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We analyze quark-mass and 1=Nc corrections to all of the radiative transitions between the vector-meson
nonet and the pseudoscalar-meson nonet within a chiral effective Lagrangian approach. We perform fits of
the available coupling constants to experimental data and discuss the corresponding approximations. In
terms of five (six) coupling constants, we obtain a reasonably good description of the twelve experimental
decay rates.
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I. INTRODUCTION

Because of chiral symmetry and its spontaneous sym-
metry breaking in the ground state of quantum chromo-
dynamics (QCD) [1], the members of the lowest-lying
pseudoscalar octet (π; K; η8) play a special role: they are the
Goldstone bosons [2,3] of QCD and would be exactly
massless for massless quarks. In the large-number-of-colors
(large-Nc) expansion, one considers QCD with quarks
having Nc colors transforming under the fundamental
representation of an SUðNcÞ gauge group with gauge
coupling parameter g. In the large-Nc limit [4,5], i.e.,
Nc → ∞ with g2Nc fixed, also the singlet eta, η1, would be
a Goldstone boson and would combine with the octet into a
nonet of massless Goldstone bosons [6,7]. In the real world
with Nc ¼ 3, the masses of the light pseudoscalars origi-
nate from an explicit symmetry breaking due to the quark
masses [1] and from the anomaly [8,9] of the singlet axial-
vector current [10–12]. Chiral perturbation theory (ChPT)
[13–15] provides a systematic method of analyzing the
low-energy interactions of the octet Goldstone bosons
among each other and with external sources (see, e.g.,
Refs. [16–18] for an introduction). The dynamical variables
of ChPT are the Goldstone bosons rather than the quarks
and gluons of QCD. By considering the combined chiral
and large-Nc limits, it is possible to set up large-Nc ChPTas
the effective field theory of QCD at low energies including
the singlet field [19–28].
Chiral symmetry also constrains the interactions of

Goldstone bosons with heavier, i.e., non-Goldstone-boson
hadrons, however, setting up a consistent power-counting

scheme turns out to be more complex (see, e.g.,
Refs. [29–37]). Ever since the pioneering works on non-
linear realizations of chiral symmetry [38–40], there have
been numerous approaches to the construction of chiral
effective Lagrangians including vector mesons (see, e.g.,
Refs. [14,41–51]). They differ by, first, how the Lorentz
group acts on the dynamical fields representing the vector
mesons, either in terms of a vector fieldVμ [52,53] or in terms
of an antisymmetric second-rank tensor field Tμν [54,55],
and, second, how the chiral group operates on the SU(3)
flavor degrees of freedom of the vector mesons. The vector-
mesonpseudoscalar-meson photon (VPγ) interaction respon-
sible for, e.g., the radiative decay of a vector meson into a
pseudoscalar meson is complementary to the hadronic decay
of a vector meson into two pseudoscalar mesons, because it
probes the so-called odd-intrinsic-parity sector of low-energy
QCD. In the present case, this refers to the odd number of
Goldstone bosons, namely, one, participating in the inter-
action with a single vector meson and a photon. Starting with
the early predictions based onSU(3) symmetry [56], radiative
decays of vector mesons into pseudoscalar mesons were
studied in a large number of approaches (for a review of
earlier work, see Ref. [57]). Naming just a few, these include
investigations in the framework of the quark model [58,59],
phenomenological Lagrangians [60,61], chiral effective
Lagrangians [35,62–69], QCD sum rules [70–72], and lattice
QCD [73–77].
In this work, we perform a comprehensive study of all

radiative transitions between the vector-meson nonet and
the pseudoscalar-meson nonet in the framework of a chiral
effective Lagrangian in the vector formulation, including
1=Nc and quark-mass corrections of first order. We perform
fits of the available coupling constants to experimental data
and discuss the corresponding approximations. In terms of
five (six) coupling constants, we obtain a reasonably good
description of the 12 experimental decay rates. In Sec. II,
we describe the chiral effective Lagrangian and the mixing
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of singlet and octet fields. Section III contains our con-
vention of the invariant amplitude and the calculation of the
decay rate. In Sec. IV, we present the results of our fits for
different levels of approximation. Finally, in Sec. V, we
conclude with a few remarks.

II. EFFECTIVE LAGRANGIAN

In our approach, we assume that the decay rates are
continuous functions of N−1

c andm for N−1
c ≥ 0 andm ≥ 0,

where m collectively denotes the light-quark masses. This
implies that the decay rates have a finite limit as Nc → ∞
and m → 0 and that this limit does not depend on the order
of the LNc and chiral limits.1 Since we are working at the
tree level, our results will not only automatically fulfill this
condition, but can even be written as a power series in N−1

c
and m. Of course, when calculating chiral loop corrections,
one will also pick up nonanalytical terms in the quark

masses of the type m lnðmÞ [14,15] which, however, still
vanish for m approaching zero.
In this section, we discuss the leading-order (LO)

Lagrangian and its next-to-leading-order (NLO) 1=Nc
and quark-mass corrections. The pseudoscalar dynamical
degrees of freedom are collected in the unitary 3 × 3matrix

UðxÞ ¼ exp

�
i
ΦðxÞ
F

�
: ð1Þ

In Eq. (1), F denotes the pion-decay constant in the
three-flavor chiral limit of vanishing quark masses,
mu ¼ md ¼ ms ¼ 0, and is counted as F ¼ Oð ffiffiffiffiffiffi

Nc
p Þ in

the large-Nc limit [11].2 In our numerical analysis we
take F ¼ 90.9 MeV (see Eq. (36) and Table II below).
The Hermitian 3 × 3 matrix

Φ ¼
X8
a¼1

λaϕa þ λ0ϕ0 ¼ Φ̂þ Φ̃ ¼

0
BBBBB@

π0 þ 1ffiffi
3

p η8 þ
ffiffi
2
3

q
η1

ffiffiffi
2

p
πþ

ffiffiffi
2

p
Kþ

ffiffiffi
2

p
π− −π0 þ 1ffiffi

3
p η8 þ

ffiffi
2
3

q
η1

ffiffiffi
2

p
K0

ffiffiffi
2

p
K−

ffiffiffi
2

p
K̄0 − 2ffiffi

3
p η8 þ

ffiffi
2
3

q
η1

1
CCCCCA ð2Þ

contains the pseudoscalar octet fields π; K; η8 and the pseudoscalar singlet field η1, the λa (a ¼ 1;…; 8) are the Gell-Mann
matrices, and λ0 ≡

ffiffiffiffiffiffiffiffi
2=3

p
1. The pseudoscalar fields ϕ0ðxÞ;…;ϕ8ðxÞ count as Oð ffiffiffiffiffiffi

Nc
p Þ such that in combination with

F ¼ Oð ffiffiffiffiffiffi
Nc

p Þ the matrix U is of OðN0
cÞ.

In this work, we describe the vector-meson degrees of freedom within the so-called vector-field formalism [47,51,52].
To that end we collect the vector fields in a Hermitian 3 × 3 matrix similar to Eq. (1),3

Vμ ¼
�X8

a¼1

λa
2
Va þ

λ0
2
V0

�
μ

¼ V̂μ þ Ṽμ ¼
1

2

0
BBBBB@

ρ0 þ 1ffiffi
3

p ω8 þ
ffiffi
2
3

q
ω1

ffiffiffi
2

p
ρþ

ffiffiffi
2

p
K�þ

ffiffiffi
2

p
ρ− −ρ0 þ 1ffiffi

3
p ω8 þ

ffiffi
2
3

q
ω1

ffiffiffi
2

p
K�0

ffiffiffi
2

p
K�− ffiffiffi

2
p

K̄�0 − 2ffiffi
3

p ω8 þ
ffiffi
2
3

q
ω1

1
CCCCCA

μ

: ð3Þ

In order to construct a chirally invariant Lagrangian, we
follow Gasser and Leutwyler by promoting the global
Uð3ÞL × Uð3ÞR symmetry of QCD to a local one [15]
(see, e.g., Ref [18] for a discussion). In this process,
we introduce external fields s, p, lμ, and rμ which are

Hermitian, color-neutral 3 × 3 matrices coupling to the
corresponding quark bilinears. In addition, we introduce a
real field θ coupling to the winding number density.
Introducing u ¼ ffiffiffiffi

U
p

, the chiral vielbein uμ and the
field-strength tensors f�μν are defined by [18,46,47]

uμ ¼ i½u†ð∂μ − irμÞu − uð∂μ − ilμÞu†�;
f�μν ¼ ufLμνu† � u†fRμνu; ð4Þ

where lμ and rμ denote external fields which couple to the
corresponding currents in three-flavor QCD [15]. In the
present work, these external fields, eventually, will contain

1Setting up an effective theory for baryons is more complex,
because there is more than one phenomenologically viable way to
take a large-Nc limit [78] and, moreover, the result of a combined
large-Nc and chiral limit may depend on the path how this limit is
taken [79].

3Note that we include an additional factor 1=2.

2Here, we deviate from the often-used convention of indicating
the three-flavor chiral limit by a subscript 0.
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the electromagnetic four-vector potential, and fLμν and
fRμν are the corresponding field-strength tensors,

fLμν ¼ ∂μlν − ∂νlμ − i½lμ; lν�;
fRμν ¼ ∂μrν − ∂νrμ − i½rμ; rν�:

A. Lagrangian of the pseudoscalar mesons

We first specify the Lagrangian of the pseudoscalar
sector which is relevant at next-to-leading order (see
Ref. [28] for more details). The effective Lagrangian is
organized as a simultaneous expansion in terms of
momenta p, quark masses m, and 1=Nc. Here, we follow
Ref. [20] and count the three expansion variables as small
quantities of order

p ¼ Oð
ffiffiffi
δ

p
Þ; m ¼ OðδÞ; 1=Nc ¼ OðδÞ; ð5Þ

where δ denotes a common expansion parameter. It is
understood that dimensionful quantities such as p and m
need to be small in comparison with an energy scale. We
only specify the terms appearing in the calculation of the
masses, the wave function renormalization constants, the
decay constants, and the mixing [28]. The leading-order
Lagrangian is given by [20,22]

Lð0Þ ¼ F2

4
hDμUDμU†i þ F2

4
hχU† þ Uχ†i

−
1

2
τ

� ffiffiffi
6

p η1
F
þ θ

�
2

; ð6Þ

where the symbol hi denotes the trace over flavor indices.
The covariant derivatives are defined as

DμU ¼ ∂μU − irμU þ iUlμ;

DμU† ¼ ∂μU† þ iU†rμ − ilμU†: ð7Þ

In Eq. (6), χ ¼ 2B0ðsþ ipÞ contains the external scalar and
pseudoscalar fields [15]. The low-energy constant (LEC)
B0 is related to the scalar singlet quark condensate hq̄qi0 in
the three-flavor chiral limit and is of OðN0

cÞ [20]. For the
purposes of this work we replace χ → 2B0M, whereM ¼
diagðmu;md;msÞ is the quark-mass matrix. Moreover, we
neglect effects from isospin symmetry breaking, i.e., we
work in the isospin symmetric limit mu ¼ md ¼ m̂. The
constant τ ¼ OðN0

cÞ is the topological susceptibility of the
purely gluonic theory [20]. We set the vacuum angle θðxÞ to
zero, corresponding to the absence of P andCP violation in
QCD [15].
For an introduction to the large-Nc counting, we refer,

e.g., to Refs. [28,80,81]. According to Ref. [81], the leading
contribution to a correlation function of quark bilinears is of
order Nc and contains a single quark loop. The summation
over the quark flavors running in the loop amounts to

taking a single flavor trace over the product of (flavor) λ
matrices that belong to the quark bilinears. Therefore, the
leading-order terms of the effective Lagrangian are also
expected to be single-trace terms. Similarly, diagrams with
two quark loops have two flavor traces and are down by one
order of 1=Nc. Accordingly, double-trace terms in the
effective Lagrangian are expected to be suppressed by one
order of 1=Nc. A subtlety arises because of the so-called
trace relations [82] relating linear combinations of single-
trace and multiple-trace terms such that the naive counting
may require a more thorough analysis (see Ref. [14],
Sec. 13). Taking F ¼ Oð ffiffiffiffiffiffi

Nc
p Þ into account, the first term

of Lð0Þ is ofOðp2m0NcÞ, the second ofOðp0mNcÞ, and the
third of Oðp0m0N0

cÞ, i.e., all terms are of Oðδ0Þ.
The relevant terms of the next-to-leading-order

Lagrangian are given by [22]

Lð1Þ ¼ L5hDμUDμU†ðχU† þ Uχ†Þi
þ L8hχU†χU† þ Uχ†Uχ†i

þ 1

2
Λ1Dμη1Dμη1

− i
F2

12
Λ2

� ffiffiffi
6

p η1
F
þ θ

�
hχU† − Uχ†i þ…; ð8Þ

where

Dμη1 ¼ ∂μη1 −
ffiffiffi
2

3

r
Fhaμi; ð9Þ

aμ ¼
1

2
ðrμ − lμÞ; ð10Þ

and the ellipsis refers to the suppressed terms. The LECs L5

and L8 are ofOðNcÞ [15] such that the first and second term
of Lð1Þ count as Oðp2mNcÞ and Oðp0m2NcÞ, respectively.
The LECs Λ1 and Λ2 represent quantities of OðN−1

c Þ [22]
such that the third term is of Oðp2m0N0

cÞ and the fourth
of Oðp0mN0

cÞ. Therefore, all expressions of Lð1Þ are of
order OðδÞ.

B. Lagrangian of the vector mesons

In the present case we are not interested in the interaction
of vector mesons among each other. Introducing the chiral
covariant derivative of the vector-meson fields as

DμVν ¼ ∂μVν þ ½Γμ; Vν�; ð11Þ

where the chiral connection is given by [18]

Γμ ¼
1

2
½u†ð∂μ − irμÞuþ uð∂μ − ilμÞu†�; ð12Þ

we define the field-strength tensor as
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Vμν ¼ DμVν −DνVμ: ð13Þ

The leading-order Lagrangian is then given by

LV ¼ −
1

2
hVμνVμνi þm2

VhVμVμi; ð14Þ

where mV denotes the leading-order mass common to all
vector-meson fields. We now include NLO corrections to
the mass terms of OðN−1

c Þ and OðmÞ, respectively,4

L ¼ 1

3
Δm2

ShVμihVμi þ cχ
2
hχþVμVμi; ð15Þ

where χþ is defined as

χþ ¼ u†χu† þ uχ†u: ð16Þ

C. Leading-order interaction Lagrangian

In terms of the building blocks above, the leading-order
Lagrangian, giving rise to the VPγ interaction, is given by

LLO ¼ c1ϵμνρσhfþμνfVρ; uσgi; ð17Þ

where ϵ0123 ¼ 1 and c1 is a dimensionless coupling
constant. Since ϵμνρσ and uσ are Lorentz pseudotensors
of rank 4 and 1, respectively, and fþμν and Vρ are Lorentz
tensors of rank 2 and 1, respectively, the Lagrangian of
Eq. (17) is even under parity. Moreover, the anticommu-
tator is required in Eq. (17) to generate positive charge-
conjugation parity (see, e.g., Ref. [18] for more details).
In order to describe the coupling to an external electro-

magnetic field, we insert lμ ¼ rμ ¼ −eQAμ, where e > 0 is
the proton charge (e2=ð4πÞ ≈ 1=137), Q denotes the quark-
charge matrix, and Aμ is the electromagnetic four-vector
potential. Regarding the large-Nc behavior of Q, we make
use of the form proposed by Bär and Wiese [83]. They
pointed out that, when considering the electromagnetic
interaction of quarks with an arbitrary number of colors, the
cancelation of triangle anomalies in the large-Nc Standard
Model requires the following replacement of the ordinary
quark-charge matrix,

Q ¼

0
BB@

2
3

0 0

0 − 1
3

0

0 0 − 1
3

1
CCA →

0
BB@

1
2Nc

þ 1
2

0 0

0 1
2Nc

− 1
2

0

0 0 1
2Nc

− 1
2

1
CCA

¼

0
BB@

1
2

0 0

0 − 1
2

0

0 0 − 1
2

1
CCAþ 1

2Nc
1≡Q0 þQ1: ð18Þ

Expanding the building blocks in the Goldstone-boson
fields and keeping only the linear term in the expansion
amounts to the replacements

fþμν → −2eQFμν; uσ → −
∂σΦ
F

; ð19Þ

where Fμν ¼ ∂μAν − ∂νAμ is the electromagnetic field-
strength tensor. Thus, the LO VPγ interaction
Lagrangian, obtained from a nonlinearly realized chiral
symmetry, reads

LVPγ
LO ¼ 2e

c1
F
ϵμνρσFμνhQfVρ; ∂σΦgi: ð20Þ

The expansion of Eq. (20) in terms of the singlet and octet
fields is given in the Appendix. When inserting Eq. (18)
for the quark-charge matrix into Eq. (20), we obtain the
leading-order contribution proportional to Q0 and a 1=Nc
correction proportional to Q1. When discussing our
results in Sec. IV, we will keep both scenarios in mind,
i.e., we will compare the results obtained from using the
physical quark-charge matrix Q with Nc ¼ 3 with the
expanded version truncated at order 1=Nc and putting
Nc ¼ 3 at the end.

D. Next-to-leading-order interaction Lagrangian

The NLO 1=Nc corrections to the Lagrangian of Eq. (17)
are obtained in terms of expressions involving two flavor
traces of the same building blocks,

LNLO;1=Nc
¼ c2ϵμνρσhVρihfþμνuσi þ c3ϵμνρσhfþμνVρihuσi
þ c4ϵμνρσhfþμνihVρuσi: ð21Þ

Performing the replacements of Eq. (19), we obtain from
Eq. (21) the 1=Nc correction to the VPγ interaction
Lagrangian,

LVPγ
NLO;1=Nc

¼ 2
e
F
ϵμνρσFμνðc2hVρihQ∂σΦiþc3hQVρih∂σΦi

þc4hQihVρ∂σΦiÞ: ð22Þ

The first (c2) term contributes to the singlet vector meson
transitions, the second (c3) term to the singlet pseudoscalar
transitions, and the last (c4) term vanishes for physical

4For the sake of simplicity, we do not include corrections of the
kinetic term. Δm2

S and cχ are of order OðN−1
c Þ and OðN0

cÞ,
respectively.
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quark charges, because hQi ¼ 0 in this case. For the
expressions in terms of the singlet and octet fields, see
Appendix. For Nc ¼ 3, the Lagrangians of Eqs. (20) and
(22) do not generate a singlet-to-singlet transition. This is a
result of SU(3) symmetry [60], because the electromagnetic
current operator, consisting of octet components, cannot
couple a singlet to a singlet. This argument no longer works
for general Nc, because the electromagnetic current oper-
ator now also develops a singlet component.
Finally, we consider quark-mass corrections in terms of

the building blocks

χ� ¼ u†χu† � uχ†u: ð23Þ

Considering only single-trace terms, the quark-mass cor-
rections are given by

LNLO;χ ¼ c5ϵμνρσhχþfþμνfVρ; uσgi
þ c6ϵμνρσhχþVρfþμνuσ þ χþuσfþμνVρi
þ ic7ϵμνρσhffþμν; ∂ρVσgχ−i
þ ic8ϵμνρσhf−μν½∂ρVσ; χþ�i: ð24Þ

Again, making the replacements of Eq. (19), in combina-
tion with

χþ→4B0M; χ−→−2i
B0

F
fM;Φg; f−μν→ i

e
F
Fμν½Q;Φ�;

ð25Þ

and performing a partial integration, we obtain from
Eq. (24) the first-order quark-mass correction to the VPγ
interaction Lagrangian,

LVPγ
NLO;χ ¼ 4B0

e
F
ϵμνρσFμνðcþhfQ;VρgfM; ∂σΦgi

þ c−h½Q; ∂σΦ�½Vρ;M�iÞ; ð26Þ

where cþ ¼ c5 þ c6 − c7 and c− ¼ c5 − c6 − c8. As we
will see later on, the c− term contributes only to the
radiative transition of the K��.
At this stage, we have collected the relevant Lagrangians

including the leading 1=Nc and quark-mass corrections.
Note that we consider corrections of the type 1=Nc × χ as
of higher order.

E. Field renormalization and mixing

Before turning to the evaluation of the transition matrix
element, we need to address two issues. First, the
Lagrangians of the previous sections were expressed in
terms of bare fields. Although we are only working at the
tree level, the terms proportional to L5 and Λ1 contribute to
the field renormalization constants. Second, the breaking of
SU(3) symmetry due to the quark masses as well as the

chiral anomaly generate a mixing of the singlet and octet
fields. We neglect effects from isospin symmetry breaking,
i.e., we work in the isospin symmetric limitmu ¼ md ¼ m̂.
To the order we are considering, the connection between

the bare pion/kaon fields ϕi and the renormalized pion/
kaon fields ϕR

i is given by

ϕi ¼
ffiffiffiffiffiffi
Zπ

p
ϕR
i ;

ffiffiffiffiffiffi
Zπ

p
¼ 1−4

M
∘ 2

π

F2
L5; i¼ 1;2;3;

ϕi ¼
ffiffiffiffiffiffi
ZK

p
ϕR
i ;

ffiffiffiffiffiffi
ZK

p
¼ 1−4

M
∘ 2

K

F2
L5; i¼ 4;5;6;7; ð27Þ

where M
∘ 2

π ¼ 2B0m̂ and M
∘ 2

K ¼ ðms þ m̂ÞB0 denote the
lowest-order predictions for the squared pion and kaon
masses, respectively. For the expression of the mixing of
the pseudoscalar fields, we make use of the results of
Ref. [28]. Denoting the bare fields by η1 and η8 and the
renormalized physical fields by ηR and η0R, we make use of

η8 ¼
��

1 −
1

2
δ8

�
cosðθPÞ þ

1

2
δ81 sinðθPÞ

�
ηR

þ
��

1 −
1

2
δ8

�
sinðθPÞ −

1

2
δ81 cosðθPÞ

�
η0R;

η1 ¼
�
−
1

2
δ81 cosðθPÞ −

�
1 −

1

2
δ1 sinðθPÞ

��
ηR

þ
�
−
1

2
δ81 sinðθPÞ þ

�
1 −

1

2
δ1

�
cosðθPÞ

�
η0R; ð28Þ

where

δ8 ¼
8ð4M∘ 2

K −M
∘ 2

πÞ
3F2

L5;

δ1 ¼
8ð2M∘ 2

K þM
∘ 2

πÞ
3F2

L5 þ Λ1;

δ81 ¼ −
16

ffiffiffi
2

p ðM∘ 2

K −M
∘ 2

πÞ
3F2

L5:

Using the numerical values for the masses and low-energy
constants from the next subsection, we obtain for the

pseudoscalar mixing angle the values θ½0�P ¼ −19.7° and

θ½1�P ¼ −12.4° at leading order and next-to-leading order,
respectively. These values are representative and cover
the range for θP between −10° and −20° reported in
Ref. [84].
In the case of the vector mesons, we only consider ϕ − ω

mixing in the form

�
ϕ

ω

�
¼
�
cosðθVÞ −sinðθVÞ
sinðθVÞ cosðθVÞ

��
ω8

ω1

�
≡RV

�
ω8

ω1

�
: ð29Þ
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The diagonal mass matrix of the physical fields is related
to the symmetric mass matrix in the octet-singlet
basis, including the NLO corrections of OðN−1

c Þ and
OðmÞ, via

M2
V;phys ¼

�
m2

ϕ 0

0 m2
ω

�
¼ RV

�
m2

8 m2
81

m2
81 m2

1

�
RT
V; ð30Þ

where, to the order we are working at,

m2
8 ¼ m2

V þ cχ
3
ð4M∘ 2

K −M
∘ 2

πÞ;

m2
1 ¼ m2

V þ Δm2
S þ

cχ
3
ðM∘ 2

π þ 2M
∘ 2

KÞ;

m2
18 ¼ −

2
ffiffiffi
2

p
cχ

3
ðM∘ 2

K −M
∘ 2

πÞ:

The mixing angle is obtained from the relation

tanðθVÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ −m2
8

m2
8 −m2

ω

s
; ð31Þ

where m2
8 satisfies, to the order we are working at,

m2
8 ¼

1

3
ð4m2

K� −m2
ρÞ;

resulting in

tanðθVÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m2

ϕ þm2
ρ − 4m2

K�

4m2
K� −m2

ρ − 3m2
ω

s
:

For the mixing angle we obtain θV ¼ 39.8°, which turns
out to be close to the ideal mixing θV ¼ 35.3°, correspond-
ing to ϕ ¼ −ss̄ and ω ¼ ðuūþ dd̄Þ= ffiffiffi

2
p

in the quark
model,

ϕideal ¼
ffiffiffi
2

3

r
ω8 −

1ffiffiffi
3

p ω1;

ωideal ¼
1ffiffiffi
3

p ω8 þ
ffiffiffi
2

3

r
ω1: ð32Þ

F. Numerical values for masses and parameters

For the empirical masses of the pseudoscalar mesons and
the vector mesons we make use of the values given in
Table I [84]. For the decay constants we take Fπ ¼
92.2 MeV and FK ¼ 110: MeV [84].5 The predictions
for the squared pion and kaon masses are obtained
from the one-loop expressions of chiral perturbation

theory [15,17] by dropping the loop contributions and
the tree-level contributions proportional to L6 and L4,

M2
π ¼ 2Bm̂

�
1þ 16Bm̂

F2
ð2L8 − L5Þ

�
;

M2
K ¼ Bðms þ m̂Þ

�
1þ 8Bðms þ m̂Þ

F2
ð2L8 − L5Þ

�
:

In terms of the quark mass ratio r [84],

r ¼ ms

m̂
¼ 27.37; ð33Þ

we obtain for the lowest-order squared pion and kaon
masses

M
∘ 2

π ¼
rþ 1

r − 1
M̄2

π þ 4
M̄2

K

1 − r2
;

M
∘ 2

K ¼ ð1þ rÞ2M̄2
π − 4M̄2

K

2ðr − 1Þ ; ð34Þ

where

M̄π ¼
Mπ0 þMπ�

2
and M̄K ¼ MK0 þMK�

2
:

Using, in addition, the expressions for the pion and kaon
decay constants Fπ and FK,

Fπ ¼ F

�
1þ 4

M
∘ 2

π

F2
L5

�
;

FK ¼ F

�
1þ 4

M
∘ 2

K

F2
L5

�
; ð35Þ

we can write

F ¼ M
∘ 2

KFπ −M
∘ 2

πFK

M
∘ 2

K −M
∘ 2

π

;

L5 ¼
FðFπ − FÞ

4M
∘ 2

π

;

L8 ¼
F2

4ð1 − r2ÞM∘ 4

π

�
1þ r
2

M̄2
π − M̄2

K

�
þ L5

2
: ð36Þ

TABLE I. Masses of the pseudoscalar mesons and the vector
mesons in MeV.

Mπ� Mπ0 MK� MK0=K̄0 Mη Mη0

139.6 135.0 493.7 497.6 547.9 957.8

mρ� mρ0 mK�� mK�0=K̄�0 mω mϕ

775.1 775.3 891.8 895.6 782.7 1019.5

5Here and in the following, an integer followed by a point
denotes a rounded number rather than an exact integer.
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The corresponding values for M
∘
π, M

∘
K , F, L5, and L8 are

given in Table II.

III. INVARIANT MATRIX ELEMENT
AND DECAY RATE

The invariant amplitude of the decay Vðp; ϵVÞ →
PðkÞ þ γðq; ϵÞ may be parametrized as6

M ¼ −2ieAϵμνρσqμϵ�νðqÞϵVρðpÞkσ; ð37Þ

where four-momentum conservation p ¼ kþ q is implied,
ϵ and ϵV denote the polarization vectors of the photon and
the vector meson, respectively, and the amplitude A is
determined from the Lagrangians of Eqs. (20), (22), and
(26). The invariant amplitude for the decay PðkÞ →
Vðp; ϵVÞ þ γðq; ϵÞ is obtained from Eq. (37) by substituting
ϵV → ϵ�V and k → −k.
In the rest frame of the initial-state particle, the differ-

ential decay rate for the decay AðpAÞ → BðpBÞ þ γðqÞ is
given by [85]

dΓ¼ 1

2mA
jMj2 d3pB

2EBð2πÞ3
d3q

2Eγð2πÞ3
ð2πÞ4δ4ðpA −pB−qÞ;

ð38Þ

where EB and Eγ denote the energies of the decay product
B and the real photon, respectively. When averaging over
the initial polarizations and summing over the final polar-
izations, we make use of the “completeness relations” [53]
for the polarization vectors of the photon and the vector
meson, respectively,7X

λ¼�1

ϵ�νðq; λÞϵν0 ðq; λÞ ¼ −gνν0 ;

Xþ1

λ¼−1
ϵVρðp; λÞϵ�Vρ0 ðp; λÞ ¼

�
−gρρ0 þ

pρpρ0

m2
V

�
;

where mV is the mass of the vector meson. Using [86]

ϵμνρσϵμ
0
νρ

0σ0 ¼ −detðgαα0 Þ; α ¼ μ;ρ;σ; α0 ¼ μ0;ρ0;σ0;

in combination with the on-shell conditions p2
A ¼ m2

A,
p2
B ¼ m2

B, and q2 ¼ 0, we obtain

jMj2 ¼ cA2e2jAj2ðm2
A −m2

BÞ2;

where cA ¼ 1=3 for a vector meson in the initial state
and cA ¼ 1 for a pseudoscalar meson in the initial state.
Using [53]

d3q
2Eγ

¼ d4qδðq2ÞΘðq0Þ;

we obtain for the decay rate

ΓA→Bγ ¼
1

2mA

Z
d3pB

2EBð2πÞ3
d3q

2Eγð2πÞ3
ð2πÞ4

× δ4ðpA − pB − qÞjMj2

¼ 1

16π2mA

Z
d3pB

EB

Z
d4qδðq2ÞΘðq0Þ

× δ4ðpA − pB − qÞjMj2

¼ cA
e2jAj2
8π

�
m2

A −m2
B

mA

�
3

: ð39Þ

IV. RESULTS AND DISCUSSION

Starting from the expression for the decay rate, Eq. (39),
we determine the low-energy coupling constants of the
interaction Lagrangians by fitting the corresponding
expressions to the available experimental data. For the
masses of the pseudoscalar mesons and the vector mesons
we make use of the values given in Table I. The exper-
imental partial widths were calculated with the aid of the
PDG values of the total widths in combination with the
corresponding branching ratios [84] (see second column of
Table III).

A. Leading order

In the following, we investigate different levels of
approximation and compare the different scenarios. To
that end, we start with the results corresponding to the
leading-order Lagrangian of Eq. (20) in combination with
the pseudoscalar mixing angle obtained at leading order,

θ½0�P ¼ −19.7°, and the vector mixing angle corresponding
to ideal mixing, i.e., cosðθVÞ¼

ffiffiffiffiffiffiffiffi
2=3

p
and sinðθVÞ ¼ 1=

ffiffiffi
3

p
.

When fitting the data, we made use of the Mathematica
package NonLinearModelFit [87]. In order to facili-
tate identifying which decays are well described and which
are not, we introduce both a relative deviation and a
deviation normalized with respect to the uncertainties as

TABLE II. Numerical values of lowest-order pion and kaon
masses and LECs.

M
∘
π M

∘
K F L5 L8

137.7 MeV 518.7 MeV 90.9 MeV 1.62 × 10−3 0.642 × 10−3

6We follow the convention of Ref. [85] such that the
invariant amplitude is obtained from iLint.

7As usual it is assumed that the photon polarization vector is
contracted with the matrix element of the conserved electromag-
netic current.
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δ1 ¼
Γmod − Γexp

Γexp
; δ2 ¼

Γmod − Γexpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2mod þ σ2exp

q : ð40Þ

Here, σexp and σmod denote the experimental uncertainty
and the estimated model uncertainty, respectively. As a rule
of thumb, values for jδ2j larger than one indicate tension
between the model and the experimental results. The result
of the fit to the data is shown in Table III with
jc1j ¼ ð3.82� 0.25Þ × 10−2. Note that because of the
Okubo-Zweig-Iizuka (OZI) rule [88–90], at leading order,
the decay rate for ϕ → π0γ vanishes as Nc → ∞, inde-
pendently from the value of the coupling constant c1.
Therefore, we have excluded this decay from the fit.
Neglecting η − η0 mixing, i.e., taking θP ¼ 0°, the lead-
ing-order Lagrangian results generate the same ratios of the
magnitudes of the decay amplitudes as the quark model
with SU(6) symmetry [58].
In general, the numbers of the tables were rounded at the

end of the calculation. Since the decay rate is a function of
jAj2, it is not possible to extract the sign of c1. For the sake
of simplicity, we assume c1 > 0 such that the signs of the
remaining coupling constants, to be determined below, will
be given with respect to a positive c1. Except for the decays
ω → ηγ and ϕ → η0γ, the theoretical partial decay widths
are smaller than the experimental ones. Furthermore, we
note that only for the decay ω → ηγ we find a deviation jδ2j
which is smaller than one. Using the experimental uncer-
tainties, we obtain for the reduced chi-squared,

χ2red ¼
1

ν

X11
i¼1

ðΓexp
i − ΓLO

i Þ2
σ2i

¼ 94:;

where, omitting ϕ → π0γ, the number of degrees of free-
dom is ν ¼ 11 − 1 ¼ 10 at leading order. We conclude that
a description in terms of a single coupling constant c1 does
not provide a good description of the twelve decays.

B. 1=Nc corrections

In the next scenario, we consider the 1=Nc corrections,
but still stick to the SU(3) symmetry of the interaction
terms. For the ϕ − ω mixing we still take ideal mixing.
Using M̄2 ¼ M2

K ¼ M2
π in the SU(3)-symmetric case, we

find from Eq. (A5) of the Appendix that the quark-mass
corrections simply result in a shift of the coupling constant
c1 of the leading-order Lagrangian, i.e., c1 → c̃1 ¼
c1 þ 2M̄2cþ. On the other hand, the 1=Nc corrections
(see Table XIV of the Appendix) affect both the ρ0η1 and
ω8η1 transitions in terms of the replacement c̃1 → c̃1 þ 3

2
c3

and, similarly, both the π0ω1 and η8ω1 transitions in terms
of the replacement c̃1 → c̃1 þ 3

2
c2. The results of the fit for

the SU(3)-symmetric case are shown in Table IV. The
reduced chi-squared is now 45. (for twelve decays and
9 degrees of freedom) in comparison with 94. of the
LO fit. The effective coupling constant c̃1 comes out as
c̃1 ¼ ð3.36� 0.20Þ × 10−2. Therefore, the decay rates for
ρ → πγ and K� → Kγ, which are not affected by c2 and c3,
are reduced by the factor ðc̃1=c1Þ2 ¼ 0.77. For the other
decays, the situation is more complex. Even though the

TABLE III. Comparison of the decay rates at LO with experimental values [84].

Decay Γexp (keV) ΓLO (keV) Deviation δ1 Deviation δ2

ρ0 → π0γ 70:� 12: 40.7� 5.4 −0.42 −2.3
ρ� → π�γ 67.1� 7.5 40.4� 5.3 −0.40 −2.9
ρ0 → ηγ 44.7� 3.1 33.7� 4.5 −0.25 −2.0
ω → π0γ 723:� 25: 364:� 48: −0.50 −6.6
ω → ηγ 3.91� 0.35 4.07� 0.54 0.041 0.25
ϕ → π0γ 5.61� 0.26 … … …
ϕ → ηγ 55.4� 1.1 48.1� 6.4 −0.13 −1.1
ϕ → η0γ 0.2643� 0.0090 0.439� 0.058 0.66 3.0
K�0 → K0γ 116:� 10: 91:� 12: −0.22 −1.6
K�� → K�γ 50.4� 4.7 22.6� 3.0 −0.55 −5.0
η0 → ρ0γ 55.5� 1.9 30.7� 4.1 −0.45 −5.6
η0 → ωγ 4.74� 0.20 3.06� 0.40 −0.35 −3.7

TABLE IV. Decay rates including1=Nc corrections in the SU(3)-
symmetric case. For the experimental values, see Table III.

Decay ΓLOþ1=Nc (keV) Deviation δ1 Deviation δ2

ρ0 → π0γ 31.6� 3.7 −0.55 −3.1
ρ� → π�γ 31.3� 3.7 −0.53 −4.3
ρ0 → ηγ 23.2� 3.2 −0.48 −4.8
ω → π0γ 400:� 35: −0.45 −7.6
ω → ηγ 5.64� 0.63 0.44 2.4
ϕ → π0γ 5.4� 1.7 −0.039 −0.13
ϕ → ηγ 59.1� 6.1 0.066 0.59
ϕ → η0γ 0.298� 0.056 0.13 0.60
K�0 → K0γ 70.5� 8.4 −0.39 −3.5
K�� → K�γ 17.6� 2.1 −0.65 −6.4
η0 → ρ0γ 46.5� 4.1 −0.16 −2.0
η0 → ωγ 5.44� 0.67 0.15 1.0
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transitions ω8 → η8γ, ω1 → η1γ, ρ0 → η8γ, and ω8 → π0γ
are still described in terms of c̃1, because of the mixing of
Eqs. (28) and (29), all of the remaining physical decays
beyond ρ → πγ and K� → Kγ contain c̃1 as well as c2 ¼
ð0.67� 0.10Þ × 10−2 and c3 ¼ ð−0.39� 0.25Þ × 10−2.

C. 1=Nc and quark-mass corrections

SU(3) symmetry implies that the amplitudes A of
the decays ρ → πγ, K�� → K�γ, and K�0 → K0γ satisfy
the relations jAρ→πγj ¼ jAK��→K�γj and jAK�0→K0γj ¼
2jAK��→K�γj [57,58] (see also Table XIV). Using
Eq. (39) together with the physical masses of Table I
and the experimental decay rates of Table III, one
obtains jAρ�→πγj=jAK��→K�γj ¼ 0.909 and jAK�0→K0γj=
jAK��→K�γj ¼ 1.59, amounting, at the amplitude level, to
an SU(3)-symmetry breaking of about 9% and 20%,
respectively. This is of the same order of magnitude as
the relative difference between the decay constants Fπ and
FK , ðFK − FπÞ=FK ¼ 16%. The experimental decay rates
for ω → π0γ and ρ0 → π0γ result in jAω→π0γj=jAρ0→π0γj ¼
2.88, very close to 3, the leading-order large-Nc prediction.
In the next step, we include the SU(3)-symmetry-break-

ing terms. With regard to the vector mesons, we now have
to consider the ϕ − ω mixing at next-to-leading order with
a mixing angle of θV ¼ 39.8°.8 For the decays involving
pions and kaons, we need to take the wave function
renormalization constants of Eqs. (27) into account. In
terms of the pion and kaon decay constants of Eqs. (35),
this amounts to replacing in the leading-order Lagrangian
of Eq. (20) the decay constant F by the physical Fπ and FK
in the corresponding cases. With reference to the
Lagrangians of Eqs. (22) and (26) such replacement is

of higher order. For the decays that involve an η or η0, the
situation is more complicated because of the mixing. Here,
we make use of Eqs. (28) in combination with the NLO

mixing angle θ½1�P ¼ −12.4°. Equations (28) introduce one
additional, so far unspecified LEC of order 1=Nc, namely,
Λ1, originating from the NLO kinetic Lagrangian of
Eq. (8). We performed three fits with Λ1 ¼ −1=3; 0; 1=3,
yielding the results shown in Table V.
Since the results turned out to be highly dependent on the

value of the Λ1 parameter, we performed fits that included
Λ1 as a free parameter in addition to the ci parameters. In
this context, we also consider two different scenarios: in the
first case (denoted by I) we calculate the amplitude up to
and including NLO and fit its square, whereas in the second
case (II) we fit the squared amplitude only up to and
including NLO. In other words, in the second case we do
not keep terms of the order NNLO ¼ NLO × NLO in the
decay rate. Omitting for notational convenience the sum-
mation or averaging over the spins, we thus consider9

(i) jMIj2 ¼ jMLOj2 þ 2ReðMLOM�
NLOÞ þ jMNLOj2,

(ii) jMIIj2 ¼ jMLOj2 þ 2ReðMLOM�
NLOÞ.

The results for the two fits are shown in Table VI. Judging
from the value of the reduced chi-squared, χ2red ¼ 6.1, we
conclude that the second method provides the best descrip-
tion of the data. The corresponding set of parameters is
given by

c1 ¼ 0.0522� 0.0020; c2 ¼ −0.00100� 0.00021;

c3 ¼ 0.00272� 0.00072;

cþ ¼ ð2.80� 0.78Þ · 10−9 MeV−2;

c− ¼ ð−6; 1� 43.9Þ · 10−9 MeV−2;

Λ1 ¼ 0.290� 0.050: ð41Þ

TABLE V. Decay rates including 1=Nc and quark-mass corrections for Λ1 ¼ −1=3; 0; 1=3. For the mixing angles

we made use of the NLO values θV ¼ 39.8° and θ½1�P ¼ −12.4°.

Decay Γexp (keV) Γ (keV), Λ1 ¼ − 1
3

Γ (keV), Λ1 ¼ 0 Γ (keV), Λ1 ¼ 1
3

ρ0 → π0γ 70:� 12: 32:� 12: 52.4� 9.8 71.5� 6.4
ρ� → π�γ 67.1� 7.5 32:� 12: 52.0� 9.7 71.0� 6.4
ρ0 → ηγ 44.7� 3.1 21.4� 8.0 37.4� 6.3 54.2� 4.1
ω → π0γ 723:� 25: 299:� 87: 459:� 69: 610:� 46:
ω → ηγ 3.91� 0.35 1.95� 0.63 3.32� 0.50 4.64� 0.33
ϕ → π0γ 5.61� 0.26 4.5� 2.3 5.0� 1.4 5.65� 0.77
ϕ → ηγ 55.4� 1.1 52.0� 9.7 53.9� 6.0 56.1� 3.3
ϕ → η0γ 0.2643� 0.0090 0.26� 0.82 0.258� 0.050 0.254� 0.027
K�0 → K0γ 116:� 10: 86:� 16: 111:� 11: 135.7� 6.9
K�� → K�γ 50.4� 4.7 50:� 43: 50:� 26: 50:� 14:
η0 → ρ0γ 55.5� 1.9 70.1� 9.1 62.0� 4.7 48.1� 2.0
η0 → ωγ 4.74� 0.20 6.6� 1.3 6.48� 0.72 5.40� 0.30

χ2red … 84. 32. 9.4

8Since we did not take any corrections to the kinetic term into
account, the wave function renormalization constants are still 1
for the vector mesons. 9Our previous results thus correspond to the first case.
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In Fig. 1, we present a visual comparison of the decay
rates at leading order (red, middle entries) and at next-to-
leading order in scenario II (blue, lower entries) with the
experimental results (black, upper entries). Here, a clear
improvement in the description of the decay rates can be
seen in the transition from LO to NLO. To enable a
quantitative comparison, we also show the deviations δ1
and δ2 of Eqs. (40) for our best-fit results in Table VII.
Since our calculation is valid up to and including order
1=Nc and order χ, we expect uncertainties of the order offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=NcÞ4 þ ðM∘ K=ð4πFÞÞ8

q
. Inserting Nc ¼ 3 and the

values of Table II for M
∘
K and F, this amounts to relative

deviations of the order of 12%. After inspecting the column
“deviation δ1” of Table VII, we find that the relative
deviation for almost all decays is more or less within this
deviation. A notable exception is the decay ρ0 → ηγ with
δ1 ¼ 16%. The deviations δ2 ¼ 1.5, δ2 ¼ −1.6, and δ2 ¼
−1.7 for the decays ρ0 → ηγ, ω → π0γ, and η0 → ρ0γ,
respectively, hint at some tension, which will be partially
resolved after refining the model. The linear combination
c− ¼ c5 − c6 − c8 only enters the charged decay K�� →
K�γ (see Table XIV of the Appendix). Therefore, the
central values of the experiment and of the fit coincide. As a
consequence, the remaining linear combination,
cþ ¼ c5 þ c6 − c7, is essentially the only parameter avail-
able to describe SU(3)-symmetry-breaking effects.
In Table VIII, we present the correlation coefficients

hδciδcji=ðδciδcjÞ for our best fit of Table VII. As one
might expect, the strongest correlation exists between
parameters c1 and cþ, because the linear combination
c̃1 ¼ c1 þ 2M2

πcþ contributes to all decays. There is
also an equally strong correlation between c1 and c2.

The parameter c2 only contributes to the transitions between
the vector-meson singlet and the pseudoscalar-meson octet.
There is a slightly smaller correlation between c2 and cþ.
Finally, the last notable correlations exist between the
parameter Λ1, which is of order 1=Nc, and the parameters
c1 and c3. The remaining correlations are negligibly small.

D. Expansion of the quark-charge matrix in 1=Nc

As our final example, we also include the expansion of
the quark-charge matrix in 1=Nc [see Eq. (18)]. As a

TABLE VI. Decay rates using the two scenarios described in
the text. In both cases Λ1 is treated as a fit parameter. For the
mixing angles we made use of the NLO values θV ¼ 39.8° and

θ½1�P ¼ −12.4°.

Decay ΓPDG (keV) ΓI (keV) ΓII (keV)

ρ0 → π0γ 70:� 12: 70.3� 7.5 74.8� 5.7
ρ� → π�γ 67.1� 7.5 69.8� 7.5 74.2� 5.7
ρ0 → ηγ 44.7� 3.1 53.0� 5.5 51.9� 3.7
ω → π0γ 723:� 25: 601:� 55: 640:� 44:
ω → ηγ 3.91� 0.35 4.53� 0.46 4.31� 0.28
ϕ → π0γ 5.61� 0.26 5.61� 0.84 5.65� 0.64
ϕ → ηγ 55.4� 1.1 56.0� 3.6 55.7� 2.7
ϕ → η0γ 0.2643� 0.0090 0.255� 0.029 0.265� 0.022
K�0 → K0γ 116:� 10: 133.8� 8.8 128.3� 7.2
K�� → K�γ 50.4� 4.6 50:� 15: 50:� 12:
η0 → ρ0γ 55.5� 1.9 49.4� 4.2 49.6� 3.0
η0 → ωγ 4.74� 0.20 5.52� 0.48 5.26� 0.39

χ2red … 9.2 6.1
Λ1 … 0.307� 0.074 0.290� 0.050

FIG. 1. Comparison of the decay rates at leading order (red,
middle entries) and at next-to-leading order in scenario II (blue,
lower entries) with the experimental results (black, upper entries).
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consequence of this expansion, also the c4 interaction
Lagrangian of Eq. (22) contributes to the invariant ampli-
tudes (see TableXVof theAppendix). Using the expressions
of Table XV of the Appendix and applying scenario II of
Sec. IV C, we obtain the results shown in Table IX. In fact,
this scenario provides us with one additional parameter and
it is therefore not surprising that χ2red ¼ 2.8 (5 degrees of

freedom) is smaller than the corresponding value χ2red ¼ 6.6
of Table VI. The parameters of the fit are given by

c1 ¼ 0.0536� 0.0013;

c2 ¼ −0.000613� 0.000078;

c3 ¼ 0.00109� 0.00027;

c4 ¼ 0.00142� 0.00055;

cþ ¼ ð1.05� 0.45Þ · 10−9 MeV−2;

c− ¼ ð5.1� 1.6Þ · 10−9 MeV−2;

Λ1 ¼ 0.247� 0.032: ð42Þ

In Fig. 2,we present a visual comparison of the decay rates at
NLO in scenario II (blue, middle entries) and at NLO
including a quark-charge expansion (green, lower entries)
with the experimental results (black, upper entries). Except

TABLE VII. Decay rates using the second scenario described in the text together with the deviations δ1 and δ2 of
Eqs. (40).

Decay ΓPDG (keV) ΓNLO (keV) Deviation δ1 Deviation δ2

ρ0 → π0γ 70:� 12: 74.8� 5.7 0.066 0.35
ρ� → π�γ 67.1� 7.5 74.2� 5.7 0.11 0.76
ρ0 → ηγ 44.7� 3.1 51.9� 3.7 0.16 1.5
ω → π0γ 723:� 25: 640:� 44: −0.11 −1.6
ω → ηγ 3.91� 0.35 4.31� 0.28 0.10 0.89
ϕ → π0γ 5.61� 0.26 5.65� 0.64 0.007 0.060
ϕ → ηγ 55.4� 1.1 55.7� 2.7 0.005 0.093
ϕ → η0γ 0.2643� 0.0090 0.265� 0.022 −0.002 −0.017
K�0 → K0γ 116:� 10: 128.3� 7.2 0.11 1.0
K�� → K�γ 50.4� 4.6 50:� 12. … …
η0 → ρ0γ 55.5� 1.9 49.6� 3.0 −0.11 −1.7
η0 → ωγ 4.74� 0.20 5.26� 0.39 0.11 1.2

TABLE VIII. Off-diagonal array containing the correlation
coefficients hδciδcji=ðδciδcjÞ of the parameters ci for the fit
of Table VII.

c2 −0.73
c3 0.033 0.14
cþ −0.78 0.46 0.16
c− 0.21 −0.16 0.020 −0.13
Λ1 0.50 −0.19 0.50 −0.29 0.11

c1 c2 c3 cþ c−

TABLE IX. Decay rates using the second scenario described in the text, including an expansion of the quark-
charge matrix in 1=Nc. For the mixing angles we made use of the NLO values θV ¼ 39.8° and θ½1�P ¼ −12.4°.
χ2red ¼ 2.8 (5 degrees of freedom).

Decay ΓPDG (keV) Γmod in keV δ1 δ2

ρ0 → π0γ 70:� 12: 65.5� 5.6 −0.066 −0.35
ρ� → π�γ 67.1� 7.5 65.0� 5.6 −0.031 −0.23
ρ0 → ηγ 44.7� 3.1 51.5� 2.4 0.15 1.7
ω → π0γ 723:� 25: 689:� 30: −0.047 −0.87
ω → ηγ 3.91� 0.35 3.80� 0.44 −0.028 −0.19
ϕ → π0γ 5.61� 0.26 5.69� 0.43 0.014 0.16
ϕ → ηγ 55.4� 1.1 55.0� 1.8 −0.0070 −0.18
ϕ → η0γ 0.2643� 0.0090 0.266� 0.015 0.0058 0.090
K�0 → K0γ 116:� 10: 138.6� 5.2 0.19 2.0
K�� → K�γ 50.4� 4.6 50.4� 7.9 … …
η0 → ρ0γ 55.5� 1.9 53.4� 2.4 −0.038 −0.69
η0 → ωγ 4.74� 0.20 4.87� 0.31 0.027 0.34
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for the decays ρ0 → ηγ and K�0 → K0γ, we obtain an
excellent agreement between experiment and theory.

E. Coupling constants and convergence

We have organized the Lagrangians in terms of 1=Nc and
the quark massesm (contained in the quantities χ�). For the
number of colors we insert Nc ¼ 3 and, with respect to the
quark-mass expansion, we considerM2

K=ð4πFÞ2 ≈ 1=4 as a
typical small dimensionless expansion parameter, where

Λχ ¼ 4πF denotes the chiral-symmetry-breaking scale
[91]. In Table X, we collect the coupling constants as
obtained from fitting the data using different levels of
approximation. The second column (LO) refers to the

leading-order Lagrangian with θP ¼ θ½0�P ¼ −19.7° and
ideal ϕ − ω mixing, the third column (LO+1=Nc) to the

leading-order Lagrangian plus 1=Nc corrections with θP ¼
θ½0�P ¼ −19.7° and ideal ϕ − ωmixing, the fourth column to
the complete next-to-leading-order Lagrangian without
expanding the quark-charge matrix Q (NLO), and the fifth
column to the complete next-to-leading-order Lagrangian
including an expansion of Q (NLO, Q expanded). The last

two scenarios made use of θP ¼ θ½1�P ¼ −12.4°, θV ¼ 39.8°,
and physical values for Fπ and FK . As can be seen by
comparing Tables XIV and XV of the Appendix, the
contributions of the coefficients ci to the decay matrix
elements are redistributed in the version including the
expansion of the quark-charge matrix. This is then the
reason why, except for c1, the coefficients differ notably for
the last two cases.
Finally, we would like to comment on the order of

magnitude of the corrections in comparison with the lead-
ing-order term.Wemultiply the constants c2, c3, and c4 by a
factor of 3 to obtain the coefficients belonging to the 1=Nc

expansion. Similarly, we multiply cþ and c− by ð4πFÞ2 to
obtain the coefficients for the dimensionless quark-mass
expansion. The results corresponding to the last two
columns of Table X are shown in Table XI. Let us have a
closer look at the implications of the second column of
Table XI (NLO with physical quark-charge matrix Q). We
notice that all of the amplitudesAi of Eq. (A2) except forA5

start with c1. We multiply each Ai (i ≠ 5) with a suitable
factor such that the leading-order term is simply given by c1.
We can then easily identify the amount of the largest relative
correction. Regarding the 1=Nc terms, this is 3c2=ð2c1Þ for
the amplitudesA9 andA11 and 3c3=ð2c1Þ for the amplitudes
A7 and A10, respectively. Using the values of the second
column of Table XI, we obtain −0.086 and 0.23, respec-
tively, where we have neglected the uncertainties. Keeping
inmind that these numbers still have to bemultiplied by 1=3,
the 1=Nc corrections turn out to be relatively small, namely
−2.9% and 7.8%, respectively. For the quark-mass correc-
tions, the largest correction originating from cþ is found in
the A4 amplitude, namely, the ratio 16jcþjð4πFÞ2=ð3c1Þ ¼
0.37 which gets multiplied by ðM2

K −M2
πÞ=ð4πFÞ2 ¼ 0.17.

The relative quark-mass correction of 6.3% is of a similar
magnitude as the 1=Nc correction. More pronounced is
the case of the c− coupling, resulting in the ratio
6jc−jð4πFÞ2=c1 ¼ 0.90 which, together with the factor
ðM2

K −M2
πÞ=ð4πFÞ2 ¼ 0.17, gives rise to a relative correc-

tion of 15%.Recall that this parameter is entirely determined
by the decay K�� → K�γ. For the third column of Table XI
(NLO with expanded quark-charge matrix Q), we obtain
similar results.

FIG. 2. Comparison of the decay rates at next-to-leading order
in scenario II (blue, middle entries), next-to-leading order
including a 1=Nc expansion of the quark-charge matrix (green,
lower entries) with the experimental results (black, upper entries).
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F. Corrections beyond the tree level

Our results represent a phenomenological treatment of
1=Nc and quark-mass corrections beyond the simplest tree-
level calculation (with only one single coupling constant).
Clearly, a more ambitious perturbative method that has a
higher claim than pure phenomenology requires the consid-
erationof quantumcorrections at least at theone-loop level. In
a first step, it seems obvious to first consider purely
pseudoscalar loop corrections which we expect to give rise
to terms proportional to M2 and M2 lnðM2=μ2Þ, where M
denotes a pseudoscalar meson mass. The dependence on the
renormalization scaleμ should be cancelledby corresponding
counterterms. With respect to implementing a viable power
counting scheme, which, in addition, also accounts for
internal vector-meson lines, one could try to either make
use of the heavy-vector-meson formulation [37,92,93] or
apply the complex-mass scheme of Ref. [36,94].

G. Comparison with other calculations in chiral
effective Lagrangian approaches

Reference [64] contains the leading-order Lagrangian of
the vector formulation for the VPγ decay of neutral vector
mesons into neutral pions. When comparing this with
Eq. (3.19) of Ref. [64], we agree after identifying our
2ec1=F with d=fπ of Ref. [64].10 However, their Eq. (4.7)

for the decay rates seems to contain an error, namely, the
second line needs to be multiplied by a factor of 1=9,
originating from the elements of the quark-charge matrix in
the form ð2=3 − 1=3Þ2. Accordingly, the coupling d ≃ 0.01
of Eq. (4.10) needs to be multiplied by a factor of 3.
Similarly, our results from the leading-order Lagrangian
agree with the coefficients reported in Fig. 3 of Ref. [61],
which, beyond SU(3) symmetry, implicitly made use of
nonet symmetry in combination with ideal ϕ − ω mixing
and neglected η − η0 mixing.
In Ref. [93], the heavy-vector-meson approach of

Ref. [92] was applied to processes with a net disappearance
of vector mesons. The lowest-order odd-intrinsic-parity
Lagrangian of Ref. [93] (see Eq. (22) of [93]) gives rise
to the same results as our leading-order interaction
Lagrangian of Eq. (17). Next-to-leading-order corrections
were not considered in Ref. [93].
The antisymmetric tensor-field representation [54,55]

was used in, e.g., Refs. [35,66–68] for the calculation of the
VPγ interaction. In Ref. [66], the relevant interaction
Lagrangian for the interaction of two vector fields with
one pseudoscalar field (VVP) and for one vector resonance
with an external vector field and a pseudoscalar field (VJP)
was constructed, involving 7þ 4 coupling constants,
respectively. In terms of the QCD short-distance behavior
of the VVPGreen function, constraints among the coupling
constants were derived. Using these constraints, Eq. (4.2)
of Ref. [66] provides a parameter-free prediction for the
ω → π0γ-transition matrix element, translating into a pre-
diction for our c1,

jc1j ¼
1

4
ffiffiffi
2

p
�

3

8π2
mω

F
−
F
2

mω

m2
V

�
:

Using F ¼ 90.9 MeV and mω ¼ mV ¼ 782.7 MeV, one
obtains jc1j ¼ 4.76 × 10−2 which has to be compared with
ourLOprediction jc1j ¼ ð3.82� 0.25Þ × 10−2 and theNLO
prediction jc1j ¼ ð5.22� 0.20Þ × 10−2 of Table X. In
Ref. [35], antisymmetric tensor fields were used for describ-
ing the radiative decays of the vector-meson nonet into the
pseudoscalar octet. The η0 was not considered, the physical η
was taken as part of the pseudoscalar octet, and for theϕ − ω

TABLE X. Coupling constants determined at leading order (LO), leading order plus 1=Nc corrections, next-to-
leading order (NLO), and next-to-leading order with expanded quark-charge matrix (NLO, Q expanded). See text
for details.

Coupling constant LO LOþ 1=Nc NLO NLO, Q expanded

c1 ½10−2� 3.82� 0.25 3.36� 0.20 5.22� 0.20 5.36� 0.13
c2 ½10−2� … 0.67� 0.10 −0.100� 0.021 −0.0613� 0.0078
c3 ½10−2� … −0.39� 0.25 0.272� 0.072 0.109� 0.027
c4 ½10−2� … … … 0.142� 0.055
cþ ½10−2 GeV−2� … … 0.280� 0.078 0.105� 0.045
c− ½10−2 GeV−2� … … −0.61� 0.39 0.51� 0.16

TABLE XI. Expansion coefficients at next-to-leading order
(NLO) corresponding to the last two columns of Table X. For
simplicity we suppress uncertainties.

Coefficients Physical Q Q expanded

c̃1 [10−2] 5.23 5.36
c2 · Nc [10−2] −0.30 −0.18
c3 · Nc [10−2] 0.82 0.33
c4 · Nc [10−2] … 0.43
cþ · ð4πFÞ2 [10−2] 0.36 0.14
c− · ð4πFÞ2 [10−2] −0.79 0.67

10Note that the vector-meson matrix of Ref. [64] is two times
our vector-meson matrix.
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system an ideal mixing was assumed. The decay proceeds
either via a VVP vertex such that the propagating neutral
vector meson subsequently couples to a real photon or via a
direct VPγ interaction (which is considered to be of higher
order in their chiral counting). The decay rates then contain
three (combinations of) coupling constants, namely eA
(direct decay), hAeV and bAeV (indirect decay) (see
Eqs. (38)–(42) of Ref. [35]). In the limit of SU(3) symmetry,
our results for the invariant amplitudes fully agreewith those
of Ref. [35]. To see this, one needs to set all vector-meson
masses equal to mV , all pseudoscalar meson masses
equal to M̄, F ¼ f, and, finally, ejc̃1j ¼ jẽAj=8, where
ẽA ¼ eA þ 1

4
hAeV − 2bAeVM̄2=m2

V . In Ref. [67], the analy-
sis was extended to also include the η0 meson. With two
additional parameters, namely, the η − η0 mixing angle θP
and one parameter bH for the interaction of the singlet eta
with two vector mesons, in total five parameters were
adjusted to five decays. In particular, an unconventionally
small mixing angle θP ≃�2° was found. When taking
SU(3)-symmetry breaking effects into account, in our
framework two additional parameters are available, namely,
cþ and c−, whereas in the framework of Ref. [35] only the
combination bAeV will give rise to SU(3)-symmetry break-
ing effects. This term corresponds to our cþ structure. In
particular, the SU(3) relation jAK�0→K0γj ¼ 2jAK��→K�γjwill
not be broken in the framework of Ref. [35], unless higher-
order terms are taken into account. In our calculation, the
parameter c− decouples AK��→K�γ and AK�0→K0γ . On the
other hand, in Ref. [68], the importance of such a term in
the context of SU(3) symmetry breakingwas alreadyworked
out for the radiative K� → Kγ decays. Reference [68]
extended the results of [66] by also including excited
vector-meson resonances.
Recently, Kimura, Morozumi, and Umeeda [69] inves-

tigated decays of light hadrons within a chiral Lagrangian
model that includes both the lightest pseudoscalar and
vector mesons. As an extension of chiral perturbation

theory, they included one-loop corrections due to the
Goldstone bosons and the corresponding counterterms.
In addition to other processes, they also particularly looked
at the VPγ reactions. For the decays involving the light
vector mesons, the model provides three parameters.
In Table XII, we provide a comparison of our results with

those of Ref. [69]. First of all, we note that, with the
exception of the decays ω → π0γ and K�0 → K0γ, our
central values for the decay rates agree better with the
experimental values than those from Ref. [69]. In addition,
the uncertainties from Ref. [69] are, on average, much
larger than ours. We conclude that our approach provides
an improved description of the VPγ decays.

V. SUMMARY

In this work we analyzed the radiative transitions
between the vector-meson nonet and the pseudoscalar-
meson nonet within a chiral effective Lagrangian approach.
For that purpose we have determined the Lagrangian up to
and including the next-to-leading order in an expansion in
1=Nc and the quark masses. For the transformation
behavior of the vector mesons under the Lorentz group
we made use of the vector representation. At leading order,
the Lagrangian contains one free parameter which was
determined from a simultaneous fit to 11 experimental
decay rates. (The decay ϕ → π0γ was excluded because of
the OZI rule.) Both η − η0 and ϕ − ω mixing were taken
into account at leading order. The results of this scenario
are given in Table III and clearly show that a good
description of all experimental data at leading order is
not possible. We then gradually improved the model by first
taking into account 1=Nc corrections (see Table IV) and
then also quark mass corrections (see Table V), which
introduced 2 plus 2 additional parameters, respectively. In
this context, we also had to consider the corrections due to
the wave function renormalization and the mixing at NLO.
As a result, another parameter of the η − η0 system was
included in the calculation, which served as a further fit
parameter. Then fits were carried out in which either the
invariant amplitude or the decay were expanded up to and
including next-to-leading order (scenario I and II, respec-
tively). From Table VI we concluded that the second
scenario yields a better description of the experimental
data. In Fig. 2 we provided a visual presentation of the
improvement from LO to NLO. However, one has to keep
in mind in this context that at leading order only one free
parameter is available to describe 11 decays, while at NLO
6 parameters (including Λ1) have been fitted to 12 decays.
In our final fit we made use of a 1=Nc expansion of the
quark-charge matrix, which gives rise to one additional free
parameter and results in the best description of the data (see
Table IX and Fig. 2). We also found that the contributions
to the amplitudes Ai of Eq. (A2), which are generated by
the 1=Nc and the quark mass corrections, are smaller in
magnitude than 15% of the leading-order term. In other

TABLE XII. Comparison of our results at NLO with the
predictions of Ref. [69] (KMU18).

Decay Γexp [keV] ΓNLO [keV] ΓKMU18 [keV]

ρ0 → π0γ 70:� 12. 65.5� 5.6 46:� 5:
ρ� → π�γ 67.1� 7.5 65.0� 5.6 73:� 7:
ρ0 → ηγ 44.7� 3.1 51.5� 2.4 33:þ8:

−9:
ω → π0γ 723:� 25: 689:� 30: 710:� 90:
ω → ηγ 3.91� 0.35 3.80� 0.44 5.5þ1.6

−1.3
ϕ → π0γ 5.61� 0.26 5.69� 0.43 17:þ12:

−9:
ϕ → ηγ 55.4� 1.1 55.0� 1.8 22:þ9:

−12:
ϕ → η0γ 0.2643� 0.0090 0.266� 0.015 0.39þ0.12

−0.09
K�0 → K0γ 116:� 10: 138.6� 5.2 110:� 10:
K�� → K�γ 50.4� 4.6 50.4� 7.9 28:� 3:
η0 → ρ0γ 55.5� 1.9 53.4� 2.4 …
η0 → ωγ 4.74� 0.20 4.87� 0.31 4.6þ3.3

−2.0
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words, they can really be regarded as corrections. Clearly,
our approach is limited in the sense that extending it to
include even NNLO corrections would introduce a number
of additional parameters such that there would be no more
predictive power. However, it would be interesting to see
how pseudoscalar-meson loop corrections affect our find-
ings [95]. In summary, we can say that the present
calculation is the most comprehensive investigation of
the VPγ decays to date and provides a satisfactory
description of the experimental decay rates.
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APPENDIX: LAGRANGIANS

Let us introduce the following structures involving the
singlet and octet fields:

T1ρσ ¼ ρþρ ∂σπ
− þ ρ−ρ ∂σπ

þ þ ρ0ρ∂σπ
0;

T2ρσ ¼ K�þ
ρ ∂σK− þ K�−

ρ ∂σKþ;

T3ρσ ¼ K̄�0
ρ ∂σK0 þ K�0

ρ ∂σK̄0;

T4ρσ ¼ ω8ρ∂ση8;

T5ρσ ¼ ω1ρ∂ση1;

T6ρσ ¼ ρ0ρ∂ση8;

T7ρσ ¼ ρ0ρ∂ση1;

T8ρσ ¼ ω8ρ∂σπ
0;

T9ρσ ¼ ω1ρ∂σπ
0;

T10ρσ ¼ ω8ρ∂ση1;

T11ρσ ¼ ω1ρ∂ση8: ðA1Þ

The effective Lagrangian of the VPγ interaction may then
be written as

LVPγ
eff ¼ eϵμνρσFμν

X11
i¼1

AiTiρσ: ðA2Þ

Defining

Eρσ≡2
e
F
ϵρσμνFμν;

Hρσ≡
�
ðQuþQdÞT1ρσþðQuþQsÞT2ρσþðQdþQsÞT3ρσ

þ1

3
ðQuþQdþ4QsÞT4ρσþ

2

3
ðQuþQdþQsÞT5ρσ

þðQu−QdÞ
�

1ffiffiffi
3

p T6ρσþ
ffiffiffi
2

3

r
T7ρσþ

1ffiffiffi
3

p T8ρσþ
ffiffiffi
2

3

r
T9ρσ

�

þ
ffiffiffi
2

p

3
ðQuþQd−2QsÞðT10ρσþT11ρσÞ

�
;

where Qu, Qd, and Qs denote the quark charges, the
Lagrangian of Eq. (20) is given by

LVPγ
LO ¼ c1EρσHρσ: ðA3Þ

The charge factors are given in Table XIII both for the
physical charges and their values as Nc → ∞. Note that
the T5ρσ term does not contribute for physical values of the
quark charges.
The 1=Nc corrections are given by

LVPγ
NLO;1=Nc

¼ Eρσ

�
c2

�
ðQu þQd þQsÞT5ρσ þ

ffiffiffi
3

2

r
ðQu −QdÞT9ρσ þ

1ffiffiffi
2

p ðQu þQd − 2QsÞT11ρσ

�

þ c3

�
ðQu þQd þQsÞT5ρσ þ

ffiffiffi
3

2

r
ðQu −QdÞT7ρσ þ

1ffiffiffi
2

p ðQu þQd − 2QsÞT10ρσ

�

þ c4ðQu þQd þQsÞðT1ρσ þ T2ρσ þ T3ρσ þ T4ρσ þ T5ρσÞ
�
: ðA4Þ

TABLE XIII. Charge factors for physical values and the limit
Nc → ∞.

Physical value Value as Nc → ∞

Qu
2
3

1
2

Qd − 1
3

− 1
2

Qs − 1
3

− 1
2

Qu þQd
1
3

0
Qu þQs

1
3

0
Qd þQs − 2

3
−1

Qu −Qd 1 1
Qu þQd þ 4Qs −1 −2
Qu þQd − 2Qs 1 1
Qu þQd þQs 0 − 1

2
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Since hQi ¼ Qu þQd þQs ¼ 0 for the physical quark
charges, the last term does not contribute in this case.
Furthermore, for physical quark charges, there is no singlet-
to-singlet transition (T5ρσ). In order to express the quark
mass corrections we make use of the leading-order kaon

and pion masses squared [15], M
∘ 2

K ¼ B0ðm̂þmsÞ and

M
∘ 2

π ¼ 2B0m̂. To the order we are considering, we replace
the leading-order expressions by the physical values, i.e.,

M
∘ 2

K → M2
K andM

∘ 2

π → M2
π . The quark-mass corrections are

then given by

LVPγ
NLO;χ ¼ ð2c5 − c7 − c8ÞEρσ

�
M2

πðQu þQdÞT1ρσ þ ½M2
πQu þ ð2M2

K −M2
πÞQs�T2ρσ

þ ½M2
πQd þ ð2M2

K −M2
πÞQs�T3ρσ þ

1

3
½M2

πðQu þQdÞ þ 4Qsð2M2
K −M2

πÞ�T4ρσ

þ 2

3
½M2

πðQu þQdÞ þ ð2M2
K −M2

πÞQs�T5ρσ

þM2
πðQu −QdÞ

�
1ffiffiffi
3

p T6ρσ þ
ffiffiffi
2

3

r
T7ρσ þ

1ffiffiffi
3

p T8ρσ þ
ffiffiffi
2

3

r
T9ρσ

�

þ
ffiffiffi
2

p

3
½M2

πðQu þQdÞ − 2ð2M2
K −M2

πÞQs�ðT10ρσ þ T11ρσÞ
�

þ ð2c6 − c7 þ c8ÞEρσ

�
M2

πðQu þQdÞT1ρσ þ ½ð2M2
K −M2

πÞQu þM2
πQs�T2ρσ

þ ½ð2M2
K −M2

πÞQd þM2
πQs�T3ρσ þ

1

3
½M2

πðQu þQdÞ þ 4Qsð2M2
K −M2

πÞ�T4ρσ

þ 2

3
½M2

πðQu þQdÞ þ ð2M2
K −M2

πÞQs�T5ρσ

þM2
πðQu −QdÞ

�
1ffiffiffi
3

p T6ρσ þ
ffiffiffi
2

3

r
T7ρσ þ

1ffiffiffi
3

p T8ρσ þ
ffiffiffi
2

3

r
T9ρσ

�

þ
ffiffiffi
2

p

3
½M2

πðQu þQdÞ − 2ð2M2
K −M2

πÞQs�ðT10ρσ þ T11ρσÞ
�
:

Using 2M2
K −M2

π ¼ M2
π þ 2ðM2

K −M2
πÞ and noting that Qd ¼ Qs, we may write

LVPγ
NLO;χ ¼ 2M2

πðc5 þ c6 − c7ÞEρσTρσ

þ 4ðM2
K −M2

πÞðc5 þ c6 − c7ÞEρσ

�
1

2
ðQu þQsÞT2ρσ þQsT3ρσ þ

4

3
QsT4ρσ þ

2

3
QsT5ρσ − 2

ffiffiffi
2

p

3
QsðT10ρσ þ T11ρσÞ

�
þ 2ðM2

K −M2
πÞðc5 − c6 − c8ÞEρσðQs −QuÞT2ρσ: ðA5Þ

In Table XIV, we collect the amplitudes Ai, i ¼ 1;…; 11,
of Eq. (A2). We have defined cþ ¼ c5 þ c6 − c7,
c− ¼ c5 − c6 − c8, and c̃1 ¼ c1 þ 2M2

πcþ. The results
depend on 5 parameters c1 (c̃1), c2, c3, cþ, and c−.

In Table XV, we collect the corresponding coefficients of
the large-Nc expansion. We show the results at leading
order (LO) and at next-to-leading order (NLO), depending
on one parameter and six parameters, respectively.
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