of partons
unchanged.
In the real emission operatorD½1;0�ðμ⃗Þ, let l be the label of

the parton that splits, so that pl is its momentum. This
splitting produces two partons, which we label l andmþ 1.
These partons carry momenta p̂l and p̂mþ1. In DEDUCTOR,
the momenta of the other partons after the splitting, p̂i,
are adjusted by means of a small Lorentz transformation so
that momentum is conserved, as in Eq. (2). We can describe
the splitting by splitting variables ðy; z;ϕÞ. Here ϕ is the
azimuthal angle of p̂mþ1 about the pl axis in the rest frame
of Q. The momentum fraction z is defined by

1 − z
z

¼ p̂mþ1 · nl
p̂l · nl

; ð22Þ

where the lightlike vector nl is

nl ¼
2pl ·Q
Q2

Q − pl: ð23Þ

Finally, y is the dimensionless virtuality variable

y ¼ 2p̂l · p̂mþ1

2pl ·Q
: ð24Þ

The default ordering variable in DEDUCTOR is Λ2,
defined by [11]

Λ2 ¼ yQ2 ¼ al2p̂l · p̂mþ1; ð25Þ

where al is a dimensionless measure of the inverse of the
energy of the mother parton,

al ¼
Q2

2pl ·Q
: ð26Þ

Momentum conservation implies that al ≥ 1.
Parton splittings are often described by the squared

transverse momentum k2T in the splitting. Then with the
kinematic definitions used in DEDUCTOR, as outlined in
Appendix A,

k2T ¼ zð1 − zÞ
al

Λ2: ð27Þ

We can also describe the parton splitting using the angle
variable

ϑ ¼ 1

2
½1 − cosðθÞ�; ð28Þ

where θ is the angle between the daughter parton momenta
in the rest frame of Q. That is

4We describe the color treatment in somewhat more detail in
Sec. VIII.
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ϑ ¼ p̂l · p̂mþ1Q2

2p̂l ·Qp̂mþ1 ·Q
: ð29Þ

The variables k2T, Λ2, and ϑQ2 are measures of the
hardness of a splitting. We can relate these variables. We
relate k2T to Λ2 using Eq. (27). To relate ϑ to Λ2 we can use
the definition (29),

ϑQ2 ¼ al
pl ·Q
p̂l ·Q

pl ·Q
p̂mþ1 ·Q

Λ2: ð30Þ

For small angle splittings, in which p̂l ≈ zpl and p̂mþ1≈
ð1 − zÞpl, this is

ϑQ2 ≈
al

zð1 − zÞΛ
2: ð31Þ

(The exact relationship is in Eq. (37) or Eq. (A10).)
Thus Λ2 lies between k2T and ϑQ2: k2T is smaller by a
factor zð1 − zÞ=al and ϑQ2 is larger by (approximately) the
inverse of this factor.
Let D½1;0�ðμ⃗Þ act on a state with parton momenta and

flavors fp; fgm. Consider the contribution in which parton
l splits with splitting variables ðy; z;ϕÞ and flavor f̂mþ1 of
the emitted parton. This contribution is proportional to an
operator that we can call Dlðfp̂; f̂gmþ1; fp; fgmÞ. Here Dl
is a function of the momenta and flavors before and after
the splitting but is still an operator on the color space of the
partons. The relation of D½1;0�ðμ⃗Þ to Dlðfp̂; f̂gmþ1;fp;fgmÞ
is outlined in Appendix A.
For eþe− annihilation (but not for hadron-hadron colli-

sions), D½0;1�ðμ⃗Þ is determined from D½1;0�ðμ⃗Þ in a simple
way [12]. See Appendix A.
We specify Dlðfp̂; f̂gmþ1; fp; fgmÞ in detail in

Appendix A, but for now these details do not matter.
What is important is that Dl exhibits collinear and soft
singularities. To describe these singularities, it is useful to
consider Dl at fixed fpgm to be a function of the angle
variable ϑ, Eq. (29), and the momentum fraction z, Eq. (22).
Then Dl is singular in the collinear limit, ϑ → 0 with fixed
z, in the soft limit ð1 − zÞ → 0 with fixed ϑ, and in the
soft × collinear limit, ð1 − zÞ → 0 and ϑ → 0. It is of some
significance that Dl can be decomposed into two terms,

Dlðfp̂; f̂gmþ1; fp; fgmÞ
¼ Dsc

l ðfp̂; f̂gmþ1; fp; fgmÞ
þ Dsoft

l ðfp̂; f̂gmþ1; fp; fgmÞ; ð32Þ

where Dsc
l has both soft and collinear singularities, while

Dsoft
l has a soft singularity but no collinear singularity (and

no soft × collinear singularity). An example of such a
decomposition will be given in Eq. (57). The decomposi-
tion of Dl leads to a corresponding decomposition of
D½1;0�ðμ⃗Þ,

D½1;0�ðμ⃗Þ ¼ D½1;0�
sc ðμ⃗Þ þD½1;0�

soft ðμ⃗Þ: ð33Þ

We will make use of this decomposition in this paper to
treat the two terms differently.

V. UNRESOLVED REGION WITH ONE SCALE

We now consider the unresolved region for a splitting in
a first order shower in the standard case that there is a single
shower scale μS.
The operator D½1;0�ðμSÞ contains an integration over

splitting variables ðy; z;ϕÞ with ðy; zÞ integrated over the
unresolved region defined by the scale μS. The shower
splitting operator is given by the first order version of
Eq. (12),

S½1;0�ðμSÞ ¼
d
dμS

D½1;0�ðμSÞ: ð34Þ

Integrating between a scale μS;1 and a slightly smaller scale
μS;2 gives the exponent in Eq. (15) for shower evolution
between these two scales,

Z
μS;1

μS;2

dμSS½1;0�ðμSÞ ¼ D½1;0�ðμS;1Þ −D½1;0�ðμS;2Þ: ð35Þ

Thus we integrate over the unresolved region for the larger
scale omitting the unresolved region for the smaller scale.
There are several possibilities for how the unresolved

region depends on the scale. In each of three cases that we
consider, we adopt a different name for the shower scale,
μ2S ¼ μ2⊥, μ2s ¼ μ2Λ, and μ2S ¼ μ2∠.
One possibility is to define the unresolved region for a

splitting by k2T < μ2⊥, where k2T was defined in Eq. (27). The
angle variable ϑ is related to k2T and z in any kinematically
allowed splitting by

ϑ ¼ a⊥ðz; k2TÞ; ð36Þ

where

a⊥ðz; k2TÞ ¼
( a2l k

2
T=Q

2

ðzð1 − zÞ þ alk2T=Q
2Þ2 þ a2l ð1 − 4zð1 − zÞÞk2T=Q2

for zð1 − zÞ > czk2T=Q
2

1 otherwise

: ð37Þ
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Here al was defined in Eq. (26) and

cz ¼ alð
ffiffiffiffi
al

p þ
ffiffiffiffiffiffiffiffiffiffiffiffi
al − 1

p
Þ2: ð38Þ

Only splittings with zð1 − zÞ > czk2T=Q
2 allow the variable

λðyÞ in Eq. (A2) to be defined, so only these splittings are
kinematically possible. We have set a⊥ðz; k2TÞ ¼ 1 in the
case that k2T is too large to allow a splitting with momentum
fraction z.
We can use the function a⊥ðz; k2TÞ to define the unre-

solved region specified by the singular operatorD½1;0� for kT
ordering. We first address an issue concerning the range of
k2T. The argument of αs used in DEDUCTOR and other
shower generators is an approximation to k2T.

5 We cannot
trust perturbation theory if αs is not small. For this reason, a
splitting with squared transverse momentum k2T must be
considered unresolved if k2T is smaller than a value m2⊥ of
order 1 GeV2. The parameter m2⊥ is not an adjustable scale
parameter but rather serves as a fixed cutoff parameter. We
therefore define the unresolved region corresponding to a
shower scale μ2S ≡ μ2⊥ by

ϑ < max½a⊥ðz; μ2⊥Þ; a⊥ðz;m2⊥Þ�: ð39Þ

This is illustrated in Fig. 4 for the choice of shower scale
parameter μ2⊥ ¼ 0.002Q2 with al ¼ 2 andm2⊥ ¼ 0.0005Q2.

The singular surface, consisting of the lines ϑ ¼ 0 and
ð1 − zÞ ¼ 0 is indicated in red. The curve ϑ ¼ a⊥ðz; μ2⊥Þ
with μ2⊥ ¼ 0.002Q2 is indicated in blue. The unresolved
region is the blue region below this curve. Note that the
unresolved region includes the entire singular surface. The
resolved region is the yellow region above this curve.
If we use a kT-ordered shower, then shower evolution

from scale μ2⊥;1 to a smaller scale μ2⊥;2 includes splittings in
the unresolved region for the larger scale but not splittings
that are unresolved at the smaller scale, as in Eq. (35).
This is illustrated in Fig. 5 for the case μ2⊥;1 ¼ 0.004Q2,
μ2⊥;2 ¼ 0.002Q2. The region covered is displayed in green
in the figure.
The unresolved region can also be defined by Λ2 < μ2Λ,

supplemented by a fixed cut k2T < m2⊥. Here Λ2 is the
virtuality variable defined in Eq. (25). The angle variable ϑ
is related to y ¼ Λ2=Q2 and z by

ϑ ¼ aΛðz;Λ2Þ; ð40Þ

where

aΛðz;yQ2Þ¼ aly
ð1þyÞ2zð1− zÞþalyð1−4zð1− zÞÞ : ð41Þ

We can use the function aΛðz;Λ2Þ to define the unre-
solved region specified by the singular operatorD½1;0� for Λ
ordering, which is the default choice in DEDUCTOR Since
DEDUCTOR uses an approximation to k2T as the argument of
αs, we again do not allow k2T to be smaller than a fixed
cutoff parameter m2⊥ of order 1 GeV2 in the resolved

FIG. 4. Resolved and unresolved regions for fixed μ2⊥. Here
al ¼ 2, m2⊥ ¼ 0.0005Q2, and μ2⊥ ¼ 0.002Q2. (Thus m2⊥ is too
small to play a role in this figure. The curve for m2⊥ is shown as a
dashed line.)

FIG. 5. Evolution in μ2⊥ for 0.002 < μ2⊥=Q2 < 0.004. Here
al ¼ 2, m2⊥ ¼ 0.0005Q2.

5Precisely, DEDUCTOR uses k2T=z ¼ ð1 − zÞ2p̂l · p̂mþ1 in αs.
This is the same as k2T for ð1 − zÞ → 0. The splitting functions
have no z → 0 singularity.
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region. With this definition, the unresolved region for a
given choice of the shower scale μ2S ≡ μ2Λ is defined by6

ϑ < max½aΛðz; μ2ΛÞ; a⊥ðz;m2⊥Þ�: ð42Þ

This region is illustrated in Fig. 6 in the case al ¼ 2 with
m2⊥ ¼ 0.0005Q2 for the choice of shower scale parameter
μ2Λ ¼ 0.02Q2. Again, the singular surface is indicated in
red and the unresolved region is depicted in blue.
If we use a Λ-ordered shower with a k2T cutoff at a small

fixed scale m2⊥ ¼ 0.0005Q2, then shower evolution from
scale μ2Λ;1 to a smaller scale μ2Λ;2 includes splittings in the
unresolved region for the larger scale but not splittings that
are unresolved at the smaller scale. This is illustrated in
Fig. 7 for the case μ2Λ;1 ¼ 0.032Q2, μ2Λ;2 ¼ 0.016Q2. The
region covered is displayed in green in the figure. Note how
the region of small zð1 − zÞ is removed by the m2⊥ cut.
Finally, we can use angular ordering and define the

unresolved region by ϑQ2 < μ2∠, supplemented by a fixed
cut k2T < m2⊥. We define

a∠ðz; ϑQ2Þ ¼ ϑ: ð43Þ

With this definition, the unresolved region for a given
choice of the shower scale μ2S ≡ μ2∠ is defined by

ϑ < max½a∠ðz; μ2∠Þ; a⊥ðz;m2⊥Þ�: ð44Þ

This region is illustrated in Fig. 8 in the case al ¼ 2 with
m2⊥ ¼ 0.0005Q2 for the choice of shower scale parameter
μ2∠ ¼ 0.4Q2. Again, the singular surface is indicated in red
and the unresolved region is depicted in blue.
There is an important difference between the unresolved

regions for Λ ordering, Fig. 6, and angular ordering, Fig. 8.
With Λ ordering, we could set m2⊥ ¼ 0. There would be a
problem with αs with an argument proportional to (1 − z)
when ð1 − zÞ ≪ 1, but this problem could be eliminated by
letting the argument of αs be yQ2. With angular ordering, if

FIG. 7. Evolution in μ2Λ withm2⊥ ¼ 0.0005Q2. Here al ¼ 2 and
0.016 < μ2Λ=Q

2 < 0.032. This figure is analogous to Fig. 5 for kT
ordering.

FIG. 8. Unresolved regions for fixed μ2∠ with cutoff
m2⊥ ¼ 0.0005Q2. Here al ¼ 2 and μ2∠ ¼ 0.4Q2.

FIG. 6. Unresolved regions for fixed μ2Λ ¼ 0.02Q2. Here al ¼ 2

and m2⊥ ¼ 0.0005Q2.

6If μ2Λ=Q
2 > ð ffiffiffiffi

al
p þ ffiffiffiffiffiffiffiffiffiffiffiffi

al − 1
p Þ−2, then aΛðz; μ2ΛÞ > 1 for

0 < z < 1, so all splittings with 0 < ϑ < 1, 0 < z < 1 are
unresolved.
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m2⊥ were zero, there would be a naked singularity: points
ðð1 − zÞ; ϑÞ with ð1 − zÞ ¼ 0 are in the resolved region
when ϑ > μ2∠=Q2. Thus we need a nonzerom2⊥with angular
ordering.
We have described the unresolved region for three choices

of a single ordering variable. Angular ordering is available in
HERWIG [2,19]. Variants of kT ordering are used in PYTHIA
[3], SHERPA [4], and DIRE [5]. The default ordering variable
in DEDUCTOR [10] isΛ. The papers [20,21] have a family of
ordering choices defined by a parameter β. With β ¼ 0, the
ordering variable is a transverse momentum variable,
although other features of the shower are not the same as
in the DEDUCTOR shower. With β ¼ 1=2, the ordering
variable is not among those investigated in this paper but
is roughly half way between kT and Λ.
We note that the shower that we discuss here is a full

dipole shower with interference between emitting a gluon
from one parton and emitting the same gluon from a second
parton. All that we do with angular ordering is to use the
emission angle as the ordering variable. Thus no approxi-
mation involving averaging over the azimuthal angle of the
emission is involved, as it is in HERWIG [2,19].

VI. UNRESOLVED REGION WITH TWO SCALES

We now consider the unresolved region for a splitting
whenwe use two independent scale parameters. Throughout
this section, we also incorporate the fixed infrared cut-
off k2T > m2⊥.
We let one scale be a collinear sensitive scale μC, which

couldbe anyofμ∠,μΛ, orμ⊥. The scaleμC controls at least the
collinear singularity for one parton splitting into two. With
μC ¼ μ∠, this scale controlsonly the collinear singularity. The
other singularity is the wide angle soft singularity, which is
reachedwhen a parton emits a gluon at a finite anglewhen the
energy of the gluon approaches zero. We need a scale μE to
control this singularity. The emitted gluon energy is propor-
tional to (1 − z), so it is convenient to define an unresolved
region parametrized by μ2E by using an energy variable
4zð1 − zÞQ2. The factor z here is not important since there
is no z → 0 singularity in the splitting functions as defined in
DEDUCTOR, but it is helpful to keep the scale definitions
symmetric under ð1 − zÞ ↔ z. We define a function

aEðz; μ2EÞ ¼
�
1 for 4zð1 − zÞQ2 < μ2E

0 otherwise
: ð45Þ

We can use this function and our previously defined function
aCðz; μ2CÞ for C ¼ ∠, Λ, or⊥ to define an unresolved region
for a given choice of two shower scales μ⃗ ¼ ðμE; μCÞ. We
define the unresolved region by

ϑ < max½aEðz; μ2EÞ; aCðz; μ2CÞ; a⊥ðz;m2⊥Þ�: ð46Þ
This region is illustrated in Fig. 9 in the case C ¼ ∠, al ¼ 2

with m2⊥ ¼ 0.0005Q2 for the choice of shower scales

μ2E ¼ 0.2Q2, μ2∠ ¼ 0.6Q2. Again, the singular surface is
indicated in red and the unresolved region is depicted
in blue. A point ð1 − z; ϑÞ is in the unresolved region if
4zð1 − zÞ < μ2E=Q2 or ϑ < μ2∠=Q2. The point is also in the
unresolved region if k2T < m2⊥, although this cutoff does not
play a role in Fig. 9.
The unresolved region specified by Eq. (46) is

illustrated in Fig. 10 for the case C ¼ Λ, with
μ2E ¼ 0.2Q2, μ2Λ ¼ 0.1Q2.

FIG. 9. Unresolved regions for fixed μ⃗ ¼ ðμE; μ∠Þ with cutoff
m2⊥ ¼ 0.0005Q2. Here al ¼ 2. The two scales are μ2E ¼ 0.2Q2

and μ2∠ ¼ 0.6Q2.

FIG. 10. Unresolved regions for fixed μ⃗ ¼ ðμE; μΛÞ with cutoff
m2⊥ ¼ 0.0005Q2 and al ¼ 2. The two scales are μ2E ¼ 0.2Q2

and μ2Λ ¼ 0.1Q2.
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As foreseen in Eq. (33), we can divide D½1;0�ðμ⃗Þ into a

partD½1;0�
sc ðμ⃗Þwith both soft and collinear singularities and a

part D½1;0�
soft ðμ⃗Þ with only soft singularities. Since D½1;0�

soft ðμ⃗Þ
lacks the collinear singularity, we can treat it differently. We

define the unresolved region for D½1;0�
soft ðμ⃗Þ by

ϑ < max½aEðz; μ2EÞ; a⊥ðz;m2⊥Þ�: ð47Þ

That is, we replace μ2C by zero for D½1;0�
soft ðμ⃗Þ. This resulting

unresolved region for D½1;0�
soft ðμ⃗Þ for C ¼ ∠ is illustrated in

Fig. 11. No lower limit for ϑ is needed for D½1;0�
soft ðμ⃗Þ since it

has no ϑ → 0 singularity. The only cutoff that applies for
small ϑ is k2T > m2⊥.
Now, to define the shower operator Uðtf ; 0Þ, we need to

define initial and final scales μ⃗ð0Þ ¼ μ⃗H and μ⃗ðtfÞ ¼ μ⃗f
and a path μ⃗ðtÞ that connects them. For the hard scales
we take μ2C;H ¼ Q2 and μ2E;H ¼ Q2. For the infrared limiting
values μ⃗f , we could take values on the order of
μ2C;f ¼ μ2E;f ¼ 1 GeV2. However, there is already a cutoff
k2T > m2⊥, so it suffices to set μ2C;f ¼ μ2E;f ¼ 0.
Next, we need a path, μ⃗ðtÞ. We choose a path with two

segments, illustrated in Fig. 12. In the first segment, for
0 < t < 1, we choose μ2C ¼ Q2 and μ2E ¼ ð1 − tÞQ2. On
this segment of the path, the corner of the rectangle in Fig. 9
is defined by 4zð1 − zÞ decreasing from 1 to 0 and ϑ fixed
at 1. In the second part, for 1 < t < tf ¼ ∞, we choose
μ2C ¼ e−ðt−1ÞQ2 and μ2E ¼ 0. On this segment of the path,
the corner of the rectangle in Fig. 9 is defined by 4zð1 − zÞ
fixed at 0 and ϑ decreasing from 1 to 0. Thus the path is

μ⃗ðtÞ ¼
�
μEðtÞ
μCðtÞ

�

¼ θð0 < t < 1Þ
ffiffiffiffiffiffi
Q2

p � ffiffiffiffiffiffiffiffiffiffi
1 − t

p

1

�

þ θðt > 1Þ
ffiffiffiffiffiffi
Q2

p �
0

eð1−tÞ=2

�
: ð48Þ

The unresolved region for D½1;0�
sc ðμ⃗Þ at the end of first

segment of the path is shown in Fig. 13. The same figure
applies for any of our choices for C because aCðz;Q2Þ ≥ 1

FIG. 11. Unresolved regions for fixed μ⃗ ¼ ðμE; μ∠Þ with cutoff

m2⊥ ¼ 0.0005Q2 for Dð1Þ
softðμ⃗Þ. As in Fig. 9, we take al ¼ 2, μ2E ¼

0.2Q2 and μ2∠ ¼ 0.6Q2. For Dð1Þ
softðμ⃗Þ, the unresolved region is

independent of μ2∠.

FIG. 12. Evolution path with two segments.

FIG. 13. Unresolved region for D½1;0�
sc ðμ⃗Þ at the end of the first

stage of evolution. Here al ¼ 2 and m2⊥ ¼ 0.0005Q2.
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for C ¼ ⊥, Λ, or ∠. There is no change in D½1;0�
sc ðμ⃗Þ in

this segment. Everything remains unresolved. The unre-

solved region forD½1;0�
soft ðμ⃗Þ at the end of first segment of the

path is shown in Fig. 14. In this segment,D½1;0�
soft ðμ⃗Þ changes

substantially, so that at the end of this segment of the path,
the unresolved region is only the region with k2T < m2⊥.
In the second segment of the path, the unresolved region

forD½1;0�
soft ðμ⃗Þ does not change at all. It remains as depicted in

Fig. 14. In this second segment, D½1;0�
sc ðμ⃗Þ changes sub-

stantially, so that at the end of this segment of the path, the
unresolved region is only the region with k2T < m2⊥. This is
the region that was already depicted in Fig. 14, but now it

applies to D½1;0�
sc ðμ⃗Þ.

VII. EVOLUTION WITH TWO SCALES

The singular operator Dðμ⃗Þ has a perturbative expansion
(19). The shower generator Sjðμ⃗Þ is defined in Eq. (12).
The index j ∈ fE;Cg includes two scale choices. The
shower generator has a perturbative expansion

Sjðμ⃗Þ ¼
αs
2π

Sð1Þ
j ðμ⃗Þ þOðα2s Þ: ð49Þ

From Eq. (12), the first order contribution is

Sð1Þ
j ðμ⃗Þ ¼ ∂

∂μjD
ð1Þðμ⃗Þ: ð50Þ

In a first order shower, we truncate the expansion of Sjðμ⃗Þ
at first order,

Sjðμ⃗Þ ¼
αs
2π

Sð1Þ
j ðμ⃗Þ: ð51Þ

To obtain the shower evolution operator Uðt2; t1Þ follow-
ing the chosen path μ⃗ðtÞ, we solve the differential equation
Eq. (13). In general, this gives us the group multiplication
property

Uðt2; t1Þ ¼ Uðt2; τÞUðτ; t1Þ: ð52Þ

Our path has two segments, 0 < t < 1 and 1 < t < ∞. This
gives

Uð∞; 0Þ ¼ Uð∞; 1ÞUð1; 0Þ: ð53Þ

We have divided Dð1Þðμ⃗Þ into a part Dð1Þ
sc ðμ⃗Þ with both

soft and collinear singularities and a part Dð1Þ
softðμ⃗Þ with only

soft singularities, as in Eq. (33). We recall that only μE

changes on the first segment of the path and this change

affects onlyDð1Þ
softðμ⃗Þ. We also recall that only μC changes on

the second segment of the path and this change affects only

Dð1Þ
sc ðμ⃗Þ. Then

Uð1; 0Þ ¼ T exp

�
−
Z

1

0

dt
dμEðtÞ
dt

Ssoft
E ðμ⃗ðtÞÞ

�
ð54Þ

and

Uð∞; 1Þ ¼ T exp

�
−
Z

∞

1

dt
dμCðtÞ
dt

Ssc
C ðμ⃗ðtÞÞ

�
: ð55Þ

In this formulation the parton shower, the result depends

on what we choose forDð1Þ
softðμ⃗Þ andDð1Þ

sc ðμ⃗Þ. We can choose

Dð1Þ
softðμ⃗Þ ¼ 0. ThenDð1Þ

sc ðμ⃗Þ is all ofDð1Þðμ⃗Þ. When μC ¼ μ∠
this gives us a simple angular ordered shower, as in Eq. (44)

and Fig. 8. The only difference is conceptual. First,Dð1Þ
sc ðμ⃗Þ

and its inverse ½Dð1Þ
sc ðμ⃗Þ�−1 are well defined at the hard scale.

This is important because ½Dð1Þ
sc ðμ⃗Þ�−1 plays the role of

removing infrared singularities from the hard scattering
cross section calculated at next-to-leading order [1].
Second, with the two scale formulation, we could have
eliminated the m2⊥ cut. Then it would have been natural to
choose a nonzero endpoint μ2E;f ∼ 1 GeV2 for the evolution
in μE in the first segment of the path. This would leave us
with no naked singularity in a natural way.
There are a number of nonzero choices we could make

for Dð1Þ
softðμ⃗Þ, letting Dð1Þ

sc ðμ⃗Þ ¼ Dð1Þðμ⃗Þ −Dð1Þ
softðμ⃗Þ. One

possibility is to define Dð1Þ
sc ðμ⃗Þ so that, although it has a

soft × collinear double singularity, it has only a minimal
wide-angle soft singularity. Whatever choice we make, the

evolution Uð1; 0Þ, using Dð1Þ
softðμ⃗Þ, comes first, followed by

evolution Uð∞; 1Þ, using Dð1Þ
sc ðμ⃗Þ with an ordering

FIG. 14. Unresolved region for D½1;0�
soft ðμ⃗Þ at the end of the first

stage of evolution. Here al ¼ 2 and m2⊥ ¼ 0.0005Q2.
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prescription such as angular ordering, Λ ordering, or kT
ordering.
This two scale formulation of a parton shower is

reminiscent of soft-collinear effective theory (SCET).
Suppose that we want to measure an observable that is
nonzero when there are at least N hard jets. We start with a
hard scattering that produces N hard jets. With a cut on
(N − 1) jettiness [22], τN−1 > τmin, we ensure that the hard
partons constituteN jets and not N − 1 jets. With this as the
hard state, the operator Ssoft

E ðμ⃗ðtÞÞ in Uð1; 0Þ produces soft
wide-angle radiation from the N hard jets, analogously to
the soft factor in SCET. In the second segment of the
shower evolution, Uð∞; 1Þ can add more soft radiation.
However, if Ssc

C ðμ⃗ðtÞÞ (where C ¼ ∠;Λ;⊥ or some other
choice) is defined to have only minimal wide-angle soft
singularities, it is the first segment, involving Ssoft

E ðμ⃗ðtÞÞ
that will dominate the soft radiation between the jets. Then
the second evolution segment acts as the collinear factor in
a SCET analysis and fills in the collinear radiation for
each jet.

VIII. IMPROVED COLOR WITH TWO SCALES

In this section, we describe how one might use the
choices available when using the two scales, μC and μE, to
improve the treatment of color in the shower in a prac-
tical way.
First, we provide some background on color in

parton showers. The most widely used parton shower
event generators [2–4] use the leading color (LC) approxi-
mation, which captures just the leading term in an
expansion in powers of 1=N2

c , where Nc ¼ 3 is the number
of colors. Here one simply supplies a color factor CF ¼
ðN2

c − 1Þ=ð2NcÞ or CA ¼ Nc for emission of a gluon
from a quark or gluon line, respectively, or else a
factor TR ¼ 1=2 for a gluon splitting to qþ q̄. To go
beyond the LC approximation one needs to treat the color
carried by quarks and gluons as fully quantum mechanical
variables.
Throughout this paper, we have described color as fully

quantum mechanical using a vector space for parton color
with basis vectors jfc; c0gmÞ [6]. The basis vector jfc; c0gmÞ
represents a color density matrix jfcgmihfc0gmj, where
jfcgmi is a basis vector for the space of quantum color
states for m partons. (DEDUCTOR uses the trace basis, but
other choices are possible.) This description, with a some-
what different notation, is used in the recent papers [23–29]
to study color in parton shower evolution, accounting
approximately for both real emission graphs and virtual
exchange graphs. Other papers have used the color
density matrix, but for the description of just real emissions
[30–32]. Reference [21] has worked to improve the treat-
ment of color in parton showers without tying the descrip-
tion to the color density matrix.
One can express the evolution equations for a first order

dipole shower so that it evolves with full color [6].

However, some approximation is needed for a shower
realized in computer code. The DEDUCTOR shower uses
what we call the LCþ approximation7 for color [9]. This is
an improvement over the LC approximation. The splitting
operators with this approximation, SLCþ

j ðμ⃗Þ, are, however,
still approximate in color, leaving a difference

ΔSjðμ⃗Þ ¼ Sjðμ⃗Þ − SLCþ
j ðμ⃗Þ: ð56Þ

Simply using SLCþ
j would give us an uncontrolled approxi-

mation since we would not know the size of corrections
from ΔSjðμ⃗Þ. DEDUCTOR allows a systematically improv-
able approximation: the user can compute corrections
proportional to powers ½ΔSj�N of ΔSj (with a single scale
μs) [14–16]. Any power N is allowed. However, including
powers of ΔSj is computationally complicated and makes
the program run more slowly. This leads to practical limits
to the size of N.
It would certainly be desirable to have particular choice

of Ssoft
E ðμ⃗ðtÞÞ that results in making the inclusion of ΔSjðμ⃗Þ

computationally simpler. With this in mind, we note that
the LCþ approximation has an important property. At each
splitting, the leading soft × collinear singularity and the
leading collinear singularity are treated exactly with respect
to color [9]. That is, ΔSjðμ⃗Þ has no collinear singularity.
Thus we can set

Ssc
j ðμ⃗ðtÞÞ ¼ SLCþ

j ðμ⃗ðtÞÞ;
Ssoft
j ðμ⃗ðtÞÞ ¼ ΔSjðμ⃗ðtÞÞ: ð57Þ

With this choice, Uð∞; 1Þ in Eq. (53) is exact in color and
the corrections to the LCþ approximation appear in the
factor Uð1; 0Þ. This is significant for two reasons. First, the
corrections to the LCþ approximation appear in one place,
rather than appearing throughout the shower, interleaved
with LCþ splittings, as in Refs. [14–16]. Second, the factor
Uð1; 0Þ operates on the hard scattering state with which the
shower begins. This state is simple because it has few
partons.
For Uð1; 0Þ, we can expand Eq. (54) in powers of ΔS,

Uð1; 0Þ ¼ 1 −
Z

1

0

dt
dμEðtÞ
dt

ΔSEðμ⃗ðtÞÞ

þ
Z

1

0

dt2
dμEðt2Þ
dt2

Z
t2

0

dt1
dμEðt1Þ
dt1

× ΔSEðμ⃗ðt2ÞÞΔSEðμ⃗ðt1ÞÞ
þ � � � ; ð58Þ

7The LCþ approximation is defined using the trace basis for
color. There is no equivalent approximation in the color flow
basis.
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keeping terms up to order ½ΔSE�N, whereN is chosen by the
user. A more elaborate treatment is possible, but, given the
simplicity of the hard scattering state to which UCð1; 0Þ is
applied, this very simple treatment should suffice.
If we start with the simplest process in eþe− annihilation,

eþe− → qq̄, this is even simpler. Because the q and q̄ are
each other’s color connected partners, we have for the two
parton qq̄ state

ΔSEðμ⃗ðtÞÞjfp; f; c; c0g2Þ ¼ 0: ð59Þ

Thus Uð1; 0Þjfp; f; c; c0g2Þ ¼ jfp; f; c; c0g2Þ, so

Uð∞; 0Þjfp; f; c; c0g2Þ ¼ Uð∞; 1Þjfp; f; c; c0g2Þ: ð60Þ

We can write this in more detail. We choose the evolution
scale in Uð∞; 1Þ as μC ¼ μ∠, μΛ, or μ⊥ according to our
preference and use SLCþðμCÞ ¼ SLCþ

E ðμE; μCÞ with μE ¼ 0.
Then

Uð∞; 0Þjfp; f; c; c0g2Þ ¼ T exp

�Z
Q

0

dμCSLCþðμCÞ
�

× jfp; f; c; c0g2Þ: ð61Þ

It is remarkable that the LCþ approximation for color
gives the exact answer in this case. However, one should be
careful about what “exact” means. A first order parton
shower does not represent full QCD exactly. Two different
choices for the choice of shower scale scheme will give two
different parton shower algorithms. When wework within a
framework that encompasses parton showers at any per-
turbative order [1], we see that the first of two algorithms
can, in principle, be mapped into the second by adding
order α2s and higher order terms to the splitting functions of
the second. With both splitting functions truncated at order
αs, the two algorithms give different results. The difference
is a measure of the uncertainty inherent in using a first order
shower.
Thus it is indeed remarkable that the LCþ approximation

for color is exact in this case, but the meaning of this
statement is that differences from the LCþ approximation in
the one scale treatment can be absorbed into terms in the
shower splitting functions that are higher order in αs in the
two scale treatment.
We emphasize that eþe− annihilation with eþe− → qq̄

as the hard process is a special case. A hard scattering
process with m final state partons with m > 2 will lead to
Uð1; 0Þjfp; f; c; c0gmÞ being nontrivial. Then one will need
to use Eq. (58) for Uð1; 0Þ.

IX. MORE COMPLEX CONTOUR

One might argue that the two segment contour is too
extreme since we put all the wide angle soft contributions
just after the hard interaction. This might provide a good

approximation if we consider a measurement that examines
just the jets created by the initial hard partons, so that we
wish to have the shower generate soft gluons that can see
only the initial hard jets.
But what happens if our observable is sensitive to the

structure of extra jets in addition to the initial hard jets.
With the two-segment path, these jets are not corrected by
any wide angle soft emissions beyond those generated
within the LCþ approximation. We can adapt the evolution
path for such an observable by using a four segment
contour as illustrated in Fig. 15. This path can be para-
metrized similarly to Eq. (48).
On the first segment of the contour, the evolution

operator is

Uð1; 0Þ ¼ T exp

�
−
Z

1

0

dt
dμEðtÞ
dt

ΔSEðμ⃗ðtÞÞ
�
: ð62Þ

Only the wide angle soft operator ΔSEðμ⃗Þ contributes. This
comes right after the hard stage and tries to add partons
with rather large energy and large emission angle. Small
angle radiation is suppressed in ΔSEðμ⃗Þ and small energy
emissions are not allowed because μ2E is never small on this
path segment.
On the second segment of the contour, the evolution

operator is

Uð2; 1Þ ¼ T exp

�
−
Z

2

1

dt
dμCðtÞ
dt

SLCþ
C ðμ⃗ðtÞÞ

�
: ð63Þ

We have evolution in μ2C in the LCþ approximation for
color, with a condition on the energy of the emitted parton,
4zð1 − zÞQ2 > 0.6Q2 (in this example). Since μ2C is never
small on this path segment, the radiation produced is

FIG. 15. Evolution path with four segments.
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neither very soft nor very collinear. We expect jets from this
segment that are resolvable from each other at a fairly
large scale.
The evolution operator for the third part of the shower

evolution is

Uð3; 2Þ ¼ T exp

�
−
Z

3

2

dt
dμEðtÞ
dt

SEðμ⃗ðtÞÞ
�
: ð64Þ

This is different than the evolution on the first segment.
Here the whole splitting operator SEðμ⃗Þ ¼ SLCþ

E ðμ⃗Þ þ
ΔSEðμ⃗Þ contributes to the soft evolution. It is still only
wide angle soft effect. For emissions created by SLCþ

C , the
emission angle is bounded from below because μ2C ¼ 0.6
(in this example). For emissions created by ΔSEðμ⃗Þ, we do
not have a direct lower bound on the emission angle, but the
small angle emissions are suppressed by the splitting
function. We expect that this part of the evolution could
be treated perturbatively as in Eq. (58).
The evolution operator for the fourth part of the shower

evolution is

Uð∞; 3Þ ¼ T exp
�
−
Z

∞

3

dt
dμCðtÞ
dt

SLCþ
C ðμ⃗ðtÞÞ

�
: ð65Þ

This gives soft-collinear evolution using the
LCþ approximation, just as in the two segment case.
We expect the emissions from the smallest values of μ2C
on this segment to be unresolved by the observable
considered.

X. COMPARISONS FOR e + e−
ANNIHILATION AT 10 TeV

In this section, we study eþe− annihilation atffiffiffiffiffiffi
Q2

p
¼ 10 TeV, with the aims of demonstrating the

practical application of the methods described in this paper,
exploring the differences among the choices μ2C ¼ μ2⊥, μ2Λ,
and μ2∠, and testing the dependence on the treatment color.
The hard scattering process is eþe− → qq̄, with more

partons being provided by the parton shower. There are no
data at such a large Q2, but with a large Q2, there is more
room for shower evolution between the hard scale and the
roughly 1 GeV scale at which we stop the shower. We use
the DEDUCTOR parton shower to examine two jet produc-
tion as a function of the resolution parameter ycut using the
Cambridge jet algorithm [33].
The fraction of events with exactly two jets is

ð1=σtotÞσð2 jets; ycutÞ. For each event, there is a value y23
of the resolution parameter at which the event changes a
two jet event to a three jet event. The distribution of
logðy23Þ is

y23
σtot

dσ
dy23

¼
�
ycut
σtot

dσð2 jets; ycutÞ
dycut

�
ycut¼y23

: ð66Þ

We will study the behavior of this distribution.
We use a version8 of DEDUCTOR that is designed to

include kT ordering, Λ ordering, and angular ordering so
that only the ordering variable changes among the three
choices.
We use the two segment scheme, Eq. (48) and Fig. 12,

with three choices for the primary ordering scale, μC ¼ μ⊥
for kT ordering, μC ¼ μΛ for Λ ordering, and μC ¼ μ∠ for
angular ordering. In each case, the primary evolution uses
the LCþ approximation for color, so that the soft splitting
operator is the difference, ΔSjðμ⃗Þ, between splitting with
full color and splitting with the LCþ approximation for
color, Eq. (57). Since we start with just a qq̄ state and the
LCþ approximation is exact for such a state, there is no
evolution on the first segment of the path. For each choice
of ordering scale, we let the m2⊥ cut end the shower. We
choose m2⊥ ¼ 1 GeV2. We do not provide a hadronization
stage for the shower.
With the LCþ approximation in DEDUCTOR, the

shower can generate contributions with values greater
than zero of a parameter called the color suppression
index, I [9]. These contributions are suppressed by a
factor of at least 1=NI

c. The user can choose a value Imax
such that values of I greater than Imax are not generated
[14]. We choose Imax ¼ 4.
The nominal renormalization scale according to the

formulation given above for SLCþ
C ðμ⃗Þ is μR ¼ μC or, more

generally, some function of the scales μ⃗, Eq. (5). However,
DEDUCTOR attempts to incorporate some contributions
from higher order splitting functions by evaluating αs in
the splitting functions at μ2 ¼ k2T=z ¼ ð1 − zÞ2p̂l · p̂mþ1.
In Fig. 16, we show the results for ðy23=σtotÞdσ=dy23 as a

function of y23 for kT ordering, Λ ordering, and angular (ϑ)
ordering in the second segment of the two segment path in
Fig. 12. We also show the next-to-leading-log (NLL)
analytic expectation [34,35] for this quantity. We see that
the distribution forΛ ordering lies between the distributions
for kT ordering and for angular ordering. This was to be
expected because, according to Eqs. (27) and (31), k2T <
Λ2 < ϑQ2 for any splitting. The results for kT ordering and
Λ ordering are close to each other and are quite close to the
NLL analytic expectation. The angular ordering result is
substantially different from the kT ordering and Λ ordering
results and the NLL analytic expectation. We do not have a
satisfying explanation for this behavior, but we note that an
analysis in Appendix B along the lines of Ref. [18]
indicates that for the thrust, T, distribution, the angular

8This version, DEDUCTOR v. 3.4.99, is available at http://www
.desy.de/∼znagy/deductor/ and http://pages.uoregon.edu/soper/
deductor.
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ordered version of the algorithm fails to sum large
logarithms of 1 − T at the NLL or even LL level.
As discussed in Sec. VIII, because of the nature of the

LCþ approximation and the simple nature of the qq̄ hard
state, the results in Fig. 16 are exact in color. That is,
whatever is lacking in the color treatment would be
corrected up to order α3s if we had α2s corrections to the
shower splitting functions. It seems a reasonable conjecture
that the color dependence of these α2s corrections are

numerically unimportant. To address this question, we
can use the previous version [v. (3.0.3)] of DEDUCTOR,
in which there is a single shower scale μS. The default
shower uses the LCþ approximation, but the user can add
powers of ΔSc perturbatively, interleaved with the
LCþ evolution [14]. Our conjecture implies that the effect
of adding ΔSc powers is not numerically important in the
present case of eþe− annihilation with a qq̄ hard state.
To test this conjecture, we choose Λ ordering in

DEDUCTOR-(3.0.3) and compare the result with the
LCþ approximation with the result with up to two powers
of ΔSc added. The result is shown in Fig. 17. We see that
adding ΔSc powers makes the program run more slowly
and thus increases the statistical errors. However, within the
statistical errors (indicated by the band in Fig. 17), adding
ΔSc powers makes no difference to the result.

XI. SUMMARY AND OUTLOOK

In a parton shower, the state of many partons evolves as
partons split with increasing “shower time” t. For a first
order shower, one parton can split into two partons as
dictated by three splitting variables such as ðkT; z;ϕÞ. We
have taken the view that for any t there is a resolvable
region and an unresolvable region in the space of parton
splitting variables. As t increases, more splittings become
resolvable, so that there is a probability for a newly
resolvable splitting to occur. The surface that divides the
two regions can be parametrized by variables μ⃗, with
functions μ⃗ðtÞ specifying the progression of boundary
surfaces.
One could have any number of parameters μn to describe

a surface in the space of parton splitting variables. Parton
shower algorithms typically use one. In this paper, we use
two parameters. We choose the first to be a parameter μE

that provides a cut on the energy of an emitted parton. We
choose the second parameter to be μC, which could be any
of μ⊥, μΛ, or μ∠. In single variable evolution, this would
correspond, respectively, to kT, Λ, or angular ordering, as
described in Sec. V.
The probability for parton splitting in a first order shower

is determined [using Eq. (A4)] by splitting operators Dl,
where l is the index of the parton that splits and where Dl is
an operator on the color space of the partons and a function
of the parton momenta and flavors. These operators can be
decomposed into two terms

Dl ¼ Dsc
l þ Dsoft

l ; ð67Þ

where Dsoft
l is singular for soft emissions but is not singular

for collinear emissions (or for soft × collinear emissions).
We have adopted an especially useful way to do this by
defining

Dsc
l ¼ DLCþ

l : ð68Þ

FIG. 16. The y23 distribution with the Cambridge algorithm.

FIG. 17. The y23 distribution with the Cambridge algorithm
using a calculation with just one scale μS. Results with just the
LCþ approximation and with up to two units of the color
correction operator ΔSc are compared.
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InDLCþ
l , we approximateDl using the LCþ approximation

[9] for color. Then the second term is

Dsoft
l ¼ Dl − DLCþ

l : ð69Þ
As we see in Appendix A, the LCþ approximation is exact
in the limit of collinear emissions [9]. That is, Dl − DLCþ

l
has no collinear singularity.
This decomposition is important because we can define

different treatments of the unresolvable region for the two
contributions to Dl. For splittings derived from DLCþ

l , there
are three cuts used to determine when a splitting is
unresolved. First, we impose a fixed infrared cutoff by
defining a splitting to be unresolved whenever k2T < m2⊥,
where m2⊥ is of order 1 GeV2. Second, there is a cut that
depends on the energy scale μ2E: a splitting is unresolved
whenever 4zð1 − zÞ < μ2E=Q2. Third, there is a cut that
depends on μ2C. If C ¼ ⊥, a splitting is unresolved whenever
k2T < μ2⊥. If C ¼ Λ, a splitting is unresolved whenever
Λ2 < μ2Λ, where Λ2 is the default ordering variable in
DEDUCTOR and is proportional to the virtuality in the
splitting. If C ¼ ∠, a splitting is unresolved whenever
ϑQ2 < μ2∠ where ϑ ¼ ½1 − cosðθÞ�=2 and θ is the angle
between the daughter partonmomenta in the rest frame ofQ.
We treat splittings derived fromDsoft

l differently. The soft
singularity is controlled by the cut 4zð1 − zÞ < μ2E=Q2.
Since for these splittings there is no collinear singularity,
we can omit the cut based on μ2C.
The final ingredient in the formulation presented in this

paper is the choice of a path ðμEðtÞ; μCðtÞÞ. The path we
choose has two segments, as shown in Fig. 12. In the first
segment, with 0 < t < 1, μ2C is fixed atQ2 and μE decreases
fromQ2 to 0. In the second segment, with 1 < t < ∞, μ2E is
fixed at 0 and μ2C decreases from Q2 to 0. In the first path
segment, there is no unresolved region available for DLCþ

l
because of the cut imposed by μ2C. However, this cut does
not apply for Dsoft

l , so there is a contribution from Dsoft
l . In

the second part, DLCþ
l contributes, but the unresolved

region does not change for Dsoft
l , so Dsoft

l does not
contribute. This gives Eq. (53) for the complete evolution:

Uð∞; 0Þ ¼ Uð∞; 1ÞUð1; 0Þ: ð70Þ

The second factor here, Uð∞; 1Þ, is a complete shower
using the LCþ approximation for color and either kT, Λ, or
angular ordering. The first factor provides an evolution in
parton energy using the soft operator Dsoft

l .
In the case of angular ordering, the formulation pre-

sented here provides a way to understand an angular
ordered shower in which the only cutoff on soft emissions
is provided by the fixed cutoff k2T > m2⊥. If we were to set
m2⊥ to zero, we would have a naked singularity in the
resolved region. With a fixed value of m2⊥, we do not find
infinities in the results, but we can find large logarithms,

logðQ2=m2⊥Þ, that are not summed by a renormalization
group equation. In the two scale treatment, the large
logarithms are absorbed into Uð1; 0Þ.
The LCþ shower provided by Uð∞; 1Þ is corrected by

the operator Uð1; 0Þ that is built from Dsoft
l , Eq. (69). The

splitting operator Dsoft
l has a complicated color structure,

making numerical calculations based on this operator
difficult. However, this operator tends to be numerically
small because it starts with a factor 1=N2

c ∼ 1=10 and
because it lacks a collinear singularity. Thus one can attack
the numerical evaluation by expanding Uð1; 0Þ in powers of
Dsoft

l . We have done this in Ref. [14], with splittings
according to Dsoft

l interleaved with LCþ evolution. The
numerical evidence suggests that an expansion in powers of
Dsoft

l is adequate. With the shower formulation presented in
this paper, the needed calculations are simpler because
Uð1; 0Þ is applied to the initial hard scattering state, denoted
by jρHÞ, which has few partons. The needed calculations are
also simpler because the splittings from Dsoft

l do not need to
be interleaved with LCþ evolution, which we found to be
complicated and computationally expensive.
In the case of eþe− annihilation with a color singlet

qq̄ state jρHÞ to start the shower, the calculations are,
in fact, trivial. Because the space of qq̄g color states is
just one dimensional, Dsoft

l applied to jρHÞ vanishes. Thus
Uð1; 0ÞjρHÞ ¼ jρHÞ and no numerical calculation is needed.
Application of the formulation of this paper to hadron-

hadron collisions is left to future work. Here, we note that
for the Drell-Yan process at the Born level, the initial state
with a color singlet qq̄ is like a qq̄ final state in eþe−
annihilation, so that Uð1; 0ÞjρHÞ ¼ jρHÞ However, for jet
production in hadron-hadron collisions, Uð1; 0ÞjρHÞ ≠ jρHÞ.
Then a perturbative expansion of Uð1; 0Þ will be
needed. However, this expansion should be much simpler
than when powers of Dsoft

l are interleaved with the
LCþ shower in the style of Ref. [14].
Finally, we offer the speculation that using multiple

scales may prove useful in developing a parton shower
algorithm with splitting functions defined at order α2s
instead of just αs. At order α2s , one can have two real
emissions, one real emission together with a virtual
exchange, or two virtual exchanges. For the case of two
real emissions, both can be soft, one can be soft and one
collinear with an existing parton, two can be collinear to
two existing partons, or two can be collinear with one
existing parton. The resulting singular surfaces are much
more complicated than they are in a first order shower. It
may well be useful to employ different scale parameters to
describe an unresolved region that includes all of the
singularities.
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APPENDIX A: ABOUT THE DEDUCTOR SHOWER

In this appendix, we specify details of the DEDUCTOR

shower kinematics [6,12] and splitting functions [6–9] used
in the main text. We adopt a notation that is different from
that in Refs. [6–9,12] and emphasizes some of the features
that are important in this paper. We concentrate on the
singular operatorsD½1;0�

l ðμ2R; μ⃗Þ andD½0;1�
l ðμ2R; μ⃗Þ from which

the splitting functions used in the shower are derived [1]
since these operators carry more information than the
shower splitting functions.

1. The form of D½1;0�
l

To define the singular operator for a final state
splitting, we begin with the kinematic variables. Before
the splitting, there are incoming partons labeled a, b and
final state partons 1; 2;…; m. For electron-positron anni-
hilation, the incoming partons do not participate in the
shower since they carry no color charge. The final state
partons have momenta fpgm ¼ fp1;…; pmg and flavors
ffgm ¼ ff1;…; fmg. The total momentum of the final
state partons is Q. Then also Q ¼ pa þ pb.
Now, for a final state splitting, a parton labeled l ∈

f1;…; mg splits. The size of pl is conveniently described
using the auxiliary variable al, Eq. (26). It is also useful to
define an auxiliary lightlike vector nl in the plane of pl and
Q, Eq. (23). Parton l splits into a new parton with label l
and momentum p̂l and a new parton with label mþ 1 and
momentum p̂mþ1. We use a scaled virtuality variable y,
Eq. (24), and a momentum fraction z, Eq. (22), to specify
the splitting. We also define an azimuthal angle ϕ of the
splitting using the part, k⊥, of p̂l that is orthogonal to pl and
nl. The three splitting variables y, z, and ϕ determine p̂l and
p̂mþ1 using

p̂l ¼ zhþðyÞpl þ ð1 − zÞh−ðyÞnl þ k⊥;
p̂mþ1 ¼ ð1 − zÞhþðyÞpl þ zh−ðyÞnl − k⊥; ðA1Þ

where

h�ðyÞ ¼
1

2
½1þ y� λðyÞ�;

λðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ yÞ2 − 4aly

q
: ðA2Þ

The magnitude of the transverse momentum k⊥ is given by
Eq. (27),

−
k2⊥

2pl ·Q
¼ zð1 − zÞy: ðA3Þ

For i ∉ fl; mþ 1g, the momenta p̂i are related to the
momenta pi before the splitting by a Lorentz transforma-
tion, p̂μ

i ¼ Λμ
νpν

i [6]. This Lorentz transformation is a boost
in the plane of pl and Q and allows

Pmþ1
i¼1 p̂i ¼ Q.

For a final state splitting, we need the singular operator

D½1;0�
l ðμR; μ⃗Þ that appears in Eqs. (19) and (21). Here μR is

the renormalization scale and μ⃗ is the shower scale, which
may have more than one component, as in Eq. (3). The

operator D½1;0�
l ðμR; μ⃗Þ has both soft and collinear singular-

ities. We do not now divide it into two parts that get
different treatments, as in Eq. (33).

We can now state what D½1;0�
l ðμR; μ⃗Þ contains. We apply

D½1;0�
l ðμR; μ⃗Þ to an m-parton state and write the result in the

form

D½1;0�
l ðμR; μ⃗Þjfp; f; c; c0gmÞ

¼
Z

dfp̂; f̂gmþ1jfp̂; f̂gmþ1Þ

×
αsðμ2RÞ
2π

D̂lðfp̂; f̂gmþ1; fp; fgmÞjfc; c0gmÞ: ðA4Þ

Here D̂l is a function of the momenta and flavors before and
after the splitting and is an operator that maps the color
space with m final state partons, into the color space with
mþ 1 final state partons.
The operator D̂l has the form derived from Eq. (5.7) of

Ref. [9] and Eq. (8.20) of Ref. [6] with dimensional
regulation added,

D̂lðfp̂; f̂gmþ1;fp;fgm;ϵÞ¼
�

μ2R
2pl ·Q

�
ϵ ð4πÞϵ
Γð1− ϵÞ

Z
1

0

dz½zð1− zÞ�−ϵ
Z

1

0

dy
y
y−ϵ½λðyÞ�1−2ϵθðλ2ðyÞ> 0Þ

×
X

â∈SðaÞ

Z
d1−2ϵϕ
Sð2−2ϵÞδðfp̂; f̂gmþ1−Rlðy;z;ϕ; â;fp;fgmÞÞΘððy;zÞ∈Uðμ⃗ÞÞ

×
X
k

1

2

�
θðk¼ lÞ 1

Nðâ;aÞ P̂
âaðz;y;al;ϵÞ−θðk≠ lÞδâa

2

1−z
W0ðξlk;al;z;y;ϕ−ϕkÞ

�

×ft†l ðfl → f̂lþ f̂mþ1Þ⊗ tkðfk → f̂kþ f̂mþ1Þþ t†kðfk → f̂kþ f̂mþ1Þ⊗ tlðfl → f̂lþ f̂mþ1Þg:
ðA5Þ
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There are dimensionally regulated integrations over split-
ting variables y, z, and ϕ. The variable ϕ is a unit vector in
the 2 − 2ϵ dimensional transverse momentum space and
represents the azimuthal angle of p̂l around the direction of
pl. The integration over ϕ is an integration over a unit
sphere that is a 1 − 2ϵ dimensional surface. The function
Sð2 − 2ϵÞ is the surface area of this sphere, so that

Z
d1−2ϵϕ

Sð2 − 2ϵÞ 1 ¼ 1: ðA6Þ

There is also a sum over the flavor â of parton l after the
splitting, which we use as a splitting variable that specifies
the flavor content of the splitting. The set of allowed values
of â, SðaÞ, depends on the flavor a≡ fl of the parton that
splits. For all a, a ∈ SðaÞ. This corresponds to a splitting
a → aþ g, where DEDUCTOR labels the daughter gluon as
mþ 1. For a ¼ g, also q ∈ SðaÞ for any quark flavor q.
This corresponds to a splitting g → qþ q̄, where
DEDUCTOR labels the daughter quark as l.
After the integrations, there is a delta function that sets

fp̂; f̂gmþ1 to the momenta and flavors obtained from a
splitting with variables ðy; z;ϕ; âÞ applied to partons with
momenta and flavors fp; fgm according to DEDUCTOR

conventions.
The idea of the singular operatorD½1;0� is that it integrates

over splittings that are arbitrarily close to the soft and
collinear limits, but with an ultraviolet cutoff that depends
on scale parameters μ⃗. The region of ðy; zÞ allowed by the
cutoff is called the unresolved region and is denoted by
Uðμ⃗Þ. We therefore insert a theta function that specifies that
ðy; zÞ lies in the unresolved region.
DEDUCTOR is a dipole shower. In the following factor,

there is a sum over dipole partner partons k. In the first
term, the partner parton is the same as the emitting parton,
k ¼ l. This term contains a color factor Nðâ; aÞ defined by

Nðq; gÞ ¼ TR;

Nðq; qÞ ¼ CF;

Nðg; gÞ ¼ CA; ðA7Þ

where q is any quark or antiquark flavor. Then there is a
splitting function P̂âaðz; y; al; ϵÞ. In the case of a g → qq̄
splitting, where q is a quark flavor, the label l after the
splitting is assigned to the quark. Thus we have a ¼ g and
â ¼ q. Then P̂qg is related to the function w̄llðfp̂; f̂gmþ1Þ
that appears in Eq. (A.1) of Ref. [7] by

4παsðμ2RÞ
ypl ·Q

P̂qgðz; y; al; ϵÞ
Nðq; gÞ ¼ w̄llðfp̂; f̂gmþ1Þ: ðA8Þ

In all other splittings, one of the partons after the splitting is
a gluon. The label mþ 1 is assigned to the gluon. Then
parton l can be a quark, antiquark, or gluon and â ¼ a.

In this case, P̂aa is related to the functions w̄aaðfp̂; f̂gmþ1Þ
and w̄eikonal

aa ðfp̂; f̂gmþ1Þ that appear in Eqs. (2.23) and
(2.58) of Ref. [7] by

4παsðμ2RÞ
ypl ·Q

P̂aaðz; y; al; ϵÞ
Nða; aÞ

¼ w̄llðfp̂; f̂gmþ1Þ − w̄eikonal
ll ðfp̂; f̂gmþ1Þ

þ 4παsðμ2RÞ
ypl ·Q

�
2

1 − zþ aly
− 2

�
: ðA9Þ

In Eq. (A8) and Eq. (A9), we calculate w̄ll in 4 − 2ϵ
dimensions by counting the number of spin states of a
gluon as 2 − 2ϵ instead of just 2.
The functions P̂aâðz; y; al; ϵÞ are somewhat complicated.

It is helpful to express these functions using the variables

xðyÞ ¼ 1þ y − λðyÞ
1þ yþ λðyÞ ;

ϑðyÞ ¼ xðyÞ
½zþ ð1 − zÞxðyÞ�½1 − zþ zxðyÞ� : ðA10Þ

The variable x vanishes for y → 0: xðyÞ ∼ alyþOðy2Þ.
The variable ϑ is the angle variable for the splitting defined
in Eq. (29). Then we find,

P̂qgðz;y;al;ϵÞ¼TR

�
1−

2zð1−zÞ
1−ϵ

�
;

P̂qqðz;y;al;ϵÞ¼CF

�
2

1−zþaly
−2þð1−ϵÞð1−zÞhþðyÞ

þ2zð1−zÞ½hþðyÞ−1þxðyÞ�½1−xðyÞ�
ð1−zþzxðyÞÞ2

�
;

P̂ggðz;y;al;ϵÞ¼CA

�
2

1−zþaly
−2

þzð1−zÞ
�
1−

2ϑðyÞ½1−ϑðyÞ�
1−ϵ

��
: ðA11Þ

In P̂qg, q can be any flavor of quark, while in P̂qq, q can be
any flavor of quark or antiquark. For ϵ ¼ 0, these functions
are given in Eqs. (A.1) and (2.23) of Ref. [7] or Appendix B
of Ref. [12].
The functions P̂âaðz; y; al; ϵÞ are simple at ϵ ¼ 0, y ¼ 0:

P̂qgðz; 0; al; 0Þ ¼ TR½1 − 2zð1 − zÞ�;

P̂qqðz; 0; al; 0Þ ¼ CF
1þ z2

1 − z
;

P̂ggðz; 0; al; 0Þ ¼ CA

�
2z

1 − z
þ zð1 − zÞ

�
: ðA12Þ

The first two of these are the standard DGLAP parton
evolution kernels. In P̂gg, both parton l and parton mþ 1
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after the splitting are gluons. Parton l carries momentum
fraction z, while parton mþ 1 carries momentum fraction
1 − z. The DEDUCTOR algorithm breaks the symmetry
between these two gluons. The total probability to produce
a gluon with momentum fraction z is given by the standard
DGLAP parton evolution kernel,

P̂ggðz; 0; al; 0Þ þ P̂ggð1 − z; 0; al; 0Þ

¼ 2CA

�
z

1 − z
þ 1 − z

z
þ zð1 − zÞ

�
: ðA13Þ

Next in Eq. (A5) is a term proportional to a function
W0ðξlk; al; z; y;ϕ − ϕkÞ. This term comes from interference
between emission of a gluon from parton l and emission
from dipole partner parton k with k ≠ l. We write the
momentum of parton k before the splitting as

pk ¼ Flk½ð1 − ξlkÞpl þ ξlknl

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξlkð1 − ξlkÞQ2=a2l

q
u⊥�: ðA14Þ

The variable ξlk is ð1 − cos θl;kÞ=2 where θl;k is the angle
between pk and pl as measured in the rest frame of Q. The
vector u⊥ is a transverse unit vector, pl · u⊥ ¼ nl · u⊥ ¼ 0

and u2⊥ ¼ −1. The azimuthal angle of u⊥ is ϕk and the
azimuthal angle ϕ of k⊥ is defined by

k⊥ · u⊥ ¼ −
ffiffiffiffiffi
k2T

q
cosðϕ − ϕkÞ: ðA15Þ

In order to conserve momentum in the splitting, DEDUCTOR

makes a small Lorentz transformation on all of the final
state momenta except for p̂l and p̂mþ1 [6]. This Lorentz
transformation changes pk to

p̂k ¼ Flk

�
eωðyÞð1 − ξlkÞpl þ e−ωðyÞξlknl

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξlkð1 − ξlkÞQ2=a2l

q
u⊥

�
: ðA16Þ

The boost angle ω is given by

e−ωðyÞ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðyÞy=al

p
: ðA17Þ

Thus ωðyÞ → 0 when y → 0: ωðyÞ ∼ yþOðy2Þ.
The function W0 is defined by

2

1 − z
W0ðξlk; al; y; z;ϕ − ϕkÞ

¼ pl ·Qy
4παsðμ2RÞ

A0
lkðfp̂gmþ1Þw̄dipole

lk ðfp̂gmþ1Þ

−
�

2

1 − zþ aly
− 2

�
: ðA18Þ

The function w̄dipole
lk is the familiar dipole radiation function

that appears in Ref. [9], Eq. (5.3),

w̄dipole
lk ðfp̂gmþ1Þ ¼ 4παsðμ2RÞ

2p̂l · p̂k

p̂mþ1 · p̂lp̂mþ1 · p̂k
: ðA19Þ

This represents the interference between emission of a
gluon with momentum p̂mþ1 from parton l and emission of
this gluon from parton k.
To use w̄dipole

lk in a partitioned dipole shower, we multiply
by 1 ¼ A0

lk þ A0
kl, where A0

lk is the dipole partitioning
function from Ref. [8], Eq. (7.12),

A0
lkðfp̂gmþ1Þ¼

p̂mþ1 · p̂kp̂l ·Q
p̂mþ1 · p̂kp̂l ·Qþ p̂mþ1 · p̂lp̂k ·Q

;

A0
klðfp̂gmþ1Þ¼

p̂mþ1 · p̂lp̂k ·Q
p̂mþ1 · p̂kp̂l ·Qþ p̂mþ1 · p̂lp̂k ·Q

: ðA20Þ

Then A0
lkw̄

dipole
lk is associated with emission from

parton l and A0
klw̄

dipole
lk is associated with emission from

parton k. Crucially, A0
lk ¼ 0 when p̂mþ1 is collinear with

p̂k, p̂mþ1 · p̂k ¼ 0. Thus the pole 1=p̂mþ1 · p̂k in w̄dipole
lk is

canceled. When p̂mþ1 is collinear with p̂l, we have A0
kl ¼ 0

so A0
lk ¼ 1.

What is w̄dipole
lk when p̂mþ1 becomes collinear with p̂l?

This is the limit ϑ → 0 with fixed z, or, equivalently, y → 0
with fixed z. In this limit, we have A0

lk → 1 and

p̂l · p̂k

p̂mþ1 · p̂k
→

p̂l · nl
p̂mþ1 · nl

¼ z
1 − z

: ðA21Þ

Using 2p̂mþ1 · p̂l ¼ 2pl ·Qy, we find

pl ·Qy
4παsðμ2RÞ

A0
lkðfp̂gmþ1Þw̄dipole

lk ðfp̂gmþ1Þ

∼
2z

1 − z
¼ 2

1 − z
− 2

∼
2

1 − zþ aly
− 2: ðA22Þ

In Eq. (A18), we have subtracted the value of the first line
of the right-hand side in this collinear limit.9 Thus in the
collinear limit, W0 → 0.
The function yA0

lkw̄
dipole
lk is singular in limit of soft

emissions, ð1 − zÞ → 0 with fixed ϑ. In this limit, p̂mþ1 ∼
ð1 − zÞp̂ð0Þ

mþ1 with p̂ð0Þ
mþ1 fixed in the soft limit and with

9Using a denominator ð1 − zþ alyÞ instead of just (1 − z)
does not change the behavior of the subtraction in the collinear
limit, but avoids adding singular behavior that is not present in
A0
lkw̄

dipole
lk in the integration region ð1 − zÞ ≪ aly ≪ 1. This

region corresponds to the emitted soft gluon moving opposite
to the mother parton direction.
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p̂l → pl and p̂k → pk in the soft limit. One then obtains a
result of the form

yA0
lkw̄

dipole
lk ¼ fðϑÞ

1 − z
þOðð1 − zÞ0Þ: ðA23Þ

The subtraction in Eq. (A18) eliminates the leading ϑ → 0
behavior, leaving

2

1 − z
W0 ¼

fðϑÞ − fð0Þ
1 − z

þOðð1 − zÞ0Þ: ðA24Þ

Thus W0 has a finite limit as ð1 − zÞ → 0 at fixed ϑ.
A convenient method to evaluate W0ðξlk;al;y;z;ϕ−ϕkÞ

is to write the vectors involved as functions of y; z;ϕ
and evaluate the vector dot products in Eqs. (A19)
and (A20).
Finally in Eq. (A5) there is a factor with color operators.

The operator t†l ðfl → f̂l þ f̂mþ1Þ, acting on the ket color
state jfcgmi, gives the new color state jfĉgmþ1i that one
gets after emitting the new partonmþ 1 from parton l with
flavor fl ¼ a, giving a new parton l with flavor f̂l ¼ â.
This operator is described in some detail in Ref. [6].
Similarly, tkðfk → f̂k þ f̂mþ1Þ, acting on the bra color
state hfc0gmj, gives the new color state hfĉ0gmþ1j that one
gets after emitting the new partonmþ 1 from parton kwith
flavor fk.
In the case that parton mþ 1 is a gluon, the color

operators obey the identity

Xm
k¼1

tkðfk → fk þ gÞ ¼ 0: ðA25Þ

This identity arises from the fact that the parton color state
is an overall color singlet, so that attaching a color
generator matrix Tc

k to all of the parton lines k in the state,
including k ¼ l, gives zero. We have used this identity to
add the same term, proportional to ½2=ð1 − zþ alyÞ − 2�, to
both the k ¼ l term and the k ≠ l terms in Eq. (A5). We
have added this term in both places in order to move the
soft × collinear singularity from the k ≠ l terms to the k¼ l
term. After this change, the k ≠ l terms, proportional toW0,
have a soft singularity but not a collinear singularity.

2. The form of D½0;1�
l

As in Eq. (21), the singular operator D½1�
l associated with

parton l consists of two parts, D½1;0�
l that specifies real

splittings of parton l and D½0;1�
l , in which a virtual parton is

exchanged. We have describedD½1;0�
l . We now would like to

define the real part of D½0;1�
l ðμR; μ⃗Þ.

This operator comes from virtual graphs, in which we
integrate over a momentum q that flows around a loop.

The operator D½0;1�
l captures the infrared singularities when

q→0 or q becomes collinear with pl [1]. Since D½0;1�
l

simply captures the singularities, it is defined to leave

parton momenta and flavors unchanged:D½0;1�
l jfp;f;c;c0gmÞ

is defined to be a linear combination of states
jfp; f; ĉ; ĉ0gmÞ with the same momenta and flavors. The

operator D½0;1�
l does, however, change colors. It contains

two kinds of terms. First, there are terms with the color
structure of self-energy insertions on one of the parton legs.
These terms are proportional to the unit operator on the
color space. Second, there are terms with the color structure
of gluon exchanges between two parton legs, l and k. The
gluon line attaches to line lwith a color generator matrix Tc

l

in the 8, 3 or 3̄ representation according to the flavor of
parton l. The gluon line attaches to line k with the
appropriate generator matrix Tc

k. Then we sum over the
gluon color index c. The result can be denoted by Tk · Tl.
Thus the gluon exchange terms are proportional to either
½Tk · Tl ⊗ 1� for a virtual graph on the ket amplitude or
½1 ⊗ Tk · Tl� for a virtual graph on the bra amplitude. The
virtual graphs have 1=ϵ2 and 1=ϵ poles. By using color
identities, we can arrange that the terms proportional to the
unit operator on the color space have 1=ϵ2 and 1=ϵ poles,
while the terms with ½Tk · Tl ⊗ 1� and ½1 ⊗ Tk · Tl� color
operators have only 1=ϵ poles that arise from the exchange
of a soft gluon.
Since D½0;1�

l leaves parton momenta and flavors
unchanged but can change the m-parton color state, it
has the form10

ReD½0;1�
l ðμR; μ⃗Þjfp; f; c; c0gmÞ

¼ jfp; fgmÞ
αsðμ2RÞ
2π

Γlðfp; fgm; ϵÞjfc; c0gmÞ: ðA26Þ

Now, we need to define Γl. We will do this by relating

D½0;1�
l ðμR; μ⃗Þ to the inclusive splitting probability produced

by D½1;0�
l ðμR; μ⃗Þ.

The probability associated with a basis state
jfp̂; f̂; ĉ; ĉ0gmþ1Þ is

ð1jfp̂; f̂; ĉ; ĉ0gmþ1Þ ¼ ð1pf jfp̂; f̂gmþ1Þð1colorjfĉ; ĉ0gmþ1Þ
ðA27Þ

with

ð1pf jfp̂; f̂gmþ1Þ ¼ 1;

ð1colorjfĉ; ĉ0gmþ1Þ ¼ hfĉ0gmþ1jfĉgmþ1i: ðA28Þ

10There are imaginary contributions to the virtual graphs in
D½0;1�

l , although the imaginary contributions from final state
virtual exchanges with a final state emitting parton cancel [9].
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Thus the probability corresponding to D½1;0�
l applied to the state jfp; f; c; c0gmÞ is

ð1jD½1;0�
l ðμR; μ⃗Þjfp; f; c; c0gmÞ ¼

Z
dfp̂; f̂gmþ1

αsðμ2RÞ
2π

ð1colorjD̂lðz; fp̂; f̂gmþ1; fp; fgm; ϵÞjfc; c0gmÞ: ðA29Þ

We write this using another operator P̂l as

ð1jD½1;0�
l ðμR; μ⃗Þjfp; f; c; c0gmÞ ¼

αsðμ2RÞ
2π

ð1colorjP̂lðfp; fgm; ϵÞjfc; c0gmÞ; ðA30Þ

where ð1colorj times the operator P̂l is

ð1colorjP̂lðfp;fgm;ϵÞjfc;c0gmÞ¼
�

μ2R
2pl ·Q

�
ϵ ð4πÞϵ
Γð1− ϵÞ

Z
1

0

dz½zð1−zÞ�−ϵ
Z

1

0

dy
y
y−ϵ½λðyÞ�1−2ϵθðλ2ðyÞ> 0Þ

×
X

â∈SðaÞ

Z
d1−2ϵϕ
Sð2−2ϵÞΘððy;zÞ∈Uðμ⃗ÞÞ

×
X
k

1

2

�
θðk¼ lÞ 1

Nðâ;aÞ P̂
âaðz;y;ϵÞ−θðk≠ lÞδâa

2

1−z
W0ðξlk;al;z;y;ϕ−ϕkÞ

�

× hfc0gmjtkðfk → f̂kþ f̂mþ1Þt†l ðfl → f̂lþ f̂mþ1Þ
þ tlðfl→ f̂lþ f̂mþ1Þt†kðfk → f̂kþ f̂mþ1Þjfcgmi: ðA31Þ

Here we have used the momentum conserving delta function in D̂l to eliminate the integration over fp̂; f̂gmþ1. In the color
factor, we have used the instruction in Eq. (A28) to take the trace ofX

ĉ;ĉ0
ρðfĉ; ĉ0gmþ1Þjfĉgmþ1ihfĉ0gmþ1j ¼ t†l ðfl → f̂l þ f̂mþ1Þjfcgmihfc0gmjtkðfk → f̂k þ f̂mþ1Þ ðA32Þ

and the analogous color density matrix with l ↔ k.
We can simplify the color here. In the case that k ¼ l,

tlðfl → f̂l þ f̂mþ1Þt†l ðfl → f̂l þ f̂mþ1Þ ¼ Nðâ; aÞ; ðA33Þ

where Nðâ; aÞ is the Casimir eigenvalue (A7) appropriate to the flavor content of the splitting. When k ≠ l, the emitted
parton mþ 1 is always a gluon. Thus for k ≠ l,

tkðfk → f̂k þ f̂mþ1Þt†l ðfl → f̂l þ gÞ ¼ tlðfl → f̂l þ gÞt†kðfk → f̂k þ gÞ ¼ Tk · Tl: ðA34Þ

These simplifications give us

ð1colorjP̂lðfp; fgm; ϵÞjfc; c0gmÞ ¼
�

μ2R
2pl ·Q

�
ϵ ð4πÞϵ
Γð1 − ϵÞ

Z
1

0

dz½zð1 − zÞ�−ϵ
Z

1

0

dy
y
y−ϵ½λðyÞ�1−2ϵθðλ2ðyÞ > 0Þ

×
Z

d1−2ϵϕ
Sð2 − 2ϵÞΘððy; zÞ ∈ Uðμ⃗ÞÞ

� X
â∈SðaÞ

P̂âaðz; y; ϵÞhfc0gmjfcgmi

−
X
k≠l

2

1 − z
W0ðξlk; al; z; y;ϕ − ϕkÞhfc0gmjTk · Tljfcgmi

�
: ðA35Þ

This specifies ð1colorjP̂lðfp; fgm; ϵÞ but not the operator P̂lðfp; fgm; ϵÞ. We need to specify the color content of

P̂lðfp; fgm; ϵÞ. We make a choice that matches the color structure of the virtual exchange operator D½0;1�
l . We note that

hfc0gmjTk · Tljfcgmi ¼ Tr½Tk · Tljfcgmihfc0gmj� ¼ Tr½jfcgmihfc0gmjTk · Tl�: ðA36Þ
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Thus we can define the color content of P̂lðfp; fgm; ϵÞ by

P̂lðfp; fgm; ϵÞ ¼
�

μ2R
2pl ·Q

�
ϵ ð4πÞϵ
Γð1 − ϵÞ

Z
1

0

dz½zð1 − zÞ�−ϵ
Z

1

0

dy
y
y−ϵ½λðyÞ�1−2ϵθðλ2ðyÞ > 0Þ

×
Z

d1−2ϵϕ
Sð2 − 2ϵÞΘððy; zÞ ∈ Uðμ⃗ÞÞ

� X
â∈SðaÞ

P̂âaðz; y; ϵÞ −
X
k≠l

2

1 − z
W0ðξlk; al; z; y;ϕ − ϕkÞ

×
1

2
f½Tk · Tl ⊗ 1� þ ½1 ⊗ Tk · Tl�g

�
: ðA37Þ

This enables us to define the operator Γl that appears in

Eq. (A26) for ReD½0;1�
l . Because of the familiar real-virtual

cancellations, poles in Γlðfp; fgm; ϵÞ match the poles in
−P̂lðfp; fgm; ϵÞ11:

½Γlðfp; fgm; ϵÞ�poles ¼ −½P̂lðfp; fgm; ϵÞ�poles: ðA38Þ

This leaves the finite part of Γlðfp; fgm; ϵÞ undefined. It is
not evident how to impose an ultraviolet cutoff on the
unresolved region for virtual graphs that matches the cutoff
that we used for real emission graphs. In Ref. [12] we
proposed a method for this. Here, we propose a simpler
method that gives the same result. We define

Γlðfp; fgm; ϵÞ ¼ −P̂lðfp; fgm; ϵÞ: ðA39Þ
Equation (A39) gives us

ð1jD½1�
l ¼ ð1j½D½1;0�

l þD½0;1�
l � ¼ 0: ðA40Þ

This is significant because the shower splitting operators Sj
for a first order shower are defined by Eq. (12),

SjðμR; μ⃗Þ ¼
∂
∂μj D

½1�ðμR; μ⃗Þ: ðA41Þ

This gives us ð1jSjðμR; μ⃗Þ ¼ 0. Then the shower evolution
operator Uðt2; t1Þ, Eq. (15), is probability preserving12:

ð1jUðt2; t1Þ ¼ ð1j: ðA42Þ

3. The form of D½1�
l;soft

In the main text, we have used a decomposition,
Eq. (32), of Dlðfp̂; f̂gmþ1; fp; fgmÞ into a part with both
soft and collinear singularities and a part with only soft
singularities:

Dl ¼ Dsc
l þ Dsoft

l : ðA43Þ

In Eq. (57), this decomposition was achieved using the
LCþ approximation for color:

Dsc
l ¼ DLCþ

l ;

Dsoft
l ¼ Dl − DLCþ

l : ðA44Þ

The LCþ approximation [9] is simple. To define D̂LCþ
l ,

we start with D̂l in Eq. (A5) and drop some contributions.
We keep all of the contributions for k ¼ l. In the con-
tributions for k ≠ l (for which parton mþ 1 is a gluon), we
expand hfc0gmjtkðfk → fkþgÞ and t†kðfk → fk þ gÞjfcgmi
in color basis vectors and retain all contributions in which
parton mþ 1 is color connected to parton l, dropping all
other contributions.
The corresponding expression for P̂LCþ

l is obtained from
P̂l in Eq. (A37) by retaining the terms proportional to
P̂âaðz; y; ϵÞ times the unit color matrix. Then for each k ≠ l
term that was retained in D̂LCþ

l , the color matrix Tk · Tl is
replaced by CA=2 or CF times the unit color matrix [9].
The result of this is that D̂soft

l and P̂soft
l are given by

expressions analogous to the D̂l and P̂l that contain only
terms proportional to W0 times color operators. Recall that
W0 has soft singularities but no collinear or soft × collinear
singularities. We conclude that D̂soft

l and P̂soft
l have only soft

singularities.
In the formulation of a shower with two scales as

presented in the main text, we take μ⃗ ¼ ðμE; μCÞ, where
the collinear sensitive scale μC is one of μ∠, μΛ, or μ⊥. Then
μE controls the soft singularity according to Eq. (45). Then
for DLCþ

l and PLCþ
l , we use the unresolved region Uðμ⃗Þ ¼

UðμE; μCÞ as defined by Eq. (46). However, for Dsoft
l and

Psoft
l , there is no collinear singularity so we can use the

unresolved region UðμE; 0Þ as defined by Eq. (47).

APPENDIX B: THRUST LOGARITHMS FOR
ANGULAR ORDERING

In Fig. 16, we illustrated the application of the methods
of this paper to the two jet cross section with the Cambridge
algorithm in eþe− annihilation. This is quite simple since

11For details, see Ref. [36], for example.
12The situation is more subtle when there are one or

two hadrons in the initial state because then the shower
evolution involves the evolution of the parton distribution
functions [12,13].
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the contribution from the first component of the two
component path is just the unit operator when one starts
with just a qq̄ state. A surprising (at least to us) outcome
was that with angular ordering for the second component of
the path, the results were quite different than with Λ
ordering or kT ordering for the second component.
Although the question of why this is lies outside of the

main topic of this paper, we investigate in this appendix
whether leaving everything the same in the DEDUCTOR

code used for this paper and simply changing from Λ or kT
ordering to angular ordering might change the accuracy
with which the shower sums large logarithms.
For this purpose, we consider the thrust distribution,

which we had previously investigated [18] (although not
with angular ordering). The thrust, T, distribution is strongly
peaked at small 1 − T. It contains a factor 1=ð1 − TÞ and
large logarithms of (1 − T). To investigate these logarithms,
one takes the Laplace transform g̃ðνÞ of the (1 − T)
distribution, with Laplace transform variable ν. For large
ν, this function contains contributions proportional to
ans logkðνÞ with k ≤ 2n. In QCD, g̃ðνÞ exponentiates in
the sense that log½g̃ðνÞ� contains contributions proportional
to ans logkðνÞ with k ≤ nþ 1. The terms with k ¼ nþ 1 are
the leading-log (LL) terms and the terms with k ¼ n are the
next-to-leading-log (NLL) terms. These terms are calculated
analytically in Ref. [37]. Reference [18] provides both
analytical and numerical methods for investigating whether
a parton shower reproduces those terms. In this appendix,
we use one of the numerical methods. We calculate certain

quantities hI½J�n ðνÞi that are based on operating J times with
the shower splitting operator and calculating its contribution
at order αns to log½g̃ðνÞ� minus what log½g̃ðνÞ� should be
according to the analytic result.
We calculate hI½2�2 ðνÞi for the DEDUCTOR splitting func-

tions with exact SU(3) color. In Fig. 18, we show the results
with Λ ordering and kT ordering.13 This is an order α2s
contribution, so the NLL term in the analytical result is
proportional to log2ðνÞ. If the parton shower is giving a

result correct to NLL, then hI½2�2 ðνÞi should not contain a
log2ðνÞ contribution for large ν. Thus, for NLL accuracy,

the curves representing hI½2�2 ðνÞi should be a linear func-
tions of logðνÞ, as indeed they are.
Now we try the same calculation with angular ordering.

We display the result in Fig. 19. We see, first, that hI½2�2 ðνÞi
is much larger in magnitude than the same quantity with Λ
ordering, which is shown as a dashed line. This suggests a
failure of cancellation of large contributions. For NLL

accuracy, hI½2�2 ðνÞi should be a linear function of logðνÞ
for large ν but it is not. The blue curve shows

dhI½2�2 ðνÞi=d logðνÞ. For LL accuracy, this curve should
be a linear function of logðνÞ for large ν. The numerical
evidence is perhaps not definitive, but this evidence
suggests a failure of the angular ordered shower to
achieve LL accuracy. We emphasize that the code for
Figs. 18 and 19 is the same except for changing the
ordering variable.

FIG. 18. hI½2�2 ðνÞi, as in Ref. [18], versus the Laplace parameter
ν for the thrust distribution for Λ ordering and kT ordering.

FIG. 19. hI½2�2 ðνÞi, as in Ref. [18], versus the Laplace parameter
ν for the thrust distribution for angular ordering. The Λ-ordered
result for hI½2�2 ðνÞi is also shown as a dashed line.

13The result in this figure is close that of Figs. 1 and 6 of
Ref. [18]. There are small differences because the revised code in
this paper treats the running coupling αs slightly differently from
the code in Ref. [18].
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