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We extend the effective dynamical quasiparticle model (DQPM)—constructed for the description of
nonperturbative QCD phenomena of the strongly interacting quark-gluon plasma (QGP)—to large baryon
chemical potentials, μB, including a critical endpoint (CEP) and a first-order phase transition. The DQPM
description of quarks and gluons is based on partonic propagators with complex self-energies where the
real part of the self-energies is related to the quasiparticle mass and the imaginary part to a finite width of
their spectral functions (i.e., the imaginary parts of the propagators). In DQPM the determination of
complex self-energies for the partonic degrees of freedom at zero and finite μB has been performed by
adjusting the entropy density to the lattice QCD data. The temperature-dependent effective coupling
(squared) g2ðT=TcÞ, as well as the effective masses and widths of the partons are based on this adjustments.
The novel extended dynamical quasiparticle model, named “DQPM-CP,” makes it possible to describe
thermodynamical and transport properties of quarks and gluons in a wide range of temperature, T, and
baryon chemical potential, μB, and reproduces the equation of state of lattice QCD calculations in the
crossover region of finite T; μB. We apply a scaling ansatz for the strong coupling constant near the CEP,
located at ðTCEP; μCEPB Þ ¼ ð0.100; 0.960Þ GeV. We show the equation of state as well as the speed of sound
for T > Tc and for a wide range of μB, which can be of interest for hydrodynamical simulations.
Furthermore, we consider two settings for the strange quark chemical potentials, (I) μq ¼ μu ¼ μs ¼ μB=3
and (II) μs ¼ 0; μu ¼ μd ¼ μB=3. The isentropic trajectories of the quark-gluon plasma matter are
compared for these two cases. The phase diagram of DQPM-CP is close to PNJL calculations. The
leading order pQCD transport coefficients of both approaches differ. This elucidates that the knowledge of
the phase diagram alone is not sufficient to describe the dynamical evolution of strongly interacting matter.

DOI: 10.1103/PhysRevD.105.054011

I. INTRODUCTION

The extension of the QCD phase diagram to a finite
baryon chemical potential is a challenging task. It is
believed that QCD matter undergoes a phase transition
from the confined hadronic phase to the deconfined QGP

phase if one increases the chemical potential at moderate
temperatures and the transition line in (T, μB) is expected to
terminate at a critical endpoint. This is the least explored
area of the QCD phase diagram but of particular interest for
future experimental programs and theoretical studies (see
the recent review [1]). To realize these studies in a viscous
hydrodynamical model, one has to know the equation of
state (EoS) of strongly interacting matter but also the
transport coefficients. The time evolution of the QGP
medium, produced in heavy-ion collisions (HICs), can
also be addressed in microscopic transport approaches,
which provide the time evolution of the degrees of freedom
of the system. They require, in addition, the knowledge of
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the microscopic properties of the partonic degrees of
freedom, such as effective masses, widths, and cross
sections, which all may depend on μB and T. The large
value of the running coupling requires nonperturbative
methods, such as lattice QCD (lQCD) calculations, or
effective models with a phenomenological input.
Therefore, it is notoriously difficult to estimate thermody-
namic properties of the deconfined QCD matter, especially
in the vicinity of a phase transition.
The lQCD calculations at vanishing baryon chemical

potential are well established. However, due to the
fermion sign problem, it is not at all easy to extend these
calculations to a large baryon chemical potential. One
possibility for exploring thermodynamic functions at
μB > 0 is to employ a Taylor expansion of the partition
function in the vicinity of μB ¼ 0. It shares with other
approaches, which were designed for μB ¼ 0, that the
uncertainty of the predictions increases with the increase
of μB.
Here we present a new phenomenological model, the

generalized quasiparticle model, DQPM-CP, for the
description of nonperturbative features of the (strongly
interacting) QCD. It reproduces the lQCD EoS for μB ¼ 0
as well as the first coefficient of the Taylor expansion
towards finite μB but can be extended to a wide range of μB.
For this we combine the findings of DQPM, with a new
parametrization of the coupling constant. One of the
important features of the DQPM-CP is the appearance of
“critical” scaling in the vicinity of the critical endpoint
(CEP). The main goal of the DQPM-CP is to provide the
microscopic and macroscopic properties of the partonic
degrees of freedom for the region of the phase diagram
which is characterized by moderate T and moderate or high
μB. Their knowledge allows us subsequently to calculate
the transport coefficients as well as the EoS, the ingredients
of viscous hydrodynamic calculations.
In the present study we employ results from different

methods such as lQCD calculations and results from
the Nf ¼ 3 PNJL model extended beyond the mean
field, because more rigorous approaches, such as Dyson-
Schwinger equations [2], functional renormalization group
[3], or pQCD/HTL calculations [4] can currently not cover
the interesting observables in the full (T, μB) plane. There
are no fully consistent calculations within a single
approach, which includes the QGP thermodynamic observ-
ables and simultaneously the transport coefficients for the
region of moderate and high μB or μq. The presented results
are model dependent, however, qualitatively in agreement
with the results from various effective models such as
PNJL, NJL, LSM, and nonconformal holographic models.
Only at moderate baryon density can we compare the more
rigorous methods such as lQCD, functional renormaliza-
tion group, nad Dyson-Schwinger equations. Nevertheless,
the demand for an EoS and transport coefficients at
moderate and high baryon chemical potentials is high

due to the ongoing investigation of HICs by transport
or/and hydrodynamic models [1]. These investigations aim
at the exploration of observables, which may carry infor-
mation about this region of the phase diagrams. Therefore
the presented results, even if they allow only for qualitative
predictions, can be useful for transport studies, which
have multiple issues to solve in the region of moderate
baryon density while awaiting results from more rigorous
approaches.
The main advantage of the use of quasiparticle models is

the simple implementation in the transport framework for
the evolution of the QGP matter. The DQPM has been
implemented in the PHSD transport approach [5,6],
whereas the QPM [7] is implemented in the Catania
transport approach [8]. Recently also, results from approxi-
mate models of QCD, like that from NJL and PNJL models,
have been implemented in the AMPT model [9] via scalar
and vector potentials. The goal of the presented model is to
interpolate the EoS and partonic properties such as effective
masses, scalar potential, and cross sections between the
region of high T and μB ¼ 0 to the region of moderate T
and high μB. In particular, we are currently working on the
implementation of the DQPM-CP in the PHSD transport
approach [5,6].
The degrees of freedom of the DQPM are strongly

interacting dynamical quasiparticles—quarks and gluons—
with a broad spectral function, whose “thermal”masses and
widths increase with growing temperature. The knowledge
of the T and μB dependence of the mass of our degrees of
freedom allows for the calculation of transport coefficients
in lowest order in pQCD. They can be compared with the
transport coefficients, calculated recently in the PNJL
approach, which has a very similar phase diagram but
other degrees of freedom (interacting massless quarks and
no gluons). The comparison of the transport coefficients
shows that they depend indeed on the properties of the
degrees of freedom and may be rather different in two
theories with almost the same phase diagram.
The paper is organized as follows: In Sec. II we give a

brief review of the basic ingredients of the dynamical
quasiparticle model and its extension to the finite μB
region. In Sec. III we discuss the thermodynamic observ-
ables for two setups of quark chemical potential:
(I) μq ¼ μu ¼ μs ¼ μB=3 and (II) μs ¼ 0;μu ¼ μd ¼ μB=3.
Furthermore, we study second-order derivatives of the
partition function, such as speed of sound and specific
heat and isentropic trajectories of the QGP matter. Further,
in Sec. IV we present transport coefficients of the DQPM-
CP such as the specific shear viscosity and ratio of electric
σQQ=T, baryon σBB=T, and strange σSS=T conductivities to
temperature based on the relaxation time approximation
of the Boltzmann equation. In addition, we show the ratio
of dimensionless transport coefficients for the full range of
chemical potentials. We finalize our study with conclusions
in Sec. V.
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II. BASIC PROPERTIES OF THE
QUASIPARTICLE MODEL

A. Main ingredients of the off-shell
quasiparticle models

In the dynamical quasiparticle model, DQPM [6,10–12],
the QGP medium is described in terms of strongly
interacting quasiparticles, quarks and gluons. The quasi-
particles are massive and can be characterized by broad
spectral functions ρi (i ¼ q; q̄; g), which are no longer δ
functions in the invariant mass squared but are given by

ρiðω;pÞ ¼
γi
Ẽi;p

�
1

ðω − Ẽi;pÞ2 þ γ2i
−

1

ðωþ Ẽi;pÞ2 þ γ2i

�

¼ 4ωγi
ðω2 − p2 −m2

i Þ2 þ 4γ2iω
2
: ð1Þ

Here, we introduced the off-shell energy Ẽi;p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i − γ2i
p

, with mi,γi being the pole mass and width,
which differ for quarks, antiquarks, and gluons. Then the
quasiparticle (retarded) propagators can be expressed in the
Lehmann representation via the spectral function:

Δiðω;pÞ ¼
Z

∞

−∞

dω0

2π

ρiðω0;pÞ
ω − ω0 ¼ 1

ω2 − p2 −m2
i þ 2iγiω

:

ð2Þ

The quasiparticle pole masses for gluons and quarks
are defined, inspired by the asymptotic HTL masses
[13,14], by

m2
gðT; μBÞ ¼ Cg

g2ðT; μBÞ
6

T2

�
1þ Nf

2Nc
þ 1

2

P
qμ

2
q

T2π2

�
ð3Þ

m2
qðq̄ÞðT; μBÞ ¼ Cq

g2ðT; μBÞ
4

T2

�
1þ μ2q

T2π2

�
; ð4Þ

where Nc ¼ 3 and Nf ¼ 3 denote the number of colors and

the number of flavors, respectively. Cq ¼ N2
c−1
2Nc

¼ 4=3 and
Cg ¼ Nc ¼ 3 are the QCD color factors for quarks and for
gluons, respectively. The strange quark has a larger bare
mass which needs to be considered in its dynamical
quasiparticle pole mass. We fix msðT; μBÞ ¼ muðT; μBÞ þ
Δm and Δm ≈ 30 MeV [6].
Furthermore, the quasiparticles in DQPM have thermal

widths, which are adopted in the form [14,15]

γjðT; μBÞ ¼
1

3
Cj

g2ðT; μBÞT
8π

ln

�
2cm

g2ðT; μBÞ
þ 1

�
: ð5Þ

The parameter cm, which is related to a magnetic cutoff, is
fixed to cm ¼ 14.4.

In the DQPM, the coupling constant at μB ¼ 0 is
parametrized, employing the entropy density sðT;μB¼0Þ
from lattice QCD calculations of Refs. [16,17] in the
following way:

g2ðT; μB ¼ 0Þ ¼ dððsðT; 0Þ=sQCDSB Þe − 1Þf; ð6Þ

with the Stefan-Boltzmann entropy density sQCDSB =T3 ¼
19=9π2 and the dimensionless parameters d ¼ 169.934,
e ¼ −0.178434, and f ¼ 1.14631.
We note that the DQPM has been used to explore the

crossover region in the phase diagram by introducing an
effective coupling constant which depends on the baryon
chemical potential. In this region of a moderate baryon
chemical potential, the basic thermodynamic observables,
computed in lQCD, show a smooth μB dependence.
Therefore we expect a similar behavior for the effective
coupling.
The effective coupling at finite baryon chemical potential

μB is obtained by applying the “’scaling hypothesis”
introduced in [11]. It assumes that g2 is a function of
the ratio of the effective temperature

T� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ μ2q=π2

q
ð7Þ

(where the quark chemical potential is defined as
μq ¼ μu ¼ μs ¼ μB=3) and the μB-dependent critical tem-
perature TcðμBÞ as [15]

TcðμBÞ ¼ Tcð0Þð1 − αμ2BÞ1=2; ð8Þ

where Tcð0Þ is the critical temperature at vanishing
chemical potential (≈0.158 GeV) and α ¼ 0.974 GeV−2.
Thus, the DQPM effective coupling αDQPMS ðT; μBÞ reads

αDQPMS ðT; μBÞ≡
8<
:

μB ¼ 0∶ g2ðT; μB ¼ 0Þ=ð4πÞ
μB > 0∶ g2ðTscaleðT; μBÞÞ=ð4πÞ;
With Tscale ¼ T�

TcðμBÞ=Tcð0Þ :
ð9Þ

Having fixed the quasiparticle properties (or propagators)
as described above, one can evaluate the basic thermody-
namic observables: the entropy density sðT; μBÞ, the pres-
sure PðT; μBÞ, and energy density ϵðT; μBÞ in a straight
forward manner by starting with the quasiparticle entropy
density and number density. The entropy density and the
quark number density follow from the same thermodynamic
potential Ω½Δ; Sq� [18,19], which is expressed as a func-
tional of the full quasiparticle propagators for gluons and
quarks(Δ; Sq) in a symmetry-conserving (“Φ derivable”)
two-loop approximation:
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sdqp

¼−dg
Z

dω
2π

d3p
ð2πÞ3

∂fg
∂T ðImðlnΔ−1Þ− ImΠ×ReΔÞ

−dq

Z
dω
2π

d3p
ð2πÞ3

∂fqðω−μqÞ
∂T ðImðlnS−1q Þ− ImΣqReSqÞ

−dq̄

Z
dω
2π

d3p
ð2πÞ3

∂fq̄ðωþμqÞ
∂T ðImðlnS−1q̄ Þ− ImΣq̄ReSq̄Þ

ð10Þ

ndqp

¼−dq
Z

dω
2π

d3p
ð2πÞ3

∂fqðω−μqÞ
∂μq ðImðlnS−1q Þ− ImΣqReSqÞ

−dq̄

Z
dω
2π

d3p
ð2πÞ3

∂fq̄ðωþμqÞ
∂μq ðImðlnS−1q̄ Þ− ImΣq̄ReSq̄Þ

ð11Þ

where fgðωÞ and fqðω − μqÞ denote the Bose-Einstein and
Fermi-Dirac distribution functions [see Eq. (25)], respec-
tively, while Δ ¼ ðp2 − ΠÞ−1, Sq ¼ ðp2 − ΣqÞ−1, and Sq̄ ¼
ðp2 − Σq̄Þ−1 stand for the full (scalar) quasiparticle propa-
gator of gluons g, quarks q, and antiquarks q̄. In Eqs. (10)
and (11) we consider for simplicity, scalar (retarded)
quasiparticle self-energies Π ¼ Σ ¼ Σq ≈ Σq̄, which are
expressed via dynamical masses and widths as Π ¼
m2

i − 2iγiωi, where, for the off-shell case, ωi is an inde-
pendent variable. Furthermore, the number of transverse
gluonic degrees of freedom is dg ¼ 2 × ðN2

c − 1Þ while for
the fermion degrees of freedom we use dq ¼ 2 × Nc

and dq̄ ¼ 2 × Nc.

B. Extension of quasiparticle DQPM-CP effective
coupling constant for the inclusion of the CEP

Now we proceed with the extension of the DQPM to the
region of large μB where a possible critical endpoint is
located. In order to extend the quasiparticle model to the
large μB region and to describe the critical behavior near
the CEP we depart from the “scaling hypothesis” used for
the moderate baryon chemical potentials in the crossover
region and introduce a simple parametrization of the
coupling constant as a function of the scaled temperature
and the baryon chemical potential. To simplify an extension
of the effective coupling for finite μB we parametrize
αDQPM−CP
s as a function of a dimensionless scaled temper-

ature xT ¼ T=Tc. We determine first the parameters at
vanishing quark or baryon chemical potential by fitting
extracted values of g2DQPMðT; μB ¼ 0Þ from Eq. (6) as a
function fðT=Tc; μB ¼ 0Þ (Tc ¼ 0.158) with the help of
the nonlinear least-squares Marquardt-Levenberg algo-
rithm. Later we use critical line values of Tc for each
value of the baryon chemical potential. The critical line of

the present model, which is an input parameter for our
calculations, reads

TcðμBÞ ¼ Tcð0Þ½1 − κPNJLðμB=Tcð0ÞÞ2�; ð12Þ
where Tcð0Þ ¼ 0.158 GeV is fixed in accordance with the
results from lQCD [20,21], while κPNJL ¼ 0.00989 corre-
sponds to the estimates from the PNJL model [22].
Figure 1 shows a comparison of the critical lines of the

DQPM (green dashed line), of the DQPM-CP, and the
predictions from the lQCD calculations. The DQPM-CP
phase boundary, given by Eq. (12), is shown as a black
dashed-dotted line in the crossover region, i.e., for mod-
erate baryon chemical potentials. The critical endpoint
in the presented model is located at ðTCEP; μCEPB Þ ¼
ð0.100; 0.960Þ GeV.
The exact location of the CEP is an open question and

there are many predictions from various methods [for a
compilation of theoretical predictions for ðTCEP; μCEPB Þ we
refer the reader to Fig. 6 in Ref. [24], and to Fig. 19 in
Ref. [25]]. Current state-of-the-art lQCD results disfavor a
critical point for μB=T ≤ 3 [16,21,26,27]. Furthermore, it
has been found that the temperature of the hypothetical
chiral critical endpoint should not exceed the critical temper-
ature of the chiral phase transition (formu ¼ md ¼ 0) T0

c ¼
132þ3

−6 MeV [28,29]. Recently, the approximate position of
the chiral CEP (for vanishing external magnetic field) of
μCEPB ¼ 0.800ð0.140Þ GeV has been conjectured by the
lQCD simulations of finite density QGP under external

FIG. 1. Critical line of the DQPM-CP (black lines) and of the
DQPM (green dashed line) in the ðT; μBÞ plane of the QCD phase
diagram. DQPM-CP (μq ¼ μs ¼ μB=3): The finite temperature
crossover (black dash-dotted line) at small chemical potential
switches to a first-order transition (black solid line) at the hypo-
thetical CEP (red star), which is located at (0.10,0.96) GeV.
DQPM (μq ¼ μs ¼ μB=3): The finite temperature crossover
(green dashed line). Lines with colored areas represent lQCD
estimates of TcðμBÞ for QCD with Nf ¼ 2þ 1: (μq ¼ μs ¼ μB=3)
grey area, from Ref. [23]; (μq ¼ μs ¼ μB=3) red area, from
Ref. [20]; (hnSi ¼ 0) violet area, from Ref. [21].
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magnetic fields [30]. It has been shown that the critical
line of the PNJL model generally depends on the parameters
of the model [31]. Many (P)NJL model predictions of the
location of the CEP lie at high μB ∼ 0.8 − 1 GeV [24];
for instance, for the Nf ¼ 2 NJL model in Ref. [32]
ðTCEP; μCEPB Þ ¼ ð0.081; 0.987Þ GeV ðμCEPB ¼ 3μCEPq Þ, while
for the Nf ¼ 3 PNJL model considered in Ref. [33]
ðTCEP; μCEPB Þ ¼ ð0.121; 0.875Þ GeV.
We base this study on the predictions from the extended

beyond mean field Nf ¼ 3 PNJL model [22]. However, in
order to fit lattice results at moderate μB ≤ 0.6 GeV we use
the value of the pseudocritical temperature at μB ¼ 0 from
lQCD estimates. First, the value of the baryon chemical
potential of the hypothetical CEP μCEPB is chosen in accord
with predictions from the PNJL model, then the temperature
of the CEP follows from the chosen critical line TcðμBÞ. The
chosen location of the hypothetical CEP iswithin the allowed
range of the lQCD estimates. The first-order phase transition
is shownas a solid black line. TheDQPMphase boundary for
moderate baryon chemical potentials, μB ≤ 0.6 GeV, given
by Eq. (8), is shown as a dashed green line. The colored areas
illustrate the predictions from the lQCD calculations for
QCD with Nf ¼ 2þ 1: grey area, from Ref. [23]; red area,
from Ref. [20]; violet area, from Ref. [21].
To interpolate the EoS and microscopic properties of

quarks and gluons between the region of the vanishing
baryon chemical potential and the asymptotic behavior in
the region of high baryon density μB ≫ T (T > TcðμBÞ),
we employ a simple ansatz for the μB dependence, which
reflects the decrease of the effective coupling with μB. We
assume that the coupling constant does not depend explic-
itly on the temperature but only on the scaled temperature
[xT ¼ T=TcðμBÞ] (Tc varies with μB according to the
chosen critical line) for all μB ≥ 0. Furthermore, we
introduce an additional factor σðμBÞð¼ 1 at μB ¼ 0Þ to take
into account the decrease of the coupling constant with μB
at moderate xT . At high T (T=TcðμBÞ≡ xT ≫ 1) the
effective coupling constant is not affected by the baryon
chemical potential. Therefore, the DQPM-CP coupling
constant can be parametrized as a function of a scaled
temperature and μB:

αcrossS ¼ a0 þ
a2
x2T

−
a3
x3T

þ a4
x4T

þ a6 · σðμBÞ
x6T

: ð13Þ

Here the coefficients ai are fixed at μB ¼ 0 [where σðμB ¼
0Þ ¼ 1� by fitting the DQPM coupling constant g2ðT; μB ¼
0Þ obtained from Eq. (6) (see the comparison of the basic
thermodynamic observables from DQPM-CP and lQCD
predictions in Sec. III): a0 ¼ 0.25, a2 ¼ 1.77, a3 ¼ 2.17,
a4 ¼ 2.13, a6 ¼ 0.85.
The motivation to use the decrease in the effective

coupling is based on the expectations of the QGP matter
to approach the noninteracting Stefan-Boltzmann limit at
large μB on the order of a few GeV and small temperatures

μB ≫ T (see recent pQCD results on the pressure in
Ref. [34]). Therefore, it is reasonable to assume that the
coupling constant also decreases at Tc with increasing μB.
To describe the decrease of the coupling constant near the
Tc with μB we introduced an additional factor, affecting the
region near the phase transition:

σðμBÞ ¼ 1 − σ2μ
2
B − σ4μ

4
B; ð14Þ

where σ2 ¼ 0.45 GeV−2 and σ4 ¼ 0.15 GeV−4. We fixed
the values of σ2 and σ4 by fitting the quasiparticle entropy
from Eq. (10) to the lQCD data points of the entropy
density from the BMW Collaboration [16,17] at finite
μB ¼ 0.1, 0.2, 0.3, 0.4 GeV for given temperature points
TcðμBÞ < T < Tmax, where TcðμBÞ denotes the critical
temperature and Tmax ¼ 0.4 GeV.
We note that the adjustment of the effective coupling

constant is made in order to interpolate results for thermo-
dynamic observables between the region of vanishing
baryon chemical potential and that of the high baryon
chemical potential. High and moderate temperatures above
the phase transition line T > TcðμBÞ are considered. The
aim of the model is to describe, on the one side, qualita-
tively the behavior of the thermodynamic observables in the
regions of high/moderate baryon density for T > TcðμBÞ
and, on the other side, to reproduce the lQCD EoS,
the region of moderate baryon chemical potential. For
quantitative results, one has to refer to more rigorous
approaches. To verify the μB dependence of the effective
coupling we compare in Fig. 2 the ratio p=pSBðT ¼ 0Þ
[pSBðT ¼ 0Þ ¼ μ4B

108π2
] from DQPM-CP calculations for

high μB with the pQCD calculations from Ref. [34].
Although the uncertainties of the pQCD results are quite
large, we see that the resulting pressure from the DQPM-
CP is compatible with the pQCD predictions.
Furthermore, to accumulate critical behavior near the

CEP, where the phase transition is of second order, we use
an additional critical term for the coupling constant. The
goal of this term is to describe the critical behavior at the
second-order phase transition for the microscopic and
thermodynamic quantities. To obtain the parametrization
of the critical coupling constant, we fit the entropy density
to the results from the PNJL [22]. The resulting para-
metrization for the critical coupling constant is given by

αcritS ¼ a · ðT=TcÞ−12; ð15Þ
where a ¼ αcrossS ðT ¼ TCEPÞ.
The total coupling constant αDQPM−CP

S then reads

αDQPM−CP
S ≡

�
μB ¼ μCEP∶αCEPS ¼ 1−FðTÞ

2
αcritS þ 1þFðTÞ

2
αcrossS

μB ≠ μCEP∶αcrossS

ð16Þ
αcrossS corresponds to the coupling constant for the
crossover region defined by Eq. (13), while at μB ¼ μCEP ¼
0.960 GeV the effective coupling αDQPM−CP

S ¼ αCEPS
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includes the additional critical ’ contribution αcritS , defined
by Eq. (15). To match the two coupling constants we
employ the smoothing function:

FðTÞ ¼ tanh

�
T − 0.1004

δT

�
; ð17Þ

where δT ¼ 0.002 GeV is the region in the vicinity of
the CEP, where the two coupling constants have to match.
The values of δT and T are chosen in accordance with the
T=Tc—dependence of the PNJL entropy density. While the
temperature T0 ¼ 0.1004 GeV regulates the size or tem-
perature range ðTCEP; T0Þ of the critical contribution, δT
affects the derivatives of the pressure at T0. However, a

slight change of T0 as well as δT up to 20% will not change
the qualitative results; the effect of an increase of the second-
order derivatives will be less pronounced for smaller T0.
Figure 3 shows the effective coupling of the DQPM-CP

at fixed μB ¼ 0 (black solid line) and μB ¼ 0.96 GeV (red
points) as a function of the scaled temperature T=Tc. At
μB ¼ 0 the coupling constant equals the DQPM effective
coupling g2ðT; μB ¼ 0Þ obtained from Eq. (6).
The scaling behavior of the quasiparticle masses has

been employed in condensed matter physics [37], where
the interaction with bosonic fluctuations near the critical
point causes a divergence in the effective masses of the
quasiparticles. We note that one can include the scaling
behavior of the thermodynamic observables in a more
rigorous way as done in Ref. [38], where the EoS from the
lQCD calculations of the BMW Collaboration has been
parametrized and adopted to include a singular part near the
CEP from the 3D-Ising model.
The effective masses (a) and widths (b) of quarks

and gluons along the critical line are depicted on Fig. 4.
The masses decrease with increasing of μB, while at the
CEP they show a peak, which corresponds to the finite
value of the critical coupling constant. Since the effective
masses reflect medium modifications, the increase when
approaching the CEP is expected. The thermal widths
should accordingly manifest a similar behavior. The
widths of the quarks and gluons are significantly smaller
then the masses for the whole μB range (see Fig. 5).
The ratio of the pole mass to the width follows from
Eqs. (3)–(5):

µ

FIG. 2. The scaled pressure p=pSB (black line) from the
DQPM-CP in comparison to the pQCD results from Ref. [34]
(red area) as a function of the baryon chemical potential for
fixed temperatures T ¼ 0.05, 0.10, 0.150 GeV. Scenario:
μq ¼ μu ¼ μs ¼ μB=3.

FIG. 3. The running coupling αDQPM−CP
S from Eq. (16) as a

function of the scaled temperature T=Tc at fixed μB: for μB ¼ 0,
Tc ¼ 0.158 GeV (black solid line) corresponds to the crossover
phase transition and ðTCEP; μCEPB Þ ¼ ð0.100; 0.960Þ GeV (red
points) corresponds to the CEP. The lattice results for quenched
QCD, Nf ¼ 0, (black circles) are taken from Ref. [35] and for
Nf ¼ 2 (blue triangles) are taken from Ref. [36].
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mi=γi ∝
ai þ bi

μ2q
T2π2

gðT; μBÞ ln ð2cm=g2ðT; μBÞ þ 1Þ ; ð18Þ

where we use the shorthand notation for constants ai ¼ 1

(for quarks), 1þ Nf

2Nc
(for gluons), bi ¼ 1 (for quarks), and

3=2 (for gluons). For vanishing chemical potential the ratio
mi=γi ≈ 9 for quarks and ≈6 for gluons. The ratio increases
with μB since the coupling constant decreases with μB, for
instance at μB ¼ 1 GeV: we set mi=γi ≈ 16 for quarks and
≈11 for gluons.
Importantly, we see that in DQPM-CP the quark masses

are larger than a third of the free proton mass. This means
that the production of baryons across the critical line, the
dominant process for large μB and small T, is an exothermic
process in DQPM-CP.

III. EOS FOR FINITE TEMPERATURE AND
CHEMICAL POTENTIAL

In this section we consider the basic thermodynamic
observables from the DQPM-CP for finite chemical poten-
tial. The starting point for the calculation of the thermo-
dynamic functions in the dynamical quasiparticle models
is the evaluation of the entropy density and the quark
densities via the propagators as described in Eqs. (10) and
(11). Then it is straightforward to derive the pressure p and
later the energy density, employing the Maxwell relation
for a grand canonical ensemble:

pðT; μBÞ ¼ p0ðT; 0Þ þ
Z

μB

0

nBðT; μ0BÞdμ0B: ð19Þ

For the pressure at μB ¼ 0, we use the lQCD para-
metrization of the pressure p0ðT; 0Þ from Refs. [16,17].
The energy density ϵ then follows from the Euler
relation

(a)

(b)

FIG. 4. Effective masses (a) and widths (b) of light quarks and
gluons in the DQPM-CP from Eqs. (4)–(5) along the critical line
[given by Eq. (12)] as function of baryon chemical potential
μB ¼ 3μq. The dashed line represents the critical value of the
baryon chemical potential μCEP ¼ 0.96 GeV.

(a)

(b)

FIG. 5. The DQPM-CP pole masses and widths for the gluons
(a) and light quarks (b) given by Eqs. (3)–(5) as a function of
temperature in region T > TcðμBÞ for fixed baryon potentials
μB ≥ 0.
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ϵ ¼ Ts − pþ
X
i

μini: ð20Þ

Furthermore, the interaction measure is defined as

I ≡ ϵ − 3P ¼ Ts − 4pþ
X
i

μini; ð21Þ

which vanishes in the noninteracting limit of massless
degrees of freedom at μB ¼ 0. The scaled pressure, entropy
density, and energy density of the QGP phase are supposed
to increase with the temperature. However, lQCD calcu-
lations of the thermodynamic observables show [39] that
the massless noninteracting limit cannot be reached even at
temperatures of T ∼ 1 GeV. Figure 6 demonstrates thermo-
dynamic observables from the DQPM-CP (solid lines) as a
function of temperature at μB ¼ 0 in comparison to lQCD
data obtained by the BMW Collaboration (dots) [16,17].
We consider two setups for the quark chemical potentials:

(I) μq ¼ μu ¼ μs ¼ μB=3 and (II) μs ¼ 0; μu ¼ μB=3. The
quark chemical potential can be related to the strange, baryon,
and electric charge chemical potentials as μi ¼ BiμB þ
QiμQ þ SiμS,whereBi,Qi, andSi arebaryonnumber, electric
charge, andstrangenessof the consideredquark.Hereinwe fix
μQ ¼ 0, therefore for the symmetric QGP matter (I) μq ¼
μu ¼ μs ¼ μB=3 the strange and the electric charge potentials
are vanishing μS ¼ μQ ¼ 0, while for (II) μs ¼ 0; μu ¼ μB=3
the strange chemical potential is finite μS ¼ μB=3.
The T dependence of the thermodynamic quantities

such as the scaled entropy density, the pressure, and the
energy density from the DQPM-CP for various baryon
chemical potentials 0 ≤ μB ≤ 0.99 GeV is shown in Fig. 7
(μq ¼ μu ¼ μs ¼ μB=3) and Fig. 8 (μs ¼ 0; μu ¼ μB=3).
For setup (I) we found a good agreement between the

FIG. 6. The scaled pressure PðTÞ=T4 (blue line), entropy
density sðTÞ=T3 (red line), scaled energy density ϵðTÞ=T4

(orange line), and interaction measure IðTÞ=T4 (green line),
from the DQPM-CP in comparison to the lQCD results from
Refs. [16,17] (circles) for zero baryon chemical potential.

FIG. 7. Scenario: μq ¼ μu ¼ μs ¼ μB=3. From top to bottom:
Scaled pressure p=T4, entropy density s=T3, and scaled energy
density ϵ=T4 from the DQPM (lines) as a function of temperature
T at various values of μB [GeV]. The lQCD results obtained by
the BMW group are taken from Refs. [16,17] (circles) and from
Ref. [27] (squares). The dashed line displays the critical temper-
ature TCEP ¼ 0.10 GeV.
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DQPM-CP results (lines) and results from lQCD, obtained
by the BMW group [16,17] at μB ¼ 0 and μB ¼ 400 MeV.
The thermodynamical quantities increase with μB. When
approaching the CEP at μB ¼ 0.96 GeV the values of the
entropy density, of the energy density as well as of the
quark or baryon density rise suddenly.
For setup (II) we compare the results for the entropy

density to that of the Nantes PNJL approach [22]. The
DQPM-CP results are in agreement with the PNJL results
in the high-temperature region T ≥ 0.3 GeV, while in the
vicinity of the phase transition there is a clear deviation
from the PNJL results, which can be expected since the two
models encompass different microscopic properties of the
degrees of freedom. The resulting values of the thermo-
dynamic observables for setup (II) is smaller than for
setup (I) since the contribution from the strange quarks to
the quasiparticle entropy density [see Eq. (10)] is smaller

for μs ¼ 0 mainly due to the derivatives ∂fqðω−μqÞ
∂T .

A. Approaching the CEP from the deconfined phase

To realize a critical behavior of the thermodynamic
observables in the vicinity of the CEP we introduce, as
described in Sec. II B, the critical contribution to the
coupling constant that affects the microscopic and macro-
scopic quantities. At the CEP, where the transition is of
second order, the entropy density and baryon density
increase rapidly but remain finite, while the quark suscep-
tibility and the specific heat CV=T3 ¼ dϵ

dT diverge.
Therefore, the speed of sound (squared) vanishes as one
approaches the CEP. We consider the speed of sound and

FIG. 8. Scenario: μs ¼ 0; μu ¼ μB=3. From top to bottom:
Scaled pressure p=T4, entropy density s=T3, and scaled energy
density ϵ=T4 from the DQPM-CP (lines) as a function of
temperature T at various values of μB [GeV]. The lQCD results
obtained by the BMW group are taken from Refs. [16,17]
(circles). The PNJL results for the entropy density (colored area)
are taken from Ref. [22].

FIG. 9. Scenario: μq ¼ μu ¼ μs ¼ μB=3. The speed of sound
squared c2s from the DQPM-CP for a crossover phase transition
(0 ≤ μB < 0.96) as a function of T and μB.
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the specific heat at fixed μB. For fixed μB the speed of
sound can be expressed as

c2s ¼
dp
dϵ

¼ dp=dT
dϵ=dT

¼ s
CV

: ð22Þ

The speed of sound squared in the DQPM-CP is
depicted in Fig. 9 as a function of temperature T and
baryon chemical potential μB in the crossover region,
where μB ≤ 0.95 GeV. The resulting c2s increases with
temperature and decreases near the phase transition with
increasing μB. In Fig. 10(a) we show the comparison of
the DQPM-CP results for c2s at vanishing μB with the
available lQCD estimations from the Wuppertal-Budapest
Collaboration [17] (light red circles) and the HotQCD
Collaboration [26] (blue triangles). The DQPM-CP results
are in agreement with the lattice QCD predictions within
the estimated errors. Figure 10(b) shows the speed of sound

squared c2s from the DQPM-CP as a function of the
temperature for a wide range of baryon chemical potentials,
including the region of the CEP. At high temperatures,
values of c2s are approaching the limit of a noninteracting
gas of massless quarks and gluons (SB limit, black dash-
dotted line) c2sðSBÞ ¼ 1=3. When increasing the baryon
chemical potential the speed of sound near the transition
temperature decreases, while at the CEP the speed of sound
undergoes a sharp decrease.
The DQPM-CP results for the scaled specific heat

CV=T3 as a function of T are presented in Fig. 11. As
compared to the speed of sound, the specific heat shows an
opposite tendency near the phase transition. For moderate
values of the baryon chemical potential μB the scaled
specific heat increases moderately with decreasing temper-
ature. As it approaches the CEP, CV=T3 diverges as a
function of T, which is consistent with the expectations for
a second-order phase transition.
The T dependence of the specific heat for μB ¼

0.96 GeV near the CEP enables us to estimate the value
of the critical exponent for T > TCEP:

lnðCVÞ ¼ −α · lnðT − TCEPÞ þ const: ð23Þ

For the presented parametrization of the coupling constant,
we obtain the following values: α ¼ 0.63� 0.02 and
const ¼ −5.48� 0.01. The value of the critical exponent
α is in agreement with the predictions from the PNJL model
for T > TCEP αPNJL ¼ 0.68� 0.01 [31] and the expect-
ations from the universality argument α ¼ 2=3 in Ref. [40].
In the case of QCD with finite quark masses, both the

chiral and center symmetries are explicitly broken. What
remains is the Zð2Þ sign symmetry of the order parameter

(a)

(b)

FIG. 10. Scenario: μq ¼ μu ¼ μs ¼ μB=3. The speed of sound
squared c2s from the DQPM-CP for (a) μB ¼ 0 and (b) μB ≥ 0 as a
function of T compared to lQCD results for μB ¼ 0 obtained by
the Wuppertal-Budapest collaboration [17] (light red circles) and
the HotQCD Collaboration [26] (blue triangles).

FIG. 11. Scenario: μq ¼ μu ¼ μs ¼ μB=3. The specific heat
CV=T3 from the DQPM-CP at fixed μB as a function of T
compared to lQCD results for μB ¼ 0 of the HotQCD Collabo-
ration [26].
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of the chiral phase transition. Therefore it has been assumed
that the CEP of QCD with finite quark masses belongs to
the three-dimensional Zð2Þ Ising universality class [41–43].
The corresponding critical exponent in the Zð2Þ univer-
sality class is α ≈ 0.11 [44]. However, it is known that the
critical exponents in the PNJL(NJL) model and Zð2Þ
universality class differ [31,45–48].
To explore the high density region, it is essential for

effective models to consider isentropic trajectories for
which the ratio of entropy to baryon number is held
constant. The isentropic trajectories correspond to the ideal
hydrodynamical expansion of QGP matter, created in the
HICs. When dissipative effects, which can be described by
the viscosities and diffusion coefficients, become impor-
tant, the trajectories are modified [49,50]. The presence of
the CEP can affect the isentropic trajectories, since the
entropy density and baryon density undergo a rapid change
as the phase transition is approached. It is supposed that the
CEP acts as an attractor of isentropic trajectories [51].
Moreover, a different choice for the strange quark chemical
potential affects the trajectories as well. Therefore we
compare the resulting isentropic trajectories for two setups
of the strange chemical potential.
Figure 12 displays the isentropic trajectories from the

DQPM-CP for (a) μq ¼ μs ¼ μu ¼ μB=3 and (b) μs ¼ 0;
μu ¼ μd ¼ μB=3 in the phase diagram. Comparing (a) to
(b), one can clearly see that the trajectories for the zero
strange quark chemical potential are shifted towards
higher μB values. In the case of vanishing chemical
potential of the strange quark μs ¼ 0; μu ¼ μd ¼ μB=3,
the entropy density, which has also contributions from the
light (anti-)quarks and gluons, is less affected then the
baryon density. Therefore, for finite μB > 0 and μs ¼ 0,
the ratio s=nB is larger than in the case of a symmetric
setup μs ¼ μu ¼ μB=3 and the value of the baryon density
decreases faster than the entropy density. This observa-
tion is in agreement with previous studies of the PNJL
model [33] and the results from Refs. [38,52], where the
lQCD EoS from the WB Collaboration [16,17,53] with a
critical point in the 3D Ising model universality class is
considered for moderate baryon chemical potentials
μB ≤ 0.45 GeV. Thus, a critical trajectory, which goes
through the CEP, for (a) corresponds to s=nB ≈ 13.35 and
for (b) corresponds to s=nB ≈ 15. The comparison of
isentropic trajectories in a vicinity of the CEP is presented
in Fig. 12(c). In the vicinity of the CEP, the trajectories
with s=nB ¼ 15, 13.35, 12 shown in Fig. 12(c) are focused
to the critical endpoint.

IV. TRANSPORT COEFFICIENTS

We continue to investigate the transport properties of
QGP matter using the DQPM-CP. We consider the specific
shear η=s and bulk ζ=s viscosities, the ratio of electric
σQQ=T, baryon σBB=T, and strange σSS=T conductivities to

(a)

(b)

(c)

FIG. 12. Trajectories of constant s=nB in the DQPM-CP
phase diagram for T > Tc and (a) μq ¼ μu ¼ μs ¼ μB=3,
(b) μs ¼ 0; μu ¼ μB=3, and (c) two cases in the vicinity of the
critical endpoint CEP. The finite temperature crossover (black
dash-dotted line) at small chemical potential switches to the large
chemical potential first-order transition (red solid line) at the CEP
(star), which is located at (0.10,0.96) GeV.
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temperature. At vanishing baryon chemical potential, the
DQPM-CP model equals the DQPM; therefore, one can
find the comparison of DQPM transport coefficients at
μB ¼ 0 with the recent results from various approaches in
previous papers [6,54,55].
All transport coefficients are calculated within the

relaxation time approximation (RTA) of the Boltzmann
equation. In the relaxation time approximation (in first
order in the deviation from equilibrium) the collision term
is given by [56]

XNspecies

j¼1

Cð1Þij ½fi� ¼ −
Ei

τi
ðfi − fð0Þi Þ ¼ −

Ei

τi
fð1Þi þOðKn2Þ;

ð24Þ
where τi is the relaxation time in the heat bath rest system
for the particle species 0i0, and Kn ∼ lmicro=Lmacro is the
Knudsen number which denotes the ratio between the
relevant microscopic scale (mean free path) over the
characteristic length scale of the system. The equilibrium
state of the system is described by the Bose-Einstein and
Fermi-Dirac distribution functions

fð0Þi ðEi; T; μiÞ ¼
1

exp ððEi − μiÞ=TÞ − ai
; ð25Þ

where μi is the quark chemical potential, Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
i þm2

i

p
is the on-shell quark/gluon energy, and ai ≡þ1ðgluonsÞ;
−1ððanti-ÞquarkÞ. In Eq. (24), fð1Þi ðx; k; tÞ contains
δfiðx; k; tÞ, which is the nonequilibrium part to first
order in gradients. The first step in the calculation of the
transport coefficients within the RTA framework is the
estimation of relaxation times, which are supposed to
depend on the momentum of the partons, on the temper-
ature and on the baryon chemical potential.
The momentum dependent relaxation time can be

expressed through the on-shell interaction rate in the rest
system of the medium, in which the incoming quark has a
four-momentum Pi ¼ ðEi;piÞ:

τ−1i ðpi; T; μqÞ ¼ Γiðpi; T; μqÞ

¼ 1

2Ei

X
j¼q;q̄;g

1

1þ δcd

Z
d3pj

ð2πÞ32Ej
dqf

ð0Þ
j ðEj; T; μqÞ

×
Z

d3pc

ð2πÞ32Ec

Z
d3pd

ð2πÞ32Ed
jM̄j2ðpi; pj; pc; pdÞð2πÞ4

× δð4Þðpi þ pj − pc − pdÞð1 − fð0Þc Þð1 − fð0Þd Þ; ð26Þ

where jM̄j2 denotes the matrix element squared averaged
over the color and spin of the incoming partons, and
summed over those of the final partons. The jM̄j2 is
calculated by the use of the effective coupling and
propagators in leading order (for further details see [6]).

The notation
P

j¼q;q̄;g includes the contribution from all
possible partons which in our case are the gluons and the
(anti-)quarks of three different flavors (u, d, s). The quark
relaxation time is expected to become very large near CEP,
since the correlation length increases rapidly close to
the CEP.

A. Specific viscosities

We start with the most common transport coefficients
for the hydrodynamical simulations—the shear and bulk
viscosity. The viscosities of the QCD matter have been
studied within a variety models in the confined and the
deconfined phases. The shear viscosity reveals the
strength of the interaction inside the QCD medium,
in particular, within the kinetic theory it can be related
to the hadron or parton interaction rates, which is a
challenge to evaluate on the basis of first principles. A
plethora of theoretical model predictions show that the
temperature dependence of the QCD shear viscosity
over entropy density η=s is qualitatively different for
the two phases. Starting from the hadronic phase
below the phase transition T < Tc, η=s monotonically
decreases with T since the system is dominated by pions
with weaker interactions at lower T. While above the
phase transition T > Tc, η=s increases with tempera-
ture because the interaction attenuates at high T.
Approaching the phase transition from hadronic to the
QGP phase at vanishing chemical potential, η=s has a
wide dip followed by an increase with temperature. A
similar property of the temperature dependence of the
specific shear viscosity η=s is seen for other fluids such
as H2O, He, and N2 [57–59]. The specific bulk viscosity
of the QGP matter is predicted to be low, yet it is
expected to be finite near the phase transition [60]. The
presence of the bulk viscosity reduces the speed of the
fluid radial expansion and hence affects the mean
momentum of the produced particles. For conformal
fluids, the bulk viscosity is known to be identically zero,
and the deconfined QCD medium is expected to adopt a
conformal behavior in the high-energy or temperature
regime. Nevertheless, the lQCD results on the enhanced
trace anomaly close to Tc have shown that it is probably
not the case for the deconfined QCD medium in the
vicinity of the phase transition.
The shear and bulk viscosity for quasiparticles with

medium-dependent masses miðT; μqÞ can be derived using
the Boltzmann equation in the RTA [61] through the
relaxation time:

ηðT; μqÞ ¼
1

15T

X
i¼q;q̄;g

Z
d3p
ð2πÞ3

p4

E2
i
τiðp; T; μqÞ

× dið1� fiÞfi; ð27Þ
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ζðT; μqÞ ¼
1

9T

X
i¼q;q̄;g

Z
d3p
ð2πÞ3 τiðp; T; μqÞ

dið1� fiÞfi
E2
i

×
�
p2 − 3c2s

�
E2
i − T2

dm2
i

dT2

��
2

; ð28Þ

where qðq̄Þ ¼ u; d; sðū; d̄; s̄Þ, dq ¼ 2Nc ¼ 6, and dg ¼
2ðN2

c − 1Þ ¼ 16 are the degeneracy factors for spin and
color for quarks and gluons, respectively, τi are the
relaxation times, cs is the speed of sound for a fixed μB

given by Eq. (22), and dm2
i

dT2 is the derivative of the effective
masses. As it was shown in the previous studies
[6,32,55,62,63] in the case of the medium-dependent
masses, the viscosities display a pronounced temperature
behavior. At vanishing baryon chemical potential we found
previously that the DQPM results for specific shear and
bulk viscosity [6,54] are very close to the predictions from
the gluodynamic lQCD calculations [64,65].
For moderate values of the baryon chemical potential,

the specific shear viscosity η=s of the QGP matter increases
with temperature, while the specific bulk viscosity ζ=s
decreases with temperature, independent of baryon chemi-
cal potential. However, the T dependence of η=s near the
phase transition changes with increasing μB. Figure 13
shows the DQPM-CP results for η=s as a function of scaled
temperature T=TcðμBÞ, for different μB values. The specific
shear viscosity for μB ¼ 0 (red line) shows a dip followed
by an increase with temperature while for a μB ≥ 0.9 GeV
η=s decreases with increasing temperature near the phase
transition ðT ≤ 2TcÞ. The parton relaxation time τi decreases
with increasing temperature at lower T, and remains approx-
imately constant at high T for moderate values of chemical
potential μB ≥ 0.6 GeV. Therefore the shear viscosity
η ∼ T4, while the entropy density grows as s ∼ T3. Thus,
in the high-temperature region the ratio η=s increases as ∼T.
It is important to note that transport coefficients rely on the
microscopic properties of the degrees of freedom. While a
variety of the models can reproduce the lQCD results of
basic thermodynamic observables, the transport coefficients
differ between the models.
Here we compare results of the specific shear viscosity

and later of the electric conductivity for nonzero baryon or
quark chemical potential with the RTA results from the
PNJL model for μs ¼ 0; μu ¼ μB=3 in Fig. 13(a). The
specific shear viscosity results from the DQPM-CP (solid
lines) for μB ¼ 0, 0.6 GeV agree well with the predictions
of the PNJL model (dashed lines) in the vicinity of the
phase transition for temperatures T ≤ 1.5Tc. The DQPM-
CP results for η=s at μB ¼ 0.96 GeV for T ≤ 2Tc is
higher than from the PNJL model, while the temperature
dependence is similar. The discrepancy between the results
is caused by the different treatment of the gluonic degrees
of freedom, which has a pronounced critical behavior of the

thermal masses in the DQPM-CP model. Increasing the
baryon chemical potential, one can see not only an increase
in magnitude but also a change in the T dependence of η=s
and ζ=s as shown in Figs. 13 and 14. In particular, in the
vicinity of the phase transition T < 1.5Tc for moderate
values of μq the specific shear viscosity shows a dip after
the phase transition, which is vanishing at high values
of μB as can be seen in Fig. 13. As pointed out in
Refs. [32,67–69] in the vicinity of the CEP, the divergences
of bulk and shear viscosities of the QCD matter are
determined by the dynamic and the static critical expo-
nents. The dynamical universality class of the QCD critical

(a)

(b)

FIG. 13. Specific shear η=s viscosity from the DQPM-CP
(solid lines) for two setups of strange chemical potential:
(a) (μs ¼ 0; μu ¼ μB=3) and (b) (μs ¼ μu ¼ μB=3) as a function
of the scaled temperature T=Tc for various μB ≥ 0. We compare
to the RTA estimates from the Nf ¼ 3 PNJL model (dashed lines)
[54]. The grey dashed-dotted line demonstrates the Kovtun-Son-
Starinets bound [66] ðη=sÞKSS ¼ 1=ð4πÞ.
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endpoint is argued to be that of the H model [67,70]
according to the classification of dynamical critical phe-
nomena by Hohenberg and Halperin [71]. Whereas in
the vicinity of the CEP the shear viscosity has a mild diver-
gence in the critical region, the bulk viscosity has a more

pronounced divergence [67,71,72]: η∼ξ
Zη

T ðZη≈1=19Þ,
ζ ∼ ξ

Zζ

T ðZζ ≈ 3Þ. The thermal correlation length is con-

trolled by the static critical exponent ξT ∼ t−ν, t ¼ T−Tc
Tc

,

with ν being the static critical exponent. Using the hyper-
scaling relation [73] for the static critical exponents we can
estimate ν:

2 − α ¼ dν; ð29Þ

where d ¼ 3 denotes the number of the spatial
dimensions, α ≈ 0.63. We obtain ν ≈ 0.46. Taking into
account the dynamical and static exponents, the diver-
gence of the bulk viscosity is assumed to be ζ ≈ t−Zζνþα

[69,72,74].
Here we consider small deviations from equilibrium

where the quark relaxation times are not large: τq is about
4.5 − 2.5 fm=c for the temperature range Tc < T ≤ 2Tc,
so that the slight divergence of the transport coefficients
near the CEP is determined by the static exponents. The
specific shear and bulk viscosities from the DQPM-CP
increase rapidly when approaching the critical endpoint
from the partonic phase. However, the increase near the
CEP is more pronounced for the specific bulk viscosity
which rises by a factor of five, while the specific shear
viscosity rises only by ≤10% for the same temperature
range 1.07–1.01 T=Tc. The increase of ζ=s is related to
the rapid decrease in the speed of sound and corresponds
to the static critical exponents, which affects the bulk
viscosity. In terms of heavy-ion collisions observables,
this increase in the bulk viscosity is expected to show up
as the decrease of average transverse momentum of
produced particles as well as in an increase of the charged
particle multiplicity per unit momentum rapidity [60,68].
However, this has to be checked by a transport simulations
or by a hydrodynamical simulation of the expanding QGP.
Such a substantial increase of the charged particle and net-
baryon multiplicities per unit momentum rapidity due to
the enhancement of the bulk viscosity near the CEP has
been observed in a longitudinally expanding 1þ 1 dimen-
sional causal relativistic hydrodynamical evolution at
nonzero baryon density [75].
We note that the specific bulk and shear viscosities have

been considered near the CEP and the first-order phase
transition for the Nf ¼ 2 NJL model in the previous
study [32]. We found good qualitative agreement for the
T dependence of the shear and bulk viscosity of the NJL
model from Ref. [32], while the numerical values differ
due to the different quark relaxation times and the
absence of gluonic degrees of freedom in the case of the
NJL model.

B. Electric, baryon, and strange conductivities

In the region of the high net baryon density it is
important to take into account the diffusion of conserved
charges, i.e., electric, baryon and strange charges, from
higher density regions to lower density regions. The
transport coefficient, which characterizes the diffusion, is
the diffusion coefficient κq or the conductivity σq ¼ κq=T
of the conserved charge q. Furthermore, since the quarks
carry multiple conserved charges, one needs to consider
additionally nondiagonal conductivities for two conserved
charges qq0—σqq0 . Conductivities σqq0 for a quasiparticles
can be expressed in the RTA [76] as

(a)

(b)

FIG. 14. Specific bulk ζ=s viscosity from the DQPM-CP
(solid lines) for two setups of strange chemical potential:
(a) (μs ¼ 0; μu ¼ μB=3) and (b) (μs ¼ μu ¼ μB=3) as a function
of the scaled temperature T=Tc for various μB ≥ 0.
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1
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qi
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i
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×
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ϵþ p
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�
dið1� fiÞfi: ð30Þ

Let us consider first the diagonal conductivities for electric,
baryon, and strange charges. The DQPM-CP results for
σQQ=T, σBB=T and σSS=T are shown in Figs. 15, 16, 17 as a
function of the scaled temperature T=Tc for two setups of
the strange quark chemical potential. The scaled electric,
strange, and baryon conductivities have a similar temper-
ature dependence: at high T the ratios increase with
temperature increase as ∼T which is mainly due to the
quark density increasing with temperature. The most

prominent difference between the conductivities is the
μB dependence, which is shown in Figs. 15, 16, and 17:
the electric and strange conductivities increase with μB,
while the baryon conductivity decreases with μB for the
symmetric setup μs ¼ μu ¼ μB=3. With the increase of
baryon chemical potential the net baryon density increases,
which influences the baryon conductivity. A similar trend
for the σQQ=T, σBB=T, and σSS=T at moderate values of
baryon chemical potential μB ≤ 0.4 GeV has been
observed in the nonconformal Einstein-Maxwell-Dilaton
holographic model [77]. Furthermore, we compare the μB
dependencies of the scaled conductivities for the two setups
of the strange quark chemical potential. We have found that
in case of vanishing strange quark chemical potential
[setup (II)] the scaled conductivities show a much less
pronounced of μB dependence for the baryon and strange

(a)

(b)

FIG. 15. Scaled electric conductivity as a function of the scaled
temperature T=Tc from the DQPM-CP (solid lines) for two
setups of strange chemical potential: (a) (μs ¼ 0, μu ¼ μB=3) and
(b) (μs ¼ μu ¼ μB=3) as a function of the scaled temperature
T=Tc for various μB ≥ 0. For (μs ¼ 0; μu ¼ μB=3) we compare
σQQ=T from DQPM-CP to the RTA estimates from the Nf ¼ 3

PNJL model (dashed lines) [54].

(a)

(b)

FIG. 16. Scaled baryon conductivity as a function of scaled
temperature T=Tc from the DQPM-CP (solid lines) for two
setups of strange chemical potential: (a) (μs ¼ 0; μu ¼ μB=3) and
(b) (μs ¼ μu ¼ μB=3) as a function of the scaled temperature
T=Tc for various μB ≥ 0.
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conductivities, which is expected due to the vanishing net
strangeness density nS ¼ 0. Meanwhile the electric con-
ductivity has a similar μB dependence for the two settings
of strange quark chemical potential. Near the CEP, the
electric conductivity decreases, but as for the PNJL results,
there is no pronounced divergence behavior. The same
behavior has been found for the baryon and strange
conductivities.

V. CONCLUSIONS AND OUTLOOK

By extending the phenomenological dynamical quasi-
particle model to a wide range of baryon chemical
potentials, we obtain an EoS, which is in agreement with
the lattice data at moderate baryon chemical potentials and
can at the same time be extended to the whole (T, μB) plane.
This extension allows for calculating the transport

coefficients of the partonic phase. To mimic the T depend-
ence of the basic thermodynamic observables near the CEP
we have adopted the critical behavior of the effective
coupling constant by using the entropy density from the
PNJL model near the CEP. For moderate values of
the chemical potential μB ≤ 0.4 GeV the dependence of
the thermodynamic quantities on μB are in agreement
with the previous results from the DQPM [6,15,78].

(i) We presented the results for the thermodynamic
observables p=T4, ϵ=T4, s=T3, as well as for the
speed of sound and the specific heat for a wide range
of chemical potentials. We have shown that the
critical behavior of the effective coupling affects the
thermodynamic observables. Moreover, we have
found that the resulting value of the critical exponent
α ≈ 0.63 is in good agreement with the predictions
of the PNJL model and the expectations from the
universality argument α ¼ 2=3.

(ii) To quantify the μB dependence of the bulk observ-
ables we have studied isentropic trajectories of the
deconfined QCD medium described by the DQPM-
CP for a wide range of baryon chemical potential,
including the vicinity of the CEP.

(iii) We have evaluated transport properties of the de-
confined QCD medium for a wide range of baryon
chemical potential within the DQPM-CP: the spe-
cific shear η=s and bulk ζ=s viscosity and the ratio of
electric σQQ=T, baryon σBB=T, and strange σSS=T
conductivities to temperature on the basis of the
Boltzmann equation in the relaxation time approxi-
mation. We have found that the resulting μB depend-
ence of η=s and σQQ=T for the PNJL model and the
DQPM-CP are qualitatively the same in the vicinity
of the phase transition, while there is a clear differ-
ence in the electric conductivity.

(iv) We have found that the DQPM-CP estimates of the
specific bulk viscosity show a rapid increase when
approaching the CEP from the high-temperature
region originating from the rapid decrease of the
speed of sound c2s → 0, whereas for the specific
shear viscosity and the B, Q, S conductivities there
is only a small enhancement≤10%, causedmainly by
the critical contribution of the effective coupling
constant.

Although the extracted results for the transport coefficients
are model dependent, the qualitative picture of the T and μB
dependence is consistent with expectations from more
rigorous approaches. Our results can be implemented in
hydrodynamic simulations as well as be employed for the
partonic phase of transport approaches.
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