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In this work we show that the proper analysis and interpretation of the experimental data on the
multiplicity distributions of charged particles produced in jets measured in the ATLAS experiment at the
LHC indicates their sub-Poissonian nature. We also show how, by using the recurrence relations and
combinants of these distributions, one can obtain new and otherwise unavailable information contained in
them, which may broaden our knowledge of the particle production mechanism.
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I. INTRODUCTION

The experimentally measured multiplicity distributions
PðNÞ of the produced particles are the main source of
information about the dynamics of their production proc-
esses [1,2]. In the theoretical description they are charac-
terized by the generating functions,

GðzÞ ¼
X∞
N¼0

PðNÞzN; ð1Þ

such that

PðNÞ ¼ 1

N!

dNGðzÞ
dzN

����
z¼0

: ð2Þ

Preliminary information about PðNÞ is provided by the
moments of this distribution,

mk ¼
X∞
N¼0

ðN − cÞkPðNÞ: ð3Þ

In many cases, it is sufficient to analyze only the two lowest
moments, namely, the mean value hNi ¼ m1 [being the first

raw moment (c ¼ 0)] and variance VarðNÞ ¼ m2 [being
the second central moment (c ¼ hNi)].
Another way to characterize PðNÞ is through a recursive

formula,

ðN þ 1ÞPðN þ 1Þ ¼ gðNÞPðNÞ; ð4Þ

that connects adjacent values of PðNÞ for the production of
N and (N þ 1) particles. It is assumed here that every PðNÞ
is determined only by the next lower PðN − 1Þ value. In
other words, a relationship with other PðN − jÞ for j > 1 is
indirect. The final algebraic form of PðNÞ is determined by
the function gðNÞ. In its simplest form, gðNÞ is assumed to
be a linear function of N given by gðNÞ ¼ αþ βN. This
form is enough to define commonly known and widely
used distributions like the Poisson distribution (PD) (for
which β ¼ 0), binomial distribution (BD) (for which
β < 0), and negative binomial distribution (NBD) (for
which β > 0). In general, by selecting the appropriate
model, the form of gðNÞ can be chosen in such a way
that the corresponding PðNÞ describes the experimental
data (for example, by introducing higher-order terms [3] or
by using its more involved forms [4,5]).
The more promising approach is to use a gðNÞ that

contains information about the interrelationship between
the multiplicity N and all smaller multiplicities recursively,

ðN þ 1ÞPðN þ 1Þ ¼ hNi
XN
j¼0

CjPðN − jÞ: ð5Þ

The memory of that relationship is encoded in coefficients
Cj called modified combinants. They were introduced and
intensively discussed in Refs. [6–13]. By inverting the
recursion (5) we obtain an equation that allows us to
determine Cj from the measured PðNÞ,
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hNiCj ¼ ðjþ 1Þ
�
Pðjþ 1Þ
Pð0Þ

�
− hNi

Xj−1
i¼0

Ci

�
Pðj − iÞ
Pð0Þ

�
ð6Þ

(provided we have sufficient statistics). Modified combi-
nants are closely related to combinants C⋆

j ,

Cj ¼
jþ 1

hNi C⋆
jþ1; ð7Þ

introduced in Refs. [14–16] by means of the generating
functions GðzÞ as

hNiC⋆
j ¼ 1

j!
djþ1 lnGðzÞ

dzjþ1

����
z¼0

; ð8Þ

which have been discussed and used in many publications
[1,2,17–21].
Modified combinants are complementary to the com-

monly used factorial moments Fq and cumulant factorial
moments Kq (see Appendix A for details). They differ in
that, while Cj’s depend only on multiplicities smaller than
their rank, Kq’s require the knowledge of all PðNÞ’s and are
therefore very sensitive to possible limitations of the
available phase space [1,2]. However, both Cj and Kq

share the property of additivity. It turns out that most of the
measured multiplicity distributions PðNÞ give oscillatory
combinants Cj with increasing index j which arise due to
the presence of a BD component in the measured PðNÞ
[7–12].
Combinants are believed to be best suited for the study of

sparsely populated areas of phase space (while cumulants
are better suited for the study of densely populated areas)
[1,2]. This feature makes them a potentially important tool
for studying PðNÞ in jets where the number of produced
particles is small (on the order of ∼10). However, the
ATLAS data [22] do not include Pð0Þ, which is crucial for
their determination. This means that in our analysis, we
must extrapolate the recurrence relation in Eq. (4) to
evaluate Pð0Þ and use the combinants only for additional
verification of our conclusions.
In the next section we provide details concerning

ATLAS data with particular attention to the fact that the
measured multiplicity distributions in the jets are clearly
sub-Poissonian in character (with details depending on the
phase space covered). This observation will be our main
point for further discussion and calculations described in
Secs. III and IV. Section V summarizes and concludes
our work.

II. MULTIPLICITY DISTRIBUTIONS OF
PARTICLES IN ATLAS JETS

ATLAS data [22] of jets measured in proton-proton
collisions at an energy

ffiffiffi
s

p ¼ 7 TeV (using a minimum bias
trigger) were taken (data used here come from Refs. [23]).

Jets were reconstructed using the anti-kt algorithm applied
to charged particles produced in very narrow cones defined
by the radius parameter R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δη2 þ Δϕ2

p
(where Δϕ and

Δη are the azimuthal angle and pseudorapidity of the
hadrons relative to that of the jet, respectively). Here, η ¼
− ln tan θ (with θ being the polar angle), with R ¼ 0.4 and
again at R ¼ 0.6. Only data with high statistics within
acceptable regions of phase space were selected. They were
obtained over five different transverse momentum ranges
across four rapidity ranges, giving a total of 20 possible
combinations for each of the two radius parameters (with
radius parameters R ¼ 0.4 and R ¼ 0.6, respectively).
So far, the ATLAS data have been carefully analyzed in

terms of possible self-similarity between thepT distributions
of jets and pT distributions of particles in these jets [24].
Indeed, their detailed analysis clearly indicates the self-
similarity of the particle distributions in jets and the dis-
tributions of the jets themselves, indicative of the existence of
a common mechanism behind all of these processes.
Taking advantage of the fact that ATLAS also publishes

data for multiplicity distributions of particles produced in
observed jets, we extend this analysis to study the nature of
these distributions. The first observation is that the multi-
plicity distributions of the particles in the jets observed in
the ATLAS experiment are sub-Poissonian, cf. Fig. 1 where
VarðNÞ < hNi. Although the BD is a possible sub-
Poissonian distribution for gðNÞ, the plot in Fig. 2 derived
from the recursive relationship in Eq. (4) is nonlinear.
Therefore, this means that one should switch to a

scenario inspired by a possible nonlinear form of the
recursion gðNÞ, such as

gðNÞ ¼ ðN þ 1ÞPðN þ 1Þ
PðNÞ ¼ α

ðN þ 1Þδ : ð9Þ
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FIG. 1. Multiplicity distribution of charged particles per jet with
4 GeV < pjet

T < 6 GeV, over the full measured rapidity range
jyj < 1.9, with radius parameter R ¼ 0.4. Points show data from
the ATLAS experiment [22]. PðN ¼ 0Þ comes from extrapolation
of the experimental recurrence relation gðNÞ to N ¼ 0. The curve
fitting this data comes from Eq. (13) with parameters α ¼ 14.1
and δ ¼ 1.07.
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As shown in Fig. 2, such a form with δ ¼ 1.07 fits the data
very well. Therefore, we note that for

ðN þ 1ÞPðN þ 1Þ
PðNÞ ¼ α ð10Þ

we have the PD, with

PðNÞ ¼ c
αN

N!
where α ¼ hNi; c ¼ expð−αÞ: ð11Þ

If we change this recursive relationship to a nonlinear one
given by

ðN þ 1Þ1þδ PðN þ 1Þ
PðNÞ ¼ α; ð12Þ

we get a sub-Poissonian distribution,

PðNÞ ¼ c
αN

ðN!Þ1þδ ; ð13Þ

where c ¼ Pð0Þ is a normalization factor. In Fig. 1 we
present a comparison of this multiplicity distribution with
the experimental data from ATLAS.
Once we know Pð0Þ from the extrapolation of the

experimental recurrence relation gðNÞ to N ¼ 0, we are
able to determine the corresponding modified combinants
from the measured multiplicity distributions PðNÞ using
Eq. (6) [which is important because in ATLAS, the Pð0Þ
data points are not directly measured]. The Cj’s derived in
this way are plotted in Fig. 3 as red circles. They can now
be compared with the combinants obtained in the same way
but from the theoretical sub-Poissonian distribution PðNÞ
given by Eq. (13). The corresponding results are plotted in
Fig. 3 as black squares. We observe characteristic oscil-
latory behavior of modified combinants with only roughly
consistent amplitude. Despite the nice agreement between
the multiplicity distributions (shown in Fig. 1), the men-
tioned combinants indicate a difference between the fit and
experimental data.

In the event where δ ¼ 1, Eq. (13) can be written in a
closed form given by

PðNÞ ¼ 1

I0ð2
ffiffiffi
α

p Þ
αN

ðN!Þ2 ; ð14Þ

where

α ¼ hN2i and c ¼ Pð0Þ ¼ 1

I0ð2
ffiffiffi
α

p Þ ; ð15Þ

with I0 being the Bessel function of the first kind. In this
case (δ ¼ 1), the theoretical Cj’s are given by the recur-
rence relation

hNiCj ¼
ðjþ 1Þαjþ1

½ðjþ 1Þ!�2 − hNi
Xj−i
i¼0

Ci
αj−i

½ðj − iÞ!�2 ; ð16Þ

and are of the form

hNiCj ¼ ð−1Þjβjαjþ1; ð17Þ

where the numbers βj are rational: β0 ¼ 1, β1 ¼ 1
2
, β2 ¼ 1

3
,

β3 ¼ 11
48
, β4 ¼ 19

120
, β5 ¼ 473

4320
;… They were first calculated

by Euler in relation to the positive zeros γl of the Bessel
function J0ðzÞ as [25]

βjþ1 ¼
X∞
l¼1

�
2

γl

�
2ðjþlÞ

; j ¼ 0; 1; 2;… ð18Þ

For j ≥ 1, the coefficients βj can be approximated by

βj ≅ exp

�
−
jþ 1

e

�
: ð19Þ

At this point, it is worth noting that Cj can help in the
search for the correct PðNÞ. Based on our experience thus
far, let us assume that strongly oscillating Cj (especially
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FIG. 2. Recurrent relations. Points show gðNÞ for the exper-
imental PðNÞ from Fig. 1. The curve is fit using gðNÞ from
Eq. (9) with α ¼ 14.1 and δ ¼ 1.07.
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FIG. 3. Comparison of Cj for the multiplicity distributions from
Fig. 1. Red circles: Cj from data on PðNÞ from Fig. 1. Black
squares: from the theoretical PðNÞ defined by Eq. (13).
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with a period equal to 2, as seen in Fig. 3) indicate the
presence of a single-component BD in some form. On
closer inspection, it is clear that this cannot be the case
since the amplitude of oscillations of Cj in Fig. 3 grows
approximately as 9.3j with j. Should these Cj originate
from a single-component BD with amplitudes given by
½p=ð1 − pÞ�j, it would mean that p > 0.8. In addition, to
reproduce hNi ¼ Kp ∼ 3.3 as observed in data, one would
require K < 5. Taken together, these would limit us to
multiplicities of N < 5. This is in contradiction with the
measured PðNÞ where the observed multiplicities N ¼ 5.
By continuing to stick to BD, our previous experiences
[7,9–11] tell us that a potential solution might be to use the
sum of two BDs instead of one. However, as we will show
in Appendix B, it is not possible to describe both PðNÞ and
its corresponding Cj with this approach.
Continuing the approach based on gðNÞ, it turns out that

with the increase in pT of jets (corresponding to an increase
of hNi in our case), we observe a deviation from the form of
gðNÞ given in Eq. (9). The modified gðNÞ can be made to
describe data if expressed as a recursive relation given by
(see Fig. 4)

gðNÞ ¼ ðN þ 1ÞPðN þ 1Þ
PðNÞ ¼ α

ðN þ 1Þδ þ α0; ð20Þ

leading to the multiplicity distribution (see Fig. 5)

PðNÞ ¼ c
N!

YN
i¼1

�
α

iδ
þ α0

�
; ð21Þ

with c ¼ Pð0Þ. The corresponding Cj are shown in Fig. 6.
Note that for integer parameter δ, Eq. (21) has a closed

analytical form, namely, for δ ¼ 1

PðNÞ ¼ Pð0Þ αN0
ðN!Þ2

Γð1þ α
α0
þ NÞ

Γð1þ α
α0
Þ ; ð22Þ

while for δ ¼ 2

PðNÞ ¼ Pð0Þ αN0
ðN!Þ3 ·

·
Γð1 −

ffiffiffiffiffi
−α
α0

q
þ NÞ

Γð1 −
ffiffiffiffiffi
−α
α0

q
Þ

Γð1þ
ffiffiffiffiffi
−α
α0

q
þ NÞ

Γð1þ
ffiffiffiffiffi
−α
α0

q
Þ

; ð23Þ

and for higher values of δ we have the product of δ
Pochhammer symbols,

ðxlÞN ¼ Γðxi þ NÞ
ΓðxiÞ

; ð24Þ

where xl¼1þð−1Þlð−1Þl=δðα=α0Þ1=δ for l¼ 0;1;…;δ−1.
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FIG. 4. Recurrent relations gðNÞ for multiplicity distributions
PðNÞ over the full measured rapidity range jyj < 1.9, in jets with
radius parameter R ¼ 0.4 and transverse momentum range
10 GeV < pjet

T < 15 GeV. Points: gðNÞ from experimental data
[22]. Curve: fit using gðNÞ from Eq. (20) with parameters
α ¼ 29.4, δ ¼ 2.20, and α0 ¼ 4.37.
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FIG. 5. Points: PðNÞ from ATLAS data for jets with 10 GeV <
pjet
T < 15 GeV and radius parameter R ¼ 04, over the full

measured rapidity range jyj < 1.9. The curve fitting these data
comes from Eq. (21) with parameters: c ¼ 3.2 × 10−4, α ¼ 29.4,
α0 ¼ 4.37 and δ ¼ 2.20.
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FIG. 6. Comparison of Cj for multiplicity distributions in jets.
Red circles: Cj from data on PðNÞ; black squares: from
theoretical PðNÞ defined by Eq. (21). Parameters are the same
as in Fig. 5.
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III. POSSIBLE EXPLANATION: MULTIPLICITY-
DEPENDENT BIRTH AND DEATH RATES

To interpret the results shown in the previous section,
note that Eq. (13) actually represents the so-called COM-
Poisson distribution introduced by Conway and Maxwell
[26] as a model for steady-state queuing systems with state-
dependent arrival or service rates (in other words, a birth-
death process with Poisson arrival rate and exponential
service rate). It was rediscovered in Ref. [27] where the
term Conway-Maxwell-Poisson was proposed, and a
detailed study of its properties and applications was
performed. More recent studies can be found in
Refs. [28,29]. To the best of our knowledge, this distribu-
tion has not been used in the analysis of multiplicity
distributions of particles produced in multiparticle produc-
tion processes.
We will now show that the form of the COM-Poissonian

distribution can be obtained from a stochastic Markov
process with multiplicity-dependent birth and death rates
denoted by λN and μN , respectively [30]. Let PðN; tÞ be the
probability of having N particles at time t and let us
consider a very general birth-death process given by the
following equations:

P0ð0; tÞ ¼ −λ0Pð0; tÞ þ μ1Pð1; tÞ; ð25Þ

P0ðN; tÞ ¼ −ðλN þ μNÞPðN; tÞ
þ λN−1PðN − 1; rÞ þ μNþ1PðN þ 1; tÞ: ð26Þ

If we assume the forms

λN ¼ λ

ðN þ 1Þa and μN ¼ Nbμ; ð27Þ

we get

−
�

λ

ðN þ 1Þa þ Nbμ

�
PðNÞ

þ λ

Na PðN − 1Þ þ ðN þ 1ÞbμPðN þ 1Þ ¼ 0 ð28Þ

for the steady state, where P0ðN; tÞ ¼ 0. If we denote

λ

μ
¼ α; ð29Þ

we can rewrite Eq. (28) as

−
α

ðN þ 1Þa PðNÞ − NbPðNÞ

þ α

Na PðN − 1Þ þ ðN þ 1ÞbPðN þ 1Þ ¼ 0; ð30Þ

which leads to the recurrence relation

ðN þ 1ÞbPðN þ 1Þ ¼ α

ðN þ 1Þa PðNÞ: ð31Þ

Further simplifications can be made by writing

aþ b ¼ ν; ð32Þ

which gives us

PðN þ 1Þ
PðNÞ ¼ α

ðN þ 1Þν : ð33Þ

For δ ¼ ν − 1, this is just the recurrence form of the COM-
Poisson distribution defined by Eq. (12). The condition in
Eq. (32) has allowed us to successfully reparametrize the
recurrence relation of Eq. (33) using α and ν ¼ aþ b. This
corresponds to the entire class of Markov processes
previously characterized by the parameters a and b with
the birth and death rates given in Eq. (27).
However, to describe the distribution defined by

Eqs. (20) and (21) (which is no longer the COM-
Poisson distribution) while still using the birth-death
process, we need to add an additional term λ⋆ to the birth
rate λN ,

λN ¼ λ

ðN þ 1Þa þ λ⋆ðN þ 1Þðb−1Þ: ð34Þ

If we substitute Eq. (34) into Eq. (26) and denote

λ⋆
μ
¼ α0; ð35Þ

we get the recurrence relation

PðN þ 1Þ
PðNÞ ¼ α

ðN þ 1Þν þ
α0

N þ 1
; ð36Þ

corresponding to Eq. (20).

IV. SUMMARY OF RESULTS

The ATLAS data suitable for our purposes cover five
different ranges of transverse momentum, each further
divided into four different rapidity ranges, totaling 20
different fragments of the phase space. In previous sections
we have plotted examples of multiplicity distributions and
their corresponding combinants. Figures 1 and 3 show the
plots for 4 GeV < pjet

T < 6 GeV at jyj < 1.9 with R ¼ 0.4,
while Figs. 5 and 6 show the same for 10 GeV <
pjet
T < 15 GeV. Instead of showing all figures for PðNÞ

and Cj which we have calculated for each possible gðNÞ
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given by Eq. (20) and PðNÞ using Eq. (21), we will show
parameter values that are there, describing the amplitude of
the Cj oscillations with the formula

hNijCjj ¼ ABj: ð37Þ

With increasing values of the transverse momenta of jets,
pjet
T , the mean multiplicity in jets grows and affects the

parameters given in the tables. In Table I the parameters
depend on hNi in the following ways:

δ ¼ 0.94þ
�hNi
4.9

�
4.4
; ð38Þ

α0 ¼ −4.94þ 1.7hNi; ð39Þ

α ≅ A ≅ B ≅ 10þ
�hNi
3.05

�
6

; ð40Þ

Pð0Þ ¼ 0.5 exp

�
−
hNi
0.7

�
: ð41Þ

Table II shows results for broader jets with R ¼ 0.6. The
dependences of the parameters on hNi in this case are as
follows:

δ ¼ 0.66þ
�hNi
6.38

�
5.85

; ð42Þ

α0 ¼ −9.56þ 2.17hNi; ð43Þ

α ≅ A ≅ B ≅ 15.5þ
�hNi
5.9

�
17.5

: ð44Þ

The dependence of Pð0Þ on hNi remains the same as
in Eq. (41).
The value of hNi increases by a factor of 1.85 for

R ¼ 0.6 in comparison to the case of R ¼ 0.4, as seen from
a comparison of Tables I and II. Other dependences on hNi

TABLE I. Dependence on pjet
T for R ¼ 0.4 and 0 < jyj < 1.9.

pjet
T [GeV] hNi VarðNÞ A B α δ α0 Pð0Þ

4–6 3.303 1.730 13.3 10.3 14.596 1.176 0.286 0.00430246
6–10 4.131 2.585 15.7 13.0 16.287 1.387 2.096 0.00155689
10–15 5.170 3.946 32.7 27.9 29.374 2.220 4.367 0.000320975
15–24 6.254 5.612 127.0 125.0 126.666 3.938 6.055 0.0000309069
24–40 7.644 7.584 196.0 180.0 179.212 7.0 7.63 0.0000160399

TABLE II. Dependence on pjet
T for R ¼ 0.6 and 0 < jyj < 1.9.

pjet
T [GeV] hNi VarðNÞ A B α δ α0 Pð0Þ

4–6 4.398 2.319 17.4 13.2 20.216 0.961089 0.0 0.000767709
6–10 5.717 3.878 15.7 11.0 16.709 0.914 2.528 0.000272948
10–15 7.374 6.878 63.2 58.0 58.875 3.167 7.209 0.0000273138
15–24 8.526 8.420 577.7 580.0 579.390 6.168 68.509 0.00000141011
24–40 9.790 10.775 3.3 5.9 226.418 −0.00412 −218.809 0.000123035

TABLE III. Dependence on rapidity interval jyj for R ¼ 0.4 and 10 < pjet
T < 15 GeV.

jyj hNi VarðNÞ A B α δ α0 Pð0Þ
0–0.5 5.246 3.086 24.4 27.0 27.861 2.227 4.507 0.000330263
0.5–1 5.178 3.949 47.3 44.0 46.500 2.631 4.483 0.000185273
1–1.5 5.158 3.852 15.7 17.0 18.476 1.677 4.012 0.00052248
1.5–1.9 5.061 3.854 30.7 31.0 32.632 2.370 4.310 0.000320779

ANG, RYBCZYŃSKI, WILK, and WŁODARCZYK PHYS. REV. D 105, 054003 (2022)

054003-6



are similar to those from the above equations. However, in
the interval of 24 GeV < pjet

T < 40 GeV, we have δ < 0

and hence this pjet
T interval was omitted in determining the

parameter dependence on hNi.
With regards to the relation between VarðNÞ and hNi, it

is observed that for R ¼ 0.4, we have a dispersion σ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðNÞp ¼ 0.33hNiþ0.23 and for R ¼ 0.6 we haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðNÞp ¼ 0.33hNi þ 0.10.1

Note that mean multiplicities hNi within the various
rapidity intervals do not depend significantly on the
rapidity interval jyj, as shown in Table III, and are similar
to hNi for the maximal interval 0 < jyj < 1.9. Similarly,
the other parameters do not differ significantly from the
corresponding parameters in the maximum rapidity range
(no systematic changes with the width of the rapidity
range).

V. CONCLUSIONS

The recurrence relation gðNÞ¼ ðNþ1ÞPðNþ1Þ=PðNÞ
leads to multiplicity distributions of the form

PðNÞ ¼ Pð0Þ
N!

YN−1

i¼0

gðiÞ: ð45Þ

For gðNÞ given by Eq. (20) with α0 ¼ 0, we have the PD for
δ ¼ 0, a sub-Poissonian distribution for δ > 0 (also known
as the Conway-Maxwell-Poisson distribution) [26–30], and
a super-Poissonian distribution for δ < 0.
However, it turns out that the multiplicity distributions in

jets prefer the recurrence relation with α0 ≠ 0, leading to
multiplicity distributions of the form given by Eq. (21). For
small hNi we observe sub-Poissonian distributions with
modified combinants oscillating as

hNiCj ∝ ð−1Þjαjþ1: ð46Þ

The parameters of themultiplicity distributions (α, α0, and δ)
depend on hNi. For large hNi, distributions are super-
Poissonian when −1 < δ < 0.2

A sub-Poissonian distribution with VarðNÞ < hNi has
not been very popular in the majority of discussions about
multiplicity distributions in high-energy physics so far

(mainly due to the fact that this phenomenon is only
observed when hNi is not too large). However, it is quite an
important distribution [17,34]. The existence of a sub-
Poissonian distribution implies at least one of the following
scenarios: 1) the underlying elementary processes are not
totally random (partially deterministic), or 2) the classical
Markov processes describing them require further gener-
alizations. Either conclusion forces us to modify the
successful stochastic approach. In our case, we have shown
that the sub-Poissonian multiplicity distributions describing
the experimental data can be naturally interpreted as
stochastic Markov processes in which the birth and death
rates are both multiplicity dependent.

ACKNOWLEDGMENTS

This research was supported in part by the National
Science Centre, Poland (NCN) Grants No. 2020/39/O/ST2/
00277 (M. R.) and No. 2016/22/M/ST2/00176 (G.W.) and
by the Polish Ministry of Science and Higher Education
Grant No. DIR/WK/2016/2018/17-1 (G.W.). H.W. A.
would like to thank the NUS Research Scholarship for
supporting this study. In preparation for this work we used
the resources of the Center for Computation and
Computational Modeling of the Faculty of Exact and
Natural Sciences of the Jan Kochanowski University in
Kielce.

APPENDIX A: RELATIONSHIP OF
COMBINANTS WITH FACTORIAL
MOMENTS AND CUMULANTS

Usually information contained in PðNÞ is obtained by
examining their corresponding factorial moments, Fq, and
cumulant factorial moments, Kq, (or their ratios)
(cf. Refs. [1,2]),

Kq ¼ Fq −
Xq−1
i¼1

�
q − 1

i − 1

�
Kq−iFi; ðA1Þ

where

Fq ¼
X∞
N¼q

NðN − 1ÞðN − 2Þ…ðN − qþ 1ÞPðNÞ ðA2Þ

are the factorial moments. As shown in Refs. [9,11], the Kq

can be expressed as an infinite series of the Cj,

Kq ¼
X∞
j¼q

ðj − 1Þ!
ðj − qÞ! hNiCj−1; ðA3Þ

and, conversely, the Cj can be expressed in terms of the
Kq [1,2],

1It is worth recalling at this point that this linear relationship,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðNÞp ¼ ahNi þ b, known as Wróblewski’s law [31], is

satisfied for a wide range of multiparticle production processes,
like pp collisions (here, a ¼ −b ¼ 0.585), both πþp and π−p
collisions (with a ¼ 0.44 for π�, b ¼ −0.22 for πþ, and b ¼
−0.9 for π−) [32], and eþe− collisions (where a ¼ 0.25 and
b ¼ 0.7) [33].

2For δ ¼ −1 we have the well-known NBD, for α0 > α > 0
(where the parameter k ¼ α0=αþ 1, if additionally α0 ¼ 0) we
would have a geometric distribution, the widest one), and for
α0 > 0 and α < 0 we would have the BD (where the parameter
K ¼ −α0=α − 1).
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Cj ¼
1

hNi
1

ðj − 1Þ!
X∞
p¼0

ð−1Þp
p!

Kpþj: ðA4Þ

Note that Cj depend only on multiplicities smaller than
their rank [14,15], while the moments Kq require knowl-
edge of all PðNÞ and therefore are very sensitive to possible
limitations of the available phase space [1,2]. On the other
hand, calculations of combinants require knowledge of
Pð0Þ, which may not always be available. Both Cj and Kq

exhibit the property of additivity.

APPENDIX B: MULTIPLICITIES FROM TWO
BINOMIAL DISTRIBUTIONS

If we have two sources producing N1 and N2 particles,
respectively, and they are distributed according to a BD
defined by the parameters ðK1; p1Þ and ðK2; p2Þ, then the
distribution of N ¼ N1 þ N2 particles,

PðNÞ ¼
Xmin ðN;K1;K2Þ

i¼0

P1ðiÞP2ðN − iÞ; ðB1Þ

is described by a generating function comprising the
product of generating functions for both sources, i.e.,

GðzÞ ¼ ð1 − p1 þ p1zÞK1 · ð1 − p2 þ p2zÞK2 : ðB2Þ

In this case, the first two moments of the distribution PðNÞ
are given by

hNi ¼ dGðzÞ
dz

����
z¼1

¼ K1p1 þ K2p2; ðB3Þ

VarðNÞ ¼ d2GðzÞ
dz2

����
z¼1

þ hNi − hNi2

¼ K1p1ð1 − p1Þ þ K2p2ð1 − p2Þ: ðB4Þ

Denoting the modified combinant of the first and second
BD components as Cð1Þj and Cð2Þj respectively, the
overall modified combinant hNiCj can be written as

hNiCj ¼ hN1iCð1Þj þ hN2iCð2Þj
¼ ð−1Þj

�
K1

�
p1

ð1 − p1Þ
�
jþ1

þ K2

�
p2

ð1 − p2Þ
�
jþ1

	
:

ðB5Þ

The value of one of the p parameters must be carefully
chosen to reflect the observed increase in the amplitude of

Cj. Setting (indicative) parameter values K1 ¼ 2, p1 ¼ 0.9
andK2 ¼ 10, p2 ¼ 0.17, we have PðNÞ andCj as shown in
Figs. 7 and 8. For this set of parameters used to fit data, we
have hNi ¼ 3.5 and VarðNÞ ¼ 1.6.
While it is possible to reasonably describe either PðNÞ or

Cj with a suitable choice of parameters, it is not yet
possible to describe both simultaneously. Figures 7 and 8
show the extent of the deviation of such an approach
from data.
It turns out that while by suitable choice of parameters,

we can describe (more or less reasonably) separately PðNÞ
or Cj, but not simultaneously both observables. Figures 7
and 8 demonstrate to what extent is it possible to get closer
to this goal in such an approach.

10

10

10

10

1

0 2 4 6 8 10

FIG. 7. Points: PðNÞ from ATLAS data for jets with 4 GeV <
pjet
T < 6 GeV and radius parameter R ¼ 0.4, over the full

measured rapidity range jyj < 1.9. The curve fitting these data
comes from the generating function given by Eq. (B2).
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FIG. 8. Comparison of Cj for multiplicity distributions from
Fig. 7. Red circles: Cj from data on PðNÞ, black squares: Cj from
Eq. (B4) obtained from theoretical PðNÞ defined by the gen-
erating function given by Eq. (B2).
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