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Unusual constituent quark axial current couplings to light vector mesons, ρ and ω, are derived in the
vacuum and under weak magnetic field by considering a quark-antiquark interaction mediated by a
nonperturbative gluon exchange. Similarly, light axial mesons are found to couple anomalously with the
constituent quark vector current. These interactions are of the type of the Wess-Zumino-Witten terms, being
strongly anisotropic and dependent on the vector (or axial) meson polarization. They also provide axial
(vector) form factors for the vector (axial) mesons and are quite small, suppressed nearly by 1=M�2 with
respect to the vector mesons minimal coupling to the quark vector current. Some three-leg meson vertices
are also presented: π − ρ − A1 and V1V2A (where V1, V2 are vector mesons and A an axial meson). Avector
and axial-vector mesons mixing is identified at nonzero magnetic field which however can contribute only
in the presence of a third particle or in a medium. Numerical results are presented for different effective
gluon propagators.
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I. INTRODUCTION

Pions, neutrinos and eventually the light axial mesons
can be considered to probe the axial content of the nucleon,
or their corresponding constituent quarks, and of other
hadrons. The nucleon’s axial form factor provides a
measure of its spin content and the interplay of strong
and weak charges and interactions. It has been extensively
investigated theoretically and experimentally, for few
works [1–12]. The decomposition of the nucleon, or
correspondingly constituent quark, axial vertex involves
eight tensor structures [10,11]. The physical processes and
particles that can probe them can be attached to each of
these structures. Meson form factors, however, are far more
difficult to be measured. Some calculations for spacelike or
timelike rho-meson form factors can be found, for example,
in [13–16]. At the same time, the understanding of hadron
dynamics depends on different types of interactions. For
instance, it becomes important to understand how these
mesons not only couple to the nucleon but also how
interactions among mesons can manifest in experimental
situations. Besides that, the way these couplings might be
related to each other might be of relevance for establishing
connections to QCD, eventually as a manifestation of

fundamental symmetries. It is expected that eventual
breakdowns of fundamental symmetries should be obser-
ved with higher precision experiments.
Low energies (Strong) couplings of the constituent quark

(or nucleon) axial current involve either the pion or the light
axial mesons. Among these axial mesons the A1 and the f1
are usually considered to be chiral partners to the ρ and ω
[17,18]. There are however difficulties to determine axial
meson properties, in particular because they are highly
unstable. Therefore there are uncertainties about their
structures [19,20]. In Ref. [20] several couplings and
decays of the A1 were analyzed with possible mixing
angles. To understand further these mesons it becomes
important to take into account how they interact with other
hadrons before decaying. Light axial meson couplings and
decays, including its decay to the pion and a vector meson,
have also been found to be relevant to describe the τ-decay
by the axial current [21–24]. It has also been considered for
the μ (g − 2) problem [25] wherein the vector-vector-axial
(VVA) correlators are important. Three-leg meson vertices,
many times representing decays, can also be searched
experimentally and this is planned in different facilities as
for example at FAIR/GSI [26]. Eventually, associated
information from finite energy density medium should
be compatible with their dynamics in the vacuum. As an
example, the ρ − ω − A1 and ρ − π − A1 couplings give rise
to the in medium mixing ρ − A1 [23,27–29]. Eventually
this mixing contributes for the dilepton spectrum in hot
and/or dense matter [27,30]. The role of vector and axial
mesons at finite energy density up to the chiral phase
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transition has been investigated in different approaches
[31,32]. Besides that, further meson interactions might lead
to modifications in the nuclear potential [33]. From the
strict theoretical point of view, three-leg couplings, such as
the ρ − π − A1 or ρ − ω − π, are suppressed in the 1=Nc
counting. Nevertheless, they have been found to arise in
different approaches such as in the massive Yang Mills
gauge theory, or even as Wess-Zumino-Witten (WZW)
terms [34,35], in [23,36–40]. Facilities currently working
and being built are expected to probe several aspects of
vector and axial mesons and their interactions. High density
investigations on the restoration of chiral symmetry and
meson spectroscopy are planned in FAIR/GSI, NICA and
J-PARC. Vector meson photoproduction and production
mostly in ultraperipheral collisions have been investigated
in HERMES, JLAB, FAIR/GSI and SLAC and currently in
LHC besides plans for LHC and EIC. Polarized vector
mesons are currently produced and investigated in JLAB
for example in [41,42]. Besides that axial meson produc-
tion in central collisions has also been envisaged [43].
The constituent quark model (CQM) remains one of the

leading pictures for global properties of hadron structure
around which other contributions can be evaluated, for
example in [44–46]. Several nucleon properties are
described directly, and mostly, in terms of constituent
quarks that carry masses and charges of hadrons and they
are directly responsible for the nucleon’s couplings to
mesons and other particles. This association might some-
what manifest in baryon form factors. A more precise
relation between these two levels of description can be
helpful to the detailed understanding of the hadron struc-
ture and dynamics. The lack of understanding of the
confinement mechanism does not prevent a good theoreti-
cal description of hadron properties and interactions.
It becomes then interesting to understand further predic-
tions of these CQM. Global color (GCM) [47,48] and
Nambu–Jona-Lasinio (NJL) [49,50] type models go along
the CQM description in terms of constituent quarks. They
have been shown to be suitable for the description of many
aspects of light meson spectrum and properties. In these
models, dynamical chiral symmetry breakdown (DChSB)
leads to the formation of chiral condensates, directly
associated as sea quark states [51]. DChSB endows quarks
with a large mass providing an important link between
fundamental symmetries at the QCD and the hadron levels.
In the CQM, the pion, as a Goldstone boson, has the axial
coupling to (constituent) quarks whose coupling constant
gA is usually given by gA ¼ 3=4, gA ¼ 5=3 or gA ¼ 1
[50,52,53]. Light meson couplings to constituent quarks
and form factors have been derived dynamically and
analytically [16,54] along with the same spirit of the
CQM. By starting with a leading term of QCD quark-
effective action, based in one nonperturbative gluon
exchange (GCM), standard techniques have been applied
and they will be considered in the present work.

Background quarks, dressed by a sort of gluon cloud,
give rise to constituent quarks. Meson interactions with
constituent quarks arise and provide, for example, a pion
cloud. This is seen explicitly in the Weinberg’s large Nc
effective field theory (EFT), makes possible the constituent
quark picture to cope with the large Nc expansion [53]. This
EFT has also been derived with symmetry breaking
corrections with the same analytical techniques considered
in the present work in the vacuum and under weak magnetic
fields [55,56]. Furthermore, this approach might lead to a
straightforward extension to finite baryon densities or finite
temperatures. Moreover, the approach considered directly
provides relative strength (ratios) of different coupling
constants or form factors. These ratios lead to reasonable
estimates of their relative importance. This is usually
important also for planning experiments or for the inter-
pretation of results.
Besides the interest in calculating hadron couplings in

the vacuum, strong magnetic fields have been estimated to
appear in noncentral relativistic heavy ion collisions and
magnetars and they can produce many different effects
[57,58]. Although these magnetic fields can be as large as
1015 T, they are not so large if compared to a hadron mass
scale such as an effective (constituent) quark mass—or
even the pion mass. One has typically ðeB0Þ ∼ 10−2M�2−
10M�2, whereM� is a quark effective mass typical from the
CQM. It becomes interesting to identify changes in the
quark and hadron dynamics due to the external magnetic
fields. Under (relatively) weak magnetic fields, pions,
vector and axial mesons develop additional couplings to
(constituent) quark currents [59,60]. These couplings may
have reduced strengths as compared to the couplings to
quark vector and axial currents. At energies in which
magnetic fields can be expected to show up in noncentral
heavy ion collisions, vector and axial mesons can also be
more copiously produced. Therefore the investigation of
the effects of magnetic fields in the meson dynamics and
couplings become of further interest.
In the present work, light vector meson (rho and omega)

anomalous couplings to the constituent quark axial current
will be derived in the vacuum and under a constant weak
magnetic field by considering the same framework used in
[16,54,59–61]. These anomalous couplings can be consid-
ered as corrections to the rho/omega (A1=f1) form factors
that correspond to a very small axial (vector) component.
As such, this small axial component should be at the origin
of the rho-A1 mixing expected to occur in the medium. The
same can be expected for a ω − f1 mixing. These couplings
can be seen as Wess-Zumino-Witten type terms. These
coupling functions are considerably smaller than the known
rho vector meson coupling to the nucleon (constituent
quark) vector current. Besides that, anomalous three-leg
meson couplings that might correspond or contribute for
vector and/or axial mesons mixings will also be presented.
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The work is organized as follows. In the next section, the
main steps of the approach are briefly reminded and the
quark determinant will be exhibited. A large quark effective
mass expansion is performed and the (next leading order)
anomalous terms will be presented. The next leading terms,
and form factors, are presented in Secs. II and III. These
couplings are shortly compared to leading couplings of the
pion, light vector and axial mesons previously derived. The
action term for the vector meson coupling to the axial
current, as a WZW type term, is shown to be topologically
conserved. Numerical results are presented in Sec. IV for
the low momentum regime, Q2 < 1 GeV2, by considering
three different effective gluon propagators. On-shell values

for some of the coupling constants are provided and
estimations for the axial averaged quadratic radius
(AQR) of the vector mesons are calculated. In the last
section there is a summary and final remarks.

II. QUARK DETERMINANT AND NEXT
LEADING ANOMALOUS COUPLINGS

A QCD-based model for quark-antiquark interaction
mediated by a gluon is the GCM, which takes into account
nonperturbative/non-Abelian gluon effects by means of an
effective gluon propagator. It is given by

Z½η; η̄� ¼ N
Z

D½ψ̄ ;ψ � exp i
Z
x

�
ψ̄ðiD −mÞψ −

g2

2

Z
y
jβμðxÞR̃μν

βαðx − yÞjανðyÞ þ ψ̄ηþ η̄ψ

�
; ð1Þ

where the color quark current is jμα ¼ ψ̄λαγ
μψ ,

R
x stands

for
R
d4x, i; j; k ¼ 0;…ðN2

f − 1Þ will be used for,
SU(Nf ¼ 2), isospin indices and α; β… ¼ 1;…ðN2

c − 1Þ
stands for color in the adjoint representation. The sums in
color, flavor and Dirac indices are implicit and η; η̄ are the
quark sources. Dμ ¼ ∂μ − ieQAμ is the covariant quark
derivative with the minimal coupling to a background
electromagnetic field, with the diagonal matrix Q̂ ¼
diagð2=3;−1=3Þ for up and down electromagnetic charges.
To account for the non-Abelian structure of the gluon sector
the gluon propagator R̃μν

αβðx − yÞ must be nonperturbative.
As an external input for the model, it will be required to
have enough strength to yield dynamical chiral symmetry
breaking (DChSB) with a given strength of the (running)
quark-gluon coupling constant. DChSB has been found in
several works with different approaches, for a few exam-
ples [62–64]. It is one of the mechanisms that endows
hadrons with large masses with respect to the (measured)
quark masses [65]. Other terms from QCD effective action,
such as genuine three- and four-quark interactions, due the
non-Abelian gluon structure, are not considered. In several
gauges the gluon propagator R̃μν

αβðkÞ can be written in

momentum space as R̃μν
αβðkÞ ¼ δαβ½ðgμν − kμkν

k2 ÞRTðkÞ þ
kμkν

k2 RLðkÞ�, where RTðkÞ; RLðkÞ are transversal and longi-
tudinal components. Contributions from extra terms due to
confinement and gauge boson dynamics proportional to
δðp2Þ [66] can be shown to be smaller or even vanishing
[67] for the observables calculated below.
By means of a Fierz transformation, Dirac and isospin

structures can be suitably introduced such as to provide
the correct quantum numbers for leading low energies
quark-antiquark states corresponding to mesons. The back-
ground field method and the auxiliary field method are
then used to calculate the quark determinant in the presence
of DChSB by considering the auxiliary fields associated
with quark-antiquark meson states. Besides that, back-
ground quark currents give rise to constituent quark
currents. In particular, the auxiliary field method (AFM)
was employed explicitly in Refs. [16,54,55,61] for
bilocal auxiliary fields. These auxiliary fields can be
expanded in a complete basis of structureless meson fields.
Field renormalization constants can be introduced explic-
itly with which the unit integral of the AFM can be
written as

1 ¼ N
Z

D½Vi
μ; Āi

μ; Vμ; Āμ�e−
iα
4

R
x;y
ðR̄μνÞ−1ððZ

1
2
VV

i
μ−gZgZψ R̄μνjV;ν

i ÞðZ
1
2
VV

μ
i −gZgZψ R̄μνjV;νiÞe−

iα
4

R
x;y
ðR̄μνÞ−1ðZ

1
2
AĀ

i
μ−gZgZψ R̄μνjA;ν

i ÞðZ
1
2
AĀ

μ
i−gZgZψ R̄μνjA;νiÞ

× e
−iα

4

R
x;y
ðR̄μνÞ−1ððZ

1
2
VVμ−gZgZψ R̄μνjV;νÞðZ

1
2
VV

μ−gZgZψ R̄μνjV;νÞe−
iα
4

R
x;y
ðR̄μνÞ−1ðZ

1
2
AĀμ−gZgZψ R̄μνjA;νÞðZ

1
2
AĀ

μ−gZgZψ R̄μνjA;νÞ

×
Z

D½Si�D½Pi�e−
i
2

R
x;y

Rðx−yÞα½ðZ
1
2
SS−gZgZψ jSð2ÞÞ2þðZ

1
2
PPi−gZgZψ jPi;ð2ÞÞ2�; ð2Þ

where

R̄μν ≡ R̄μνðx − yÞ ¼ gμνðRTðx − yÞ þ RLðx − yÞÞ þ 2
∂μ∂ν

∂2
ðRTðx − yÞ − RLðx − yÞÞ; ð3Þ

R≡ Rðx − yÞ ¼ 3RTðz − yÞ þ RLðx − yÞ: ð4Þ
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The scalar and pseudoscalar fields give rise to a non-
linear representation in terms of the (Goldstone boson)
pion field by a usual chiral rotation. The renormaliza-
tion constants will not be carried on in the calcula-
tions below, being therefore omitted. However, they
allow for a systematic elimination of the ultraviolet

divergences in the resulting couplings of the effective
action.
The Gaussian integration of the quark field can now be

performed in the presence of background quark currents and
meson fields that are arranged in a chiral invariant way. By
making use of the identity detA ¼ exp Tr lnðAÞ, it yields

Seff ¼ −iTr ln
�
i

�
S0−1ðx − yÞ þ Ξvðx − yÞ þ Ξsðx − yÞ þ

X
q

aqΓqjqðx; yÞ
��

; ð5Þ

where Tr stands for traces of all discrete internal indices and integration of space-time coordinates. The quantity Ξvðx − yÞ
encodes the vector and axial meson contributions and Ξsðx − yÞ encodes the pion field contribution that arises from the
scalar and pseudoscalar auxiliary fields. In the last term of Eq. (5) there is a sum of background quark currents with Dirac,
flavor and color structures among which only the (isosinglet and isotriplet) axial currents will be kept:

X
q

aqΓqjqðx; yÞ → −αg2R̄μνðx − yÞγμ½σiγ5ψ̄ðyÞγ5γνσiψðxÞ þ γ5ψ̄ðyÞγ5γνψðxÞ�; ð6Þ

where σi are the Pauli matrices, R̄μν ¼ 2½3RTðx − yÞ þ RLðx − yÞ� and α ¼ 4=9. The remaining terms can be written as

Ξvðx − yÞ ¼ −
γμ

2
½FvσiðVi

μðxÞ þ γ5Āi
μðxÞ þ VμðxÞ þ γ5ĀμðxÞÞ�δðx − yÞ; ð7Þ

Ξsðx − yÞ ¼ FðPRU þ PLU†Þδðx − yÞ; ð8Þ

where U ¼ eiπ⃗·τ=2, PR=L ¼ ð1� γ5Þ=2 are the chirality
right-/left-hand projectors, Fv and F provide the canonical
field definition meson fields, for both isotriplet (rho
and A1) and isosinglet (ω and f1) [18,68], and for the
pion. Fv will be incorporated into the vector and axial
meson fields to provide their canonical dimensions. The
other quark-antiquark mesons, their auxiliary fields, will be
neglected. The gap equations for the auxiliary fields are
derived as saddle point equations and solved as is usually
done for the model (1) and NJL-type models. The scalar
field equation will be the only one with a nontrivial nonzero
solution and the resulting quark-antiquark scalar conden-
sate (S̄) becomes responsible for the increased quark mass
M� ¼ mþ S̄. The quark propagator can then be written as
S−10 ðx − yÞ ¼ ðiD −M�Þδðx − yÞ.
A large quark mass expansion [69] with a zero order

derivative expansion [70] of the determinant (5) will be
implemented now. It is suitable for the long wavelength
limit of the model and they have been performed in
previous works of the author mentioned above. The leading
terms of the expansion with vector/axial currents and the
light mesons have been collected and investigated
previously by the author in the vacuum and under weak
magnetic fields. Next leading couplings of (isotriplet ρ
and isosinglet ω) light vector mesons to constituent
quark axial current also appear as nonlocal interactions.
With explicit momentum dependencies they can be
written as

Lvja ¼ iδijϵσρμνFvjaðK;QÞKσF i
ρμðQÞjA;jν ðK;K þQÞ

þ iϵσρμνFvjaðK;QÞKσF ρμðQÞjAν ðK;K þQÞ; ð9Þ

where Q is the vector meson 4-momentum, K is the
incoming quark momentum. The isotriplet and isosinglet
axial currents were defined as jA;iμ ðK;K þQÞ ¼ ψ̄ðK þ
QÞγμγ5σiψðKÞ and jAμ ðK;K þQÞ ¼ ψ̄ðK þQÞγμγ5ψðKÞ.
The (Abelian limit of the) stress tensors were defined for
the isotriplet and isosinglet states:

F i
ρμðQÞ ¼ QρVi

μðQÞ −QμVi
ρðQÞ;

F ρμðQÞ ¼ QρVμðQÞ −QμVρðQÞ: ð10Þ

The non-Abelian contribution was neglected although it
can be incorporated and it leads to three- and four-vector or
axial meson-quark vertices.
The above form factor is given by

FvjaðK;QÞ

¼ 4d2Ncðαg2Þ
Z
k
ððS̃0ðkþ KÞS̃0ðkþ K þQÞ ¯̄Rð−kÞÞÞ;

ð11Þ

where
R
k ¼

R
d4k
ð2πÞ4 in the Euclidean momentum space,

¯̄Rð−kÞ ¼ 2Rð−kÞ, dn ¼ ð−1Þnþ1

2n . The double parentheses
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was used for denoting the order of the original kernels and
it implicitly contains the momentum structure resulting
from the trace in Dirac indices. This integral, for infrared
(IR) regular gluon propagators, is finite. The following
function was defined: S̃0ðkÞ ¼ 1

k2þM�2. These interactions
(9) emerge due to the following anomalous trace of Dirac
matrices:

TrDðγμγνγργσγ5Þ ¼ 4iϵμνρσ; ð12Þ

where ϵρμσν is the Levi-Civita tensor. Along this work,
the momentum dependence of the form factors is
written as FðK;QÞ that is a shorthanded notation for
FðK2; Q2; K ·QÞ. The momentum dependent form factors
in Eq. (9) have dimensions of mass−2. Both vector mesons,
rho and omega, couple to the corresponding axial current
with the same strength FvjaðK;QÞ.
The above interactions (9) have chiral counterparts of the

light axial mesons A1 and f1, denoted by Āi
μ and Āμ

respectively, interacting with the vector quark currents.
These couplings are given by

Lvja−A ¼ iϵσρμνFvjaðK;QÞKσGi
ρμðQÞjV;iν ðK;KþQÞ

þ iϵσρμνFvjaðK;QÞKσGρμðQÞjVν ðK;KþQÞ; ð13Þ

where jV;iμ ðK;KþQÞ¼ ψ̄ðKþQÞγμσiψðKÞ and jVμ ðK;Kþ
QÞ ¼ ψ̄ðK þQÞγμψðKÞ. The (isotriplet and isosinglet)
axial mesons (Abelian) stress tensors in coordinate space
are the following:

Gi
μν ¼ ∂μĀi

ν − ∂νĀi
μ; Gμν ¼ ∂μĀν − ∂νĀμ: ð14Þ

Non-Abelian terms can be incorporated [37,71].
The above anomalous interactions (9) and (13) are

strongly anisotropic with respect to the quark and vector
meson momenta, and the vector meson polarization. They

arise in the same way as Wess-Zumino-Witten–type terms
that were also obtained for example in the bosonized
version of the NJL model, sigma models and other
approaches [36,39,40,47]. The antisymmetric tensor ϵσρμν
obviously prevents the contributions of many components
of quark and vector meson momenta. Moreover, it makes
important to select a particular vector (or axial) meson
polarization. As a whole, the vertices QμKνFvjaðK;QÞ
probe an anisotropy of the spatial variation of the
axial (vector) current and charge distribution in Eq. (9)
[Eq. (13)]. These couplings correspond to a small anoma-
lous axial (vector) component of the vector (axial) meson
structure. As such, it may be responsible for vector-axial
meson mixings. This type of mixing could only occur in the
presence of a third particle or in a medium to conserve
momenta.

A. Comparison with other couplings of the axial current

The leading light mesons [pion, omega, rho and axial
A1ð1260Þ] interactions with the axial isotriplet quark
current had been obtained by the same method used above
[16,54,55]. By adding to the anomalous coupling above,
they can be written as

LjA ¼ ½GAðQ;KÞQμπ
iðQÞ þGĀðQ;KÞĀi

μðQÞ
þ iFvjaðQ;KÞϵμνρσKνQρVσ

i ðQÞ�jμA;iðK;QÞ; ð15Þ

where a dimensionless pion field was written in the first
term. The analogous terms for the isosinglet axial current
were omitted. Other couplings with different—higher
order—momentum dependence might arise being outside
of the scope of this work. The axial meson coupling to the
axial current has been considered recently in different
approaches [72]. The following form factors were used
in Eq. (15):

GAðK;QÞ ¼ GVðK;QÞ ¼ 4FCA;V

Z
k
ððM�S̃0ðkþ KÞS̃0ðkþQþ KÞ ¯̄Rð−kÞÞÞ; ð16Þ

GĀðK;QÞ ¼ CA;V

Z
k

ðkþ KÞ · ðkþ K þQÞ þM�2

ððkþ KÞ2 þM�2Þððkþ K þQÞ2 þM�2Þ
¯̄Rð−kÞ; ð17Þ

whereCA;V ¼ 4Ncd2ðαg2Þ andF is the pion decay constant.
The form factor FvjaðK;QÞ, Eq. (11), is suppressed by
∼1=M� or ∼1=M�2 with respect to GA and GĀ and also
with respect to the rho or omega coupling to the quark vector
current. Besides that, it has a tensor structure dependent on
KQ and it presents an intrinsic anisotropy in momentum
space that contributes to make him smaller. Note that
GĀðK;QÞ (as well as the vector meson coupling) is dimen-
sionless for the canonical normalization of axial-vector fields.

It is also interesting to note that, for constant
quark effective masses M�, the pion axial coupling,
GAðK;QÞ, is directly proportional to the anomalous cou-
pling constant or form factor FvjaðK;QÞ. They can be
related by

FvjaðK;QÞ
GAðK;QÞ ¼ 1

4M�F
: ð18Þ
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Therefore the anomalous coupling constant Fvja can be
considered to be suppressed with respect to GA ∼ 1.

B. Some three-leg meson couplings

The meson sector of the quark determinant (5) has been
investigated extensively by many groups, for example in

[37,39]. Next, the leading coupling terms that involve a
vector meson and an axial meson are exhibited. Although
not all of them are nonzero in the vacuum they are all
displayed and their possible contributions discussed below.
The leading vector-axial mesons couplings with a pion can
be written as

Lmix ¼ Gv−a−πðK;QÞðiϵijkπiðQþ KÞVj
μðQÞAμ

kðKÞ þ πiðQþ KÞVi
μðQÞAμðKÞÞ

þ Gv−a−πðK;QÞðπiðQþ KÞVμðQÞAμ
i ðKÞÞ

þ Gkv−a−πðK;QÞiϵijkð∂νπiðQþ KÞQμV
j
νKAμ

kðKÞ þ ∂νπiðQþ KÞVi
μðQÞKμAνðKÞÞ

þ Gkv−a−πðK;QÞiϵijkπiðQþ KÞQμV
j
νðQÞKμAν

kðKÞ þOk; ð19Þ
where Ok contains further couplings with higher order momentum dependence, Q, K are the momenta carried by the
vector and axial mesons, respectively. In this equation the pion field is canonically normalized. The coupling functions are
given by

Gv−a−πðK;QÞ ¼ d2Nc6

Z
k
ððM�TðK;QÞS̃0ðkÞS̃0ðkþ KÞS̃0ðkþ K þQÞÞÞ; ð20Þ

Gkv−a−πðK;QÞ ¼ d2Nc6

Z
k
ððM�S̃0ðkÞS̃0ðkþ KÞS̃0ðkþ K þQÞÞÞ; ð21Þ

where TðK;QÞ≡ ð2k · ðkþ KÞ þ K · ðK þQÞ −M�2Þ=2.
Similar couplings to the ρ − π − A1 have been proposed in
other works within different or similar approaches, for
example in [21–23,37,40,73–75] and references therein.
The integral of the coupling function Gv−a−π is ultraviolet
(UV) logarithmic divergent and Gkv−a−π is UV finite. They
have respectively dimensions of mass and mass−1.
This UV divergence in Eq. (20) is the same as the

momentum dependent free vector and axial meson terms.
The free and self-interacting light vector and axial mesons
sector have been investigated in very similar approaches,
see for example in [37,71,76]. This divergence is directly
eliminated by the vector and axial field renormalization
constants in the same way some couplings were made finite
in [61]. The Abelian contributions were found to be
given by

Lfree ¼ −
gð0Þf

4
ðF μν

i F i
μν þ Gμν

i Gi
μν þ F μνF μν þ GμνGμνÞ;

where the following effective parameter has been defined in
the long wavelength and zero momentum limit considered
before: gð0Þf ¼ d14NcTr0ððS̃20ðkÞÞÞ. This parameter can be
set finite as a renormalization condition, the one for ZV and

ZA, and this makes all the coupling constants and coupling
functions in Eq. (19) finite. The mass terms for the vector
and axial mesons can also be found from this approach with
complementary contributions in similar developments
[77,78]. However the masses do not provide important
information for the coupling constants and form factors
addressed in the present work. To obtain terms consistent
with the massive Yang Mills approach, one must impose as

renormalization point: gð0Þf ¼ 1. It follows that

Gv−a−πð0; 0Þ ∼
gð0Þf M�

2
þ 1

e
gFρω; ð22Þ

where gFρω is the (finite) coupling constant of the neutral
rho meson coupling to a photon and to the omega meson:
LFρω ¼ −gFρωFμνF

νρ
3 F μ

ρ for Fμν the background photon
stress tensor.
Finally, there are other three-leg couplings that can also

be associated to mixing of ρ and other vector and axial
mesons, in particular the ρ − ω − A1 vertex [27,79].
Besides that, there are also couplings that yield fusion of
vector mesons into an axial meson gVVA. They can be
written as

L3−v ¼ gωρA1
ðK;QÞ2ϵμναβVμðK þQÞðF i

ναðKÞAi
βðQÞ þ Gi

ναðQÞVi
βðKÞÞ þOF

þ gωωf1ðK;QÞ2ϵμναβVμðK þQÞðF ναðKÞAβðQÞ þ GναðQÞVβðKÞÞ þOF

þ gρρA1
ðK;QÞ2ϵμναβiϵijkVi

μðK þQÞðF j
ναðKÞAk

βðQÞ þ Gj
ναðQÞVk

βðKÞÞ þOF ; ð23Þ
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where OF contains different momentum structures. These
other structures are obtained by exchanging the roles of the
rho and the omega, or the A1 meson, i.e., F ↔ F i ↔ Gi

and correspondingly Vi
μ ↔ Vμ ↔ Ai

μ. The coupling func-
tion gωρA1

, which is symmetrized due to the possible
different order of external lines, was defined as

gωρA1
ðK;QÞ ¼ C3

Z
k
ððS0ðkÞS0ðkþ KÞS̃0ðkþ K þQÞ

þ S̃0ðkÞS0ðkþ KÞS0ðkþ K þQÞÞÞ; ð24Þ

gωρA1
ðK;QÞ ¼ gωωf1ðK;QÞ ¼ gρρA1

ðK;QÞ; ð25Þ

where C3 ¼ 6Ncd2, the momentum integral has the same
UV divergence as Eq. (20) and they can be renormalized
exactly in the same way as discussed above. The right-hand
side of Eq. (25) is also obtained from the naive quark
model relation with a vector meson dominance (VMD)
hypothesis [26]. For constant quark effective mass, it can be
written

gωρA1
ðQ;KÞ ¼ 1

M�Gv−a−πðQ;KÞ: ð26Þ

These coupling constants are also directly proportional to
coupling constants found in the framework of the Skyrme
model or massive Yang Mills model [37,38,80].

C. Possible quantization of meson couplings
to axial and vector couplings

The coupling FvjaðK;QÞ in the action can be written in
the coordinate space and, with the same construction of
Witten [35,81], it can be expressed as a five dimensional
closed surface of a total divergence by means of the Stoke’s
theorem. In this case a quantization condition emerges.
By writing it back in the momentum space, Eq. (9) can be
written as

nΓ ¼ −
i

240π2

Z
d4Kd4QϵσρμνFvjaðK;QÞ

× KσF i
ρμðQÞjA;iν ðK;K þQÞ; ð27Þ

where n is an integer. This integral, as a term in the action,
corresponds therefore to a topologically conserved quantity
assuming integer multiple values of Γ. The axial current
however has specific properties. For instance, the axial
charge is only partially conserved due to both quark masses
and the Adler-Bell-Jackiw (ABJ) anomaly. So the follow-
ing question arises: how can a topologically conserved
coupling involving the axial current be related to the partial
conservation of the axial current? Seemingly the vector
meson anomalous coupling selects a component of jA;iν that
would be quantized and conserved. By decomposing the
above integral into the different Lorentz components, i.e.,
nΓ ¼ ϵσρμνΓðσρμνÞ, one can write explicitly one of these
terms as

Γðxyz0Þ ¼ −
i

240π2

Z
d4Kd4QFvjaðK;QÞKxQy½ρ−z ðQÞūðK þQÞγ0γ5dðKÞ þ ρþz ðQÞd̄ðK þQÞγ0γ5uðKÞ�; ð28Þ

where ρ�z ðQÞ are the z-polarization component profile of the charged rho field. The quantization condition however
involves the sum of all the couplings of all the components Γðxyz0Þ.
Besides that, for constant effective mass, these equations can be rewritten in terms of the pion axial coupling to

constituent quarks, Eq. (16). From Eq. (18) it can be written that

nΓ ¼ −
i

240π2 × 4M�F

Z
d4Kd4QϵσρμνGAðK;QÞKσF i

ρμðQÞjA;jν ðK;K þQÞ: ð29Þ

Note however, that the momenta K andQ are orthogonal to
each other, differently from the pion axial coupling to the
constituent quark current. This equation (29) has a higher
order dependence on the constituent quark momentum Kσ

but it is of the same order of the meson momentum (pion or
vector meson) Qρ.
By applying the same reasoning to the axial meson

coupling to the constituent quark vector current (13) the
following quantization conditions are obtained:

mtΓ̄ ¼
Z

d4x1d4x2iϵσρμνFvjaðx1; x2ÞGi
ρμðx1Þ∂σj

V;i
ν ðx2; x1Þ;

ð30Þ

msΓ̃ ¼
Z

d4x1d4x2iϵσρμνFvjaðx1; x2ÞGρμðx1Þ∂σjVν ðx2; x1Þ;

ð31Þ
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where ms, mt are integers for the isosinglet and
isotriplet axial meson interactions. Notwithstanding the
vector current is conserved only for degenerate quark
masses these conditions should not disappear in the case
of nondegeneracy of quark masses. A similar question to
the one raised above arises: how can a topologically
conserved quantity, involving the constituent quark
vector current, be related to the nonconservation of
the (global) vector current that is due to the non-
degenerate quark masses? Similarly to the axial
current coupling to the vector meson, the axial meson
profile and coupling might “select” a topologically pre-
served component of the vector current. The effect of
quark mass nondegeneracy will be investigated in
another work.

III. ANOMALOUS VECTOR MESON
COUPLINGS TO THE QUARK AXIAL

CURRENT UNDER WEAK MAGNETIC FIELD

The effect of a magnetic field, weak with respect to the
constituent quark mass M�, will be presented due to two
different mechanisms described in detail in Ref. [60]. The
validity of the (semi)classical approximation for the mag-
netic field to describe observables in heavy ion collisions
has been an object of attention in the past years [82,83]. The
dependence of the quark propagator on the weak magnetic
field is considered and, second, the overall photon cou-
plings to the legs of the meson-current coupling. For the
degenerate quark effective mass M�, the quark propagator,
with the leading contribution from the weak magnetic field
aligned in the z direction, can be written for degenerate
quark masses as [84,85]

GðkÞ ¼ S0ðkÞ þ S1ðkÞðeB0Þ ¼
=kþM�

k2 −M�2 þ iϵ
þ iγ1γ2

ðγ0k0 − γ3k3 þM�Þ
ðk2 −M�2 þ iϵÞ2 Q̂ðeB0Þ: ð32Þ

The anomalous light vector meson couplings to the axial current in the presence of this constant weak magnetic field
provide similar expressions in both mechanisms mentioned above that can be added. Below some of resulting corrections
for the couplings, with the form factors, of the previous section are shown for the isotriplet and isosinglet vector and axial
mesons. By writing them with a constant small multiplicative factor ðeB0Þ=M�2, they can be written as

LvjaB ¼ ðeB0Þ
M�2 ϵij3

FB
vjaðK;QÞ
M�2 ½ϵ12ρμKρQν · Vi

νðQÞ þ 2ϵ12ρνKρF μν
i ðQÞ�jA;jμ ðK;K þQÞ

þ ðeB0Þ
M�2

FB
vjaðK;QÞ
3M�2 ½ϵ12ρμKρQν · VνðQÞ þ 2ϵ12ρνKρF μνðQÞ�jA;3μ ðK;K þQÞ; ð33Þ

Lmix;B ¼ ðeB0Þ
M�2 GB;1

v−aðK;QÞiϵ12μνM�2iϵij3V
μ
i ðQÞĀν

jðKÞδðQþ KÞ

þ ðeB0Þ
M�2 GB;1

v−a−πðQ;KÞiϵ12μνM�ðπ3ðQÞVμðKÞĀνðQþ KÞ þ TijkπiðQÞVμ
j ðKÞĀν

kðK þQÞÞ; ð34Þ

where Tijk ¼ trFðQσiσjσkÞ. The coupling functions can be written in the Euclidean momentum space as

FB
vjaðK;QÞ ¼ 4d2Ncðαg2ÞM�4

Z
k
ððS̃0ðkþ KÞS̃0ðkþ KÞS̃0ðkþ K þQÞR̄ð−kÞÞÞ; ð35Þ

GB;1
v−aðK;QÞδðK þQÞ ¼ 2d2Nc

Z
k
ððM�2S̃0ðkþQÞS̃0ðkþQÞS̃0ðkÞÞÞ; ð36Þ

GB;1
v−a−πðQ;KÞ ¼ 3d2NcM�2

Z
k
ðððk · ðkþQÞ −M�2ÞS̃0ðkþQÞS̃0ðkþQÞS̃0ðkþ K þQÞS̃0ðkÞÞÞ; ð37Þ

where the vector mesons are the canonically normalized
ones. These coupling functions (coupling constants) are
all finite and they are dimensionless. The couplings
FB
vjaðK;QÞ might be seen as magnetic field corrections

to the anomalous vector meson form factor.

The mixing GB;1
v−aðK;QÞ disappears in the absence of the

magnetic field. Note that the similar term for isosinglet
vector and axial fields does not show up. This term,
however, is trivially zero in the absence of other particles
due to conservation of momentum, and this is made explicit
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in the delta function δðK þQÞ. In the presence of another
particle, or in a finite density medium, the conservation of
momentum can be satisfied and this anomalous mixing can
contribute because vector and axial mesons propagate in
orthogonal directions. This coupling should contribute for
in medium vector-axial mixing besides the mixing induced
by the pion of Eq. (19) [28,29]. All these interaction terms
emerge due to the anomalous trace of five Dirac matrices,
Eq. (12). There is a similar momentum anisotropy to the
case of zero magnetic field, being also dependent on the
vector or axial meson polarization. The magnetic field
contributions are suppressed by factors 1=M� or 1=M�2
with respect to the zero magnetic field couplings, besides
the factors ðeB0Þ=M�2 were included too. Although the
explicit magnetic field contribution is factorized and sup-
pressed by a factor ðeB0Þ=M�2, the effective quark masses
also depend on the magnetic field in the gap equations.
These anomalous form factors can be simply added to the
anomalous form factors (9), (13) and (19) in the vacuum as
it follows:

FðK;Q;B0Þ ¼ FðK;QÞ þ f
ðeB0Þ
M�2 FBðK;QÞ; ð38Þ

where f is a factor that depends on the momentum compo-
nents in Eq. (33) or (34). FvjaðK;QÞ and FB

vjaðK;QÞ also
can receive magnetic field corrections from the gluon
propagator and running coupling constant dependencies
on B0 being however neglected in the present work. Axial
vector meson couplings to the quark vector currents,
Eq. (13), receive analogous corrections due to the weak
magnetic field to those shown above.

IV. NUMERICAL RESULTS

For the numerical estimations two different effective
gluon propagators will be considered. The first one will be
a transversal obtained from Schwinger-Dyson equations
(SDE) that reproduce many hadron observables [9,62].
It can be written as

DIðkÞ ¼ hIg2RTðkÞ

¼ 8π2

ω4
De−k

2=ω2 þ 8π2γmEðk2Þ
ln ½τ þ ð1þ k2=Λ2

QCDÞ2�
; ð39Þ

where hI is the factor that normalizes the coupling con-
stant of the vector meson to the vector current, γm¼
12=ð33−2NfÞ, Nf ¼ 4, ΛQCD ¼ 0.234 GeV, τ ¼ e2 − 1,
Eðk2Þ ¼ ½1 − expð−k2=½4m2

t �Þ=k2, mt ¼ 0.5 GeV, D ¼
0.553=ω (GeV2) and ω ¼ 0.5 GeV.
The second type is based in a longitudinal effective

confining parametrization by Cornwall [64] that can be
written as

RLðkÞ ¼ DII;zðkÞ ¼ hII;z
KF

ðk2 þM2
zÞ2

; ð40Þ

where KF ¼ ð2πMz=3keÞ2 was considered in previous
works [16,54]. In this equation, ke ≃ 0.15, the normaliza-
tion factor hII;k is considered to reproduce a reasonable
value for the vector meson (rho or omega) coupling
constant to the nucleon (or constituent quarks). This type
of gluon effective propagator exhibits features of lattice
QCD calculations [86]. Two choices were made for the
effective gluon mass M2

z : as a function of momentum
(z ¼ 6 and z ¼ 7) for M6 ¼ 0.5=ð1þ k2Þ GeV and M7 ¼
0.5=ð1þ k2=5Þ GeV.
In the figures below the following normalized spacelike

form factors with respect to the usual vector meson
coupling to the vector current will be drawn:

GvjaðK;QÞ ¼ FvjaðK;QÞ
GVð0; 0Þ

;

GB
vjaðK;QÞ ¼ FB

vjaðK;QÞ
GVð0; 0Þ

; ð41Þ

where the following normalizing parameters where chosen:
hI ¼ 1.4 (M� ¼ 0.33 GeV), hI ¼ 1.6 (M� ¼ 0.45 GeV),
and hII;6 ¼ hII;7 ¼ 16 (M� ¼ 0.33 GeV). These values for
the effective masses and factors hI;II yieldedGVð0; 0Þ ¼ 12

in Ref. [16]. This way we can extract relative strengths of
the couplings in a uniform way to make comparisons.
Besides that, only one component of K and Q contributes,
and, due to this, we considered (in a spacelike spherical
coordinate basis) Q ¼ jQj=4 and K ≃ jKj=4.
In Fig. 1 the form factor GvjaðK;QÞ, calculated with the

effective gluon propagatorDIðkÞ, is presented as a function
of the vector meson momentum Q2 for different values

FIG. 1. Anomalous form factor GvjaðK;QÞ for the effective
gluon propagatorDIðkÞ as a functionQ2 for different values ofK.
Two different quark effective masses are used M� ¼ 0.33 GeV
and M� ¼ 0.45 GeV.
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of the modulus of the constituent quark momentum
K ¼ jKj=4. Two different values of the quark effective
mass, typical from the NJL model, are considered M� ¼
0.33 GeV and M� ¼ 0.45 GeV. The momentum depend-
encies in K andQ are not very different, as it can be seen in
Eq. (11). There is a slight increase up to Q2 ∼ ð0.2 GeVÞ2
or K2 ∼ ð0.2 GeVÞ2 and then a decrease with both Q2 and
K2. For the zero or very low quark momenta K ∼ 0 limit
the behavior with Q2 is almost monotonically decreasing.
A larger quark effective mass leads to a suppression of the
interaction and to a less strong dependence on momenta.
This figure, and the following ones, show that there might
be a weak coupling of the light vector mesons, ρ and/or ω,
with the axial constituent quark current. The relative
strength of the coupling FvjaðK;QÞ and the usual vector
coupling close toQ ∼ K ∼ 200–500 MeV can be estimated
to be

FvjaðK;QÞ × jKjjQj
GVðK;QÞ

����
Q∼K∼200–500 MeV

∼ 0.1: ð42Þ

This coupling function also provides an (anomalous) axial
contribution for the vector meson form factor. Therefore
only precision measurements of the vector meson inter-
actions and form factors would identify such contributions.
It is important to emphasize that FvjaðK;QÞ is strongly
anisotropic, being that it selects a particular meson polari-
zation. Furthermore, FvjaðK;QÞ for larger momenta is
suppressed stronger than the vector coupling GVðK;QÞ.
Its (anisotropic) effects could also be searched in the
strength of the vector meson dominance VMD [87].
Besides that, these couplings correspond to anomalous
axial (vector) corrections to the rho or omega (A1 or f1)
form factors for which there are some estimations
[16,88,89].
The same form factor GvjaðK;QÞ as a function of Q2 is

exhibited, for different values of K ¼ 0, 200, 500 MeV, for
the effective gluon propagators DII;6ðkÞ and DII;7ðkÞ in
Fig. 2 for the quark effective mass M� ¼ 0.33 GeV. The
behavior is very similar to the one found in Fig. 1 for the
gluon propagatorDIðkÞ. The very small difference between
the results from the gluon propagators only shows up for
low-intermediary momenta, and it tends to zero for higher
momenta K > 400 MeV and Q2 > 1 GeV2.

A. Magnetic field induced correction

In Fig. 3 the form factorGB
vjaðK;QÞ is drawn for the gluon

propagator DIðkÞ and two different quark effective masses,
M� ¼ 0.33 and 0.45 GeV, as a function of the vector meson
momentaQ2 for the same quark momentum as the previous
figures. The effect of modifying the quark effective mass is
much larger at low momentaQ andK. For higher momenta,
the difference between the form factors with the different
effective masses tends to become smaller with Q2 and with

K2. Also, analogously to the zero magnetic field case
exhibited above, there is a small increase with lowmomenta
up to K ∼ 200 MeV or Q ∼ 200 MeV. In Fig. 4 the same
form factor GB

vjaðK;QÞ is presented for the same values of
K ¼ 0, 200, 500 MeV, with M� ¼ 0.33 GeV and for the
effective gluon propagators DII;6ðkÞ and DII;7ðkÞ. The
behavior with external momenta is basically the same as
the form factorGvja and the difference between results of the
two different gluon propagators shows up in intermediary
momenta. This anomalous constituent quark and vector
meson coupling function could manifest in the low/inter-
mediary vector meson energy regime in ultraperipheral
collisions.

FIG. 2. Anomalous axial form factors GvjaðK;QÞ for the
two effective gluon propagators D6ðkÞ and D7ðkÞ, and with
M� ¼ 0.33 GeV.

FIG. 3. Magnetic field induced correction to the anomalous
axial form factors probed by the rho vector meson for the
effective gluon propagator DIðkÞ and for two different quark
effective masses M� ¼ 0.33 GeV and M� ¼ 0.450 GeV. The
modulus of quark momentum was chosen to be the same as the
previous figures: K ¼ 0, 200, 500 MeV.
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B. Averaged quadratic radius and on-shell estimates
for coupling constants

Vector (and axial) mesons couple on shell although
constituent quarks cannot be really said to do so. Below
some estimates are provided for coupling constants
with on-shell vector mesons. Because of the involved
analytic structure, only gluon effective propagator (40)
will be considered for which we adopted the value
M6 ¼ 500 MeV. The momentum integral of the coupling
constant gωρA1

is ultraviolet divergent. Because of that, a
regularized truncated version of the quark propagator was
considered [16,60]: S0ðkÞ → M�=ðk2 −M�2Þ. It may yield
an effective momentum dependence close to the ones
obtained from SDE. With that, the integral becomes finite
and we denote the result by Gtr

ωρA1
ðK;QÞ. All the singu-

larities were taken into account by considering the average
of the integration over the up and down complex semi-
planes. The following ranges of values were obtained for a
range of quark effective masses M� ¼ 0.33–0.35 GeV:

GvjaðK0 ¼ M�; Q0 ¼ MρÞ ¼ 0.6–0.4 GeV−2; ð43Þ

Gtr
ωρA1

ðK0 ¼ Mρ; Q0 ¼ MωÞ ¼ 0.2–0.3; ð44Þ

Gkv−a−πðK0 ¼ Mρ; Q0 ¼ MA1
Þ ¼ 0.9–1.2 GeV−1; ð45Þ

GB1
v−aðK0 ¼ MρÞ ¼ 0.1–0.3; ð46Þ

Note that Gtr
v−a−π ¼ M�2Gkv−a−π . Also, from Eq. (25), one

has for the vector mesons fusion channel gωρA1
ðK0; Q0Þ≃

gωωf1ðK0; Q0Þ ≃ gρρA1
ðK0; Q0Þ, since the mass difference

Mρ −Mω ∼ 12 MeV is very small.
For the sake of comparison, few values for the coupling

GωρA1
or GVAπ considered in the literature are quoted next.

The coupling constant GωρA1
has been considered for the

investigations (of vector/axial mesons mixing) at finite
density [27,28]. The following values were used:
gωρA1

hω0i ¼ C ≃ 0.1 → 0.3 GeV, at the saturation density
ρ0 where the quantity hω0i is the omega mean field in the
medium. From Ref. [20] the following values were con-
sidered for the dimensionless three-leg coupling given in
(26): Gkv−a−π ∼M�GAVP ∼ 2M� ∼ 0.7.
A simple estimation for the contribution of the form

factor FvjaðK;QÞ to the rho meson averaged quadratic
radius can be also provided. It corresponds to a small
axial component. For that, we can define a normalized
dimensionless coupling function (form factor) as Ḡvja ¼
K̄ Q̄ GvjaðK;QÞ, where K̄; Q̄ ∼ 200 MeV are averaged
constituent quark and meson momenta. The usual
definition of averaged quadratic radius (AQR) will be
adopted:

ΔAhr2ρi ¼ −6
dḠvja

dQ2

����
Q¼0

: ð47Þ

Results are shown in Fig. 5 for two gluon propagatorsDI and
DII;6 with M6 ¼ 500 MeV. These values can be compared
to estimations of the rho AQR: hr2ρi ≃ 0.28–0.56 fm2

[13,16,88–90]. It very small, i.e.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔAhr2ρi

q
can be 1 order

of magnitude smaller than the rho vector meson radius. The
contribution of the weak magnetic field is very small, it is 1
order of magnitude smaller than the above contribution,

i.e., ΔB
Ahr2ρi ∼ ΔAhr2ρi

10
.

V. FINAL REMARKS

Unusual couplings of light vector mesons, rho and
omega, to the constituent quark axial current were derived
in this work. Their momentum dependencies were pre-
sented for different effective gluon propagators in the low

FIG. 4. The same as Fig. 3 for the two effective gluon
propagators D6ðkÞ and D7ðkÞ, with M� ¼ 0.33 GeV and
K ¼ 0, 200, 500 MeV.

FIG. 5. The axial AQR, rA ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔAhr2ρi

q
, obtained with DI and

DII;6 (with M6 ¼ 500 MeV) as a function of the quark
effective mass.
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momentum regime. The resulting coupling constants
and form factors are suppressed at low momenta by
ðKμQνÞ=M�2 in comparison with the minimal vector
meson couplings to the quark vector current [16]. Kμ

and Qν are respectively the quark and vector meson
momenta, being that the coupling functions are strongly
anisotropic. The momentum dependencies of Fvja onQ and
K are basically the same. The couplings are also dependent
on the polarization of the vector meson. Although they go
to zero for very large, infinite, meson momenta, the
resulting equations are suppressed fast with respect to
the leading form factors at higher energies. Besides that, at
higher energies, quark effective masses should decrease
and this might, to some extent, invalidate the large quark
mass expansion. The aim of the present work is to provide a
dynamical derivation for the low energy meson couplings.
As such, the resulting equations can be written in terms of
structureless (local) meson fields. When analyzing topo-
logical-based equations from Sec. II C there is a need to
integrate over all the meson field profiles, or their momen-
tum dependencies. However, since the structure of
FvjaðK;QÞ decreases quite strongly with increasing
momenta, the overall high energy contributions from the
meson profiles should be suppressed. This was not inves-
tigated further in the present work.
Numerically we have found Gvja ¼ Fvja=GV ∼

0.1–0.3 GeV−2, i.e., this coupling might produce small
(anisotropic) effects in observables associated to the vector
meson coupling to constituent quarks or to the nucleon. The
corresponding light axial meson couplings to the constitu-
ent quark vector current were also derived and they have the
same strength and overall momentum dependence. When
comparing the behavior of the form factors FvjaðK;QÞ,
calculated with different effective gluon propagators, very
small (negligible) differences were found mostly for
momenta 0.15 GeV2 ≤ Q2 ≤ 0.7 GeV2. Modifications in
the value of the quark effective masses lead to shifts in the
low momenta region of FvjaðK;QÞ and to its weak
magnetic field induced correction FB

vjaðK;QÞ. These form
factors correspond to axial (vector) components of the
vector (axial) mesons. Correspondingly a simple estimation
of the axial averaged quadratic radius for the rho meson
was provided. It is, at most, 1 order of magnitude smaller
than the estimations for the rho AQR. There might appear
other consequences; for example, a small (anisotropic)
contribution for the so-called vector meson dominance
VMD and related form factors [87].
Other three-leg meson vertices often considered, such as

ρ − A1 − π, ρρ − A1 and ω − ρ − A1, were also derived
being the estimated values in quite good agreement with
other investigations. These three-meson coupling con-
stants, or coupling functions, might be finite or logarithmic
UV divergent. In this last case, they are renormalized by the
same renormalization constants as the free vector meson

kinetic terms [61]. Finally, mixings between light vector
and axial mesons were also found. However, the corre-
sponding anomalous mixing only can provide dynamical
contributions in the presence of a third particle or in a finite
density medium. This is due to the conservation of linear
momentum. An incoming (or outgoing) vector meson and
an outgoing (or incoming) axial meson must propagate in
orthogonal directions. These couplings and mixings are
strongly anisotropic and dependent on both meson
momenta and polarizations.
Besides that, weak magnetic field contributions for

the anomalous couplings were also presented with their
momentum dependencies in the form factors, FB

vjaðK;QÞ.
These corrections to the anomalous vector meson couplings
to the axial currents are reasonably similar to the zero
magnetic field case, Fvja. These corrections are, however,
numerically suppressed by the factor eB=M�2 that was
assumed to be small. Two different mechanisms that
generate weak magnetic field contributions for hadron
couplings were considered: first, the leading correction
to the quark propagator—Eq. (32)—and second, the back-
ground photon overall coupling to the quark-vector meson
vertex. Both mechanisms provide similar contributions that
add to each other in Eqs. (33) and (34). Vector-axial meson
mixing induced by the magnetic field was also found.
By following the same method considered by Witten

[35] for Wess-Zumino terms, conditions for the quantiza-
tion of the anomalous couplings Fvja were found. The total
axial current, however, is only partially conserved because
of Lagrangian quark masses and of the ABJ anomaly. The
vector current is not conserved due to the quark mass
nondegeneracy. So, it is not clear how to cope with these
small symmetry breakings, dictated by well-known low
energy theorems, with the topologically conserved terms in
the action given by Eqs. (27) or (30). They correspond to
quantization conditions that contain the axial or vector
currents, or a component of them. One way to, maybe,
solve this apparent contradiction would be to consider that
the light vector or axial mesons select components of,
respectively, the axial or vector constituent quark currents
that remain (topologically) preserved. This is not inves-
tigated further in the present work. For degenerate quark
masses the quantization condition for the flavor singlet
axial meson coupling to the vector current, with ms, is the
same as the flavor triplet one, with mt. The nondegeneracy
of quark masses does not prevent the quantization con-
ditions to emerge, such as (27), (30) or (31), it slightly
changes its shape. This case of nondegenerate quark mass
will be addressed in another work.
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