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First-principles lattice determinations of the Standard Model expectation for the leading order hadronic
vacuum polarization contribution to the anomalous magnetic moment of the muon have become
sufficiently precise that further improvement requires including strong and electromagnetic isospin-
breaking effects. We provide a continuum estimate of the strong-isospin-breaking contribution, aSIBμ , using
SUð3Þ chiral perturbation theory. The result is shown to be dominated by resonance-region contributions
encoded in a single low-energy constant whose value is known from flavor-breaking hadronic τ decay sum
rules. Implications of the form of the result for lattice determinations of aSIBμ are also discussed.
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I. INTRODUCTION

The more than 3σ disagreement between the final 2006
BNL E821 result for aμ [1–3], the anomalous magnetic
moment of themuon, and subsequent updates of theStandard
Model (SM) expectation prompted intense interest in
improving both experimental and theoretical results.
Interest in the latter has been further heightened by the
recently released Fermilab E989 result [4], which produces
an updated experimental world average 4.2σ higher than the
current best assessment of the SM expectation [5].1

Hadronic contributions, though representing a small
fraction ofaμ, dominate the uncertainty in the SMprediction.
This paper focuses on the largest of these, the leading-order,
hadronic vacuum polarization contribution, aLO;HVPμ .

As is well known, assuming (as expected) beyond-the-
SM contributions to experimentally measured eþe− →
hadrons cross sections are numerically negligible, the
SM expectation for aLO;HVPμ can be obtained as a weighted
(“dispersive”) integral over the inclusive hadroproduction
cross-section ratio RðsÞ. The weight entering this integral is
exactly known, monotonically decreasing with hadronic
invariant squared mass, s, and strongly emphasizes con-
tributions from the low-s region, with ∼73% of the full
dispersive result coming from the ππ exclusive mode.
Ref. [5] provides a detailed discussion of the most recent
dispersive evaluations [11–13,26].
A practical complication limiting the accuracy of these

determinations is the long-standing discrepancy between
BABAR [27,28] andKLOE [29] eþe− → πþπ− cross-section
results, which independent determinations by CMD2
[30–32], BESIII [33], CLEO-c [34] and SND [35] have
so far failed to resolve. The difference, 9.8 × 10−10 [13],
between results for the ππ contribution obtained using only
BABAR or KLOE in the region 0.305 GeV < ECM <
1.937 GeV, and the analogous difference, 5.5 × 10−10,
between the full ππ contribution obtained using averages
with either BABAR or KLOE excluded [12], both consid-
erably exceed the uncertainty anticipated from the full
Fermilab E989 experimental program.
The reliance on at-present-discrepant experimental

spectral data can, in principle, be avoided using lattice
results for the electromagnetic (EM) current two-point
function to evaluate aLO;HVPμ . This possibility was first
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1TheSMexpectation assessmentofRef. [5] is based on the results
of Refs. [6,7] for the QED contribution, Refs. [8,9] for the
electroweak contribution, Refs. [10–16] for hadronic vacuum
polarization (HVP) contributions through next-to-next-to-leading
order, andRefs. [17–25] for the hadronic light-by-light contribution.
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raised in Ref. [36] and relies on the alternate representation
of aLO;HVPμ as a weighted integral of the subtracted
EM vacuum polarization, Π̂EMðQ2Þ≡ΠEMðQ2Þ−ΠEMð0Þ
over spacelike Q2 ¼ −s > 0 [37,38]. While the precision
of the lattice determination has yet to reach that of the
dispersive results, there has been rapid progress over the
last few years, with recent updates from the BMW [39,40],
ETMC [41–43], RBC/UKQCD [44–46], FNAL/HPQCD/
MILC [47,48], Mainz [49], PACS [50], and Aubin et al.
[51] collaborations. The most recent BMW result [40], in
particular, reaches a precision of 0.8%. While (as detailed,
e.g., in Ref. [46]) some disagreements persist between
results from different lattice groups for the dominant ud
connected contribution, as well as for the t0 ¼ 0.4 fm,
t1 ¼ 1.0 fm, and Δ ¼ 0.15 fm RBC/UKQCD “window”
quantity aud;conn;isospin;Wμ [44], these disagreements are the
subject of ongoing scrutiny, and additional sub-%-level
lattice results are expected in the near future from a number
of other lattice groups.
The current sub-% precision goal for determining

aLO;HVPμ on the lattice necessitates an evaluation of the
effects of strong and EM isospin breaking (IB). These
receive contributions from both quark-line-connected
and -disconnected diagrams, with the latter much more
numerically challenging on the lattice.
This paper focuses on the strong-isospin-breaking (SIB)

contribution, aSIBμ . A number of lattice groups have reported
determinations of the connected contribution, ½aSIBμ �conn
[40,42,44,46,47], but only one, BMW [40], a result for
the disconnected contribution, ½aSIBμ �disc. BMWfinds a strong
cancellation between ½aSIBμ �conn and ½aSIBμ �disc, a result antici-
pated inRef. [46],which studied theππ contributions to these
quantities using partially quenched Chiral Perturbation
Theory (PQChPT) and found an exact cancellation of
connected and disconnected contributions at next-to-leading
(NLO) chiral order. As wewill see below, this cancellation is
specific to NLO, and does not persist to higher order.
Reference [46] does not provide a lattice determination of
½aSIBμ �disc, instead using the NLO PQChPTexpression for the
contribution of the ππ intermediate state as an estimate,
assigning to this estimate a 50%uncertainty. Results from the
literature for ½aSIBμ �conn and ½aSIBμ �disc are summarized in
Table I. Note that, while (as will be confirmed below),
one expects finite volume (FV) effects to be small in the full
connected-plus-disconnected SIB sum, this is not the case for
the individual connected and disconnected components, and
significant FVeffects are, in fact, observed in the results for
½aSIBμ �conn reported in Refs. [42,44,46].
In view of the inflation of the relative error in lattice

determinations of aSIBμ expected from the strong cancella-
tion between connected and disconnected contributions, an
independent, continuum estimate of this quantity is of
interest. In this paper, we provide such an estimate using
SUð3Þ chiral perturbation theory (ChPT).

The rest of the paper is organized as follows. In Sec. II
we set notation, provide the explicit expression for aSIBμ as a
weighted integral over Euclidean Q2 of the IB part of the
subtracted EM vacuum polarization, Π̂SIBðQ2Þ, and discuss
the features of this expression which make a ChPT estimate
of aSIBμ feasible. In Sec. III, we provide the explicit form of
the ChPT representation of Π̂SIBðQ2Þ needed as input to this
expression, and outline the flavor-breaking hadronic τ
decay sum rule analysis used to determine the input value
for a key higher-order low-energy constant (LEC) needed
to encode the effect of ρ − ω mixing. This section also
contains our numerical results for aSIBμ . Finally, Sec. IV
contains a discussion of these results and our conclusions.

II. THE EUCLIDEAN INTEGRAL
REPRESENTATION OF aSIBμ AND FEASIBILITY

OF A ChPT DETERMINATION

In what follows, the vector-current two-point functions,
Πab

μν , and associated scalar vacuum polarizations, Πab, are
defined, as usual, by

Πab
μνðqÞ ¼ ðqμqν − q2gμνÞΠabðQ2Þ

¼ i
Z

d4xeiq·xh0jTfVa
μðxÞVb

νð0Þgj0i; ð2:1Þ

where Q2 ≡ −q2 ≡ −s, and Va
μ are the members of the

SUð3ÞF octet of vector currents,

Va
μ ¼ q̄

λa

2
γμq: ð2:2Þ

The sum of the u, d, and s contributions to the
electromagnetic (EM) current then has the standard
decomposition,

TABLE I. Lattice results for ½aSIBμ �conn and ½aSIBμ �disc, in units of
10−10. The � on the disconnected entry from Ref. [46] is a
reminder that this result is not a lattice one, but rather an estimate
of the ππ contribution to this quantity obtained using NLO
PQChPT, to which a 50% uncertainty has been assigned. We
remind the reader that, while FV effects are expected to be small
for the connected-plus-disconnected sum, this is not true of the
individual components, and separate connected and disconnected
results should thus not be compared unless obtained from
simulations with comparable physical volumes.

½aSIBμ �conn × 1010 ½aSIBμ �disc × 1010 Source

9.5(4.5) [47,48]
10.6(8.0) [44]
6.0(2.3) [42]
9.0(1.4) −6.9ð3.5Þ� [46]
6.6(0.8) −4.7ð0.9Þ [40]
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JEMμ ¼ V3
μ þ

1ffiffiffi
3

p V8
μ; ð2:3Þ

into I ¼ 1 (a ¼ 3) and I ¼ 0 (a ¼ 8) contributions, and the
vacuum polarization, ΠEMðQ2Þ, of the two-point function
of this current the decomposition

ΠEMðQ2Þ ¼ Π33ðQ2Þ þ 2ffiffiffi
3

p Π38ðQ2Þ þ 1

3
Π88ðQ2Þ ð2:4Þ

into pure isovector (ab ¼ 33), pure isoscalar (ab ¼ 88),
and mixed isospin (ab ¼ 38) parts. Since strong-isospin-
breaking (SIB) is associated with the I ¼ 1, Oðmd −muÞ
component of the nf ¼ 3 QCD mass operator, SIB occurs,
to leading order in md −mu, only in the 38 part of ΠEM.
The resulting leading order, Oðmd −muÞ SIB compo-

nent of the EM current vacuum polarization is then

ΠSIBðQ2Þ ¼ 2ffiffiffi
3

p Π38
QCDðQ2Þ; ð2:5Þ

where the QCD subscript on the right-hand side denotes the
Oðmd −muÞ QCD contribution and will be dropped in
what follows.

A. The Euclidean Q2 integral representation of aSIBμ

The full LO, HVP contribution, aLO;HVPμ , is given, in the
Euclidean momentum-squared, Q2, representation of
Refs. [37,38], by the weighted integral

aLO;HVPμ ¼ −4α2
Z

∞

0

dQ2fðQ2ÞΠ̂EMðQ2Þ; ð2:6Þ

with Π̂EM the subtracted EM vacuum polarization defined
above, α the EM fine structure constant, and fðQ2Þ the
exactly known kernel

fðQ2Þ ¼ m2
μQ2Z3

½1 −Q2Z�
1þm2

μQ2Z2
; ð2:7Þ

where

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q4 þ 4m2

μQ2
q

−Q2

2m2
μQ2

: ð2:8Þ

For use in the discussion below, it is convenient to also
define the related quantity, aLO;HVPμ ðQ2

maxÞ, obtained by
replacing the upper limit of the integral in Eq. (2.6)
by Q2

max.
The kernel fðQ2Þ diverges as 1=

ffiffiffiffiffiffi
Q2

p
as Q2 → 0 and

falls rapidly with increasing Q2, creating a peak in the
integrand of Eq. (2.6) at very low Q2 ≃m2

μ=4. At such low
Q2, Π̂EMðQ2Þ should be very close to linear in Q2, an

expectation born out by an evaluation of Π̂EMðQ2Þ using
RðsÞ results from Ref. [11] as input to the subtracted
dispersive representation

Π̂EMðQ2Þ ¼ −
Q2

12π2

Z
∞

0

ds
RðsÞ

sðsþQ2Þ : ð2:9Þ

The location of the peak of the integrand in Eq. (2.6) is thus
essentially just that of the maximum of the product
Q2fðQ2Þ. Figure 1 shows the behavior of this product
as a function of Q2. Note that an analogous figure for
Π̂EMðQ2ÞfðQ2Þ, taking into account the deviation from
linearity of Π̂EMðQ2Þ in the higher-Q2 region, would show
an additional suppression, increasing with Q2, of contri-
butions at higher Q2 relative to those from the region of
the peak.
The SIB contribution, aSIBμ , is, similarly, given in the

Euclidean-Q2 integral representation by

aSIBμ ¼ −4α2
Z

∞

0

dQ2fðQ2ÞΠ̂SIBðQ2Þ: ð2:10Þ

As for Π̂EMðQ2Þ, Π̂SIBðQ2Þ will be very close to linear in
Q2 in the low-Q2 region, and the maximum of the integrand
in Eq. (2.10) will thus also occur at Q2 ≃m2

μ=4.

B. The feasibility of a ChPT determination

The fact that the contributions to the integral represen-
tation in Eq. (2.10) are concentrated at low Q2 raises the
possibility that a reliable estimate of aSIBμ might be obtained
using the ChPT representation of Π̂SIBðQ2Þ. An estimate of
how reliable such a determination might be can be obtained
by studying the related Π̂33ðQ2Þ case.
The utility of this estimate is based on the following

similarities between the spectral functions, ρ38ðsÞ and

0 0.2 0.4

Q
2
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2
]
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0.02
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2 )

FIG. 1. The productQ2fðQ2Þ, with fðQ2Þ the weight appearing
in the Euclidean integral representation, Eq. (2.6), of aLO;HVPμ .
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ρ33ðsÞ, of Π38ðQ2Þ and Π33ðQ2Þ. First, ρ38ðsÞ and ρ33ðsÞ
share a common threshold, s ¼ 4m2

π, as well as a common
saturation of the low-s region by contributions from ππ
intermediate states. Second, while ρ33ðsÞ is necessarily ≥ 0

for all s, while ρ38ðsÞ is not, the chiral representation of
ρ38ðsÞ shows ρ38ðsÞ to be, like ρ33ðsÞ, positive in the low-s
ππ region. Third, both ρ33ðsÞ and ρ38ðsÞ show sizeable
resonance enhancements in the ρ − ω region, as evidenced
by the large ρ peak in the eþe− → πþπ− cross sections and
the obvious IB interference shoulder, centered at s ¼ m2

ω,
on the upper side of that peak. The ρ contribution to ρ33ðsÞ
is, of course, positive, while the ρ − ω interference con-
tribution to ρ38ðsÞ has a dispersive shape, with an important
contribution which changes sign between s < m2

ω and
s > m2

ω.
2 Fits in the interference region using various

phenomenological models allow one to obtain model-
dependent separations of the isospin-conserving (IC) 33
and IB 38 parts of the ππ cross sections. These can be
converted to the corresponding IC and IB contributions to
RðsÞ and the resulting IB contributions integrated with
the aLO;HVPμ dispersive weight to obtain model-dependent
estimates of the IB ρ − ω interference region contribution
to aLO;HVPμ . Such estimates were obtained for a range of
models in Refs. [52–56]. Strong cancellations produced by
the change of sign noted above and the narrowness of the
interference region enhance the model dependence of the
associated interference region contribution to aSIBμ [52–54].
The sign of the integrated result is, however, positive, and
hence the same as that of the IC ρ contribution to aLO;HVPμ .
Integrating, instead, with the weight appearing in the
subtracted dispersive representation, Eq. (2.9), one finds,
similarly, a common sign for the IC ρ contribution to
Π̂EMðQ2Þ and the IB ρ − ω interference region contribution
to Π̂SIBðQ2Þ. From the point of view of Π̂SIBðQ2Þ in the
spacelike, Q2 > 0 region, the narrow ρ − ω interference
contribution to ρ38ðsÞ is essentially indistinguishable from
that of a narrow, averaged positive contribution located at
s ¼ m2

ω. As far as the subtracted polarizations are con-
cerned, the spectral functions ρ33ðsÞ and ρ38ðsÞ are thus
close analogues of one another all the way from threshold
through the first resonance region, and a study of the
features of the IC 33 contribution to the representation
Eq. (2.6) can be used to obtain plausible expectations
for the behavior of the corresponding representation,
Eq. (2.10), of aSIBμ .
This observation is of practical use because, in the

isospin limit, Π̂33ðQ2Þ ¼ 1
2
Π̂ud;VðQ2Þ, where Π̂ud;VðQ2Þ

is the subtracted polarization of the flavor ud, I ¼ 1, vector
current, whose spectral function, ρud;VðsÞ, has been
extracted from measured differential nonstrange hadronic
τ decay distributions by ALEPH [57–59] and OPAL [60].

A version of Π̂ud;VðQ2Þ based on the OPAL results for
ρud;VðsÞ and the subtracted dispersive representation,
was constructed in Ref. [61] and used to study (i) the
convergence of aLO;HVPμ ðQ2

maxÞ to the full IC I ¼ 1 result,
aLO;HVPμ , as Q2

max was increased from zero to infinity, and
(ii) the utility of various representations (including the
ChPT representation) of Π̂ud;VðQ2Þ in the low-Q2 region
[61,62]. It was found that ∼82% of the aLO;HVPμ arises from
Q2 < 0.10 GeV2, ∼92% from Q2 < 0.2 GeV2, and ∼94%
from Q2 < 0.25 GeV2 ≃m2

K.
3 With the region between

Q2 ¼ 0 andm2
K plausibly in the range of validity of SUð3ÞF

ChPT, we thus expect that a determination of aSIBμ obtained
using ChPT for Π̂SIBðQ2Þ and truncating the integral in
Eq. (2.10) at Q2

max ¼ 0.25 GeV2 ≃m2
K will miss only ∼6%

of the total contribution to aSIBμ , provided the ChPT
representation used is accurate over this integration region.
The OPAL-based version of Π̂33ðQ2Þ constructed in

Ref. [61] can also be used to explore the accuracy of results
obtained using the ChPT representations of subtracted
vector current polarizations in the region up to Q2 ≃m2

K .
To make a sensible estimate of the I ¼ 1 (33) contribution
to aLO;HVPμ , the chiral order at which the representation of
Π̂33ðQ2Þ is truncated must be high enough to ensure the
effect of the large ρ peak in ρ33ðsÞ is incorporated. This
contribution first appears in the chiral expansion through
the next-to-next-to-leading-order (NNLO) LEC, C93,
necessitating the use of the two-loop (NNLO) expression
for Π̂33ðQ2Þ. Using this representation, with the value of the
renormalized LEC Cr

93ð0.77 GeVÞ from Ref. [63] as input,
one finds an NNLO ChPT estimate for a33μ ð0.25 GeV2Þ
which overshoots that produced by the OPAL-based
version of Π̂33ðQ2Þ by ∼4.8%. This slight over-shooting
is a consequence of the fact that the NNLO representation
of Π̂33ðQ2Þ misses small, yet higher-order contributions of
the ρ peak to the curvature of Π̂33ðQ2Þ in the low-Q2

region. The positivity of the ρ contributions to ρ33ðsÞ
ensures that these contributions would, if included,
decrease the magnitude of the resulting representation of
Π̂33ðQ2Þ, producing a result for a33μ ð0.25 GeV2Þ lower than
that given by the NNLO representation. The (overshooting)
effect of the truncation at NNLO and the (undershooting)
effect of omitting contributions fromQ2 > 0.25 GeV2 thus
work in opposite directions. The NNLO ChPT estimate,
a33μ ð0.25 GeV2Þ, is, in fact, only ∼1.5% below the full
(Q2

max → ∞) I ¼ 1 contribution to aLO;HVPμ implied by the
OPAL-based dispersive version of Π̂33ðQ2Þ.

2See, e.g., Eq. (19), of Ref. [52].

3See Figs. 1 and 2 of Ref. [62] for plots showing the behavior
of fðQ2ÞΠ̂ud;VðQ2Þ as a function of Q2 and aLO;HVP;33μ ðQ2

maxÞ≡
a33μ ðQ2

maxÞ as a function of Q2
max. Note that the quantity denoted

Π̂ud;VðQ2Þ in Ref. [62] is Πud;Vð0Þ − Πud;VðQ2Þ, and hence
differs by an overall sign from that used in the current paper.
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As we will see below, the ChPT result for
aSIBμ ð0.25 GeV2Þ is also dominated by the contribution
of a higher-order LEC encoding resonance-region (in this
case ρ − ω) effects. Since, as noted above, the contribution
of the ρ − ω interference region to the dispersive repre-
sentation of Π̂SIBðQ2Þ is equivalent to that of a narrow, net
positive contribution to ρ38ðsÞ located at s ¼ m2

ω, the effect
of similarly missing resonance-region-induced, higher-
order contributions to the low-Q2 curvature of Π̂SIBðQ2Þ
will be such that our ChPT estimate for aSIBμ ð0.25 GeV2Þ
will also slightly overshoot the true value of this quantity.
There will thus, as in the case of the NNLO result for
a33μ ð0.25 GeV2Þ, be a cancellation between the overshoot-
ing produced by the use of the truncated ChPT representa-
tion and the undershooting caused by the truncation of the
integral representation at Q2

max ¼ 0.25 GeV2. In the analo-
gous a33μ case, these effects are Oðþ5%Þ and Oð−6%Þ,
respectively. Based on these observations, we expect the
combination of the truncation in chiral order and truncation
of the integral representation at Q2 ¼ 0.25 GeV2 to pro-
duce an uncertainty of a few to several % in the truncated-
in-chiral-order, aSIBμ ð0.25 GeV2Þ estimate for aSIBμ obtained
below. To be conservative, since this estimate for the
uncertainty relies on results for the analogous, but not
identical, a33μ case, we assign a significantly expanded 10%
estimate for the contribution of these effects to the
uncertainty on the ChPT-based aSIBμ ð0.25 GeV2Þ estimate
for aSIBμ .

III. THE ChPT ESTIMATE FOR Π̂SIBðQ2Þ
A. Π̂SIBðQ2Þ to two loops in ChPT

The forms of the effective SUð3ÞF chiral Lagrangian to
NLO and NNLO were worked out long ago in Refs. [64]
and [65,66]. The two-loop (NNLO) representation for the
unsubtracted version of the IB polarization, Π38ðQ2Þ, can
be found in Ref. [67]. From this expression one finds,
recasting the result in terms of the Euclidean variable
Q2 ¼ −q2, the following result for the subtracted version,
Π̂38ðQ2Þ:

Π̂38ðQ2Þ ¼
ffiffiffi
3

p

4
ðm2

K0 −m2
KþÞQCD

�
2iB̄ðm̄2

K;Q
2Þ

Q2
−

1

48π2m̄2
K

þ 8iB̄ðm̄2
K;Q

2Þ
f2π

�
i
2
B̄21ðm2

π;Q2Þþ iB̄21ðm̄2
K;Q

2Þ

þ logðm2
πm̄4

K=μ
6Þ

384π2
−Lr

9ðμÞ
��

; ð3:1Þ

where ðm2
K0 −m2

KþÞQCD is the non-EM contribution to the
kaon mass-squared splitting, m̄2

K is the non-EM part of the
average physical kaon squared mass, ðm2

K0 þm2
KþÞ=2, Lr

9 is
the usual renormalized NLO LEC of Gasser and Leutwyler

[64], μ is the chiral renormalization scale, B̄ðm2; Q2Þ is the
standard subtracted, equal-mass, two-propagator loop func-
tion, given, for Q2 > 0, by

B̄ðm2; Q2Þ

¼ i
8π2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2=Q2

q
tanh−1

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4m2=Q2
p

��
;

ð3:2Þ

and B̄21 is the auxiliary loop function

B̄21ðm2; Q2Þ ¼ 1

12

�
1þ 4m2

Q2

�
B̄ðm2; Q2Þ − i

576π2
: ð3:3Þ

Our convention for the pion decay constant is that used in
Ref. [64], fπ ≃ 92 MeV. The first line of Eq. (3.1) contains
the NLO contributions, the second line the NNLO con-
tributions. The low-Q2 expansion,

2iB̄ðm2; Q2Þ
Q2

¼ 1

48π2m2
þOðQ2Þ; ð3:4Þ

has been used in obtaining the subtracted form, Eq. (3.1),
from the unsubtracted form given in Ref. [67]. The absence
of an NLO pion loop contribution in Eq. (3.1) reflects the
cancellation noted in Ref. [46] between NLO ππ inter-
mediate state contributions to the connected and discon-
nected parts of Π̂38. The presence of the pion loop function
factor, B̄21ðm2

π; Q2Þ, in the NNLO expression shows this
cancellation does not persist beyond NLO. The result
Lr
9ðμ ¼ 0.77 GeVÞ ¼ 0.00593ð43Þ from Ref. [68] is used

in obtaining numerical results below.
As is well known, the separation of IB effects into strong

and EM contributions is ambiguous at Oðαðmd þmuÞÞ.4
Since md −mu and md þmu differ by only a factor of ∼3
for physical mu and md, this ambiguity is, in fact, at the
level of effects second order in IB, which we are neglecting.
The impact of this ambiguity, in any case, lies essentially
entirely in the factor ðm2

K0 −m2
KþÞQCD in Eq. (3.1). At

leading order in IB, this factor can be determined by
subtracting the EM contribution to the K mass-squared
splitting. This is related to the EM contribution to the pion
mass-squared splitting by

ðm2
Kþ −m2

K0ÞEM ¼ ðm2
πþ −m2

π0
ÞEMð1þ ϵDÞ; ð3:5Þ

where ϵD (which depends on the light quark masses and the
strong-EM separation scheme choice) parametrizes the
breaking of Dashen’s Theorem [70], and is equal to zero
in the SUð3Þ chiral limit. Since the experimental pion

4A particularly clear discussion of this point is given in
Secs. 3.1.1 and 3.1.2 of the 2019 FLAG report [69].
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mass-squared splitting receives no SIB contribution at
Oðmd −muÞ, ðm2

πþ −m2
π0
ÞEM can, up to corrections second

order in IB, be replaced by the corresponding experimental
value. Using the FLAG 2019 [69] nf ¼ 2þ 1þ 1 result,
ϵD ¼ 0.79ð7Þ, as input, we find

ðm2
K0 −m2

KþÞQCD ¼ 0.00616ð9Þ GeV2; ð3:6Þ
a result valid to first order in IB.
Inputting the NNLO representation of Π̂38ðQ2Þ given by

Eq. (3.1) into Eq. (2.10), and using the numerical input
specified above, one finds the following results for the NLO
and NNLO contributions to aSIBμ ð0.25 GeV2Þ:

½aSIBμ ð0.25 GeV2Þ�NLO ¼ 0.073 × 10−10 ð3:7Þ

½aSIBμ ð0.25 GeV2Þ�NNLO ¼ 0.552ð37Þ × 10−10; ð3:8Þ
where the error on the NNLO contribution is that induced
by the uncertainty on the input for Lr

9ð0.77 GeVÞ. The
smallness of the NLO contribution in Eq. (3.7) is a
reflection of the exact cancellation at NLO between
connected and disconnected contributions from ππ inter-
mediate states. The total to NNLO,

½aSIBμ ð0.25 GeV2Þ�NLOþNNLO ¼ 0.625ð37Þ × 10−10; ð3:9Þ
is also small, and dominated by the unsuppressed NNLO
contribution. The smallness of the NLOþ NNLO total
should come as no surprise since no LEC encoding
resonance-region ρ − ω interference contributions to
Π̂38ðQ2Þ appears in the NNLO representation Eq. (3.1).
The situation is analogous to that of the ChPT representa-
tion of Π̂33ðQ2Þ, where the LEC, C93, which encodes the
dominant ρ contribution, does not appear in the NLO
representation. The next subsection addresses this short-
coming of the NNLO representation of Π̂38ðQ2Þ and shows
how results from flavor-breaking hadronic τ decay sum
rules can be used to quantify the dominant contribution to
aSIBμ from terms beyond NNLO in the chiral expansion.

B. Contributions to Π̂SIBðQ2Þ beyond two loops

The mesonic low-energy effective Lagrangian of ChPT
has as explicit degrees of freedom only the low-lying,
pseudoscalar mesons. The effects of resonance degrees of
freedom, which have been integrated out, are encoded in
the LECs of the effective theory. As is well known,
contributions from the lowest-lying resonances provide
estimates for these LECs which typically agree well with
phenomenological determinations [71].
At lowQ2, the ρ − ωmixing contribution to ρ38 produces

a leading low-Q2 contribution to Π̂38ðQ2Þ of the form
CρωQ2, where Cρω is a constant proportional to the product
fρfωθρω, with fρ the ρ decay constant (which parametrizes
the ρ coupling to J3μ), fω the ω decay constant (which

parametrizes theω coupling to J8μ), and θρω the IB parameter
characterizing the strength of ρ − ω mixing. No tree-level
contribution of the form CQ2 appears in the NNLO
expression Eq. (3.1), establishing that ρ − ω mixing effects
are not yet encoded in the NNLO form. The reason for this
absence is obvious. An operator in the effective Lagrangian
producing an SIB, tree-level CQ2 contribution to Π̂38ðQ2Þ
would have to include one factor of the quark mass matrix
and four derivatives [two to produce the factor ðqμqν −
gμνq2Þ in Π38

μν and two to produce the Q2 in the CQ2

contribution to Π̂38ðQ2Þ]. Such an operator is next-to-next-
to-next-to-leading-order (NNNLO) in the chiral counting.
TheLECs encoding the effects of ρ − ωmixing (aswell as of
all other higher-energy degrees of freedom integrated out in
forming the effective Lagrangian) thus do not appear in the
chiral expansion of Π̂38ðQ2Þ until NNNLO.
Model-dependent results for the contribution to aSIBμ

from the ρ − ω interference region can, of course, be
obtained using experimental results for the ππ cross
sections in the interference region and separations of the
IC and IB contributions to these cross sections produced by
fits based on phenomenological models of the pion form
factor FπðsÞ. Such results, of course, provide no informa-
tion about NNNLO (and higher) contributions to aSIBμ from
other high-energy degrees of freedom also integrated out in
forming the effective Lagrangian, though they do serve to
provide an estimate of the expected scale of NNNLO and
higher order contributions. The resulting ρ − ω interference
region contributions are a factor ∼4 or more times larger
than the NLOþ NNLO result (3.9), confirming the
numerical importance of beyond-NNLO contributions.
Contributions other than that induced by ρ − ω mixing,
for example due to ρ0 − ω0 mixing, are, of course, also
expected at some level. With the ρ0 and ω0 having
comparable widths, and no analogue of the ρ − ω inter-
ference shoulder evident in the ππ cross-sections in the
ρ0 − ω0 region, no similar phenomenological estimate is
possible for such higher resonance contributions.
An advantage of the chiral representation of the low-Q2

contributions to aSIBμ is that contributions from all degrees
of freedom integrated out in forming the effective
Lagrangian, not just those from the ρ − ω interference
region, will be encoded in the relevant NNNLO (and
higher) LECs. It turns out that, at NNNLO, there is only

one such LEC, denoted δCð1Þ
93 in Ref. [63]. The normali-

zation is such that, retaining only vector external sources,
vμ ¼ vaμλa=2, quark-mass-dependent tree-level NNNLO
contributions to all octet vector-current two-point functions
are generated by the effective NNNLO operator

8B0Q2δCð1Þ
93 Tr½Mvμvν�ðqμqν − gμνq2Þ; ð3:10Þ

where M is the quark mass matrix and B0 the standard
leading-order (LO) LEC, related to the chiral limit value of
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the quark condensate.5 The tree-level contribution to Π38
μν

and thence to Π̂38 is obtained by taking the second
derivative of this expression with respect to v3μ and v8ν.
An estimate of beyond-NNLO contributions to aSIBμ thus

requires only a determination of the LEC δCð1Þ
93 .

The situation for the chiral representation of aSIBμ is similar
to that of the chiral representation of the I ¼ 1 (ab ¼ 33)
contribution to aLO;HVPμ , where the leading (tree-level LEC)
contribution from the ρ resonance enters beginning only at
NNLO. The NLO representation thus produces a dramatic
underestimate of aLO;HVP;33μ . As noted above, this under-
estimate is almost completely cured once NNLO contribu-
tions, including, in particular, the ρ-dominated contribution
proportional to C93, are included.

It turns out that the NNNLO LEC, δCð1Þ
93 , which encodes

the contributions to aSIBμ , at NNNLO, from all degrees of
freedom integrated out in forming the effective Lagrangian
(including those from the ρ − ω interference region) has
already been determined in a flavor-breaking (FB), inverse-
moment finite-energy sum rule (IMFESR) analysis of
nonstrange and strange hadronic τ decay distribution data
[63]. We outline this determination below, and provide a

numerical update of its results for δCð1Þ
93 .

FB hadronic τ data can be used to determine δCð1Þ
93

because of the close relation between Π̂38ðQ2Þ and the FB
vector current combination Π̂ud−us;VðQ2Þ≡ Π̂ud;VðQ2Þ−
Π̂us;VðQ2Þ.6 Π̂ud−us;V ¼ Π̂11 þ Π̂22 − Π̂44 − Π̂55, and hence
involves symmetric products of flavor-octet vector currents.
The FB component of the QCD quark mass operator

−2ffiffiffi
3

p ðms −mu −mdÞq̄
λ8

2
q ð3:11Þ

is proportional to the a ¼ 8 member of the flavor octet,
Sa ¼ q̄ λ2

2
q, of light-quark scalar densities. The FB combi-

nation Π̂ud−us;V thus, to first order in FB, is determined by
the a ¼ 8 member of the symmetric 8F multiplet of the
products of octet vector currents. Since the SIB component
of the QCD quark mass operator

−ðmd −muÞq̄
λ3

2
q ð3:12Þ

is proportional to the a ¼ 3 member of the same octet of
scalar densities, and Π38

μν involves the symmetric product,
J3μJ8ν þ J8μJ3ν, of two members of the same octet of vector
currents, Π̂38, is determined, to first order in SIB, by the
a ¼ 3 member of the same symmetric 8F multiplet of
products of the octet vector currents. A determination of the
contributions beyond NNLO to Π̂ud−us;V will thus, up to
corrections higher order in SUð3ÞF breaking, also provide a
determination of the contributions beyond NNLO to Π̂38.
The NNNLO version of the relation between these two

quantities follows immediately from the structure of the
NNNLO operator in (3.10). The FB NNNLO contribution
to Π̂ud−us;VðQ2Þ and SIB NNNLO contribution to Π̂SIBðQ2Þ
produced by this operator are

½Π̂ud−us;VðQ2Þ�NNNLO;LEC ¼ −8Q2ðm2
K −m2

πÞδCð1Þ
93 ð3:13Þ

and

½Π̂SIBðQ2Þ�NNNLO;LEC ¼ −
8

3
Q2ðm2

K0 −m2
KþÞQCDδC

ð1Þ
93 ;

ð3:14Þ

where the LO relations B0ðms −muÞ ¼ m2
K −m2

π and
B0ðmd −muÞ ¼ ðm2

K0 −m2
KþÞQCD have been used to recast

the results in terms of pseudoscalar meson masses. While
(since they encode resonance-region contributions missing
at NNLO) we expect these terms to dominate the con-
tributions beyond NNLO, the argument above shows that
the relation between NNNLO and higher FB contributions
to Π̂ud−us;VðQ2Þ and NNNLO and higher SIB contributions
to Π̂SIBðQ2Þ is more general, and extends beyond the
relation between the tree-level NNNLO contributions.7

We now outline the determination of δCð1Þ
93 from the FB

IMFESR analysis of hadronic τ decay data. This analysis is

favored as a means of determining δCð1Þ
93 because the

spectral functions, ρud;VðsÞ and ρus;VðsÞ, of Π̂ud;V and
Π̂us;V can be determined experimentally, up to s ¼ m2

τ ,
from the measured differential nonstrange and strange
hadronic τ decay distributions [73]. Experimental data
can thus be used to evaluate the first term on the right-
hand side of the FB IMFESR

5In terms of the Nf ¼ 3 labeling of the basis of operators for
the general NNNLO effective Lagrangian constructed in
Ref. [72], the operators generating the term (3.10) are numbers
944 and 945, both of which reduce to the form entering (3.10)
when only external vector sources are present and only tree-level,
vector-current two-point function contributions are considered.

6Since ms ≠ mu, the flavor us vector current is not conserved.
The associated two-point function thus has nonzero spin J ¼ 1
and 0 vacuum polarizations, each of which has a kinematic
singularity at Q2 ¼ 0. As usual, these singularities cancel in the
J ¼ 0þ 1 sum, and by Π̂us;VðQ2Þ we mean the subtracted
version of the kinematic-singularity-free sum of the J ¼ 0 and
1 polarizations.

7This is, for example, true of leading contributions to the
curvatures with respect to Q2 at Q2 ¼ 0, which are generated by
terms also involving only a single insertion of the quark mass
matrix. The argument, however, does not hold for higher-order
contributions generated by terms involving two insertions of the
quark mass matrix, which is why the NNNLO relation between
the slopes is subject to potential SUð3ÞF-breaking corrections
beyond NNNLO.
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dΠ̂ud−us;VðQ2Þ
dQ2

����
Q2¼0

¼ −
Z

s0

4m2
π

dswτðs=s0Þ
ρud;VðsÞ − ρus;VðsÞ

s2

−
1

2πi

I
jsj¼s0

dswτðs=s0Þ
Π̂ud−us;VðQ2 ¼ −sÞ

s2
ð3:15Þ

provided s0 ≤ m2
τ . The operator product expansion (OPE)

is used to evaluate the (numerically very small) second term
on the right-hand side. The τ kinematic weight factor,
wτðxÞ ¼ 1–3x2 þ 2x3, with x ¼ s=s0, has been included
(i) because of its double zero at s ¼ s0, which serves to
suppress duality violating contributions and improve the
accuracy of the OPE approximation [74,75], and
(ii) because its derivative with respect to s at s ¼ 0 is 0,
which ensures only the derivative of the polarization with
respect to Q2 appears on the left-hand side. Analogous
IMFESRs provide the slopes with respect toQ2, atQ2 ¼ 0,
of the separate nonstrange and strange polarizations Π̂ud;V

and Π̂us;V . The chiral representations of Π̂ud;VðQ2Þ and
Π̂us;VðQ2Þ are known to NNLO and given in Ref. [76].
Both contain numerically small NLO and NNLO loop
contributions and a common, numerically dominant tree-
level NNLO LEC contribution 8Q2Cr

93 encoding the
leading ρ contribution to Π̂ud;VðQ2Þ and K� contribution
to Π̂us;VðQ2Þ. These leading representations of resonance-
region effects cancel in the NNLO representation of the FB
difference Π̂ud−us;VðQ2Þ. Resonance-region contributions
to Π̂ud−us;VðQ2Þ thus, as for Π̂38ðQ2Þ (and for the same
reason as in the Π̂38ðQ2Þ case) first enter at NNNLO in the
chiral expansion. Contributions to the slopes with respect to
Q2 of Π̂ud;VðQ2Þ and Π̂us;VðQ2Þ in the low-Q2 region are
expected to be dominated by the effects of the ρ and K�
resonances. Since these contributions produce slopes at
Q2 ¼ 0 which, in the narrow width approximation, are
proportional to f2ρ=m4

ρ and f2K�=m4
K� , a FB difference of

order ∼40% between the Π̂ud;VðQ2Þ and Π̂us;VðQ2Þ slopes
would not be unexpected. A difference of this magnitude is
easily determinable from the FB IMFESR, Eq. (3.15),
given the accuracy of current experimental hadronic τ
decay distributions.
The slope ½dΠ̂ud−us;VðQ2Þ=dQ2�Q2¼0 was determined in

Ref. [63] using then-current OPE input and ρud;VðsÞ and
ρus;VðsÞ obtained from then-current versions of the non-
strange and strange experimental τ decay distributions.
Important inputs to this analysis are the exclusive-mode
strange τ branching fractions (BFs), which set the overall
scales of the corresponding exclusive-mode contributions
to ρus;VðsÞ. At the time of the analysis of Ref. [63], there
was a disagreement between the HFAG assessments of the
two τ → Kπντ BFs and the expectations for these BFs from
the dispersive analysis of Ref. [77] (ACLP). Since the sum
of these BFs sets the normalization for the dominant Kπ

contribution to ρus;VðsÞ, this disagreement produced a
disagreement between results for the FB slope at Q2 ¼ 0
obtained using the HFAG and ACLP Kπ normalizations.
Reference [63] thus quoted two different determinations of
the FB slope difference, and hence two different results for

δCð1Þ
93 , the latter obtained assuming the slope difference is

dominated by the NNNLO contribution.
New experimental information has since resolved the Kπ

BF discrepancy in favor of the dispersive ACLP expect-
ation: the sum of the τ → Kπντ BFs reported in the 2019
HFLAV compilation [78] agrees well with the ACLP
expectation and, in addition, has a significantly smaller
uncertainty. We have thus updated the determination of

δCð1Þ
93 in Ref. [63] using (i) current 2019 HFLAV results for

all τ BFs and correlations, (ii) the updated determination of
ρud;VðsÞ reported in Ref. [79], (iii) updated PDG [80] input
for αs, Vud and Vus, (iv) updated 2019 FLAG [69] input for
the light-quark masses, and (v) the most recent HPQCD
result [81] for the strange-to-light-quark condensate ratio.
While included for completeness, updates other than those
to the τ → Kπντ BFs have negligible impact on the results
for the FB slope difference. The updated result

dΠ̂ud−us;VðQ2Þ
dQ2

����
Q2¼0

¼ −0.0862ð24Þ GeV−2 ð3:16Þ

has an improved error and central value very close to the
ACLP-based result, −0.0868ð40Þ GeV−2, of Ref. [63]. The
updated slope produces an updated estimate

δCð1Þ
93 ðm2

K −m2
πÞ ¼ 0.00534ð37Þ GeV−2 ð3:17Þ

for the NNNLO LEC δCð1Þ
93 .

Our assessment of the NNNLO contribution to Π̂SIBðQ2Þ
is obtained by substituting Eq. (3.17) into (3.14). Weighting
this expression with the factor −4α2fðQ2Þ appearing in
Eq. (2.10) and integrating between Q2 ¼ 0 to 0.25 GeV2

produces our estimate,

½aSIBμ ð0.25 GeV2Þ�NNNLO ¼ 2.69ð19Þ × 10−10; ð3:18Þ

for the NNNLO contribution to aSIBμ ð0.25 GeV2Þ, and
hence for the NNNLO contribution to aSIBμ . The error in
Eq. (3.18) reflects only the uncertainty on the input for

δCð1Þ
93 from Eq. (3.17). We assign an additional ∼30%

uncertainty to the NNNLO result to account for the
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absence of small non-resonance-induced NNNLO loop
contributions and the impact of possible contributions
higher order in FB to the slope atQ2 ¼ 0 of Π̂ud−us;VðQ2Þ.8
Figure 2 shows the Q2 dependence of the NLO, NNLO,

and “NNNLO LEC” contributions to Π̂38ðQ2Þ, where
“NNNLO LEC” denotes the tree-level contribution propor-

tional to δCð1Þ
93 . It is clear that the NNNLO LEC contribu-

tion is numerically dominant, and that, although the loop
functions which determine the NLO and NNLO contribu-
tions are not strictly linear inQ2, they are, numerically, very
close to being so, in the region of interest to us. The errors
on the NNLO and NNNLO LEC contributions are those
associated with the uncertainty on the input for Lr

9, and that

on the leading-order-in-FB result, Eq. (3.17), for δCð1Þ
93 .

Adding to the NNNLO LEC result, (3.18), the NLO and
NNLO contributions (3.7) and (3.8), we obtain our final
estimate for aSIBμ ,

aSIBμ ¼ 3.32ð4Þð19Þð33Þð81Þ × 10−10; ð3:19Þ

where the first error is that induced on the NNLO con-
tribution by the uncertainty on the input for Lr

9, the second
is that associated with the error on the FB IMFESR

estimate, Eq. (3.17), for δCð1Þ
93 , the third is our 10% estimate

for the uncertainty produced by the combination of
truncating the integral for aSIBμ at Q2

max ¼ 0.25 GeV2 and
neglecting contributions beyond NNLO to the curvature of

Π̂SIBðQ2Þ, and the fourth is that induced by our ∼30%
estimate for the uncertainty in δCð1Þ

93 induced by possible
higher-order FB contributions to the slope of Π̂ud−us;VðQ2Þ
at Q2 ¼ 0 obtained from the updated version of the FB
IMFESR analysis of Ref. [63].
The NLO, NNLO, and NNNLO LEC contributions to

aSIBμ ½Q2
max�, together with the NLOþ NNLOþ NNNLO

LEC total, are shown as a function of Q2
max in Fig. 3. The

shaded band on the total shows the quadrature sum of the
LEC-uncertainty-induced NNLO and NNNLO LEC errors
plotted in Fig. 2. The dashed and solid horizontal lines
show, respectively, the central value and associated
�0.89 × 10−10 combined error range of our final result,
Eq. (3.19), the latter obtained by adding in quadrature the
four error components from Eq. (3.19).

IV. SUMMARY AND CONCLUSIONS

We have obtained a continuum, ChPT-based estimate of
the SIB contribution, aSIBμ , to aLO;HVPμ , the leading-order,
hadronic-vacuum-polarization contribution to the anoma-
lous magnetic moment of the muon. As shown in Figs. 2
and 3, the NLO contribution to this result is very small,
presumably as a consequence of the cancellation at
this order between disconnected and connected contribu-
tions from ππ intermediate states. The NNLO contribution,
though significantly larger, is also subdominant, a result not
unexpected given the absence of terms encoding resonance-
region contributions from the NNLO representation.
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FIG. 2. The NLO, NNLO and NNNLO LEC contributions to
Π̂38ðQ2Þ. The errors on the NNLO and NNNLO LEC points are
those induced by the uncertainties on the input value forLr

9 and the

contribution to the error on δCð1Þ
93 quoted in Eq. (3.17), respectively.
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FIG. 3. The accumulation of the NLO, NNLO, and NNNLO
LEC contributions to aSIBμ as a function of the upper integration
limit, Q2

max. The errors on the NNLO and NNNLO LEC
contributions have been suppressed. The shaded band shows
the error on the sum of the NLO, NNLO, and NNNLO LEC
contributions obtained by summing the NNLO and NNNLO LEC
errors from Fig. 2 in quadrature. The horizontal dashed line and
two solid horizontal lines represent, respectively, the final central
value and associated error range specified in Eq. (4.1).

8The FB IMFESR provides an essentially purely experimental
determination of the FB slope difference. The associated deter-
mination of δCð1Þ

93 , however, relies on the assumption that this
result is dominated by the leading-order-in-FB contribution
associated with the NNNLO operator (3.10). This assumption
might be subject to Oð30%Þ SUð3ÞF corrections.
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Resonance-region contributions first appear in the chiral
expansion of aSIBμ at NNNLO, encoded in the NNNLO

LEC δCð1Þ
93 . Our full estimate, (3.19), for aSIBμ is thus, as

expected, dominated by the NNNLO contribution propor-

tional to δCð1Þ
93 . Fortunately, an estimate for this LEC can be

obtained from a FB IMFESR analysis of experimental
hadronic τ decay distributions, and we have updated the
original version of this analysis, reported in Ref. [63], to
take into account subsequent, numerically relevant changes
to the normalization of the dominant Kπ contribution to the
strange experimental distribution. The resulting NNNLO
LEC contribution to aSIBμ is similar in size to the results of
phenomenological estimates for the contribution from
the ρ − ω interference region based on model-dependent
fits to experimental interference-region eþe− → πþπ−
cross sections, confirming the importance of contributions
from the ρ − ω region. The ChPT analysis has the
advantage, over such phenomenological estimates of the
contribution from this one, narrow region only, of includ-
ing also contributions from the lower-Q2 region, evaluated
in the model-independent chiral framework, as well as
those from regions of the spectrum above s ≃m2

ω where
the absence of experimentally observable IB interference
effects makes analogous phenomenological estimates
impossible.
The dominance of the result in Eq. (3.19) by the NNNLO

LEC term in the chiral representation of Π̂38ðQ2Þ and hence
by contributions from higher-energy (short-distance) reso-
nance degrees of freedom confirms the expectation that,
once connected and disconnected contributions have been
summed, FVeffects in lattice determinations of aSIBμ will be
small, relative to aSIBμ , and hence can be neglected on the
scale of the current precision goal for the determination of
aLO;HVPμ . The situation for the relative size of FV effects
should, in fact, be similar to that of the I ¼ 1 contribution,
a33μ , where the contribution proportional to the NNLO
LEC C93 which encodes the higher-energy ρ degree of
freedom also dominates the chiral representation. The only

difference between the two cases is a practical one: while
few-to-several percent FV corrections to the large a33μ
contribution are far from numerically negligible on the
scale of the current precision target, analogous few-to-
several percent FV corrections to the much (more than two
orders of magnitude) smaller SIB contribution are entirely
negligible on that same precision target scale.
Our final result, obtained by combining all four errors

from Eq. (3.19) in quadrature, is

aSIBμ ¼ 3.32ð89Þ × 10−10: ð4:1Þ
The central value is larger than that of the BMW lattice
result,

½aSIBμ �BMW ¼ 1.93ð83Þð87Þ × 10−10 ¼ 1.93ð1.20Þ × 10−10;

ð4:2Þ
obtained by summing the connected and disconnected
contributions reported in Ref. [40], but compatible
with it within errors.9

We close by noting that, given the dominance of the
result by the contribution proportional to the NNNLO LEC

δCð1Þ
93 , and the leading linear-in-Q2 behavior of this con-

tribution, it would be of interest were future lattice studies
to quote results for the slope of Π̂SIBðQ2Þwith respect toQ2

at Q2 ¼ 0, a result obtainable from the t4 time moment of
the two-point function at zero spatial momentum [82].
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