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Space-time evolution of spin polarization within the framework of hydrodynamics with spin based on de
Groot—van Leeuwen—van Weert forms of energy-momentum and spin tensors is studied. Due to the
nonboost invariant flow in the system the spin polarization components couple to each other implying some
effects on the spin polarization observables. We study transverse-momentum and rapidity dependence of
mean spin polarization vector for Λ hyperons. Our results show qualitative agreement for rapidity
dependence of the global spin polarization with the experiments and other models. The quadrupole
structure of the longitudinal component at midrapidity is not found; however, as compared to the results for
Bjorken expansion, some nontrivial signal at forward rapidities is observed.
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I. INTRODUCTION

In the last two decades, relativistic hydrodynamics has
become a well established theory with broad applications in
relativistic heavy-ion collisions, condensed matter physics,
and astrophysics [1–6]. This, in turn, has paved the way to
further extensions of the standard hydrodynamic formalism
[7,8], as well as allowed for determining some of the quark-
gluon plasma properties [9,10].
The recent measurements of spin polarization of particles

produced in relativistic heavy-ion collisions [11–20] gave a
new perspective to these studies [21,22]. In particular, the
idea of local thermodynamic equilibrium with spin degrees
of freedom has been proposed [23,24] and has been shown
to explain some of the spin polarization phenomena, such
as collision energy dependence, in terms of the so-called
polarization-vorticity coupling [25–29]. However, after
some initial successes, the spin-thermal models have been
proven being unsuccessful in explaining various more
differential observables. In particular, the measured trans-
verse-momentum dependence of the spin polarization
along the beam direction [15,30] has been shown to have
an opposite sign with respect to the model predictions
[31,32]. This mismatch between theory and experiment,
currently known as the sign problem, has triggered further

theoretical developments raising questions of spin non-
equilibrium effects and its genuine dynamics. Among
others, the idea of incorporating spin degrees of freedom
in the hydrodynamic framework has gained significant
attention as it opened the possibility of probing purely
quantum features of the matter in the classical hydro-
dynamic framework [33–35].
The formulation of relativistic hydrodynamics with spin

based on quantum kinetic theory was first proposed in
Ref. [36] and further developed in Refs. [37–46]. Other
interesting approaches have used the methods of the
effective action [47–49], entropy current analysis [50–52],
holographic methods [53,54] and nonlocal collisions
[55–60].
On general grounds, the dynamics of spin polarization is

expected to be controlled by a rank-two antisymmetric
tensor ωαβ known as the spin polarization tensor [36–38]. It
introduces into hydrodynamics six extra Lagrange multi-
pliers which, together with the standard ones, must be
determined based on the conservation laws. The spin
polarization tensor is, in general, independent of the so-
called thermal vorticity which plays a central role in the
spin-thermal models [24–26,31,46,61–83].
The formalism of hydrodynamics with spin presented

in Refs [36,37] is based on the forms of the energy-
momentum and spin tensors introduced by de Groot, van
Leeuwen, and van Weert [84], which have been shown to
be connected to canonical expressions (obtained by apply-
ing Noether theorem) through pseudogauge transforma-
tions [38,85]. Following the experimental results which
show small values of polarization in Refs. [36,37] it has
been always assumed that ωαβ is of leading order, hence
making the spin polarization contributions appearing only
in the spin tensor. The first applications of this framework
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demonstrating the connection between the theoretical
calculations and the experimental measurements have been
presented in Ref. [40].
In the current work we extend the analysis of the space-

time evolution of the spin degrees of freedom within the
framework of perfect-fluid hydrodynamics with spin pre-
viously performed for Bjorken-expanding system [40]. We
explicitly break the boost-invariance in the beam direction
while keeping the assumption of transverse homogeneity
intact. In order to keep our analysis simple and clear, we
consider an ideal relativistic gas of classical massive
particles of single species with spin-1

2
[2,84]. Relaxing

the assumption of boost-invariance leads to nontrivial
effects resulting from the longitudinal expansion of the
system as well as introduces mixing between different
electriclike and magneticlike sectors of spin coefficients.
Using a physics motivated choice of the initial condition for
background and spin variables we evolve the system until
freeze-out and subsequently analyze the impact of the
dynamics on the spin polarization observables. In particu-
lar, we study the transverse momentum and azimuthal angle
dependence of the mean spin polarization vector as well as
its single-differential rapidity dependence. Our results show
some interesting patterns in rapidity which are in agreement
with other studies and may be potentially important for the
spin polarization measurements [30,86,87].
The paper is organized as follows: we start with the

conventions used in this article in Sec. II followed by a brief
review of perfect-fluid spin hydrodynamics in Sec. III.
After describing our setup in Sec. IV, we derive evolution
equations for background and spin in Sec. V. Our numerical
results for the perfect-fluid background and spin dynamics
are presented in Sec. VI and followed by the analysis on
spin polarization observables in Sec. VII. We summarize
our findings in Sec. VIII.

II. CONVENTIONS

In this paper, the metric tensor is taken with the “mostly
minus” convention, gαβ ¼ diagðþ1;−1;−1;−1Þ, whereas
the scalar (or dot) product of two four-vectors aα and bα

reads a · b ¼ aαbα ¼ gαβaαbβ ¼ a0b0 − a · b, where three-
vectors are denoted by bold font. For the Levi-Civita tensor
ϵαβγδ, we use the convention ϵ0123 ¼ þ1. The Lorentz-
invariant measure in the momentum space is given by
dP ¼ d3p=ðEpð2πÞ3Þ, where on-mass-shell particle energy

and the particle four-momentum are Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
and

pμ ¼ ðEp; pÞ, respectively. We use a shorthand notation for
antisymmetrization by a pair of square brackets. For
example, for a rank-two covariant tensor M, one has
M½μν� ¼ 1

2
ðMμν −MνμÞ. The Hodge dual of any tensor

Cαβ is denoted by a tilde and obtained by contracting
the rank-two antisymmetric tensor with the Levi-Civita
tensor, namely,

C̃αβ ¼ 1

2
ϵαβγδCγδ:

We also use the following shorthand notation for the direc-
tional derivatives Uα∂α≡ ð•Þ, Xα∂α≡ ð⋆Þ, Yα∂α ≡ ð☆Þ,
Zα∂α ≡ ð∘Þ, as well as the for the divergence of a four-vector
A, ∂αAα ≡ θA. Throughout the paperwe assumenatural units
i.e., c ¼ ℏ ¼ kB ¼ 1.

III. PERFECT-FLUID SPIN HYDRODYNAMICS

In this section we review the hydrodynamic framework
for spin-1

2
particles based on the GLW (de Groot—

van Leeuwen—van Weert) forms of energy-momentum
and spin tensors. In this formalism, the spin effects are
considered being small, implying that the spin degrees of
freedom are not included in the conservation laws for
charge, energy and linear momentum, and appear only in
conservation law for angular momentum [38].

A. Conservation of charge

The conservation law for baryon number has the form,

∂αNαðxÞ ¼ 0; ð1Þ

where the baryon current is

Nα ¼ NUα; ð2Þ

with Uα ¼ γð1; vÞ being the fluid four-velocity and [36]

N ¼ 4 sinhðξÞN ð0ÞðTÞ; ð3Þ

stands for particle density.
In the case of an ideal relativistic gas of classical massive

particles (herein referred to as the Λ EoS), the number
density of spinless and neutral classical massive particles,
N ð0ÞðTÞ, has the form,

N ð0ÞðTÞ ¼ kT3z2K2ðzÞ; ð4Þ

with k≡ 1
2π2

, z being the ratio of the particle mass m over
the temperature T, z≡m=T, and K2 denoting the modified
Bessel function of the second kind.
One should note that the factor 4 sinhðξÞ ¼ 2ðeξ − e−ξÞ

in Eq. (3) represents spin degeneracy and the presence of
both particles and antiparticles in the system with ξ being
the ratio of the baryon chemical potential μ over the
temperature, ξ≡ μ=T.

B. Conservation of energy and linear momentum

The conservation law for energy and linear momentum is

∂αTαβðxÞ ¼ 0; ð5Þ
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where Tαβ is the energy-momentum tensor having the
perfect-fluid form,

Tαβ ¼ ðE þ PÞUαUβ − Pgαβ ð6Þ

with the energy density and pressure written as [36]

E ¼ 4 coshðξÞEð0ÞðTÞ; ð7Þ

P ¼ 4 coshðξÞPð0ÞðTÞ; ð8Þ

respectively.
Similarly to the number density, the auxiliary energy

density, Eð0ÞðTÞ, and pressure, Pð0ÞðTÞ, for Λ EoS are
defined as [2]

Eð0ÞðTÞ ¼ kT4z2½zK1ðzÞ þ 3K2ðzÞ�; ð9Þ

Pð0ÞðTÞ ¼ kT4z2K2ðzÞ ¼ TN ð0ÞðTÞ; ð10Þ

respectively. Equations (1) and (5) together form a closed
system of five partial differential equations for five
unknown functions: μ, T, and three independent compo-
nents ofUμ (note thatU is normalized to 1). We solve these
perfect-fluid equations in order to determine the hydro-
dynamic background for the spin evolution.

C. Conservation of angular momentum

Since in the GLW formalism the energy-momentum
tensor (6) is symmetric, the total angular momentum
conservation ∂αJα;βγ ¼ Tβγ − Tγβ þ ∂αSα;βγ ¼ 0 implies
separate conservation of the spin part [38],

∂αSα;βγðxÞ ¼ 0; ð11Þ

where, in the leading order of spin polarization tensor ωμν

(to be discussed later), spin tensor is written as [38]

Sα;βγ ¼ Sα;βγph þ Sα;βγΔ ; ð12Þ

with Sα;βγph
1 and Sα;βγΔ defined as

Sα;βγph ¼ coshðξÞN ð0ÞUαωβγ; ð13Þ

Sα;βγΔ ¼ coshðξÞ½Að0ÞUαUδU½βωγ�
δ

þ Bð0ÞðU½βΔαδωγ�
δ þUαΔδ½βωγ�

δ þUδΔα½βωγ�
δÞ�;

ð14Þ

respectively, and thermodynamic coefficients have the
forms,

Bð0Þ ¼ −
2

z2
Eð0Þ þ Pð0Þ

T
; ð15Þ

and

Að0Þ ¼ 2N ð0Þ − 3Bð0Þ: ð16Þ

The projection operator on the space orthogonal to four-
velocity is defined as Δμ

β ¼ gμβ −UμUβ.

D. The four-vector basis

For our convenience, in this work we will use the four-
vector basis which, apart from the four-velocity U, consists
of additional three four-vectors X, Y and Z spanning the
space transverse to U. The latter are obtained by canonical
boost transformation with four-velocity U, Λβ

αðUμÞ, of the
local-rest-frame expressions,

Xα
LRF ¼ ð0; 1; 0; 0Þ;

Yα
LRF ¼ ð0; 0; 1; 0Þ;

Zα
LRF ¼ ð0; 0; 0; 1Þ: ð17Þ

Obviously, the basis vectors satisfy the following conditions:

U ·U ¼ 1;

X · X ¼ Y · Y ¼ Z · Z ¼ −1;

X ·U ¼ Y · U ¼ Z ·U ¼ 0;

X · Y ¼ Y · Z ¼ Z · X ¼ 0: ð18Þ

E. Spin polarization tensor

The spin polarization tensor ωμν is an antisymmetric
rank-two tensor which can be decomposed in terms of four-
vectors κμ and ωμ as [36]

ωμν ¼ κμUν − κνUμ þ ϵμναβUαωβ: ð19Þ

Note that any part of the four-vectors κμ and ωμ parallel to
Uμ does not contribute to the right-hand side of Eq. (19).
Therefore, we assume that κμ and ωμ fulfill the following
orthogonality conditions:2

κ ·U ¼ 0; ω · U ¼ 0; ð20Þ

which allows us to express κμ and ωμ in terms of ωμν as

κμ ¼ ωμαUα; ωμ ¼
1

2
ϵμαβγω

αβUγ: ð21Þ

1In Eq. (12), the first term is known as the phenomenological
spin tensor [36].

2Six independent components of κμ and ωμ define six
independent components of the antisymmetric rank-two
tensor ωμν.
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Using the basis vectors and orthogonality conditions (20), κμ

and ωμ can be decomposed in terms of scalar spin coeffici-
ents Cκ ¼ ðCκX; CκY; CκZÞ and Cω ¼ ðCωX; CωY; CωZÞ as
follows:

κα ¼ CκXXα þ CκYYα þ CκZZα; ð22Þ

ωα ¼ CωXXα þ CωYYα þ CωZZα: ð23Þ

Using Eqs. (22) and (23) in Eq. (19) we can obtain a general
expression for the spin polarization tensor ωαβ in terms of
scalar spin coefficients,

ωαβ ¼ 2ðCκXX½αUβ� þ CκYY ½αUβ� þ CκZZ½αUβ�Þ
þ ϵαβγδUγðCωXXδ þ CωYYδ þ CωZZδÞ: ð24Þ

We may also introduce another parametrization of the spin
polarization tensor, which uses electric- and magneticlike
three-vectors in the laboratory frame, e ¼ ðe1; e2; e3Þ and
b ¼ ðb1; b2; b3Þ, in the form [37],

ωαβ ¼

2
6664

0 e1 e2 e3

−e1 0 −b3 b2

−e2 b3 0 −b1

−e3 −b2 b1 0

3
7775; ð25Þ

where we used the sign conventions of Ref. [88]. Using
Eq. (25) in Eq. (21) one finds [37]

κα ¼ ðκ0; κÞ ¼ ðe · U; U0eþ U × bÞ;
ωα ¼ ðω0;ωÞ ¼ ðb · U; U0b − U × eÞ: ð26Þ

IV. TRANSVERSELY HOMOGENEOUS SYSTEM
WITH NON-BOOST-INVARIANT FLOW

In the current work we assume that the system is
transversely homogeneous and undergoing a nontrivial
dynamics along the beam (z) direction. Due to translational
invariance in the transverse plane, we assume that the
fluid four-velocity Uα has vanishing x and y components,
namely,

Uα ¼ ðcoshðΦÞ; 0; 0; sinhðΦÞÞ; ð27Þ

whereΦ ¼ ϑþ η is the fluid rapidity with ϑðτ; ηÞ being the
scalar function of longitudinal proper time τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
and space-time rapidity η ¼ ln ½ðtþ zÞ=ðt − zÞ�=2 describ-
ing the deviations of the flow from the boost-invariant
form. Hence, in the limit ϑðτ; ηÞ ¼ 0, we recover the
Bjorken flow [89].

In our case basis four-vectors (17) take the forms,

Xα ¼ ð0; 1; 0; 0Þ; Yα ¼ ð0; 0; 1; 0Þ;
Zα ¼ ðsinhðΦÞ; 0; 0; coshðΦÞÞ: ð28Þ

The directional derivatives read

Uα∂α ¼ coshðϑÞ∂τ þ
sinhðϑÞ

τ
∂η;

Xα∂α ¼ ∂x;

Yα∂α ¼ ∂y;

Zα∂α ¼ sinhðϑÞ∂τ þ
coshðϑÞ

τ
∂η; ð29Þ

and the divergences of Uα and Zα are written as

∂αUα ¼ coshðϑÞ
τ

þ ϑ
∘
;

∂αZα ¼ sinhðϑÞ
τ

þ ϑ
•
; ð30Þ

respectively, where we have used the shorthand notation for
operators (29) explained in Sec. II. Note that in our setup,
all scalar functions depend on τ and η, hence acting on them
with ∂x and ∂y gives zero.
Within our setup the two parametrizations, [Eq. (24) and

Eq. (25)], are related through the expressions,

CκX ¼ e1 coshðΦÞ − b2 sinhðΦÞ; ð31Þ

CκY ¼ e2 coshðΦÞ þ b1 sinhðΦÞ; ð32Þ

CκZ ¼ e3; ð33Þ

CωX ¼ b1 coshðΦÞ þ e2 sinhðΦÞ; ð34Þ

CωY ¼ b2 coshðΦÞ − e1 sinhðΦÞ; ð35Þ

CωZ ¼ b3: ð36Þ

One can also invert the above relations and write the
laboratory-frame spin components in terms ofCκ andCω as

e1 ¼ CκX coshðΦÞ þ CωY sinhðΦÞ; ð37Þ

e2 ¼ CκY coshðΦÞ − CωX sinhðΦÞ; ð38Þ

e3 ¼ CκZ; ð39Þ

b1 ¼ CωX coshðΦÞ − CκY sinhðΦÞ; ð40Þ

b2 ¼ CκX sinhðΦÞ þ CωY coshðΦÞ; ð41Þ
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b3 ¼ CωZ: ð42Þ

V. NON-BOOST-INVARIANT FORMS OF THE
CONSERVATION LAWS

Using Eq. (2) in Eq. (1), the baryon charge conservation
law is expressed as

N
•

þN θU ¼ 0: ð43Þ

Projecting conservation law for energy and linear momen-
tum (5) with flow four-vector Uβ and transverse projector
Δμ

β and using Eq. (6), we get

E
•
þ ðE þ PÞθU ¼ 0; ð44Þ

ðE þ PÞUμ
•
−∇μP ¼ 0; ð45Þ

respectively, where we introduced the notation ∇α≡
∂α −UαUβ∂β. One can see that Eqs. (44) and (45) are rela-
tivistic generalizations of continuity and Euler equations,
respectively.
To derive evolution equations for the spin coefficients Cκ

and Cω, it is convenient to have another decomposition of
the spin tensor (12) as [40]

Sα;βγ ¼ UαðA1ω
βγ þA2U½βκγ�Þ þA3ðU½βωγ�α þ gα½βκγ�Þ;

ð46Þ

where

A1 ¼ coshðξÞðN ð0Þ − Bð0ÞÞ; ð47Þ

A2 ¼ coshðξÞðAð0Þ − 3Bð0ÞÞ; ð48Þ

A3 ¼ coshðξÞBð0Þ: ð49Þ

We first put Eqs. (22) and (24) in Eq. (46), subsequently we
use Eq. (46) in Eq. (11) and, finally, we contract the final
tensorial equation withUβXγ,UβYγ,UβZγ, YβZγ , XβZγ and
XβYγ , which yields (see the Appendix A for detailed
derivation)

αx1
• þ βy1

∘
¼ −αx1θU −

αx2UZ
∘

2
− βy1θZ þ βy2UZ

•
; ð50Þ

αy1
• − βx1

∘
¼ −αy1θU −

αy2UZ
∘

2
þ βx1θZ − βx2UZ

•
; ð51Þ

αz1
• ¼ −αz1θU; ð52Þ

αy2
∘

2
þ βx2

•
¼ −

αy2θZ
2

þ αy1ZU
•
− βx2θU − βx1ZU

∘
; ð53Þ

αx2
∘

2
− βy2

•
¼ −

αx2θZ
2

þ αx1ZU
• þ βy2θU þ βy1ZU

∘
; ð54Þ

βz2
•

¼ −βz2θU; ð55Þ

respectively. Above we have introduced the quantities,3

αi1 ¼ −
�
A1 −

A2

2
−A3

�
Cκi; ð56Þ

αi2 ¼ −A3Cκi; ð57Þ

βi1 ¼
A3

2
Cωi; ð58Þ

βi2 ¼ A1Cωi: ð59Þ

Interestingly, according to Eqs. (52) and (55), evolution
of CκZ and CωZ decouples from that of other components.
This was also the case in our previous study of a system
undergoing Bjorken expansion; see Ref. [40]. However,
unlike in our previous work where each component evolved
independently [40], in the current study we find, see
Eqs. (50) and (54), that CκX and CωY mix during the
fluid’s expansion and affect the evolution of each other.
Similarly, from Eqs. (51) and (53), we observe that CκY and
CωX are also coupled to each other and obey the same form
of evolution equations as CκX and CωY . The latter feature is
solely due to assumed rotational invariance in the trans-
verse plane. Since the breaking of the Bjorken symmetry
results in the coupling between magnetic-like and electric-
like sectors of spin coefficients, the behavior of spin
polarization of Λ hyperons is more complex as compared
to our previous study.

A. Massive limit

Due to relatively large masses of Λ particles as compared
to the temperatures of the system, at top RHIC energies
reaching at most 0.5 GeV in central heavy-ion collisions,
the massive limit where z ≫ 1 is of particular interest. In
this limit the coefficient Bð0Þ ∼ T3e−x

ffiffiffi
x

p
can be neglected

compared to N ð0Þ ∼ T3e−xx3=2, and hence Eq. (12) takes
the form,

Sα;βγM ¼ coshðξÞN ð0ÞUαϵβγμνUμων: ð60Þ

3One may easily obtain the evolution equations for Sα;βγph from
Eqs. (50)–(55) if one sets Að0Þ ¼ Bð0Þ ¼ 0.
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Moreover, in the massive limit, one finds that only βi2
coefficient Eq. (59) is nonvanishing, hence, Eqs. (50)–(52)
are satisfied trivially, and the three components of ωμ

follow the same differential equation,

βi2
•
¼ −βi2θU: ð61Þ

Clearly, in the limit of heavy constituents the components
of κ become undetermined, and the spin tensor is entirely
defined by three spatial components of ωμ. One may also
note that Eqs. (60) and (13) are identical if one imposes the
Frenkel condition κα ¼ 0 on Eq. (13).
In the case of baryon-free matter, using standard thermo-

dynamic relations and the temperature solutions for
Eq. (44) [2] we can write Eq. (61) as

C
•

ωX ¼ −CωXθU

�
1 − c2s

Eð0Þ
Pð0Þ

�
; ð62Þ

where c2s ¼ dP=dE is the speed of sound squared.
Equation (62) is of high importance as it explains the

behavior of the spin coefficients at the edges of the system.
The term in the bracket of Eq. (62) determines the behavior
of the evolution of the spin coefficient at large space-time
rapidity where the system enters the region of large z. We
find that, for the Λ EoS it is negative and, in modulus,
increasing with η; hence, the spin coefficients are increas-
ing along the fluid lines which can also be seen in the
numerical analysis (see next sections). We note that for
general ð3þ 1ÞD expanding case Eqs. (53)–(55) pick up
additional terms which make the spin components coupled
to each other.

VI. NUMERICAL RESULTS

We start the current section by specifying the initial
conditions used in our numerical analysis. Then, using the
Λ EoS [2,84], we present the numerical solutions for the
evolution of perfect-fluid background and spin coefficients.
Finally, we use our solutions to extract the spin polarization
observables.

A. Initial conditions

We assume initial profile for the energy-density in the
form,

E0ðηÞ ¼
Ec
0ðT0Þ
2

½ΘðηÞðtanhða − ηbÞ þ 1Þ
þ Θð−ηÞðtanhðaþ ηbÞ þ 1Þ�; ð63Þ

where a ¼ 6.2, b ¼ 1.9, and Ec
0ðT0Þ is the initial central

energy density evaluated at the given initial central
temperature T0 ¼ Tðτ0; η ¼ 0Þ ¼ 260 MeV, and Θ is the
Heaviside step function [90].
In the current work, we primarily perform the analysis

for zero baryon chemical potential aiming at addressing the

dynamics of spin at higher collision energies. However,
in order to see possible effects of finite baryon chemical
potential we also compare our results with the predic-
tions obtained with homogeneous μ profile choosing
μ0 ¼ μðτ0Þ ¼ 0.12 GeV. The longitudinal fluid rapidity
is chosen to be vanishing initially, ϑ0ðηÞ ¼ 0.
Initialization of spin coefficients Cκ and Cω (or, equiv-

alently, e and b), is performed in such a way as to resemble
the physical situation taking place in noncentral relativistic
heavy-ion collisions. In these processes, the total angular
momentum J of the system in the center-of-mass frame
has initially only orbital angular momentum part L which
is perpendicular to the reaction plane and negative
[12,13,15,17,18]. After the collision, due to particle inter-
actions, some fraction of the initial angular momentum is
converted to the spin of the system’s constituents S, namely,

Jinitial ¼ Linitial ¼ Lfinal þ Sfinal; ð64Þ

meaning that, on average, the direction of the initial
spin angular momentum is along the original angular
momentum [40].
The components of the angular momentum vector of

the system are related to the spatial components of the
respective angular momentum two-tensor through the
relation [91],

Lk ¼ −
1

2
ϵkijLij; ð65Þ

hence the y component of the angular momentum vector is
related to nonvanishing xz component of the total angular
momentum tensor.
The above physics picture requires only xz component of

the spin angular momentum to be nonzero [40], S13FO ≠ 0

(see Appendix B 2 for more details), which is related only
to CκX and CωY components of polarization. For the latter,
we choose

C0
κXðηÞ ¼ CκXðτ0; ηÞ ¼ 0;

C0
ωYðηÞ ¼ CωYðτ0; ηÞ ¼ d sechðηÞ; ð66Þ

where we have used d ¼ 0.1.
According to Eqs. (37) and (41), components e1 and b2

are related to CκX,CωY , and fluid rapidity ϑ. Initialization of
CκX, CωY also initializes e1 and b2 as

e10ðηÞ ¼ e1ðτ0; ηÞ ¼ d tanhðηÞ;
b20ðηÞ ¼ b2ðτ0; ηÞ ¼ d: ð67Þ

B. Perfect-fluid background evolution

For the perfect-fluid background evolution we solve
Eqs. (44)–(45) using Λ EoS defined by Eqs. (7)–(8).
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Figure (1) shows the results for T and ϑ as a function of η for
different longitudinal proper times where τ0 ¼ 0.25 fm=c
with μ0 ¼ 0 (dashed lines) and μ0 ¼ 0.12 GeV (solid lines).
As expected, we see the symmetric behavior of temper-

ature with respect to the space-time rapidity, η, in contrast
to the behavior of the fluid rapidity. We reproduce a well-
established result; i.e., temperature decreases with increas-
ing proper time at the center (η ¼ 0), while, at the same
time, the gradients of temperature lead to the build up of the
fluid velocity. One can notice from Fig. 1 that the temper-
ature and fluid rapidity start to decrease fast at η ≈�5
eventually decaying to zero at large rapidity.
In the case of constant initial value of baryon chemical

potential the evolution of T and ϑ undergoes only a mild
modification; see Fig. 1. At the center the behavior of T and
ϑ with respect to the ones with zero baryon chemical
potential is similar, with some considerable effect seen only
at the edges.

C. Spin coefficients evolution

An important feature of our spin hydrodynamic frame-
work is that, due to the small polarization limit [33,38,40]

that we work in, the spin evolution does not affect the
background evolution meaning that the former may be
studied on top of the latter.
Since the physics scenario considered herein requires only

the initialization of CκX and CωY which are coupled to
each other through Eq. (50) and Eq. (54), we will analyze
numerically the evolution of only these two spin coefficients.
As can be observed from Fig. 2 the symmetry in η of these
coefficients remains the same throughout the evolution,
which is a feature resulting from the evolution equations (50)
and (54), initial conditions (66), and the symmetry of the
background. Due to the coupling between the spin coef-
ficients,CκX is generated during the evolution even if initially
chosen equal zero. One may also notice the effect of the
temperature evolution on the dynamics of CωY through
thermodynamic coefficients, Eqs. (15) and (16). Similarly
to the temperature, CωY also decreases with proper time at
η ¼ 0. This behavior ofCωY at the center reproduces the case
for the Bjorken expanding system. However, in the region of
large rapidity (η ≈�5) the behavior of the spin is reversed
due to the fact that the system reaches the massive limit (see
Sec. VA for extended discussion).

FIG. 1. Temperature (left) and the deviations of fluid rapidity from Bjorken one (right) in η for different longitudinal proper-times:
τ ∈ f1; 2; 4; 8; 16; 32gτ0 ¼ f0.25; 0.5; 1; 2; 4; 8gfm=c.

FIG. 2. Evolution of the spin coefficients CκX (left) and CωY (right) as a function of η.
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In the case of nonvanishing baryon chemical potential
the dynamics of spin coefficients is only slightly affected;
see Fig. 2.

VII. SPIN POLARIZATION OF EMITTED
PARTICLES

To calculate the spin polarization of particles at freeze-
out, we have to define freeze-out hypersurface Σμ by
specifying longitudinal proper time τ for each point of
spacetime rapidity η. Subsequently, we evaluate the average
Pauli-Lubański (PL) vector for particles with momentum p
emitted from the freeze-out hypersurface. By boosting
the latter to the particle rest frame (PRF) we obtain the
information about the spin polarization which can be
compared to the experimental data.

A. Phase-space density of the Pauli-Lubański vector

The phase-space density of the PL four-vector Πμ is
given by the expression [37,40],

Ep
dΔΠμðx; pÞ

d3p
¼ −

1

2
ϵμναβΔΣλEp

dSλ;ναðx; pÞ
d3p

pβ

m
; ð68Þ

with pβ being the four-momentum of the particle. The
phase-space density of the spin tensor in Eq. (68) in the
GLW formulation is given by [38]

Ep
dSλ;να

d3p
¼ coshðξÞ

ð2πÞ3 e−β·ppλ

�
ωνα þ 2

m2
p½νωα�

δpδ

�
: ð69Þ

Substituting Eq. (69) into Eq. (68) and integrating over the
freeze-out hypersurface we obtain the total value of the
momentum density of the PL four-vector,

Ep
dΠ�

μðpÞ
d3p

¼ −
1

ð2πÞ3m
Z

coshðξÞΔΣλpλe−β·pðω̃μβpβÞ�;

ð70Þ

In the following we parametrize the four-momentum
pβ ¼ ðEp; px; py; pzÞ in terms of the transverse mass

mT , rapidity yp, transverse momentum pT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
,

and azimuthal angle ϕp as

Ep ¼ mT coshðypÞ; pz ¼ mT sinhðypÞ;
px ¼ pT cosðϕpÞ; py ¼ pT sinðϕpÞ: ð71Þ

As a result, one can write the argument of the thermal factor
in Eq. (70) as

β · p ¼ U · p
T

¼ mT

T
cosh ðyp −ΦÞ; ð72Þ

and the scalar product of particle four-momentum and
element of freeze-out hypersurface at freeze-out proper
time τðηÞ as

ΔΣ · p ¼ mT ½τðηÞ cosh ðyp − ηÞ
− τ0ðηÞ sinh ðyp − ηÞ�dxdydη: ð73Þ

Moreover, the contraction of the dual polarization tensor
ω̃μβ with pβ in Eq. (70) gives rise to

ω̃μβpβ ¼

2
666664

ðCκXpy − CκYpxÞ sinhðΦÞ þ ðCωXpx þ CωYpyÞ coshðΦÞ þ CωZmT sinhðypÞ
−CκYmT sinh ðyp −ΦÞ − CωXmT cosh ðyp −ΦÞ þ CκZpy

CκXmT sinh ðyp −ΦÞ − CωYmT cosh ðyp −ΦÞ − CκZpx

−ðCκXpy − CκYpxÞ coshðΦÞ − ðCωXpx þ CωYpyÞ sinhðΦÞ − CωZmT coshðypÞ

3
777775
: ð74Þ

Note that the spin polarization of Λ hyperons measured in the experiments is defined in the rest frame of the decaying
particle. Therefore, in order to compare our results with the experimental data, we have to Lorentz transform the quantity
ω̃μβpβ to the PRF [37]. The result of the respective canonical boost [92], denoted in Eq. (70) by the asterisk, is

ðω̃μβpβÞ� ¼

2
666664

0

mαppxpy½CκX sinhðΦÞ þ CωY coshðΦÞ�
mαpp2

y½CκX sinhðΦÞ þ CωY coshðΦÞ� −mT ½CκX sinh ðΦ − ypÞ þ CωY cosh ðΦ − ypÞ�
−mαppy½mTðCκX cosh ðΦ − ypÞ þ CωY sinh ðΦ − ypÞÞ þmðCκX coshðΦÞ þ CωY sinhðΦÞÞ�

3
777775
; ð75Þ
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where we defined αp ≡ 1=ðm2 þmEpÞ [37]. Above we
have neglected all spin coefficients except for CκX and CωY
due to the fact that for the non-boost-invariant and
transversely homogeneous systems only these are relevant
for the physical scenario under study (for general form of
ω̃μβpβ in PRF for the nonboost invariant and transversely
homogeneous system see Appendix C).

B. Average polarization per particle

The mean spin polarization per particle hπμip is
defined as the ratio of the momentum density of the total

PL four-vector (70) over the momentum density of
particles [38],

hπμip ¼
Ep

dΠ�
μðpÞ

d3p

Ep
dN ðpÞ
d3p

; ð76Þ

where the quantity in the denominator is given by the
formula,

Ep
dN ðpÞ
d3p

¼ 4

ð2πÞ3
Z

ΔΣλpλ coshðξÞe−β·p: ð77Þ

FIG. 3. Transverse momentum dependence of hπxi for yp ¼ 0 (left) and for yp ¼ 2 (right).

FIG. 4. Transverse momentum dependence of hπyi for yp ¼ 0 (left) and for yp ¼ 2 (right).
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C. Momentum dependence of the polarization

In Figs. 3–5 we show the results of the components of the
mean spin polarization vector calculated using Eq. (76) at
mid (yp ¼ 0) and forward (yp ¼ 2) rapidities assuming
zero baryon chemical potential in the background.
From Fig. 3, we see that hπxip component has always

quadrupole structure with its sign changing sequentially
through the quadrants, and the magnitude decreasing with
rapidity. The pxpy structure seen in Fig. 3 can be inferred
also from x component of ðω̃μβpβÞ� (75), and it was
observed already in the case of Bjorken-flowing back-
ground [33,40].
In Fig. 4 we present hπyip which, in agreement with the

chosen initialization of the model, is negative indicating the

direction of the spin angular momentum three-vector
opposite to the standard orientation of y axis in heavy-
ion collisions. At forward rapidities the values of hπyip
slowly decrease and become almost ϕp independent.
A particularly interesting observable which is measured

in experiments and still awaits theoretical explanation, is
the longitudinal polarization, that is the polarization
along the beam direction hπzip [15,30]. Some information
about the longitudinal spin polarization can be obtained
already from the symmetry considerations of the integral
in Eq. (70). One can easily notice that due to the
symmetric integration region in η only η-even integrands
will give nonvanishing contribution. In the case of z
component of hπμip at yp ¼ 0, the assumption of CκX

being odd and CωY being even function of η leads to the
conclusion that the integral hπzip at mid rapidity in
Eq. (70) will give zero; see also Eq. (75). Interestingly,
when treated differentially, at forward rapidities we find a
nontrivial longitudinal polarization pattern; see Fig. 5.
Due to our initialization, after integrating over transverse
momenta the latter, as well as in the case of x component,
gives zero.
Obviously, the numerical results presented here do not

reproduce the quadrupole structure of the longitudinal
polarization as seen in experiment which is largely due
to assumed homogeneity in the transverse plane. It is
possible that the quadrupole structure of longitudinal spin
polarization hπzip at mid rapidity [15] will be present in full
ð3þ 1ÞD geometry due to the presence of elliptic flow
resulting from the elliptic deformation of the system in the
transverse plane [93]. In the spin-thermal models the
quadrupole structure in spin polarization (with opposite
sign in comparison to experiments) arises due to polariza-
tion-vorticity coupling [26].
Since the effect of homogeneous μ profile, as shown in

Fig. 2, is small, we observe no qualitative difference in the

FIG. 5. Transverse momentum dependence of hπzi for yp ¼ 2.

FIG. 6. hπyi component of momentum averaged polarization as a function of rapidity (left) and as a function of spin coefficient b20
(right).
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momentum dependence of mean spin polarization of
particles as well. Hence, we abstain from presenting the
respective plots of hπμip in here.

D. Momentum averaged polarization

Here we turn to discussion of momentum-averaged
polarization which, using Eq. (76), may be expressed as

FIG. 7. pT (left) and ϕp (right) dependent hπyi component of the momentum averaged polarization.

FIG. 8. yp (upper left), pT (upper right), and ϕp (down) dependent hπyi component of the momentum averaged polarization.
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hπμi ¼
R
dPhπμipEp

dN ðpÞ
d3pR

dPEp
dN ðpÞ
d3p

≡
R
d3p dΠ�

μðpÞ
d3pR

d3p dN ðpÞ
d3p

: ð78Þ

Due to our choice of initialization and symmetry properties
of spin coefficients with respect to η, we find from Eq. (78),
that only hπyi component gives nonzero result after
performing integration over freeze-out hypersurface and
transverse momentum coordinates [12,13,15,17,18].
In Fig. 6 (left panel) we present the behavior of the

transverse momentum integrated y component of mean
polarization as a function of rapidity. One can observe that
in the mid-rapidity region the magnitude of hπyi component
is around 1.6% and then decreases with increasing rapidity.
This qualitative behavior is also observed in other models
[64] and will be subject to future STARmeasurements [87].
In Fig. 6 (right panel) we show the relation between hπyi
and the initial central value of b2 component calculated for
two rapidity values yp ¼ 0 and yp ¼ 2. In Fig. 7, we show
transverse momentum pT and azimuthal angle ϕp depend-
ence of the double differential hπyi spin polarization
component. We find the polarization dependence on pT
rather strong in comparison to experiments [86] and other
models [64]; see Fig. 7 (left panel). The behavior of the
momentum averaged polarization as a function of ϕp is
depicted in Fig. 7 (right panel).
Figures 8 show the hπyi component of momentum

averaged polarization as a function of yp, pT , and ϕP with
nonzero baryon chemical potential evolution. Similarly as
in the case of hydrodynamic variables see small effects on
the spin polarization vector.

VIII. SUMMARY

In this paper we have analyzed the space-time evolution
of spin polarization for non-boost-invariant and trans-
versely homogeneous system based on the framework of
spin hydrodynamics [36–38]. We have found that, in
contrast to Ref. [40] where we had studied the spin
polarization evolution undergoing Bjorken expansion, in
the current analysis some of the spin coefficients affect each
other’s behavior. In the current setup, we have used
relativistic ideal gas equation of state for Λ particles.
We have calculated the momentum dependent and

momentum averaged components of mean spin polariza-
tion vector for Λ particles at mid (yp ¼ 0) and forward
(yp ¼ 2) rapidities, and we have found, as expected, that
only y-component of the momentum averaged spin polari-
zation is nonzero. We have also shown that the pT and ϕp

dependence of spin polarization exhibits some nontrivial
features. In particular, we have observed an interesting
decay of the hπyi at forward rapidities.

The analysis done in this paper indicates that correct
description of the measured observables may require
breaking of the symmetry in the transverse plane and
performing modelling in the full (3þ 1)-dimensional
setup. The studies along these lines are left for future
analysis.

ACKNOWLEDGMENTS

This research was supported in part by the Polish
National Science Center Grants No. 2016/23/B/ST2/
00717 and No. 2018/30/E/ST2/00432. We would like to
thank the organizers of the online Workshop on QGP
Phenomenology by Institute for Research in Fundamental
Sciences, Iran during which the discussions with partic-
ipants helped us to gain some new perspective.

APPENDIX A: DERIVATION OF EVOLUTION
EQUATIONS FOR SPIN COEFFICIENTS FOR AN

ARBITRARY (3 + 1)-DIMENSIONAL SYSTEM

1. Spin tensor decomposition

In the derivation of the equations of motion for the
spin coefficients for an arbitrary (3þ 1)-dimensional
[ð3þ 1ÞD] geometry it is convenient to use the decom-
position of the spin tensor Eq. (46) in the four-vector basis.
Subsequently we decompose the spin tensor Eq. (46) in the
basis Uα, Xα, Yα, and Za by projecting on all possible
combinations of these four-vectors. In this way one obtains

Sα;βγ ¼
X
i¼x;y;z

Sα;βγαi þ Sα;βγβi
; ðA1Þ

where

Sα;βγαx ¼ 2αx1UαU½βXγ� þ αx2½YαY ½βXγ� þ ZαZ½βXγ��; ðA2Þ

Sα;βγαy ¼ 2αy1UαU½βYγ� þ αy2½XαX½βYγ� þ ZαZ½βYγ��; ðA3Þ

Sα;βγαz ¼ 2αz1UαU½βZγ� þ αz2½XαX½βZγ� þ YαY ½βZγ��; ðA4Þ

Sα;βγβx
¼ 2βx1½YαU½βZγ� þZαY ½βUγ��− 2βx2UαY ½βZγ�; ðA5Þ

Sα;βγβy
¼ 2βy1½ZαU½βXγ� þXαZ½βUγ��− 2βy2UαZ½βXγ�; ðA6Þ

Sα;βγβz
¼ 2βz1½XαU½βYγ� þYαX½βUγ��− 2βz2UαX½βYγ�; ðA7Þ

and αi and βi are defined through the Eqs. (56)–(59).

2. Divergence of the spin tensor

Calculating the partial derivative of Eqs. (A2)–(A7) we
obtain the following six expressions (see the notation in
Sec. II):
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∂αS
α;βγ
αx ¼ 2αx1

•
U½βXγ� þ αx2

☆
Y ½βXγ� þ αx2

∘
Z½βXγ� þ 2αx1½θUU½βXγ� þU½β

•

Xγ� þ U½βXγ�
•

�

þ αx2½θYY ½βXγ� þ θZZ½βXγ� þ Y ½β
☆

Xγ� þ Y ½βXγ�
☆

þ Z½β
∘
Xγ� þ Z½βXγ�

∘
�; ðA8Þ

∂αS
α;βγ
αy ¼ 2αy1

•
U½βYγ� þ αy2

⋆
X½βYγ� þ αy2

∘
Z½βYγ� þ 2αy1½θUU½βYγ� þ U½β

•

Yγ� þU½βYγ�
•

�

þ αy2½X½β
⋆
Yγ� þ X½βYγ�

⋆
þ Z½β

∘
Yγ� þ Z½βYγ�

∘
þ θXX½βYγ� þ θZZ½βYγ��; ðA9Þ

∂αS
α;βγ
αz ¼ 2αz1

•
U½βZγ� þ αz2

⋆
X½βZγ� þ αz2

☆
Y ½βZγ� þ 2αz1½θUU½βZγ� þ U½β

•

Zγ� þ U½βZγ�
•

�

þ αz2½X½β
⋆
Zγ� þ X½βZγ�

⋆
þ Y ½β

☆

Zγ� þ Y ½βZγ�
☆

þ θXX½βZγ� þ θYY ½βZγ��; ðA10Þ

∂αS
α;βγ
βx

¼ 2½βx1
☆
U½βZγ� þ βx1

∘
Y ½βUγ� þ βx1ðθYU½βZγ� þ θZY ½βUγ�Þ − βx2

•
Y ½βZγ� − βx2θUY ½βZγ��

þ 2βx1½U½β
☆

Zγ� þ Y ½β∘Uγ� þU½βZγ�
☆

þ Y ½βUγ�
∘
� − 2βx2ðY ½β

•

Zγ� þ Y ½βZγ�
•

Þ; ðA11Þ

∂αS
α;βγ
βy

¼ 2½βy1
∘
U½βXγ� þ βy1

⋆
Z½βUγ� þ βy1ðθZU½βXγ� þ θXZ½βUγ�Þ − βy2

•
Z½βXγ� − βy2θUZ½βXγ��

þ 2βy1½U½β
∘
Xγ� þ Z½β

⋆
Uγ� þ U½βXγ�

∘
þ Z½βUγ�

⋆
� − 2βy2ðZ½β

•

Xγ� þ Z½βXγ�
•

Þ; ðA12Þ

∂αS
α;βγ
βz

¼ 2½βz1
⋆
U½βYγ� þ βZ1

☆
X½βUγ� þ βz1ðθXU½βYγ� þ θYX½βUγ�Þ − βz2

•
X½βYγ� − βz2θUX½βYγ��

þ 2βz1½U½β
⋆
Yγ þ X½β

☆

Uγ� þ U½βYγ�
⋆

þ X½βUγ�
☆

� − 2βz2ðX½β
•

Yγ� þ X½βYγ�
•

Þ; ðA13Þ

which, after coupling together, yield

∂αS
α;βγ
GLW ¼ ∂αS

α;βγ
αx þ ∂αS

α;βγ
αy þ ∂αS

α;βγ
αz þ ∂αS

α;βγ
βx

þ ∂αS
α;βγ
βy

þ ∂αS
α;βγ
βz

¼ 0: ðA14Þ

Note that, all the definitions of derivatives and divergences are defined through the relations Eq. (29) and Eq. (30). In order
to obtain the final evolution equations for the spin coefficients we contract the Eq. (A14) with UβXγ , UβYγ , UβZγ , YβZγ ,
XβZγ and XβYγ and obtain the following expressions:

− αx1
• − αx1θU −

αx2
2

ðUY
☆ þUZ

∘ Þ þ αy2
2

UY
⋆ þ αy1XY

• þ αz2
2

UZ
⋆ þ αz1XZ

• þ βx1ðXZ
☆
− XY

∘ Þ − βy1∘ − βy1ðθZ þ XZ
⋆Þ

þ βy2UZ
• þ βZ1

☆
þ βz1ðθY þ XY

⋆Þ − βz2UY
• ¼ 0; ðA15Þ

− αy1
• − αy1θU −

αy2
2

ðUX
⋆ þ UZ

∘ Þ þ αz2
2

UZ
☆ þ αz1YZ

• þ αx2
2

UX
☆ þ αx1YX

• þ βy1ðYX
∘
− YZ

⋆ Þ − βz1
⋆

− βz1ðθX þ YX
☆Þ

þ βz2UX
• þ βx1

∘
þ βx1ðθZ þ YZ

☆Þ − βx2UZ
• ¼ 0; ðA16Þ

− αz1
• − αz1θU −

αz2
2

ðUX
⋆ þ UY

☆Þ þ αx2
2

UX
∘ þ αx1ZX

• þ αy2
2

UY
∘ þ αy1ZY

• þ βz1ðZY
⋆
− ZX

☆Þ − βx1
☆

− βx1ðθY þ ZY
∘ Þ

þ βx2UY
• þ βy1

⋆
þ βy1ðθX þ ZX

∘ Þ − βy2UX
• ¼ 0; ðA17Þ
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−
αy2
∘

2
−
αy2
2

ðθZ − ZX
⋆ Þ þ αy1ZU

• þ αz2
☆

2
þ αz2

2
ðθY − YX

⋆ Þ − αz1YU
• þ αx2

2
ðYX∘ − ZX

☆Þ − βx2
•
− βx2θU

− βx1ðYU
☆ þ ZU

∘ Þ þ βy1YU
⋆
− βy2YX

• þ βz1ZU
⋆
− βz2ZX

• ¼ 0; ðA18Þ

−
αz2
⋆

2
−
αz2
2

ðθX − XY
☆Þ þ αz1XU

• þ αx2
∘

2
þ αx2

2
ðθZ − ZY

☆Þ − αx1ZU
• þ αy2

2
ðZY⋆ − XY

∘ Þ − βy2
•
− βy2θU

− βy1ðZU
∘ þ XU

⋆ Þ þ βz1ZU
☆
− βz2ZY

• þ βx1XU
☆
− βx2XY

• ¼ 0; ðA19Þ

−
αx2
☆

2
−
αx2
2

ðθY − YZ
∘ Þ þ αx1YU

• þ αy2
⋆

2
þ αy2

2
ðθX − XZ

∘ Þ − αy1XU
• þ αz2

2
ðXZ☆ − YZ

⋆Þ − βz2
•
− βz2θU

− βz1ðXU
⋆ þ YU

☆Þ þ βx1XU
∘
− βx2XZ

• þ βy1YU
∘
− βy2YZ

• ¼ 0: ðA20Þ

respectively. One should stress that equations of motion
Eqs. (A15)–(A20) are valid for an arbitrary 3þ 1D system
with no symmetries imposed. For our nonboost invariant
and transversely homogeneous system these equations get
simplified to Eqs. (50)–(55). One can also check that in the
case of Bjorken expanding system the spin evolution
equations Eqs. (50)–(55) further simplify to [40]

αx1
• ¼ −αx1θU −

αx2
2

UZ
∘
;

αy1
• ¼ −αy1θU −

αy2
2

UZ
∘
;

αz1
• ¼ −αz1θU;

βx2
•

¼ −βx2θU − βx1ZU
∘
;

βy2
•

¼ −βy2θU − βy1ZU
∘
;

βz2
•

¼ −βz2θU; ðA21Þ

where you can notice that each spin coefficient evolves
independently of others.

APPENDIX B: PHYSICAL INTERPRETATION OF
THE SPIN COEFFICIENTS

This section discusses the contribution from the orbital
and spin angular momentum to the total angular momen-
tum at the surface of constant longitudinal proper time
τ ¼ τFO. To get some physical insights about the inter-
pretation of the spin coefficients Cκ and Cω, we calculate
the spin angular momentum components at the freeze-out.
The following calculations will also help us to understand
which spin coefficients are important according to the
physics assumed in our current setup for the evolution of
the spin polarization.

1. Orbital contribution

We consider a region of spacetime defined by the
constant longitudinal proper time τFO with −ηFO=2 ≤ η ≤
þηFO=2 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
≤ RFO.

The orbital angular momentum is given by the following
expression:

Lμν
FO ¼

Z
dΣλLλ;μν ¼

Z
dΣλðxμTλν − xνTλμÞ; ðB1Þ

where

dΣλ ¼ τFOUB
λ dxdydη ðB2Þ

is the element of the hypersurface of constant proper time
τFO with UB

λ ¼ ðcosh η; 0; 0; sinh ηÞ. Using Eq. (6) we can
write

Lμν
FO ¼ A⊥τFO

Z
dηUB

λU
λ½ðE þ PÞðxμUν − xνUμÞ

− PðxμUν
B − xνUμ

BÞ�; ðB3Þ

where A⊥ ¼ πR2
FO. Using the form ofUμ from Eq. (27) and

transverse homogeneity of the system we can show that

Lμν
FO ¼ A⊥τ2FO

Z
dηðE þ PÞ × coshðϑÞ sinhðϑÞ

×

2
6664

0 0 0 1

0 0 0 0

0 0 0 0

−1 0 0 0

3
7775 ¼ 0: ðB4Þ

The second equality results from the symmetry of the
integrand with respect to η in the symmetric collision
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systems, which means E and P are η-even and ϑ is η-odd.
Hence, the contribution to the total angular momentum
coming from the orbital part is zero.

2. Spin contribution

The spin angular momentum is given by

SμνFO ¼
Z

ΔΣλSλ;μν ¼ A⊥τFO
Z

dηUB
λ S

λ;μν; ðB5Þ

where Sλ;μν is given by Eq. (12). Using Eq. (27) one
can easily calculate the components of SμνFO. Assuming
that the system’s flow ϑ is η-odd the components S03FO
and S12FO,

S03FO ¼ −A⊥τFO
Z

dηA3CκZ coshðϑÞ;

S12FO ¼ −A⊥τFO
Z

dηA1CωZ coshðϑÞ; ðB6Þ

vanish only if CκZ and CωZ are arbitrary η-odd functions or zero (one may check that the equations of motion preserve η
symmetry of these functions). The components,

S13FO ¼ A⊥τFO
Z

dηA3

��
A1

A3

coshðϑÞ coshðΦÞ − 1

2
sinhðϑÞ sinhðΦÞ

�
CωY þ 1

4
ðsinhðηÞ þ 3 sinhðΦþ ϑÞÞCκX

�
;

−S01FO ¼ A⊥τFO
Z

dηA3

��
A1

A3

coshðϑÞ sinhðΦÞ − 1

2
sinhðϑÞ coshðΦÞ

�
CωY þ 1

4
ðcoshðηÞ þ 3 coshðΦþ ϑÞÞCκX

�
;

suggest that it is sufficient that CκX and CωY is η-odd and
η-even, respectively, in order to have S01FO ¼ 0 and
S13FO ≠ 0. In particular, at the initial time of evolution
when ϑ ¼ 0 one may choose Eq. (66) for the initialization
of the spin coefficients for the current work.
Similar reasoning can be given for CκY and CωX

components; however, as in the case of CκZ and CωZ they
decouple from CκX and CωY dynamics; hence one can
simply put them equal to zero.

One can also notice that the results obtained herein reduce
to the results obtained for the special case of Bjorken
flow [40].

APPENDIX C: GENERAL FORM OF ðω̃μβpβÞ�
In this Appendix we present the Lorentz transformed

quantity ðω̃μβpβÞ� for the nonboost invariant and trans-
versely homogeneous system where all the spin coefficients
(Cκ and Cω) are present

ðω̃0βpβÞ� ¼ 0;

ðω̃1βpβÞ� ¼ mαppx½CωZmT sinhðypÞ − CκYpx sinhðΦÞ þ CωXpx coshðΦÞ þ pyðCκX sinhðΦÞ þ CωY coshðΦÞÞ�
þmT ½CκY sinh ðΦ − ypÞ − CωX cosh ðΦ − ypÞ� þ CκZpy;

ðω̃2βpβÞ� ¼ −mαp½−pyðCωZmT sinhðypÞ þ pxðCωX coshðΦÞ − CκY sinhðΦÞÞÞ
þmTðmT coshðypÞ þmÞðCκX sinh ðΦ − ypÞ þ CωY cosh ðΦ − ypÞÞ
þ p2

yð−ðCκX sinhðΦÞ þ CωY coshðΦÞÞÞ� − CκZpx;

ðω̃3βpβÞ� ¼ −mαp½pxðCωXðmT sinh ðΦ − ypÞ þm sinhðΦÞÞ − CκYðmT cosh ðΦ − ypÞ þm coshðΦÞÞÞ
þ pyðCκXðmT cosh ðΦ − ypÞ þm coshðΦÞÞ þ CωYðmT sinh ðΦ − ypÞ þm sinhðΦÞÞÞ
þ CωZmTðm coshðypÞ þmTÞ�: ðC1Þ

This expression reduces to Eqs. (75) for the physical scenario studied in this paper.
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APPENDIX D: MOMENTUM AVERAGED
GLOBAL SPIN POLARIZATION FOR THE

SYSTEM WITH NONZERO BARYON
CHEMICAL POTENTIAL

In this section we show the dependence of hπyi
component of the momentum averaged polarization

on rapidity, transverse momentum, and azimuthal angle.
We note here that finite baryon chemical potential
plays a role in the momentum averaged polarization
behavior. One may notice that hπyi behavior is more
pronounced in midrapidity in comparison to baryon free
system.
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