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A puzzling discrepancy exists between the values of the proton charge radius obtained using different
experimental techniques: elastic electron-proton scattering and spectroscopy of electronic and muonic
hydrogen. The proton radius is defined through the slope of the electric form factor, GEðQ2Þ, at zero four-
momentum transfer, which is inaccessible in scattering experiments. We propose a novel method for
extracting the proton radius from scattering data over a broad Q2 range rather than attempting to directly
determine the slope of GE at Q2 ¼ 0. This method relates the radius of the proton to its transverse charge
density, which is the two-dimensional Fourier transform of the Dirac form factor, F1ðQ2Þ. We apply our
method to reanalyze the extensive data obtained by the A1 Collaboration [J. C. Bernauer et al. Phys. Rev.
Lett. 105, 242001 (2010)] and extract a radius value, rE ¼ 0.889ð5Þstatð5Þsystð4Þmodel fm, that is consistent
with the original result. We also provide new parametrizations for the Dirac and Pauli form factors and the
transverse charge and magnetization densities of the proton. Our reanalysis shows that the proton radius
discrepancy cannot be explained by issues with fitting and extrapolating the A1 data to Q2 ¼ 0.
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I. INTRODUCTION

Over a century after Rutherford’s discovery of the
proton [1], some fundamental properties of this particle
are still not well understood. In particular, the proton charge
radius, rE, remains experimentally puzzling. Beginning
with the pioneering research [2,3], rE has long been
measured in elastic electron-proton scattering experiments
[4–10]. It has also been extracted from atomic transition
frequencies in both electronic [11–15] and muonic [16,17]
hydrogen. The 2014 CODATA recommended value of rE,
obtained from all nonmuonic data available at the time, is
0.8751(61) fm [11]. In contrast, muonic hydrogen spec-
troscopy yielded the value rE ¼ 0.84087ð39Þ fm [17],
which is smaller by 5.6 standard deviations. More recently,
there have been experimental results in favor of both the
smaller [10,12,14,15] and larger [9,13] values of the proton
radius. The striking discrepancy between different mea-
surements of rE has become known as the “proton radius
puzzle” [18–21]. In this paper, we propose a novel method
for extracting rE from scattering data and use it to reanalyze
the measurement reported in Refs. [5,6].
The electromagnetic structure of the proton is encoded in

its Dirac and Pauli form factors, F1ðQ2Þ and F2ðQ2Þ, which
depend on the negative four-momentum transfer squared,
Q2 ¼ −q2 (see textbooks [22–24]). Instead of F1 and F2, it
is often more convenient to use the Sachs electric and
magnetic form factors, defined as

GE ¼ F1 −
Q2

4M2
κF2; GM ¼ F1 þ κF2; ð1Þ

where M ≈ 0.938 GeV is the mass of the proton and
κ ≈ 1.793 is its anomalous magnetic moment. The Sachs
form factors have a simple interpretation when considered
in the Breit frame, where the exchanged virtual photon
carries momentum q but no energy [22–24]. In this frame,
Q2 ¼ q2 and GE and GM can be interpreted as the three-
dimensional Fourier transforms of the proton’s spatial
charge and magnetization densities, respectively.
Unfortunately, the concept of the three-dimensional

densities is valid only in the nonrelativistic limit,
when Q2 ≪ M2 and the Breit frame coincides with the
proton rest frame [22,25,26]. For this reason, the proton
radius cannot be properly determined through the three-
dimensional charge density and is instead defined as

rE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−6

dGEðQ2Þ
dQ2

����
Q2¼0

s
ð2Þ

in both scattering and spectroscopic measurements [25].
However, the definition (2) is inconvenient for scattering
experiments: it requires measuring GE at the lowest
achievable Q2 values, extrapolating the data down to
Q2 ¼ 0, and then inferring the slope of GE at that point.
Such a procedure is inevitably model dependent, which
greatly complicates the extraction of the proton radius
[27–32]. We propose to avoid these issues by relating the
radius of the proton to its transverse charge density, which
has a proper relativistic interpretation and can be deter-
mined from scattering data over a broad Q2 range.

PHYSICAL REVIEW D 105, 054004 (2022)

2470-0010=2022=105(5)=054004(13) 054004-1 © 2022 American Physical Society

https://orcid.org/0000-0001-5436-7375
https://orcid.org/0000-0002-4012-4513
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.054004&domain=pdf&date_stamp=2022-03-04
https://doi.org/10.1103/PhysRevLett.105.242001
https://doi.org/10.1103/PhysRevLett.105.242001
https://doi.org/10.1103/PhysRevD.105.054004
https://doi.org/10.1103/PhysRevD.105.054004
https://doi.org/10.1103/PhysRevD.105.054004
https://doi.org/10.1103/PhysRevD.105.054004


II. TRANSVERSE CHARGE DENSITY

In this section, we briefly review the definition of the
transverse charge density and its relation to the proton
radius [21,25,33–40]. We start with a change of space-time
coordinates from the usual ðx0; x1; x2; x3Þ to ðxþ; x−;bÞ,
where x� ¼ ðx0 � x3Þ= ffiffiffi

2
p

are the light-cone variables and
b ¼ ðx1; x2Þ is the transverse position vector. By setting
qþ ¼ 0, we specify the infinite-momentum frame in which
qμ has only transverse components: qμ ¼ ð0; 0;q⊥Þ and
Q2 ¼ q2⊥. Then, the Dirac form factor F1ðQ2Þ can be
related to a circularly symmetric transverse charge density
of the proton, ρ1ðbÞ, by the following two-dimensional
Fourier transforms:

F1ðQ2Þ ¼ 2π

Z∞

0

bρ1ðbÞJ0ðQbÞdb; ð3Þ

ρ1ðbÞ ¼
1

2π

Z∞

0

QF1ðQ2ÞJ0ðQbÞdQ; ð4Þ

where b ¼ jbj is the impact parameter and J0 denotes the
Bessel function of the first kind of order zero. As the
forward and inverse Fourier transforms, Eqs. (3) and (4) are
dual representations of the same quantity in momentum and
position spaces. For example, the m-pole form factor,

Fm-poleðQ2Þ ¼
�
1þQ2

Λ2

�−m
; ð5Þ

which is a generalization of the monopole (m ¼ 1) and
dipole (m ¼ 2) form factors, corresponds to

ρm-poleðbÞ ¼
Λmþ1bm−1

2mðm − 1Þ!πKm−1ðΛbÞ; ð6Þ

where Λ is a scale parameter and Km−1 denotes the
modified Bessel function of the second kind of order
m − 1. Note that ρ1ðbÞ has a proper density interpretation
even in the relativistic case [25]. As a reduction of the
generalized parton distributions, it can be related to
observables in deep inelastic scattering [35].
Expanding J0ðQbÞ, we can rewrite Eq. (3) as

F1ðQ2Þ ¼ 1 −
hb21i
4

Q2 þ hb41i
64

Q4 −…; ð7Þ

where

hbn1i ¼ 2π

Z∞

0

bnþ1ρ1ðbÞdb ð8Þ

is the nth moment of ρ1ðbÞ and F1ð0Þ ¼ hb01i ¼ 1. The
moment expansion (7) indicates that the mean-square
transverse charge radius of the proton is

hb21i ¼ −4
dF1ðQ2Þ
dQ2

����
Q2¼0

: ð9Þ

Equation (9) is analogous to the proton radius definition
(2). Note that Eqs. (8) and (9) are not equivalent: any fit of
the experimental data obtained at Q2 > 0 predicts some
slope for F1 at Q2 ¼ 0 but does not necessarily correspond
to a bounded transverse charge density. For example, the
Fourier integral (4) diverges if F1 is a polynomial in Q2.
Therefore, Eqs. (4) and (8) impose additional physical
constraints on the fit that is used to extract hb21i (see
Appendix A for further discussion).
It is important to recognize that there is a simple

connection between rE and hb21i. Indeed, after differentiat-
ing Eq. (1) for GE with respect to Q2, setting Q2 ¼ 0, and
substituting Eqs. (2) and (9), we obtain

rE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

�
hb21i þ

κ

M2

�s
: ð10Þ

This equation defines the proton radius through the second
moment (8) of the transverse charge density. Note that we
use Eq. (9) only to derive the relation (10) but not to
experimentally determine hb21i.

III. PARAMETRIZATIONS FOR ρ1ðbÞ AND F1ðQ2Þ
In principle, one can use Eq. (4) to determine ρ1ðbÞ

directly from the experimental data for F1ðQ2Þ, then
calculate hb21i according to Eq. (8), and finally obtain
the proton radius using Eq. (10). In practice, it is easier to
parametrize F1ðQ2Þ and ρ1ðbÞ such that both the Fourier
transforms (3) and (4), as well as the moments (8), can be
calculated analytically. Since F1ðQ2Þ at smallQ2 is close to
the dipole form factor, we expect that ρ1ðbÞ can be
approximated as ρ2-poleðbÞ times a polynomial in Λb.
Particularly suitable are the orthogonal polynomials PðνÞ

n

defined by the orthonormality condition

Z∞

0

PðνÞ
m ðxÞPðνÞ

n ðxÞwνðxÞdx ¼ δmn; ð11Þ

where

wνðxÞ ¼
2

Γðνþ 1Þ x
ν=2Kνð2

ffiffiffi
x

p Þ ð12Þ

is the weight function, m and n are the degrees of the
polynomials, δmn is the Kronecker delta, and Γ denotes the
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gamma function. These polynomials have recently been
studied in Ref. [41] (note that we use a different normali-
zation for the weight function). We choose ν ¼ 1 and
x ¼ Λ2b2=4 to match wνðxÞ with ρ2-poleðbÞ. The first three
corresponding polynomials are

Pð1Þ
0 ðxÞ ¼ 1; Pð1Þ

1 ðxÞ ¼ x − 2

2
ffiffiffi
2

p ; ð13Þ

Pð1Þ
2 ðxÞ ¼ x2 − 15xþ 18

6
ffiffiffiffiffi
26

p : ð14Þ

For more terms, see the Supplemental Material [42].
We can therefore approximate the transverse charge

density as a truncated series

ρ1ðbÞ ≈ ρ2-poleðbÞ
XN
n¼0

αnP
ð1Þ
n ðΛ2b2=4Þ; ð15Þ

where αn are the expansion coefficients. After substituting
Eq. (15) into Eq. (8), we find

hb01i ¼ α0; hb21i ¼
8

Λ2
ðα0 þ

ffiffiffi
2

p
α1Þ: ð16Þ

In general, hb2n1 i is a linear combination of α0; α1;…; αn.
Therefore, if Λ is fixed, there is a one-to-one correspon-
dence between the expansion coefficients αn and the even
moments of the transverse charge density (15).
After substituting the series expansion (15) into Eq. (3),

we obtain the following parametrization for the Dirac form
factor:

F1ðQ2Þ ≈
XN
n¼0

αnAnðQ2=Λ2Þ; ð17Þ

where

A0ðyÞ ¼
1

ð1þ yÞ2 ; ð18Þ

A1ðyÞ ¼ −
yðyþ 4Þffiffiffi
2

p ð1þ yÞ4 ; ð19Þ

A2ðyÞ ¼
y2ð3y2 þ 22yþ 39Þffiffiffiffiffi

26
p ð1þ yÞ6 ;…; ð20Þ

ANðyÞ ¼
Z∞

0

Pð1Þ
N ðxÞw1ðxÞJ0ð2

ffiffiffiffiffi
xy

p Þdx ð21Þ

are rational functions.
Extending our formalism to the Pauli form factor, we can

represent it as

F2ðQ2Þ ¼ 2π

Z∞

0

bρ2ðbÞJ0ðQbÞdb; ð22Þ

where ρ2ðbÞ is the transverse magnetization density [43]. It
is argued in Ref. [38] that ρM ¼ −bðdρ2=dbÞ is a better
defined quantity. (There is also a closely related transverse
charge density of a polarized proton [21,26,37].) However,
we are not concerned here with the physical interpretation
of ρ2ðbÞ and use it only to parametrize F2ðQ2Þ.
For reasons that will become clear shortly, we approxi-

mate ρ2ðbÞ as another truncated series,

ρ2ðbÞ ≈ ρ3-poleðbÞ
XN
n¼0

βnP
ð2Þ
n ðΛ2b2=4Þ; ð23Þ

where βn are the expansion coefficients. After substituting
this into Eq. (22), we get

F2ðQ2Þ ≈
XN
n¼0

βnBnðQ2=Λ2Þ; ð24Þ

where

B0ðyÞ ¼
1

ð1þ yÞ3 ; ð25Þ

B1ðyÞ ¼ −
ffiffiffi
3

p
yðyþ 5Þffiffiffi
5

p ð1þ yÞ5 ; ð26Þ

B2ðyÞ ¼
y2ð7y2 þ 64yþ 132Þffiffiffiffiffiffiffiffi

110
p ð1þ yÞ7 ;…; ð27Þ

BNðyÞ ¼
Z∞

0

Pð2Þ
N ðxÞw2ðxÞJ0ð2

ffiffiffiffiffi
xy

p Þdx: ð28Þ

We set α0 ¼ β0 ¼ 1 to ensure that F1ð0Þ ¼ F2ð0Þ ¼ 1.
At high Q2, our parametrizations have the asymptotic
behavior expected from the dimensional scaling laws
[44]: F1 ∝ ðΛ=QÞ4 and F2 ∝ ðΛ=QÞ6. This justifies our
choice of the series expansions for ρ1ðbÞ and ρ2ðbÞ (other
possible parametrizations are discussed in Appendix A).
Note that the terms A0 and B0 correspond to the dipole and
“tripole” (m ¼ 3) form factors (5). As shown in the next
section and Appendix C, our parametrizations for F1 and
F2 are flexible and efficiently fit experimental data.

IV. EXTRACTION OF THE PROTON RADIUS

Based on the above results, we propose the following
method for determining the proton charge radius. First,
the measured cross sections are fit with the Rosenbluth
formula (B4) assuming the parametrizations (17) and (24)
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for the Dirac and Pauli form factors, where Λ, α1;…; αN ,
and β1;…; βN are 2N þ 1 free parameters. Then the mean-
square transverse charge radius hb21i is calculated from Λ
and α1 using Eq. (16). Finally, the proton radius is given by
Eq. (10). Note that our method does not require measuring
the form factor slope atQ2 ¼ 0 and considers the data at all
Q2 values. It also allows one to extract the transverse
densities ρ1ðbÞ and ρ2ðbÞ given by Eqs. (15) and (23).
To illustrate our method, we apply it to the extensive

and precise elastic electron-proton scattering data obtained
by the A1 Collaboration at the Mainz Microtron MAMI
[5,6,45]. The collaboration measured 1422 cross sections at
Q2 values spanning the range from 0.004 to 1 GeV2. Three
magnetic spectrometers and six beam energies (180, 315,
450, 585, 720, and 855 MeV) were used, resulting in
18 distinct experimental data groups. To overcome the
problem of achieving the absolute normalization of the
measurement with subpercent accuracy, they exploited
the large redundancy of the data and introduced 31 free
normalization parameters, fit simultaneously with the
different form factor models. The A1 Collaboration
obtained the following value for the proton charge radius:

rE ¼ 0.879ð5Þstatð4Þsystð2Þmodelð4Þgroup fm; ð29Þ
where the numbers in parentheses represent the statistical,
systematic, model, and “group” uncertainties. The statis-
tical uncertainty accounts for all point-to-point errors of the
cross sections, not only those due to counting statistics. The
“group” uncertainty was introduced because of an unex-
plained difference between the radii obtained using the
spline and the polynomial groups of form factor models.
Following the original analysis [5,6,45], we fit the data

with our parametrizations by minimizing the objective
function

χ2 ¼
X
i

ðpiσ
exp
i − σfiti Þ2

ðpiΔσiÞ2
; ð30Þ

where σexpi are the measured cross sections, Δσi are their
point-to-point uncertainties, σfiti are the model cross sec-
tions, and pi are known combinations of 31 free normali-
zation parameters. The total number of fit parameters is
2N þ 32, where N is the order of the form factor expan-
sions (17) and (24). When choosing the value of N, it is
important to avoid both underfitting and overfitting—a
problem known as the bias-variance trade-off. The popular
reduced chi-square test is not appropriate for this purpose
because the number of degrees of freedom is ill-defined for
a nonlinear fit [46]. Instead, we use cross-validation and
regularization, which are standard techniques in statistical
learning [47,48].
Careful cross-validation is critical to finding the right

balance in the bias-variance trade-off. Typically, a model is
cross-validated by randomly dividing the data into k
subsets, fitting the model to k − 1 of them, testing it on

the remaining subset, and repeating the last two steps k
times so that each of the subsets is used as a test set exactly
once. However, this procedure assumes that errors on the
data points are uncorrelated. We instead perform cross-
validation by holding out each of the 18 experimental data
groups in turn and testing on that group while training on
the others. Recall that the data groups correspond to
different spectrometer and beam energy combinations.
This 18-fold group cross-validation allows us to minimize
overfitting to systematic artifacts by ensuring that the
model generalizes well to unseen experimental conditions.
The cross-validation results for different orders N are

shown in Table I, where χ2train and χ2test are the total chi-
square values (30) obtained on the training and test sets,
respectively. Note that each data point occurs only once in
test sets but 17 times in training sets. For this reason, χ2train
has been divided by 17 to make it directly comparable to
χ2test. While χ2train monotonically decreases as N increases
and the model becomes more flexible, χ2test reaches a
minimum at N ¼ 5. This indicates underfitting for N <
5 and overfitting for N > 5.
To control the overfitting in the higher-order models

(N ≥ 5), we add Tikhonov regularization to our objective
function:

L ¼ χ2 þ λ
XN
n¼1

ðα2n þ β2nÞ; ð31Þ

where αn and βn are the expansion coefficients and λ is the
regularization parameter. The second term in Eq. (31)

TABLE I. Group-wise cross-validation results for different
expansion orders before (λ ¼ 0) and after (λ > 0) regularization
was applied.

λ ¼ 0 λ > 0

N χ2train χ2test λ χ2train χ2test

1 4934 5114
2 1949 2029
3 1876 2358
4 1854 2255
5 1574 1682 0.02 1574 1657
6 1566 1703 0.07 1571 1664
7 1557 1912 0.2 1570 1672
8 1544 2060 0.4 1569 1679

TABLE II. Objective function values and extracted radii for the
regularized models trained on the full dataset.

N λ L χ2 hb21i ðGeV−2Þ rE (fm)

5 0.02 1584 1576 11.49 0.889
6 0.07 1580 1573 11.42 0.887
7 0.2 1579 1572 11.37 0.885
8 0.4 1578 1571 11.32 0.883
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FIG. 1. Experimental data [6] and our best fit as functions of Q2 for six different beam energies (180, 315, 450, 585, 720, and
855 MeV). The data points are the measured reduced cross sections scaled by our best-fit normalizations and divided by the
corresponding dipole cross sections (see Appendix B). The different markers represent the spectrometers A, B, and C. The error bars
indicate point-to-point uncertainties of the cross section values.
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encourages the sum of the squares of the expansion
coefficients to be small and thus reduces the flexibility
of the model in a controlled way. We determine the optimal
regularization parameter for each order by scanning a range
of λ values and choosing the one that results in the lowest
χ2test. One can see from Table I that regularization improves
χ2test without significantly compromising χ2train. As expected,
the optimal λ value and the improvement in χ2test increase
with N.
After the optimal values of λ are determined, we train

the N ≥ 5 models on the full dataset (see Table II). We
use the N ¼ 5 model as our main fit and the higher
orders to estimate model misspecification uncertainty
(see Appendix D for discussion). Our best fit (N ¼ 5,
λ ¼ 0.02) is shown in Fig. 1 in comparison with the
analyzed cross sections, and the corresponding best-fit
parameters are provided in Table III. Note that we achieve a
similar χ2 value to that of Ref. [6] while using a more
efficient parametrization of the form factors (1576 for 11
parameters vs 1565 for 16 parameters of the spline model).
Our cross section normalizations differ from those deter-
mined in the original analysis by less than 0.3%.
The form factors and the transverse densities given by

our main fit are shown in Fig. 2 with 68% confidence
intervals. The point-to-point (statistical) uncertainties are

determined by propagating the errors of the fit parameters
taking into account the full covariance matrix. To estimate
the systematic uncertainties, we follow the original analysis
and refit our model using four modifications of the cross
section data. These modifications correspond to the upper
and lower bounds of (1) the energy cut in the elastic tail and
(2) all other systematic effects linear in the scattering angle
[6]. We perform all fits with floating normalizations and use
the largest deviation from the primary fit as an uncertainty
estimate.
As an additional check, we also extract the form factors

GEðQ2Þ and GMðQ2Þ and confirm that they agree with the
values obtained in Ref. [6] using the Rosenbluth separation
technique (see Fig. 3). Note that the Rosenbluth results are
model-independent but based only on a subset of the full
A1 cross section data. For further details on the data
analysis, the reader is referred to our PYTHON code [49].
The A1 Collaboration data that we use are publicly
available as the Supplemental Material of Ref. [6].
Our final extraction of the proton charge radius from the

full A1 data yields

rE ¼ 0.889ð5Þstatð5Þsystð4Þmodel fm; ð32Þ
where the model misspecification uncertainty of 0.004 fm
is estimated based on the higher-order values of rE listed in

TABLE III. Expansion coefficients for our best fit. The scale parameter was found to be Λ ¼ 1.156� 0.029 GeV.

n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5

αn 1 0.649� 0.055 1.85� 0.14 6.09� 0.58 9.82� 1.1 5.88� 0.77
βn 1 −0.046� 0.068 −2.78� 0.23 −8.73� 0.62 −11.5� 0.8 −5.75� 0.42

FIG. 2. Form factors and transverse densities extracted using our best model (N ¼ 5, λ ¼ 0.02). Left panel: form factors F1 (red) and
F2 (blue) as functions of Q2. The black dashed line is a tangent to F1 at Q2 ¼ 0 corresponding to the mean-square transverse charge
radius hb21i ¼ 11.49 GeV−2. Note that our extraction of hb21i is based on Eq. (8) rather than Eq. (9). Right panel: transverse densities ρ1
(red) and ρ2 (blue) as functions of b. In both panels, lighter inner bands indicate the 68% statistical confidence intervals of the
corresponding quantities, while darker outer bands show the 68% statistical and systematic confidence intervals added in quadrature.
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Table II. Our radius is larger by 0.01 fm than the original
result (29), but both values are consistent given their
uncertainties. Therefore, we confirm that the A1 data imply
a large proton radius, although the possibility of unrecog-
nized systematic errors can never be ruled out.

V. CONCLUSION

We have presented a novel method for extracting the
proton charge radius from elastic scattering data that does
not require determining the slope of GE at Q2 ¼ 0. The
method is based on Eq. (10) relating rE to the second
moment of the transverse charge density ρ1ðbÞ. This
density is the two-dimensional Fourier transform of the
Dirac form factor F1ðQ2Þ and has a proper relativistic
interpretation. As a consequence, ρ1ðbÞ and rE can be
determined by analyzing all available scattering data, not
just those obtained at lowQ2 values. Another novelty is the
use of F1 instead of the usual GE to extract the proton
radius. To facilitate the analysis, we have proposed rea-
sonable parametrizations not only for the form factors
F1ðQ2Þ and F2ðQ2Þ, but also for the transverse densities
ρ1ðbÞ and ρ2ðbÞ.
We have applied our method to the extensive data

obtained by the A1 Collaboration [5,6]. To find the right
balance between underfitting and overfitting, we have used
cross-validation and regularization—best practices from
the field of statistical learning often overlooked in nuclear
physics. Figure 2 shows the form factors and the transverse
densities that we have extracted. Our method has yielded
the proton radius (32), which is consistent with the A1
value (29) but larger by 0.01 fm. Therefore, our reanalysis

has confirmed that the full A1 data lead to the proton charge
radius that contradicts the muonic hydrogen results [16,17].
This means that the discrepancy cannot be explained by
issues with data fitting and extrapolation. Further progress
can be achieved by combining our approach with a careful
reanalysis of all available electron-proton scattering data.
Finally, the method can be extended to better understand
other properties of the proton such as its magnetic radius
and higher-order density moments.
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APPENDIX A: CHOICE OF FORM FACTOR
PARAMETRIZATION

Our choice of parametrizations for ρ1ðbÞ, ρ2ðbÞ, F1ðQ2Þ,
and F2ðQ2Þ was motivated by the following requirements.
(1) We should be able to analytically calculate both the

forward (3) and the inverse (4) Fourier transforms.
This requirement ensures that closed-form expres-
sions exist for both the form factors and the trans-
verse densities.

(2) The form factors should have the correct static limit,
F1ð0Þ ¼ F2ð0Þ ¼ 1, which corresponds to the fol-
lowing normalization for ρ1ðbÞ and ρ2ðbÞ:

Z∞

0

bρ1ðbÞdb ¼
Z∞

0

bρ2ðbÞdb ¼ 1

2π
: ðA1Þ

FIG. 3. Extracted electric (left panel) and magnetic (right panel) form factors as functions of Q2. We determine GE and GM from F1

and F2 using Eq. (1) and scale them by the corresponding dipole form factors (see Appendix B). The lighter inner bands around the
black best-fit lines are the 68% statistical confidence intervals, while the darker outer bands are the 68% statistical and systematic
confidence intervals added in quadrature. We compare our extraction with the values of GE and GM obtained in Ref. [6] using the
Rosenbluth separation technique (blue data points with error bars representing statistical uncertainties).
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(3) The form factors should have reasonable asymptotic
behavior—for example, the large-Q2 behavior pre-
dicted by the dimensional scaling laws [44]:
F1ðQ2Þ ∝ Q−4 and F2ðQ2Þ ∝ Q−6.

(4) The parametrization should form a complete set of
basis functions or, at least, should be flexible enough
to approximate any real experimental data (with as
few terms as possible).

As shown in the main text, all four criteria are satisfied if
we use the expansions (15) for ρ1ðbÞ and (23) for ρ2ðbÞ,
which correspond to the rational parametrizations (17) for
F1ðQ2Þ and (24) for F2ðQ2Þ. Moreover, because of the
orthogonality condition (11), there is a simple one-to-one
correspondence (16) between the expansion coefficients αn
and the even moments hb2n1 i of the transverse charge
density ρ1ðbÞ.
Although we find this choice particularly convenient and

elegant, other parametrizations can also be used. Consider,
for example, a Padé approximant, which was first applied to
form factors by Kelly [50]. In the case of F1ðQ2Þ, the Padé
approximant of order ½K=ðK þ 2Þ� should be used, which
takes the form

F1ðQ2Þ ¼ 1þP
K
n¼1 anQ

2n

1þPKþ2
n¼1 bnQ

2n
; ðA2Þ

where an and bn are 2ðK þ 1Þ free parameters. A similar
expression can be written for the Pauli form factor by using
the ½K=ðK þ 3Þ� approximant. The parametrization (A2)
satisfies most of the above criteria, but does not allow for an
analytical expression for ρ1ðbÞ. Moreover, depending on
specific values of the coefficients bn, the function (A2) can
have poles for Q2 ≥ 0 (at the points where the denominator
is zero). Such poles are unphysical and make the Fourier
integral (4) divergent. Nevertheless, the parametrization
(A2) can still be used, provided that the poles are avoided
for Q2 ≥ 0 (for example, by choosing bn ≥ 0) and that a
closed-form expression for ρ1ðbÞ is not required.
Note that our form factor parametrization is simply a

special case of the one suggested by Kelly. Indeed, Eq. (17)
for F1ðQ2Þ can be rewritten with a common denominator as

F1ðQ2Þ ¼ 1þP
2N
n¼1 α̃nðQ2=Λ2Þn

ð1þQ2=Λ2Þ2Nþ2
; ðA3Þ

where α̃n are 2N linear combinations of the N expansion
coefficients αi. Equations (A2) and (A3) coincide after
choosing K ¼ 2N, an ¼ α̃nΛ−2n, and

bn ¼
�
2N þ 2

n

�
Λ−2n; ðA4Þ

where the parentheses denote the binomial coefficient. An
advantage of our parametrization (A3) is that it guarantees
the absence of poles in F1ðQ2Þ for Q2 ≥ 0.

It is important to realize that many form factor para-
metrizations used in previous extractions of the proton
radius do not correspond to bounded transverse densities.
We argue that such parametrizations should be rejected as
unphysical. For example, if one chooses a polynomial
parametrization for F1ðQ2Þ then the Fourier integral (4)
diverges. The same happens if one uses polynomial fits for
GEðQ2Þ and GMðQ2Þ. A suitable form factor parametriza-
tion should correspond to bounded transverse densities that
can be normalized as in Eq. (A1).
Finally, we note that for any suitable parametrization the

value of hb21i determined as a second moment (8) of the
transverse charge density will agree with the value (9)
obtained through the derivative of F1ðQ2Þ at Q2 ¼ 0. This
does not mean, however, that Eqs. (8) and (9) are equivalent.
First of all, many form factor parametrizations do not
correspond to bounded transverse densities and should
therefore be rejected, regardless of their slope at Q2 ¼ 0.
Second, the integral formula (8) applies to both even and odd
moments of the transverse charge density, while the deriva-
tive formula is limited to even moments only:

hb2n1 i ¼ ð−4Þnn!FðnÞ
1 ð0Þ; ðA5Þ

whereFðnÞ
1 ð0Þ denotes thenth derivative ofF1with respect to

Q2 evaluated atQ2 ¼ 0. Therefore, we argue that Eq. (8) for
the nth moment hbn1i is more general than Eq. (A5) and its
special case, Eq. (9).

APPENDIX B: ELASTIC SCATTERING
CROSS SECTION

We use the beam energy, E, and the negative four-
momentum transfer squared, Q2, as two independent
kinematic variables. The electron scattering angle, θ, can
be determined from E and Q2 as

θ ¼ arccos

�
1 −

MQ2

Eð2ME −Q2Þ
�
: ðB1Þ

Also useful are the dimensionless kinematic variables τ and
ε, defined as

τ ¼ Q2

4M2
; ðB2Þ

ε ¼
�
1þ 2ð1þ τÞtan2 θ

2

�
−1
: ðB3Þ

The differential cross section for unpolarized elastic
electron-proton scattering is given by the Rosenbluth
formula

dσ0
dΩ

¼ σred
εð1þ τÞ

dσMott

dΩ
; ðB4Þ
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where

σred ¼ εG2
EðQ2Þ þ τG2

MðQ2Þ
¼ ε½F1ðQ2Þ − τκF2ðQ2Þ�2
þ τ½F1ðQ2Þ þ κF2ðQ2Þ�2 ðB5Þ

is the so-called reduced cross section and dσMott=dΩ is the
Mott cross section describing the scattering of electrons on
spinless point charged particles. The Sachs form factorsGE
and GM are often approximated as

GEðQ2Þ ≈GdipðQ2Þ; ðB6Þ

GMðQ2Þ ≈ μGdipðQ2Þ; ðB7Þ

where

GdipðQ2Þ ¼
�
1þ Q2

0.71 GeV2

�−2
ðB8Þ

is the standard dipole form factor and μ ¼ 1þ κ is the
magnetic moment of the proton. The corresponding
reduced cross section is

σdip ¼ ðεþ μ2τÞG2
dipðQ2Þ: ðB9Þ

APPENDIX C: FIT CONSISTENCY
AND Q2 SENSITIVITY

Here we study the consistency and Q2 sensitivity of our
proton radius extraction approach assuming a variety of
different underlying form factor models.
As a first study, similar to the approach in Refs. [27,30],

we preform a series of Monte Carlo simulations by
generating cross section pseudodata at the A1 experimental
kinematic points and point-to-point uncertainties assuming
a specific form factor model and that the errors are
Gaussian. We do not account for systematic and normali-
zation uncertainties in these simulated experiments. By
truncating the pseudodata above a range of maximum Q2

values and redoing the full fit, we can explore how the
high-Q2 data affect our extracted radius variance and
bias for different orders N of our parametrization. We
study six diverse form factor models: dipole (B6)–(B7),
inverse polynomial (Arrington-2004 [51]), low-order Padé
approximant (Kelly [50]), continued fraction expansion
(Arrington-2007 [52]), high-order Padé approximant
(Venkat [39]), and polynomial (Bernauer [6,45]). We note
that the two Padé approximant models, Kelly [50] and
Venkat [39], have fit parameter values that result in a
bounded transverse charge density and are thus considered
physically plausible in our approach. The Bernauer poly-
nomial fit [6,45] was obtained in the original analysis of
the A1 Collaboration data.

The results of this study are shown in Fig. 4 for orders
N ¼ 2, 3, 4, and 5 of our parametrization, with no addi-
tional regularization used. Each of the four panels in Fig. 4
corresponds to specific N and shows the difference,
rfit − rtrue, between the extracted and the true underlying
values of the proton radius as a function of the Q2

max cutoff
in the pseudodata. This figure is a good illustration of
the bias-variance trade-off, where “bias” is given by the
deviation of the mean difference rfit − rtrue from zero and
“variance” is shown by the width of the standard deviation
band. As expected, the simpler underlying models are well
fit by the lower-order parametrizations, while the more
complex models require higher-order parametrizations. The
model complexity can be roughly estimated by the number
of free parameters used (this number ranges from 1 for the
dipole model to 20 for Bernauer’s polynomial [6,45]).
For the simplest—dipole—model, the order N ¼ 2 is
sufficient. The most complex model—the polynomial fit
obtained in the original A1 analysis—demands for N ¼ 5.
Note that the N ¼ 5 fit performs well for all of the
considered models.
Although instructive, tests on pseudodata cannot replace

cross-validation for choosing the optimal order N because
existing models do not necessarily capture the full com-
plexity of the proton form factors. Interestingly, the under-
fitted (i.e., biased) extractions in Fig. 4 tend to produce
smaller values of the proton radius. This observation agrees
with the conclusion made in Ref. [27] for polynomial fits.
Perhaps this effect may be responsible for the smaller
values of the proton radius obtained in some of the earlier
reanalyses of the A1 dataset.
Figure 4 also shows how the statistical precision of the

extracted radius improves as higher-Q2 data are added,
while bias does not increase as long as N is sufficiently
large to accommodate the complexity of the underlying
model. It might be tempting to limit bias by fitting less
complex functions to the lowest-Q2 data, but this comes at
the price of increased variance. Higher-Q2 data help to
better constrain the fit and to achieve higher precision.
Therefore, the best approach is to analyze all available data
and use cross-validation for finding the right balance
between bias and variance.
To estimate the sensitivity of the extracted radius to low-

Q2 data, including below the reach of the A1 experiment,
we use a different approach. We first note that there is an
inverse relationship between the variables Q and b: low-Q2

behavior of the form factor F1ðQ2Þ corresponds to the tail
of the transverse charge density ρ1ðbÞ at large b. Since the
transverse size of the proton is of the order of

ffiffiffiffiffiffiffiffiffi
hb21i

p
≈

0.67 fm and the density ρ1ðbÞ rapidly decays with increas-
ing b, we expect that the region b ≫ 1 fm does not
contribute significantly to the second moment (8). To show
this quantitatively, we use the four different form factor
models that correspond to bounded transverse charge
densities: dipole (B6)–(B7), Kelly [50], Venkat [39], and
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our best fit (see Table III). We obtain the corresponding
densities ρ1ðbÞ by calculating the Fourier integral (4)
numerically. We then evaluate the second moment of ρ1ðbÞ,

hb21iapprox ¼ 2π

Zbmax

0

b3ρ1ðbÞdb; ðC1Þ

by varying the upper integration limit bmax. We finally use
Eq. (10) to determine the corresponding proton radius,
rapprox. Our results for the difference rapprox − rtrue are
shown in the left panel of Fig. 5 as a function of bmax.
It turns out that the upper integration limit of bmax ¼ 5 fm
is sufficient for determining the proton radius with accuracy
better than 0.001 fm for all of the considered form factor
models. This result allows us to roughly estimate the lower
bound of the required Q2 range as Q2

min ≈ ðℏc=bmaxÞ2 ≈
0.002 GeV2.
To obtain a more accurate estimate of the sensitivity in

Q2 space, we assume that F1 is measured down toQ2
min and

then linearly interpolated to F1ð0Þ ¼ 1, giving us:

Fapprox
1 ðQ2Þ ¼

�
1 − ½1 − F1ðQ2

minÞ� Q2

Q2
min
; Q2 < Q2

min;

F1ðQ2Þ; otherwise:

We then find the corresponding transverse charge density by
numerically calculating the integral (4) from Q ¼ 0 to
Q ¼ ∞. Note that we do not simply use Qmin as the lower
integration limit in Eq. (4) because this would make ρ1ðbÞ
oscillating, as expected from the properties of Fourier
transform. After that, we obtain the second moment of
ρ1ðbÞ by using Eq. (C1) with the upper integration limit
bmax ¼ 6 fm. We finally substitute hb21iapprox into Eq. (10)
and determine the corresponding radius rapprox. Our results
are shown in the right panel ofFig. 5 as a functionofQ2

min.We
can conclude from the figure that the value Q2

min ¼
0.004 GeV2, which corresponds to the lower bound of the
Q2 range covered by the A1 Collaboration, is sufficient for
determining the proton radius with accuracy better than
0.001 fm.
To summarize, we have shown in this Appendix that the

Q2 range covered by the A1 experiment—from 0.004 to

FIG. 4. The difference between the extracted and the true values of the proton radius as a function ofQ2
max cutoff for ordersN ¼ 2, 3, 4,

and 5 of our parametrization. For this study, we use pseudodata generated with six different form factor models: dipole (B6)–(B7),
Arrington-2004 [51], Kelly [50], Arrington-2007 [52], Venkat [39], and Bernauer [6,45]. Lines and shaded bands represent the mean
values and the standard deviation intervals, respectively, for the quantity rfit − rtrue obtained in repeated experiments.
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1 GeV2—is sufficient to achieve a low-bias, low-variance
determination of the proton radius. We emphasize that, in
addition to reaching the small Q2 values, it is equally
important to have a sufficiently wide Q2 coverage.

APPENDIX D: MODEL DEPENDENCE AND
MODEL MISSPECIFICATION ERROR

As the true functional form of the proton form factors is
unknown, the extraction of the proton radius from scatter-
ing data is inherently model dependent. We refer to the bias
in the radius estimate due to any mismatch between the
model representation and the true form factors as the model
misspecification error. While the uncertainty from this error
source cannot be precisely quantified, it is essential to study
and deliberately minimize its effect. As we showed in
Appendix C, our parametrization yields negligible model
misspecification error for a variety of form factor models,
though this is not guaranteed to be the case for the true
proton form factors. Our approach contains the following
components to reduce the amount of model misspecifica-
tion error in our extraction.
(1) Our parametrizations are highly flexible and able to

approximate any true underlying transverse densities
and form factors given an appropriate order N.

(2) As discussed in Appendix A, our parametrizations
are constrained to fit known physics of the proton
form factors. In particular, our fit functions for
F1ðQ2Þ and F2ðQ2Þ have the correct static limit,
F1ð0Þ ¼ F2ð0Þ ¼ 1, and the asymptotic behavior
expected from the dimensional scaling laws [44]:

F1ðQ2Þ ∝ Q−4 and F2ðQ2Þ ∝ Q−6. Importantly, our
approach ensures that the extracted transverse
charge density ρ1ðbÞ is bounded, which constrains
the set of plausible fit functions without adding
model misspecification bias.

(3) We use data-driven model selection (i.e., cross-
validation) over the entire available Q2 range of
data to find the best balance between underfitting
and overfitting. Note that the optimal model com-
plexity cannot be determined before the data are
collected since the complexity of the true form
factors is unknown. For example, models selected
based on pseudodata generated assuming simple
underlying parametrizations may be too biased, as
shown in Appendix C. Cross-validation allows us to
estimate the total error, including model misspeci-
fication error, of our model on unseen data. By
selecting our model complexity (through N and λ) to
minimize the cross-validation error, we also mini-
mize the model misspecification error in our fit.

In addition to taking these three critical steps to minimize
modelmisspecification error, we also estimate themagnitude
of the uncertainty due to it in our extraction by using an
ensemble of regularized higher-order fits. For each higher
order of N, we independently optimize λ to minimize the
cross-validation error on the full dataset. The spread in this
ensemble of models, shown in Table II, allows us to estimate
the model misspecification uncertainty of our proton radius
extraction (including the effect of the floating normalization
parameters required by the A1 dataset) as 0.004 fm.

FIG. 5. Sensitivity of the extracted radius to the data at high b (left panel) and low Q2 (right panel). For this study, we use four
underlying form factor models: dipole (B6)–(B7), Kelly [50], Venkat [39], and our best fit (see Table III). The gray vertical line in the
right panel at 0.004 GeV2 corresponds to the lower bound of the Q2 range covered by the A1 experiment.
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