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We study the exclusive two-body nonleptonic Bc → Xcc̄M decays, where Xcc̄ is either a ground (1S) or a
radially excited (2S or 3S) charmonium, and M is a pseudoscalar (P) or a vector (V) meson. We consider
here three categories of decays: Bc → PP;PV; VP decays within the framework of a relativistic
independent quark (RIQ) model based on a flavor-independent interaction potential in scalar-vector
harmonic form. Using the factorization approximation, we calculate the weak form factors from the
overlapping integrals of meson wave functions obtained in the RIQ model and predict the branching
fractions for a set of exclusive nonleptonic Bc decays in reasonable agreement with other model
predictions. Some of the decays of interest are found to have branching fractions ∼ð10−3 − 10−4Þwithin the
detection ability of the current experiments and can be precisely measured at LHCb in the near future. In the
wake of the recent measurement of Bc → J=ψπðKÞ, Bc → J=ψπðDsÞ, Bc → πðJ=ψ ;ψð2SÞÞ, and Bc →
J=ψðπ; μνÞ reported by the LHCb and ATLAS Collaborations, we predict the ratios RK=π , RDs=π and
Rψð2SÞ=J=ψ in broad agreement with the data from LHCb and ATLAS Collaborations. Our predicted ratio
Rπ=μν is found to be underestimated. The results indicate that the present approach works well in the
description of exclusive nonleptonic Bc decays within the framework of the RIQ model.

DOI: 10.1103/PhysRevD.105.053007

I. INTRODUCTION

The Bc meson is unique because of its two outstanding
characteristics features: (1) It is the lowest bound state of
two heavy quarks with open (explicit) flavor quantum
numbers: a bottom quark (antiquark) and a charm
antiquark (quark). The other heavy quark in the
Standard Model, i.e., the top quark, cannot form a
hadron because of it has too short of a lifetime to be
hadronized. (2) It can decay only via weak interactions,
since pure strong and electromagnetic interacting proc-
esses conserve flavors. Being a ground state of a ðbc̄Þ
system, it lies below the BD meson decay threshold, with
either of its constituent quarks being heavy which can
decay individually, and very rich Bc-decay channels are
expected with sizable branching ratios and comparatively
long lifetimes [1]. This makes Bc meson an ideal system
for studying heavy quark dynamics.
Ever since the discovery of a Bc meson at Fermilab by

the CDF Collaboration [2] two decades ago, a lot of

experimental probes have happened in this sector yielding
detection of many ground and excited heavy meson states
including the radially excited states ψð2SÞ and ηcð2SÞ [3].
Many new Bc-decay channels have also been observed by
the LHCb Collaboration [4–8]. The high luminosity avail-
able at LHC makes it possible to measure various decay
channels including those into charmonium states [9–11].
Around Oð109Þ, Bc events with a cross section of 1 μb and
luminosity of 1 fb−1 [12] expected at the LHCb are likely to
provide sufficient data for a systematic study of the Bc
family. Among many observations on Bc decays in recent
times, the decay Bc → J=ψK is observed for the first time
by the LHCb Collaboration, and the measurement of ratios
of branching fractions RK=π [13,14] are found to be

RK=π ¼
BðBc → J=ψKÞ
BðBc → J=ψπÞ

¼
�
0.069� 0.019ðstat:Þ � 0.005ðsyst:Þ
0.079� 0.007ðstat:Þ � 0.003ðsyst:Þ :

The ratios of branching fractions RDsπ [6,15], Rψð2SÞ=J=ψ
[16] observed by LHCb collaboration are

RDs=π ¼
BðBc → J=ψDsÞ
BðBc → J=ψπÞ ¼

�
2.9� 0.57� 0.24

3.8� 1.1� 0.4� 0.2
;
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Rψð2SÞ=J=ψ ¼ BðBc → ψð2SÞπÞ
BðBc → J=ψπÞ ¼ 0.250� 0.068ðStat:Þ

� 0.014ðSyst:Þ � 0.006;

where the last correction term accounts for the uncertainty

of Bðψð2SÞ→μþμ−Þ
BðJ=ψ→μþμ−Þ . The first measurement of the ratioRπþ=μþν

[17] relating the nonleptonic and semileptonic Bc-decay
rates is also performed by the LHCb Collaboration yielding

Rπþ=μþν ¼
BðBc → J=ψπÞ

BðBc → J=ψμþνμÞ
¼ 0.049� 0.0028ðStat:Þ

� 0.0046ðSyst:Þ;

which is found at the lower end of the available theoretical
predictions.
The detection of ground and excited charmonium states

and measured observables in the nonleptonic and semi-
leptonic Bc decays to charmonium ground and excited
states are of special interest as it is easier to identify them in
the experiment. The two-body nonleptonic Bc decays have
been widely studied using various theoretical approaches
and phenomenological models (see the classified bibliog-
raphy of Ref. [18]). Most of these studies deals with the Bc-
meson decay to daughter mesons in their ground states
only. Among several theoretical studies on nonleptonic Bc-
meson decays to radially excited charmonium and charm
meson states, the perturbative QCD approach based on kT
factorization [19–21], light front quark model using modi-
fied harmonic oscillator wave functions [22], ISGW2 quark
model [23], relativistic constituent quark model [24],
relativistic constituent quark model based on Bethe-
Salpeter formalism [25], improved instantaneous approxi-
mation of the original Bethe-Salpeter equation and
Mandelstam approach [26], perturbative QCD approach
[27], relativistic instantaneous approximation of the origi-
nal Bethe-Salpeter equation [28], quark model based on
improved Bethe-Salpeter approach [29,30], nonrelativistic
constituent quark model [31], relativistic constituent quark
model [32], relativistic quark model [33], QCD factoriza-
tion using BSW model and light front quark model [34],
QCD relativistic quark potential model [35], covariant
confined quark model [36,37] and the relativistic constitu-
ent quark model [38] are noteworthy. In their recent
analysis [20], Rui et al. predicted the ratio between the
decay modes Bc → ψð2SÞπ and Bc → J=ψπ in comparison
with experimental data within uncertainties and the branch-
ing fraction of Bc → ηcð2SÞπ ∼ 10−3 that can hopefully be
measured in the LHCb experiment. The recent predictions
[29,30] of Zhou and co-workers on the branching fractions
of radially excited 2S and 3S charmonium states ∼10−4 lie
within the detection accuracy of current experiments. The
detection of such decays to radially excited charmonium
states, observed ratios of branching fractions, and recent

predictions of branching fractions in this sector by different
model approaches provide us necessary motivation to study
these noneptonic Bc decays within the framework of our
relativistic independent quark (RIQ) model.
The RIQ model, developed by our group, has been

applied in a wide-ranging hadronic sector describing the
static properties of hadrons [39] and their decay properties
in the radiative, weak radiative, rare radiative [40]; leptonic,
weak leptonic, radiative leptonic [41]; and semileptonic
[42] decays of mesons. In our recent analysis, we predict
the magnetic dipole and electromagnetic transitions of Bc
and B�

c mesons in their ground as well as excited states [43];
the exclusive semileptonic Bc-meson decays to the char-
monium ground states in the vanishing [44] and non-
vanishing [45] lepton mass limit. In this model, our group
has predicted [46,47] the exclusive two-body nonleptonic
decays of heavy flavored mesons to the charmonium and
charm mesons in their ground states. We would like to
extend the application of the RIQ model to analyze two-
body nonleptonic Bc decays to the S-wave charmonium
states (nS) along with a light or charm meson state, where
n ¼ 1, 2, 3, and provide a ready reference to existing and
forthcoming experiments. We ignore the decay channels
involving higher 4S charmonia, since their properties are
still not understood well.
The description of nonleptonic decay is notoriously

nontrivial as it is strongly influenced by confining color
forces, and it involves matrix elements of local four-quark
operators in the nonperturbative QCD approach, the
mechanism of which is not yet understood well in the
Standard Model framework. If one ignores the weak
annihilation contribution, the nonleptonic transition ampli-
tudes are conveniently described in the so-called naive
factorization approximation [24,33,35,46–50], which
works reasonably well in two-body nonleptonic Bc decays,
where the quark-gluon sea is suppressed in the heavy
quarkonium [34]. Bjorken’s intuitive argument on color
transparency in his pioneering work [51], theoretical
development based on the QCD approach in the 1

Nc
limit

[52], and heavy quark effective theory (HQET) [53]
provide justification for such approximation. In the present
study, we consider the contribution of the current-current
operators [54] only in calculating the tree-level diagram
expected to be dominant in these decays. The contribution
of the penguin diagram may be significant in the evaluation
of a CP violation and search for new physics beyond the
Standard Model. But its contribution to the decay ampli-
tudes in the present analysis is considered less significant.
In fact, the QCD and electroweak penguin operators’
contribution have been shown [55,56] to be negligible
compared to that of current-current operators in these
decays due to serious suppression of Cabibbo-
Kobayashi-Maskawa (CKM) elements. The Wilson’s coef-
ficients of penguin operators being very small, its con-
tribution to the weak decay amplitude is only relevant in
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rare decays, where the tree-level contribution is either
strongly CKM suppressed as in B̄ → K̄�π or matrix
elements of current-current operators do not contribute at
all as in B̄ → K̄�γ and B̄0 → K̄0ϕ [54].
The rest of the paper is organized as follows. In Sec. II, we

introduce the effective Hamiltonian and factorization for
two-body nonleptonic Bc-meson decay modes induced by
b → cq̄iqj transition at the quark level. Theweak decay form
factors representing the hadronic amplitudes, calculated from
the overlap integral of meson wave functions in the frame-
work of theRIQmodel are described in Sec. III. Section IVis
devoted to the numerical results and discussion, and Sec. V
contains our brief summary and conclusion.A brief reviewof
the RIQmodel framework, wave packet representation of the
meson state, and momentum probability amplitudes of the
constituent quarks inside the meson bound state are
presented in the Appendix.

II. EFFECTIVE HAMILTONIAN AND
FACTORIZATION APPROXIMATION

In this section, we introduce the effective Hamiltonian
for two-body nonleptonic Bc decays induced by b → cq̄iqj
at the quark level, where qi ¼ u, c and qj ¼ d, s. As
described above, we consider only the contribution of
current-current operators at the tree level. Neglecting the
contribution of penguin diagrams, the decay modes sym-
bolized by Bc → Xcc̄ðnsÞM, where Xcc̄ is the ground and
excited charmonium states with n ¼ 1, 2, 3 and M is a
pseudoscalar (P) or a vector (V) meson, are governed by
the effective Hamiltonian [23,24,27,31,38],

Heff ¼
GFffiffiffi
2

p fVcbV�
ud½c1ðμÞðc̄bÞðd̄uÞþ c2ðμÞðd̄bÞðc̄uÞ�

þVcbV�
cs½c1ðμÞðc̄bÞðs̄cÞþ c2ðμÞðs̄bÞðc̄cÞ�

þVcbV�
us½c1ðμÞðc̄bÞðs̄uÞþ c2ðμÞðs̄bÞðc̄uÞ�

þVcbV�
cd½c1ðμÞðc̄bÞðd̄cÞþ c2ðμÞðd̄bÞðc̄cÞ�gþH:c:;

ð1Þ
where GF is the Fermi Coupling constant, Vij are CKM
factors, ðq̄αqβÞ is a short notation for V − A current
qαγμð1 − γ5Þqβ, and c1;2 are the Wilson coefficients.
With the effective Hamiltonian in the form (1), the decay
amplitude for Bc → Xcc̄ðnSÞM is given by

AðBc → Xcc̄ðnSÞMÞ ¼ hXcc̄ðnSÞMjHeff jBci

¼ GFffiffiffi
2

p
X
i

λiCiðμÞhOii; ð2Þ

where λi is the CKM factor, and hOii is the matrix element
of the local four-quark operators. In the framework of naive
factorization, the nonleptonic decay amplitude is approxi-
mated by the product of two matrix elements of quark
currents as

hXcc̄ðnSÞMjOjBcii ¼ hMjJμj0ihXcc̄ðnSÞjJμjBci
þ ðXcc̄ðnSÞ ↔ MÞ; ð3Þ

where Jμ is the weak current. One of these is the matrix
element for the Bc transition to one final mesons state,
while the other matrix element corresponds to the transition
from the vacuum to other final meson state. The latter is
given by the corresponding meson decay constant. In this
way, the hadronic matrix element of four-quark operators
can be expressed as the product of the decay constant and
invariant weak form factors [23,31,46,47,50,57,58].
Of course, there is difficulty inherent in such an approach

because the Wilson’s coefficients, which include the short-
difference QCD effect between μ ¼ mN and μ ¼ mb are μ
scale and renormalization scheme dependent, while hOii
are μ scale and renormalization scheme independent. As a
result, the physical amplitude depends on the μ scale.
However, the naive factorization disentangles the long-
distance effects from the short-distance sector assuming
that the matrix element hOi at the μ scale contains non-
factorizable contributions in order to cancel the μ depend-
ence and scheme dependence of ciðμÞ; i.e., the
approximation neglects possible QCD interaction between
the meson M and the BcXcc̄ system [50,58]. In general, it
works in some two-body nonleptonic decays of heavy
mesons in the limit of a large number colors. It is expected
that the factorization scheme works reasonably well in two-
body nonleptonic Bc decays with radially excited charmo-
nium mesons in the final states, where the quark-gluon sea
is suppressed in the heavy quarkonium [23,34].
We also neglect here the so-called W exchange and

annihilation diagram, since in the limit MW → ∞ they are
connected by Fiertz transformation and are doubly sup-

pressed by the kinematic factor of the order ðm2
i

M2
W
Þ. We also

discard the color octet current which emerges after the
Fiertz transformation of color-singlet operators. Clearly,
these currents violate factorization since they cannot
provide transitions to the vacuum states. Taking into
account the Fiertz reordered contribution, the relevant
coefficients are not c1ðμÞ and c2ðμÞ but the combination

a1;2ðμÞ ¼ c1;2ðμÞ þ
1

Nc
c2;1ðμÞ: ð4Þ

Assuming a large Nc limit to fix the QCD coefficients
a1 ≈ c1 and a2 ≈ c2 at μ ≈m2

b, nonleptonic decays of heavy
mesons have been analyzed in Refs. [23,27,35,59].
The matrix elements corresponding to the transition from

vacuum to one of the final state pseudoscalar (P) or vector
(V) meson are covariantly expanded in terms of the meson
decay constant fP;V as

hPjq̄0iγμγ5qjj0i ¼ ifPp
μ
P;

hVjq̄0iγμqjj0i ¼ e�μfVmV: ð5Þ
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The covariant decomposition of matrix elements of the
weak current Jμ between initial and final pseudoscalar
meson state is

hPðpPÞjq̄cγμqbjBcðPÞi

¼
�
ðpþpPÞμ −

M2 −m2
P

q2
qμ

�
F1ðq2Þ þ

M2 −m2
P

q2
qμF0ðq2Þ

¼ ðpþpPÞμfþðq2Þ þ ðp−pPÞμf−ðq2Þ; ð6Þ

where

fþðq2Þ ¼ F1ðq2Þ; ð7Þ

f−ðq2Þ ¼
M2 −m2

P

q2
½F0ðq2Þ − F1ðq2Þ�: ð8Þ

For transition to the vector meson final state, a corre-
sponding matrix element is parametrized as

hVðpVÞjq̄cγμqbjBcðpÞi ¼
2Vðq2Þ
M þmV

iϵμνρσe�νpρpσ
V ð9Þ

and

hVðpVÞjq̄cγμγ5qbjBcðpÞi

¼ ðM þmVÞe�μA1ðq2Þ −
A2ðq2Þ
M þmV

ðe�:qÞðpþ pVÞμ

− 2mV
e�:q
q2

qμA3ðq2Þ þ 2mV
e�:q
q2

qμA0ðq2Þ; ð10Þ

where

A3ðq2Þ ¼
M þmV

2mV
A1ðq2Þ −

M −mV

2mV
A2ðq2Þ: ð11Þ

Here, p; pP;V stand for the four momentum of the initial
and final state mesons, respectively. M is the mass of
decaying Bc, and mP and mV stand for the mass of the
pseudoscalar and vector mesons, respectively, in the final
state. q ¼ p − pP;V denotes the fourmomentum transfer and
ê� the polarization of the final state vector meson. In order to
cancel the poles at q2 ¼ 0, invariant weak form factors
F0ðq2Þ; F1ðq2Þ; A0ðq2Þ and A3ðq2Þ satisfy following con-
ditions:

F0ð0Þ ¼ F1ð0Þ and A0ð0Þ ¼ A3ð0Þ:

The decay rate for nonleptonic transition M → P1P2 is
expressed in terms of the decay amplitudeAðBc → P1P2Þ as

ΓðBc → P1P2Þ ¼
jk⃗j

8πM2
jAðBc → P1P2Þj2; ð12Þ

where k⃗ is themagnitude of threemomentumof the final state
meson. In the parent meson rest frame, it is given by

jk⃗j ¼ jp⃗P1
j ¼ jp⃗P2

j ¼ 1

2M
f½M2 − ðmP1

þmP2
Þ2�

× ½M2 − ðmP1
−mP2

Þ2�g1=2: ð13Þ

The corresponding expression of the decay rate for M →
PVðVPÞ is obtained in the form

ΓðBc → PV; VPÞ ¼ jk⃗j3
8πm2

V
jAðBc → PV; VPÞj2; ð14Þ

with

jk⃗j ¼ 1

2M
f½M2 − ðmP;V þmV;PÞ2�

× ½M2 − ðmP;V −mV;PÞ2�g1=2: ð15Þ

The relevant decay amplitude (2) is then expressed in the
form

A ¼ GFffiffiffi
2

p ðCKM factorÞðQCD factorÞðM2 −m2
P1
Þ

× fP2
FBc→P1

0 ðq2Þ;

A ¼ GFffiffiffi
2

p ðCKM factorÞðQCD factorÞ2mVfVF
Bc→P
1 ðq2Þ;

and

A ¼ GFffiffiffi
2

p ðCKM factorÞðQCD factorÞ2mVfPA
Bc→V
0 ðq2Þ;

for Bc → P1P2, Bc → PV, and M → VP decays, respec-
tively. The factorized amplitudes (3) are expressed in terms of
mesondecay constants ðfP;VÞ andweak form factorsFBc→P1

0 ,
FBc→P
1 , ABc→V

0 ; it is straightforward to predict the decay rate
for different decay processes in the RIQ model framework.

III. TRANSITION AMPLITUDE AND WEAK
DECAY FORM FACTORS IN THE RELATIVISTIC

INDEPENDENT QUARK MODEL

We study two-body nonleptonic Bc decays in three
categories: Bc → PP, Bc → PV and Bc → VP, where P
and V stand for pseudoscalar and vector meson final states,
respectively. The decay amplitude is calculated here from
the relevant tree-level diagram as shown in Fig. 1. The
color-favored “class I” decays, represented by Fig. 1(a), are
characterized by an external W emission, where the decay
amplitude is proportional to the QCD factor a1ðμÞ.
However the “class III” type decays, represented in
Fig. 1(c), are those in which both the QCD factors
a1ðμÞ and a2ðμÞ interfere, providing effective contribution
to the factorized decay amplitude. As described above, we
consider the two-body nonleptonic Bc decays induced by
the b → cq̄iqj transition at the quark level, where q̄i ¼ ū; c̄
and qj ¼ d, s, with c̄ antiquark remaining a spectator. In the
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present study, we restrict our discussion to class I and class
III Bc-decay modes: each mode involving either ηcðnSÞ or
ψðnSÞ in the final state.
In fact, the decay process physically occurs in the

momentum eigenstates of participating mesons. Therefore,
in a field-theoretic description of the decay process, it is
appropriate to represent the meson bound state in terms of a
momentum wave packet reflecting momentum and spin
distribution between a constituent quark and antiquark in
the meson core. In the RIQ model, the wave packet
corresponding to a meson bound state jBcðp⃗; SBc

Þ, for
example, at a definite moment p⃗ and spin state SBc

, is
represented by

jBcðp⃗; SBc
Þi ¼ Λ̂ðp⃗; SBc

Þjðp⃗b; λbÞ; ðp⃗c̄; λc̄Þi
¼ b̂†bðp⃗b; λbÞb̃†cðp⃗c; λcÞj0i; ð16Þ

where jðp⃗b; λbÞ; ðp⃗c̄; λc̄Þi is the Fock-space representation of
the unbound quark and antiquark in a color-singlet configu-
ration with respective momentum and spin: ðp⃗b; λbÞ and

ðp⃗cλcÞ. b̂†qðpb; λbÞ and ˆ̃bcðp⃗c; λcÞ are the quark and antiquark
creation operators. Here, Λ̂ðp⃗; SBc

Þ is a baglike integral
operator taken in the form

Λ̂ðp⃗; SBc
Þ ¼

ffiffiffi
3

pffiffiffiffiffiffiffiffiffiffiffi
Nðp⃗Þp X

λb;λc

ζBc
b;cðλb; λcÞ

Z
d3pbd3pcδ

ð3Þ

× ðp⃗b þ p⃗c − p⃗ÞGBc
ðp⃗b; p⃗cÞ: ð17Þ

Here,
ffiffiffi
3

p
is the effective color factor, and ζBc

b;cðλb; λcÞ is the
SU(6) spin-flavor coefficients for the Bc-meson state.

Imposing the normalization condition in the form
hBcðp⃗ÞjBcðp⃗0Þi ¼ δð3Þðp⃗ − p⃗0Þ, the meson state normaliza-
tion Nðp⃗Þ is obtainable in an integral form

Nðp⃗Þ ¼
Z

d3p⃗bjGBc
ðp⃗b; p⃗ − p⃗bÞj2: ð18Þ

Finally,GBc
ðp⃗b; p⃗ − p⃗bÞ denotes themomentumdistribution

function for the quark and antiquark pair in the meson core.
In this model, GBc

ðp⃗b; p⃗ − p⃗bÞ is taken in the form

GBc
ðp⃗b; p⃗ − p⃗bÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gbðp⃗bÞGcðp⃗ − p⃗bÞ

p
in the straightfor-

ward extension of the ansatz ofMargolis andMendel in their
bag model description [60], where Gbðp⃗bÞ and Gcðp⃗ − p⃗bÞ
refer to the individual momentum probability amplitude of
the constituent quark. Here, the effective momentum dis-
tribution function in fact embodies the bound-state character
of jBcðp⃗; SBc

Þi.
Any residual internal dynamics responsible for the decay

process can, therefore, be described at the constituent level
by the otherwise unbound quark and antiquark using
usual Feynman technique. The constituent-level S-matrix
element Sbfi → cq̄iqj obtained from the appropriate
Feynman diagram when operated upon by the bag like
operator Λ̂ðp⃗; SBc

Þ (17) can give rise to the mesonic-level S
matrix in the form

SBc→Xcc̄ðnSÞM
fi → Λ̂ðp⃗; SBc

ÞSb→cq̄iqj
fi : ð19Þ

A. Bc → P1P2

The nonleptonic decay mode, Bc → P1P2, where P1 and
P2 are pseudoscalar mesons, [Fig. 1(a)], is induced by the
b → cq̄iqj transition at quark level with the emission of a
W boson. The resulting quark c and the spectator antiquark
c̄ attached to the decaying meson state jBcðp⃗; SBc

Þi
hadronize to form jP1ðk⃗; SP1

Þi, while the externally emitted
W boson with four momentum q, which decays to a quark-
antiquark pair, subsequently hadronize to form the pseu-
doscalar meson state jP2ðq⃗; SP2

Þi. Considering the wave
packet representation of the participating meson states in
the factorized decay amplitude (3), the S-matrix element for
Bc → P1P2 can be obtained in the general form,

Sfi ¼ ð2πÞ4δð4Þðp − q − kÞð−iMfiÞ ×
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

V2EBc

p Y
f

1

V2Ef
:

ð20Þ

The invariant transition amplitude Mfi is in fact
extracted in the form

Mfi ¼
GFffiffiffi
2

p VbcVq̄iqja1A; ð21Þ

FIG. 1. Quark-level diagram of nonleptonic decay of meson
Bc → XccðnSÞM. (a) color-favored class I, (b) color-suppressed
class II, and (c) class III decays.
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where A ¼ hμHμ with

hμ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2EP2

ð2πÞ3
s

hP2ðq⃗; SP2
ÞjJμj0i ð22Þ

and

Hμ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NBc
ðp⃗ÞNP1

ðk⃗Þ
q Z

d3p⃗bGBc
ðp⃗b; p⃗ − p⃗bÞGP1

ðp⃗b þ k⃗ − p⃗; p⃗ − p⃗bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ebðp⃗bÞEcðp⃗b þ k⃗ − p⃗Þ

q
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Ebðp⃗bÞ þ Ecðp⃗ − p⃗bÞ�½Ecðp⃗b þ k⃗ − p⃗Þ þ Ec̄ðp⃗ − p⃗bÞ�

q
hSP1

jJμð0ÞjSBc
i: ð23Þ

Here, Ebðp⃗bÞ and Ecðp⃗b þ k⃗ − p⃗Þ stand for energy of the
nonspectator quark of the parent and daughter meson;
p⃗b; p⃗; k⃗ represent the three momentum of the nonspectator
constituent quark b, parent meson Bc, and the daughter
meson P1, respectively. q ¼ p − k is equal to the four
momentum associated with the meson state jP2ðq⃗; SP2

Þi.
hSP1

jJμjSBc
i represents symbolically the spin matrix ele-

ments of the effective vector-axial vector current. For
transitions involving nonspectator constituent quark b,
the spin matrix element is

hSP1
jJμjSBc

i ¼
X
λb;λ0cλc̄

ζBc
b;c̄ðλb; λc̄ÞζP1

c;c̄ðλ0c; λc̄Þūc

× ðp⃗b þ k⃗ − p⃗; λ0cÞγμð1 − γ5Þubðp⃗b; λbÞ:
ð24Þ

Here, ui stands for free Dirac spinor. ζBcðλb; λc̄Þ and
ζP1ðλ0c; λc̄Þ are the appropriate SU(6) spin-flavor coeffi-
cients corresponding to the parent and daughter mesons,
respectively.
It may be pointed out here that in the description of any

decay process, for example, Bc → P1P2 in the RIQ model
framework, the three momentum conservation is ensured
explicitly via δð3Þðp⃗q þ p⃗q2 − p⃗Þ in the participating meson
states. However, energy conservation in such a scheme is
not ensured so explicitly. This is in fact a typical problem in
all potential model descriptions of mesons as a bound states
of valence quarks and antiquarks interacting via some
instantaneous potential. This problem has been addressed
in our previous analysis in the context of radiative leptonic
decays of heavy flavored means B;Bc;D;Ds [38], where
the effective momentum distribution function GMðp⃗q1 ; p⃗q̄2Þ
that embodies the bound-state characteristics of the meson
ensures energy conservation in an average sense satisfying
EM¼hMðp⃗;SMÞj½Eq1ðp⃗q1ÞþEq̄2ðp⃗q̄2Þ�jMðp⃗;SMÞi. In view
of this, we take the energy conservation constraint
M ¼ Eq1ðp⃗q1Þ þ Eq̄2ð−p⃗q̄1Þ, where M denotes the mass
of the decaying meson at rest. This along with the three

momentum conservation via appropriate δð3Þðp⃗q̄1 þ p⃗q2 −
p⃗Þ in the meson state ensures the required four momentum
conservation δð4Þðp − k − qÞ at the mesonic level, which is
pulled out of the quark-level integration so as to obtain the
S-matrix element in the standard form (20). This has been
discussed elaborately in our earlier work [47].
Since the axial vector current does not contribute to the

decay amplitude in the decay processes, Bc → P1P2, the
only nonvanishing vector current part of (23) is simplified
after calculating corresponding spin matrix elements (24)
using usual spin algebra. The resulting timelike and space-
like part of the hadronic matrix element in the parent meson
rest frame are obtained, respectively, as

hP1ðk⃗ÞjV0jBcð0Þi ¼ H0 ¼
Z

dp⃗bCðp⃗bÞf½Ebðp⃗bÞ þmb�

× ½Ec̄ðp⃗b þ k⃗Þ þmc̄� þ p⃗2
bg ð25Þ

and

hP1ðk⃗ÞjVijBcð0Þi ¼ Hi ¼
Z

dp⃗bCðp⃗bÞ½Ebðp⃗bÞ þmb�ki;

ð26Þ
where

Cðp⃗bÞ

¼ GBc
ðp⃗b;−p⃗bÞGP1

ðp⃗bþ k⃗;−p⃗bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NBc

ð0ÞNP1
ðk⃗Þ

q

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Ebðp⃗bÞþEc̄ð−p⃗bÞ�½Ecðp⃗bþ k⃗ÞþEc̄ð−p⃗bÞ�

Ebðp⃗bÞEcðp⃗bþ k⃗Þ½Ebðp⃗bÞþmb�½Ecðp⃗bþ k⃗Þþmc�

s
:

ð27Þ
Now, a comparison of the results [(25)–(27)] with the

corresponding expression of the covariant factorized ampli-
tude [(6)–(8)] yields the Lorentz invariant form factors
f�ðq2Þ in the form
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f�ðq2Þ ¼
1

2

Z
dp⃗bCðp⃗bÞf½Ebðp⃗bÞ þmb�

× ½Ecðp⃗b þ k⃗Þ þmc� þ p⃗2
b

� ½Ebðp⃗bÞ þmb�½M ∓ EP1
�g: ð28Þ

Then, it is straightforward to get the model expression

for the form factor F0ðq2Þ from F0ðq2Þ ¼
�

q2

ðM2−m2
P1
Þ

�
×

f−ðq2Þ þ fþðq2Þ in terms of which the decay rate ΓðBc →
P1P2Þ is obtained as

ΓðBc → P1P2Þ ¼
jk⃗j

8πM2
jA1j2jF0ðq2Þj2; ð29Þ

where

jA1j ¼
GFffiffiffi
2

p VbcVq̄iqja1ðM2 −m2
P1
ÞfP2

: ð30Þ

B. Bc → PV

In the nonleptonic decay process Bc → PV of the class I
category, the externally emitted W boson first decays to a
quark-antiquark pair which ultimately hadronizes to a
vector meson (V), and the c quark originating from the
nonspectator b decay along with the spectator c̄ hadronize
to the pseudoscalar meson (P) forming a member of the
charmonium family. It can be readily checked that the
decay amplitude in the Bc rest frame in such decays is
obtainable in terms of the invariant form factor F1ðq2Þ as

hPðk⃗ÞVðq⃗ÞjHeff jBcð0Þi

¼ i
GFffiffiffi
2

p VbcVq̄iqj2a1mVfVF1ðq2Þðe�:pÞ: ð31Þ

Here, e� denotes the polarization vector associated with
the daughter meson (V). The form factor F1ðq2Þ in the
parent meson rest frame is obtained as

F1ðq2Þ ¼ fþðq2Þ ¼
1

2

Z
dp⃗bCðp⃗bÞf½Ebðp⃗bÞ

þmb�½Ecðp⃗b þ k⃗Þ þmc� þ p⃗2
b

þ ½Ebðp⃗bÞ þmb�½M − EP�g; ð32Þ

in terms of which the decay rate ΓðBc → PVÞ is
expressed as

ΓðBc → PVÞ ¼ jk⃗j3
8πm2

V
jA2j2jF1ðq2Þj2; ð33Þ

where

jA2j ¼
GFffiffiffi
2

p VbcVq̄iqj2a1mVfV: ð34Þ

C. Bc → VP

In the decay process of this category, the externally
emitted W boson first decays to a quark-antiquark pair
which ultimately hadronizes to a pseudoscalar meson (P).
The resulting c from the nonspectator b decay and the
spectator c̄ hadronize to the vector meson (V) belonging to
the charmonium family. In this case, the vector current does
not contribute, and the nonvanishing decay amplitude due
to axial-vector current in Bc rest frame is obtained in a
simple form

hVðk⃗ÞPðq⃗ÞjHeff jBcð0Þi

¼ i
GFffiffiffi
2

p VbcVq̄iqj2a1mVfPA0ðq2Þðe�:pÞ: ð35Þ

Although all four invariant form factors A1, A2, A3, and
A0 are expected to contribute to the decay amplitude in
these decays, the contribution of a single form factor
A0ðq2Þ is relevant here as shown in (35). This is due to
the mutual cancellation of terms arising from the linear
relation (11). With the appropriate wave packet represen-
tation of the participating meson states jVðk⃗; SVÞi and
jBcð0; SBc

Þi, the nonvanishing factorized amplitude

hVðk⃗; SVÞjAμjBcð0; SBc
Þi is calculated with respect to three

spin states ðSV ¼ �1; 0Þ of the vector meson (V) in the
final state. In the calculation of the spin matrix element, the
polarization vector e� associated with the final state vector
meson is extracted from the model dynamics. The model
expressions of the timelike and spacelike parts of the
decay amplitude are then obtained in the parent meson
rest frame as

hVðk⃗; SVÞjA0jBcð0; SBc
Þi

¼
Z

dp⃗bCðp⃗bÞ½Ebðp⃗bÞ þmb�ðê�:k⃗Þ ð36Þ

and

hVðk⃗; SVÞjAijBcð0; SBc
Þi ¼

Z
dp⃗bCðp⃗bÞ

�
½Ebðp⃗bÞ þmb�

× ½Ecðp⃗b þ k⃗Þ þmc� −
p⃗2
b

3

�
ê�;

ð37Þ
respectively. A comparison of the expressions in (36) and
(37) with the covariant expansions (9) and (10) leads to the
model expression of the relevant form factor A0ðq2Þ as
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A0ðq2Þ ¼
1

2

Z
dp⃗bCðp⃗bÞ

�
½Ebðp⃗bÞ þmb�½M − EV �

× ½Ebðp⃗bÞ þmb�½Ecðp⃗b þ k⃗Þ þmc� −
p⃗2
b

3

�
:

ð38Þ

Then, the decay rate ΓðBc → VPÞ in terms of A0ðq2Þ is
obtained in a straightforward manner as

ΓðBc → VPÞ ¼ jk⃗j3
8πm2

V
jA3j2jA0ðq2Þj2; ð39Þ

where

jA3j ¼
GFffiffiffi
2

p VbcVq̄iqj2a1mVfP: ð40Þ

The two-body nonleptonic Bc decay described so far in
this section refers to the color-favored “class I” decays
involving external emission of a W boson [Fig. 1(a)]. For
class III decay modes considered in the present study, the
contribution to the decay amplitude is extracted from
the Pauli interference of both the diagrams depicting
external and internal emissions of a W boson. The model
expressions for relevant form factors and decay rates for
such decays can be obtained by suitably replacing the
relevant flavor degree of freedom, quark masses, quark
binding energies, QCD factors a1, a2, and the decay
constants.

IV. NUMERICAL RESULTS AND DISCUSSION

For calculating the two-body nonleptonic Bc decays in
the relativistic independent quark (RIQ) model, we need to
fix the flavor-independent potential parameters ða; V0Þ,
quark masses ðmqÞ, and corresponding quark binding
energy ðEqÞ. In fact, these parameters have already been
fixed in our model in reproducing the experimental meson
spectra in the light and heavy flavor sectors [39] and
subsequently used in the description of wide ranging
hadronic phenomena [40–47] involving participating mes-
ons in their ground state. Accordingly, the potential
parameters used in the present study are

ða; V0Þ ¼ ð0.17166 GeV3;−0.1375 GeVÞ: ð41Þ

The quark masses and corresponding binding energies in
GeV are taken as

mu ¼ md ¼ 0.07875; Eu ¼ Ed ¼ 0.47125;

ms ¼ 0.31575; Es ¼ 0.591;

mc ¼ 1.49275; Ec ¼ 1.57951;

mb ¼ 4.77659; Eb ¼ 4.76633: ð42Þ

For relevant CKM parameters and the lifetime of a Bc
meson, we take their central values from PDG [61] as

jVcbj ¼ 0.041; jVudj ¼ 0.9737; jVcsj ¼ 0.987;

jVusj ¼ 0.2245; jVcdj ¼ 0.221; τðBcÞ ¼ 0.51 ps:

ð43Þ

For the masses and decay constants of the participating
mesons, considered as phenomenological inputs in the
present calculation, we take their central values of the
available observed data from Refs. [61–63]. In the absence
of the observed data in the charmonium and charm meson
sectors, we take the corresponding predicted values from
established theoretical approaches [64–67]. Accordingly,
the updated meson masses and decay constants used in the
present analysis are listed in Table I.
Note that, in the prediction of nonleptonic decays,

uncertainties creep into the calculation through input
parameters: model parameters, CKM parameters, meson
decay constants, and QCD coefficients ða1; a2Þ, etc. As
mentioned above, we use in our calculation the potential
parameters (41) and the quark masses and quark binding
energies (42) that have already been fixed at the static-level
application of the RIQ model by fitting the mass spectra of
mesons in their ground state [39]. The same set of
parameters has been used in earlier application of RIQ

TABLE I. The masses and decay constants of mesons.

Particle Mass [61] (MeV) Decay constant (MeV) References

π 139.57 130.5 [61]
ρ 775.11 221 [61]
K� 493.677 155.72 [61]
K�� 891.67 220 [61]
D�ð1SÞ 1869.5 205.8 [61]
D�ð1SÞ 2010.2 252.2 [66]
D�

s ð1SÞ 1968.35 252.4 [61]
D��

s ð1SÞ 2112.2 305.5 [66]
ηcð1SÞ 2983.9 387 [67]
J=ψð1SÞ 3096.9 418 [67]
Bc 6274.47

Particle Mass (MeV) References

Dð2SÞ 2581 [64]
D��ð2SÞ 2637 [62]
Dsð2SÞ 2673 [64]
D�

sð2SÞ 2732 [63]
ηcð2SÞ 3637. [61]
ψð2SÞ 3686.1 [61]
D�ð3SÞ 3068 [64]
D��ð3SÞ 3110 [64]
D�

s ð3SÞ 3154 [64]
D��

s ð3SÞ 3193 [64]
ηcð3SÞ 4007 [65]
ψð3SÞ 4039.1 [61]
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model yielding adequate descriptions of wide ranging
hadronic phenomena in the light and heavy flavor mesons
in their ground state. Subsequently, we extend our model
application to study the Bc-meson decays into radially
excited daughter mesons [43]. In the calculation of such
decay processes [43], we use the same set of input
parameters [(41), (42)] except the quark binding energies.
The quark binding energies for excited meson states are
obtained by solving the equation representing appropriate
binding energy condition in our model. As such, we do not
use any free parameters that could be fine-tuned from time
to time to predict wide ranging hadronic phenomena as
stated above. In that sense, we perform parameter-free
calculations in our studies. In order to avoid uncertainties
that might creep into our calculation through the CKM
parameters and decay constants, we take their central
values of the observed data from Ref. [61]. In those cases
where observed data for decay constants are not available,
we use the predicted data from established model and
theoretical approaches [66,67]. Regarding the QCD coef-
ficient ða1; a2Þ, different numerical values have been used in
the literature in the calculation of the nonleptonic transitions
of Bc mesons induced by b-quark decay. For example
Colangelo and De Fazio, in Ref. [27] use QCD coefficients,
Set 1: ðab1; ab2Þ ¼ ð1.12;−0.26Þ, as fixed inRef. [68]. Inmost
earlier calculations, the authors use a different set of QCD
coefficients, Set 2: ðab1; ab2Þ ¼ ð1.14;−0.2Þ, fixed by Buras
et al. [52] in themid 1980s, whereas Dubnicka et al. [37] use
a different set of numerical values, i.e., Set 3: ðab1; ab2Þ ¼
ð0.93;−0.27Þ.We use all three sets of theWilson coefficients
in our calculation.
Before calculating invariant form factors using our input

parameters [(41), (42)], we would like to elaborate a bit on
the energy conservation ansatz discussed in Sec. III to
ensure the required energy-momentum conservation in our
description of nonleptonic Bc-meson decays. Considering a
meson state jXð0Þi decaying at rest, the energy conserva-
tion constraint M ¼ Eq1ðp⃗q1Þ þ Eq2ð−p⃗q1Þ might lead to
spurious kinematic singularities at the quark-level integra-
tion that appear in the decay amplitude. This problem has
been addressed in our model analysis on radiative leptonic
decays of heavy flavored mesons [41] and in similar studies
based on the QCD relativistic quark model approach [27]
by assigning a running mass to the nonspectator quark q1,

m2
q1ðjp⃗q1 jÞ ¼ M2 −m2

q2 − 2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗q1 j2 þm2

q2

q
;

as an outcome of the energy conservation ansatz, while
retaining definite mass mq2 of the spectator quark q̄2. This

leads to an upper bound on the quark momentum jp⃗q1 j <
M2−m2

q2
2M in order to retain m2

q1ðjp⃗q1 jÞ positive definite. The
shape of the radial momentum distribution amplitude
jp⃗q1 jGXðp⃗q1 ;−p⃗q1Þ over the allowed kinematic range 0 ≤
jp⃗q1 j < jp⃗q1 jmax as shown in Figs. 5–7 also match with the
shape obtained in similar studies in the QCD relativistic
quarkmodel approach [27]. The rmsvalue of the active quark

momentum
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hjp⃗2

q1 ji
q

, where hjp⃗2
q1 ji ¼ hXð0Þjp⃗2

q1 jXð0Þi,
the expectation value of the binding energies of the active
quark q1, and spectator q2 and sum of the binding energy of
quark and antiquark pair hEq1ðp⃗2

q1Þi, hEq2ðj− p⃗q1 j2Þi, and
hEq1ðp⃗2

q1Þ þ Eq2ðj− p⃗q1 j2Þi, respectively, calculated in the
framework of RIQ model, are presented in Table II.
It is note worthy to discuss three important aspects of our

results in Table II. (1) The rms value of the quark
momentum in the meson bound state is much less than
the corresponding upper bound jp⃗q1 jmax as expected.
(2) The average energy of a constituent quark of the same
flavor in different meson bound states does not exactly
match. This is because the kinematics and binding energy
condition for constituent quarks due to the color forces
involved are different from one meson bound state to other.
The constituent quarks in the meson bound state are
considered to be free particles of definite momenta, each
associated with its momentum probability amplitude deriv-
able in this model via momentum space projection of the
respective quark eigenmodes. On the other hand the
energies shown in Eq. (42), which are the energy eigen-
values of the corresponding bound quarks with no definite
momenta of their own, are obtained in the RIQ model from
respective quark orbitals by solving the Dirac equation. It is
no wonder that we find the marginal difference between the
energy eigenvalues (42) and average energy of constituent
quarks shown in Table II. (3) Finally, we obtained the
expectation values of the sum of the energy of a constituent
quark and antiquark in the meson bound state in good
agreement with corresponding observed masses as shown

TABLE II. The rms values of quark momentum, expectation values of the quark and antiquark, and expectation
value of sum of the quark and antiquark pair in the meson states.

Meson state
jXð0Þi

ffiffiffiffiffiffiffiffiffi
hp⃗2

q1

q
i

(GeV)
hEq1ðp⃗2

q1Þi
(GeV)

hEq2ðj− p⃗2
q1 jÞi

(GeV)
h½Eq1ðp⃗2

q1Þ þ Eq2ðj− p⃗2
q1 jÞi

(GeV)
Observed meson
mass (GeV)

jBuð0Þi 0.51 4.799 0.480 5.279 5.27925
jBcð0Þi 0.66 4.657 1.629 6.286 6.27447
jDð0Þi 0.4506 1.4418 0.4275 1.8693 1.86965
jDsð0Þi 0.4736 1.4165 0.5517 1.9682 1.96835
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in Table II. These important aspects of our results lend
credence to our energy conservation ansatz in an average
sense through an effective momentum distribution function
like GXðp⃗q1 ;−p⃗q1Þ in the meson bound state jXð0Þi. This
ansatz along with three momentum conservation in the
meson bound state ensures the required energy momentum
conservation in our description of several decay processes
[39–47] as pointed out earlier. In the absence of any
rigorous field theoretic description of the meson bound
states, invoking such an ansatz is no doubt a reasonable
approximation for a constituent-level description of had-
ronic phenomena.
With the input parameters [(41), (42)], we first study the

q2 dependence of the form factors in the allowed kinematic

range 0 < q2 ≤ q2max from analytic expressions [(28), (32),
(38)]. In a self-consistent dynamic approach, we extract the
form factor from the overlapping integrals of meson wave
functions wherein the q2 dependence is automatically
encoded in relevant expressions. This is in contrast to
some model approaches cited in the literature where the
form factors are determined only at one kinematic point,
i.e., at q2 → 0 or q2 → q2max, and then extrapolated to the
entire kinematic range using some phenomenological
ansatz (mainly dipole or Gaussian form). Our predicted
q2 dependencies of the form factors F0ðq2Þ; F1ðq2Þ, and
A0ðq2Þ for nonleptonic Bc decays to ground and radially
excited meson states are depicted in Figs. 2–4. We find that
the form factors relevant to the transitions to 1S meson

FIG. 3. q2 dependence of the form factors in the nonleptonic Bc decays to a final meson in the 2S state.

FIG. 2. q2 dependence of the form factors in the nonleptonic Bc decays to a final meson in the 1S state.

FIG. 4. q2 dependence of the form factors in the nonleptonic Bc decays to a final meson in the 3S state.
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states increase with increasing q2 in the entire kinematic
range. This behavior, however, is not universal as the q2

dependence pattern is found different for transitions to

radially excited 2S and 3S meson states. We also find that
the form factorsF1ðq2Þ andA0ðq2ÞdominateF0ðq2Þ through
out the kinematic range for all transitions. In transitions to the
higher excited (2S and 3S) states, the plots for F1ðq2Þ and
A0ðq2Þ almost overlap throughout the kinematic range above
F0ðq2Þ. Our predicted form factors at maximum recoil point
q2 → 0 as listed in Table III also satisfy the requirement for
pole cancellation in Bc → P transitions.
Before evaluating the decay rates/branching fractions, it

is interesting to plot the radial quark momentum distribu-
tion amplitude jp⃗bjGBc

ðp⃗b;−p⃗bÞ for a decaying Bc meson
at rest in its ground state along with that for the daughter
mesons in their ground as well as radially excited (2S and
3S) states over the allowed physical range of the quark
momentum. From the plots shown in Figs. 5–7, we find that
the overlap region in the transition to ground (1S) state
is maximum. However, the overlaps of momentum dis-
tribution amplitudes are found to decrease as one con-
siders transitions to higher excited 2S and 3S states.

FIG. 5. Overlap of momentum distribution amplitudes of the initial and final meson states.

FIG. 6. Overlap of momentum distribution amplitudes of the initial and final meson states.

TABLE III. The form factors (F0, F1, A0) at q2 ¼ 0 evaluated
in the RIQ model for exclusive nonleptonic Bc decays to 1S, 2S,
3S final state mesons.

Form
factors

Final meson
state Bc → ηc; J=ψ Bc → D;D� Bc → Ds;D�

s

F0 1S 0.3057 0.0163 0.040
F1 0.3058 0.018 0.045
A0 0.3164 0.058 0.038

F0 2S 0.232 0.044 0.063
F1 0.232 0.046 0.066
A0 0.232 0.076 0.060

F0 3S 0.160 0.043 0.054
F1 0.160 0.045 0.056
A0 0.163 0.0405 0.051

EXCLUSIVE NONLEPTONIC BC-MESON DECAYS TO S- … PHYS. REV. D 105, 053007 (2022)

053007-11



Since invariant form factors are extracted from overlapping
integrals of participating meson wave functions, one
expects the form factor contribution to the decay rate/
branching fractions in the decreasing order of magnitude
for transition to daughter mesons from their ground to
higher excited states.
We then evaluate the decay rates from the expressions in

Eqs. (29), (33), and (39), and our results for general values
of QCD coefficients ða1; a2Þ of the operator product
expansion are listed in Table IV to facilitate a comparison
with other dynamical model predictions.
Our predicted branching fractions for various tree-level

two-body nonleptonic Bc decays to 1S, 2S, and 3S
charmonium states in comparison with other model pre-
dictions are listed in Tables V, VI, and VII, respectively.
Our results for decays to 1S, 2S, and 3S final states

corresponding to three sets of QCD parameters are listed in
the second column of each table. As expected our predicted
branching fractions are obtained in the following hierarchy:

BðBc → Xcc̄ð3SÞMÞ < BðBc → Xcc̄ð2SÞMÞ
< BðBc → Xcc̄ð1SÞMÞ:

Our results for transitions to 2S and 3S final states are
found about two and three orders of magnitude smaller,
respectively, than those for 1S final states. The node
structure of the 2S wave function is responsible for small
branching fractions. In the calculation of the overlap
integral of meson wave functions, as there is no node for
the initial wave functions, the positive and negative parts
of the final wave function give contributions which
cancel each other out yielding a small branching fraction.
With regard to 3S final states, there are even more severe
cancellations, which lead to still smaller branching
fractions. As expected the tighter phase space and weaker
q2 dependence of form factors also lead to smaller
branching fractions for transitions to higher excited 2S
and 3S final states.

FIG. 7. Overlap of momentum distribution amplitudes of the initial and final meson states.

TABLE IV. Decay widths in units of 10−15 GeV for general values of the Wilson coefficients ða1; a2Þ in nonleptonic Bc-meson decays
to 1S, 2S, and 3S charmonium states. For the sake of brevity, we use the notation η0c;ψ 0 ¼ ηcð2SÞ;ψð2SÞ; η00c;ψ 00 ¼ ηcð3SÞ;ψð3SÞ.
Decay Width Decay Width Decay Width

B−
c → ηcπ 0.394a21 B−

c → η0cπ 0.143a21 B−
c → η00cπ 0.0485a21

B−
c → ηcK 0.0312a21 B−

c → η0cK 0.0116a21 B−
c → η00cK 0.0039a21

B−
c → ηcD ð0.306a1 þ 0.221a2Þ2 B−

c → η0cD ð0.199a1 þ 0.3012a2Þ2 B−
c → η00cD ð0.1009a1 þ 0.2325a2Þ2

B−
c → ηcDs ð1.727a1 þ 1.478a2Þ2 B−

c → η0cDs ð1.135a1 þ 1.5558a2Þ2 B−
c → η00cDs ð0.512a1 þ 0.9910a2Þ2

B−
c → ηcρ 1.237a21 B−

c → η0cρ 0.450a21 B−
c → η00cρ 0.1541a21

B−
c → ηcK� 0.0652a21 B−

c → η0cK� 0.0.0237a21 B−
c → η00cK� 0.0081a21

B−
c → ηcD� ð0.346a1 þ 0.2819a2Þ2 B−

c → η0cD� ð0.199a1 þ 0.3611a2Þ2 B−
c → η00cD� ð0.0662a1 þ 0.2059a2Þ2

B−
c → ηcD�

s ð1.893a1 þ 1.720a2Þ2 B−
c → η0cD�

s ð1.062a1 þ 1.6054a2Þ2 B−
c → η00cD�

s ð0.313a1 þ 0.558a2Þ2
B−
c → J=ψπ 0.4949a21 B−

c → ψ 0π 0.173a21 B−
c → ψ 00π 0.061a21

B−
c → J=ψK 0.0387a21 B−

c → ψ 0K 0.0136a21 B−
c → ψ 00K 0.0045a21

B−
c → J=ψD ð0.306a1 þ 0.4784a2Þ2 B−

c → ψ 0D ð0.178a1 þ 0.399a2Þ2 B−
c → ψ 00D ð0.0753a1 þ 0.2567a2Þ2

B−
c → J=ψDs ð1.697a1 þ 2.0503a2Þ2 B−

c → ψ 0Ds ð0.9708a1 þ 1.964a2Þ2 B−
c → ψ 00Ds ð0.345a1 þ 0.3634a2Þ2
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Our predictions for branching fractions corresponding to
Bc decays to 1S and 2S final states are found in general
agreement with some model predictions and differ from
other model predictions by a factor of 2–3 as shown in
Tables Vand VI. There are a few theoretical predictions on
the branching fractions for Bc-meson decays to higher 3S
states. Our predicted branching fractions with respect to
three sets of Wilson coefficients are found comparable to
the predictions based on the improved Bethe-Salpeter
approach [29,30] as shown in Table VII.
Our prediction for Bc → Xcc̄ð1SÞM decays shown in

Table V are in good agreement with the model predictions
of Refs. [22,24,27,31], and those for class III transitions
like B−

c → ηcD−
s ; B−

c → ηcD�
s , and B−

c → J=ψD�
s moder-

ately agree with those of Refs. [32–38]. For other decay
modes, our results are about one order of magnitude smaller

than theirs. For Bc → Xcc̄ð2SÞM decays, our results as
listed in Table VI also agree well with those of
Refs. [22,23,25] and agree moderately with the results
of Refs. [27,29,30]. Compared to the branching fractions
for Bc → η0cπ and Bc → ψ 0π predicted in the perturbative
QCD approach based on kT factorization [20], our results
are found one order of magnitude smaller. Our predictions
of Bc → Xcc̄ð3SÞM decays shown in Table VII are found
comparable to those of the model calculation based on the
improved Bethe-Salpeter approach [29,30], except
for Bc → ψ 00D decay which is found one order of magni-
tude larger than theirs. The dominant decay modes to 1S
meson states are Bc → ηcðρ−; D−

s ; D�−
s Þ and Bc → J=ψD−

s
which should be accessible at LHCb. The predicted
branching fractions of decays to 2S and 3S states Bc →
η0cðρ−; D−

s ; D�−
s Þ, Bc → ψ 0D−

s , and Bc → η00cðρ−; D−
s ; D�−

s Þ,

TABLE V. Branching fractions (in %) of the Bc → ηcX and Bc → J=ψP decays, where X ¼ P, V in comparison with other model
predictions.

Decay

This work

[22] [24] [27] [31] [32] [33] [34] [35] [36] [38]
a1 ¼ 0.93 a1 ¼ 1.12 a1 ¼ 1.14
a2 ¼ −0.27 a2 ¼ −0.26 a2 ¼ −0.20

B−
c → ηcπ 0.0264 0.0383 0.0397 � � � 0.083 0.025 0.094 0.13 0.14 0.20 0.18 0.189 0.19

B−
c → ηcK 0.002 0.003 0.0031 � � � 0.006 0.002 0.0075 0.013 0.011 0.013 0.014 0.015 0.015

B−
c → ηcD− 0.0039 0.006 0.0068 � � � � � � 0.005 0.014 0.010 0.014 0.015 0.0012 � � � 0.019

B−
c → ηcDs 0.1128 0.1861 0.2169 � � � � � � 0.50 0.44 0.35 0.26 0.28 0.054 � � � 0.44

B−
c → ηcρ 0.0828 0.120 0.124 � � � 0.20 0.067 0.24 0.30 0.33 0.42 0.49 0.518 0.45

B−
c → ηcK� 0.0043 0.0063 0.0065 0.011 0.004 0.013 0.021 0.018 0.02 0.025 0.029 0.025

B−
c → ηcD� 0.0046 0.0076 0.0088 � � � � � � 0.003 0.012 0.0055 0.013 0.010 0.0010 � � � 0.019

B−
c → ηcD�

s 0.1301 0.216 0.254 � � � � � � 0.057 0.24 0.36 0.24 0.27 0.044 � � � 0.37

B−
c → J=ψπ 0.0331 0.038 0.039 0.0664 0.06 0.13 0.076 0.073 0.11 0.13 0.18 0.101 0.17

B−
c → J=ψK 0.0025 0.003 0.0031 0.00527 0.005 0.007 0.006 0.007 0.008 0.011 0.014 0.008 0.013

B−
c → J=ψD 0.0018 0.00369 0.00496 0.00552 � � � 0.013 0.0083 0.0044 0.009 0.009 0.0009 � � � 0.015

B−
c → J=ψDs 0.0813 0.1449 0.1801 0.137 � � � 0.35 0.24 0.12 0.15 0.041 0.34 � � � 0.34

TABLE VI. Branching fractions (in 10−4) of the B−
c → η0cX and B−

c → ψ 0P decays, where X ¼ P, V in comparision with other model
predictions.

Decay

This work

[35] [22] [23] [24] [25] [27] [29,30] [20]
a1 ¼ 0.93 a1 ¼ 1.12 a1 ¼ 1.14
a2 ¼ −0.27 a2 ¼ −0.26 a2 ¼ −0.20

B−
c → η0cπ 0.95 1.39 1.44 2.4 � � � 2.4 1.7 2.2 0.66 1.67 10.3

B−
c → η0cK 0.077 0.11 0.117 0.18 � � � 0.18 0.125 0.16 4.9 × 10−2 0.119 � � �

B−
c → η0cD 0.083 0.161 0.21 0.20 � � � 0.057 � � � � � � 2.2 × 10−2 3.19 × 10−2 � � �

B−
c → η0cDs 3.12 5.81 7.4 8.7 � � � 0.67 � � � � � � 0.785 4.47 � � �

B−
c → η0cρ 3.01 12.03 12.46 5.5 � � � 5.5 3.6 5.25 1.4 3.56 � � �

B−
c → η0cK� 0.15 0.23 0.239 0.28 � � � 0.26 0.15 0.25 7.15 × 10−2 0.191 � � �

B−
c → η0cD� 0.059 0.12 0.185 0.11 � � � 0.21 � � � � � � 7.8 × 10−4 0.285

B−
c → η0cD�

s 2.37 4.61 6.13 4.4 � � � 4.5 � � � � � � 0.20 3.56 � � �
B−
c → ψ 0π 1.15 1.34 1.39 2.2 2.97 3.7 1.1 0.63 2.0 1.42 6.7

B−
c → ψ 0K 0.091 0.105 0.109 0.16 0.23 0.29 8 × 10−2 4.45 × 10−2 8.9 × 10−2 0.102 � � �

B−
c → ψ 0D 0.0258 0.07 0.11 0.11 0.138 0.24 � � � � � � 7.3 × 10−2 1.55 × 10−2

B−
c → ψ 0Ds 1.075 2.57 3.94 4.4 3.08 5.25 � � � � � � 1.2 2.69 � � �
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Bc → ψ 00D−
s up to ∼10−4 may be accessible at high

luminosity hadron colliders in the near future. All other
decays discussed in the present work cannot reach the
detection ability of current experiments.
It is of interest to estimate the ratios of branching fractions

of pairs ofmodesBc → PV,Bc → PP, andBc → VP,Bc →
PP which are expected to be ≈3 from naive spin counting.
We find that only for the pair B−

c → ηcðnSÞρ− and Bc →
ηcðnSÞπ− does the naive spin counting hold good. However,
for all other pairs, we obtain approximate equality except for
the pairs B−

c → ψðnSÞD−
s and B−

c → ηcðnSÞD−
s where our

predicted ratio shows an inversion of the spin counting ratio.
The deviation of the naive spin counting is a common feature
of all model predictions.
The relative size of branching fractions for nonleptonic

Bc decays is broadly estimated from power counting of
QCD factors in the Welfenstein parametrization [69].
Accordingly the class I decay modes determined by the
QCD factor, a1 are found to have comparatively large
branching fractions which should be measured experimen-
tally. In class III decays, which are characterized by Pauli
interference, the branching fractions are determined by the
relative value of a1 with respect to a2. Considering the
positive value of a1 ¼ 1.12 and negative value of a2 ¼
−0.26 in Set 1, for example, used in the literature, this leads
to destructive interference. As a result, the decay modes are
found suppressed in comparison with the cases where
interference is switched off. However, at the qualitative
level, it is known that the ratio a2=a1 is a function of
running coupling constant αs evaluated at the factorization
scale, which is shown to be positive in case of b-flavored
meson decays corresponding to small coupling [54]. The
experimental data also favor constructive interference of
color-favored and color-suppressed Bc-decay modes.
Considering positive value ab2 ¼ 0.26, our predicted

branching fractions for class III decays to 1S and 2S final
states find enhancement by a factor ∼2 to 4 and ∼3 to 7,
respectively, over that obtained with a negative value of
ab2 ¼ −0.26. For decays to 3S final states, the enhancement
is still more significant.
It is possible to study the effect of Pauli interference in

class III Bc decays by casting the decay width in the form
Γ ¼ Γ0 þ ΔΓ, where Γ0 ¼ x21a

2
1 þ x22a

2
2, ΔΓ ¼ 2x1x2a1a2,

and computing ΔΓ
Γ0

in % as done in [47,48,55]. The absolute

values of ΔΓΓ0
for Bc decays to 1S final states are found in the

range of 32.7% − 63.9%. Those for decay modes to 2S and
3S final states are obtained in the range of 57.7% − 82.6%
and 46.2% − 97.3%, respectively. Thus, we find that
interference is more significant in class III Bc decays to
higher excited 2S and 3S states compared to those
estimated for decays to 1S final states.
Finally, we predict the studied observable R: ratios of

branching fractions of the nonleptonic Bc-meson decays. It
may be noted that the CKM matrix elements and decay
constants do not contribute to the ratio R. The QCD
parameter which appears in the decay amplitudes and the
theoretical uncertainties caused by naive factorization for
nonleptonic decays also get canceled a lot in calculating the
observable R. Contrary to other observables, the above
mentioned ratios, in which the production of a Bc meson is
canceled totally, provide an essential test of the decays.
Besides giving useful information about the form factors,
these ratios could offer a test of the adopted quark model.
Our predicted observables ðRÞ are listed in Table VIII. One
can see that our results for the ratios RK=π , RDs=π, and
Rψð2SÞ=J=ψ are consistent with the LHCb data within
experimental uncertainties. In particular, our predicted
RDs=π ¼ 3.7832 exactly matches the central value of the
experimental data from the ATLAS Collaboration [15].

TABLE VII. Predicted branching fractions (in 10−5) of the Bc → η00cx and Bc → ψ 00P where X ¼ P, V.

Decay

This work

[29] [30]
a1 ¼ 0.93 a1 ¼ 1.12 a1 ¼ 1.14
a2 ¼ −0.27 a2 ¼ −0.26 a2 ¼ −0.20

B−
c → η00cπ 3.2 4.7 4.8 2.16 � � �

B−
c → η00cK 0.26 0.38 0.39 0.153 � � �

B−
c → η00cD 0.074 0.21 0.36 � � � � � �

B−
c → η00cDs 3.3 7.72 11.5 � � � � � �

B−
c → η00cρ 10.1 14.9 15.5 4.29 � � �

B−
c → η00cK� 0.54 0.79 0.81 0.225 � � �

B−
c → η00cD� 0.24 0.032 0.09 � � � � � �

B−
c → η00cD�

s 1.52 3.2 4.6 � � � � � �
B−
c → ψ 00π 4.08 4.7 4.8 3.11 � � �

B−
c → ψ 00K 0.301 0.35 0.36 0.214 � � �

B−
c → ψ 00D 0.04 × 10−3 0.02 0.092 � � � 3.67 × 10−3

B−
c → ψ 00Ds 3.84 6.6 7.9 � � � 3.76
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Compared with the predictions of other theoretical studies,
our predicted RDs=π is found very close to 3.45þ0.49

−0.17 of Rui
et al. [21] in their studies based on the PQCD approach and
comparable to 2.6 (QCD PM) [27], 2.2 (BSW RQM) [59],
2.06� 0.86 (LFQM) [22], 2.0 (RCQM) [38], 1.3 (QCD SR)
[34], and 1.29� 0.26 (CCQM) [38]. Only the predicted ratio
Rπ=μν is found to be underestimated. Since the related ratios
are mostly determined by the hadron transition, the agree-
ment between the observed values and our predictions
indicates a strong support to our approach to study non-
leptonic Bc decays within the framework of the RIQ model.

V. SUMMARY AND CONCLUSION

In thiswork, we study the exclusive two-body nonleptonic
Bc → Xcc̄M decays, where Xcc̄ is a S-wave charmonium
state andM is either a pseudoscalar (P) or a vector (V)meson.
We consider here three categories of decays: Bc →
PP;PV; VP decays within the factorization approximation
in the framework of the relativistic independent quark (RIQ)
model based on a flavor-independent interaction potential in
the scalar-vector harmonic form. The weak decay form
factors representing decay amplitudes and their q2 depend-
ence are extracted in the entire kinematic range of 0 ≤ q2 ≤
q2max from the overlapping integrals of the meson wave
functions obtainable in the RIQ model.
In calculating the decay modes, we find our predicted

branching fractions in a wide range ∼10−2 to 10−5, in
reasonable agreement with most other model predictions.
The dominant decay modes to 1S charmonium states are
B−
c → ηcðρ−; D−

s ; D�−
s Þ and Bc → J=ψD−

s which should
be experimentally accessible. The branching fractions to
2S and 3S charmonium states B−

c → η0cðρ−; D−
s ; D�−

s Þ,
Bc → ψ 0D−

s , and Bc → η00cðρ−; D−
s ; D�−

s Þ, Bc → ψ 00D−
s pre-

dicted up to ∼10−4 may be accessible at high luminosity
hadron colliders in near future. Other decay modes with
lower branching fractions cannot reach the detection ability
of current experiments. As expected, our predicted branch-
ing fractions are obtained in the hierarchy,

BðBc → Xcc̄ð3SÞMÞ < BðBc → Xcc̄ð2SÞMÞ
< RðBc → Xcc̄ð1SÞMÞ:

This is due to the nodal structure of the participating meson
wave functions in the decays to higher excited states,
tighter phase space, and weaker q2 dependence of the form
factors for the decays to higher excited states in comparison
to the decays to ground (1S) states.
The class I decays determined by QCD coefficient a1 are

found to have comparatively large branching fractions
which should be measured experimentally. The class III
decays, characterized by Pauli interference, are determined
by both QCD parameters a1 and a2. Considering the
positive values of a1 and negative value of a2 used in
the literature, this leads to destructive interference, as a
result of which this class of decays is found to be
suppressed compared to the case where the interference
is switched off. We find the interference is more significant
in class III Bc decays to higher excited 2S and 3S states
compared to that found in the decays 1S final states.
In the wake of recent measurements of the ratios of

branching fractions by the LHCb Collaboration for non-
leptonic Bc decays, these ratios are calculated in the present
study, and our predicted ratios of branching fractionsRK=π ,
RDs=π , and Rψð2SÞ=J=ψ are consistent with the LHCb data
within experimental uncertainties, although our prediction
of Rπ=μν is found to be underestimated. Since the CKM
parameters and decay constants do not contribute and the
QCD parameter and the theoretical uncertainties due to
naive factorization are also canceled a lot in calculating the
ratio R, these predicted ratios, contrary to other observ-
ables, could offer a test for the phenomenological models
adopted in the description of nonleptonic decays. Our
results for the weak form factors, branching fractions,
and ratio R indicate that the approach adopted here works
well to describe nonleptonic Bc decays within factorization
approximation in the framework of the RIQ model.

APPENDIX: CONSTITUENT QUARK ORBITALS
AND MOMENTUM PROBABILITY AMPLITUDES

In the RIQ model, a meson is pictured as a color-singlet
assembly of a quark and an antiquark independently
confined by an effective and average flavor-independent
potential in the form UðrÞ ¼ 1

2
ð1þ γ0Þðar2 þ V0Þ, where

(a, V0) are the potential parameters. It is believed that the

TABLE VIII. Ratios of branching fractions: R.

Ratios R Our work Experiment

0.069� 0.019ðStat:Þ � 0.005ðsyst:Þ
RK=π ¼ BðBc→J=ψKÞ

BðBc→J=ψπÞ 0.0783

0.079� 0.007ðstat:Þ � 0.003ðsyst:Þ
RDs=π ¼ BðBc→J=ψDsÞ

BðBc→J=ψπÞ 3.7832 f 2.9�0.57�0.24
3.8�1.1�0.4�0.2

Rψð2SÞ=J=ψ ¼ BðBc→ψð2SÞπÞ
BðBc→J=ψπÞ 0.3394 0.250� 0.068ðStat:Þ � 0.014ðSyst:Þ � 0.006

Rπþ=μþν ¼ BðBc→J=ψπÞ
BðBc→J=ψμþνμÞ

0.0142 0.049� 0.0028ðStat:Þ � 0.0046ðSyst:Þ
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zeroth order quark dynamics generated by the phenom-
enological confining potential UðrÞ taken in equally mixed
scalar-vector harmonic form can provide an adequate tree-
level description of the decay process being analyzed in this
work. With the interaction potential UðrÞ put into the
zeroth order quark Lagrangian density, the ensuing Dirac
equation admits a static solution of positive and negative
energy as

ψ ðþÞ
ξ ðr⃗Þ ¼

 igξðrÞ
r

σ⃗:r̂fξðrÞ
r

!
Uξðr̂Þ;

ψ ð−Þ
ξ ðr⃗Þ ¼

 iðσ⃗:r̂ÞfξðrÞ
r

gξðrÞ
r

!
Ũξðr̂Þ; ðA1Þ

where, ξ ¼ ðnljÞ represents a set of Dirac quantum
numbers specifying the eigenmodes, and Uξðr̂Þ and
Ũξðr̂Þ are the spin angular parts given by

Uljmðr̂Þ ¼
X
ml;ms

hlml
1

2
msjjmiYml

l ðr̂Þχms
1
2

;

Ũljmðr̂Þ ¼ ð−1Þjþm−lUlj−mðr̂Þ: ðA2Þ

With the quark binding energyEq and quarkmassmq written
in the form E0

q ¼ ðEq − V0=2Þ, m0
q ¼ ðmq þ V0=2Þ, and

ωq ¼ E0
q þm0

q, one can obtain solutions to the resulting
radial equation for gξðrÞ and fξðrÞ in the form

gnl ¼ Nnl

�
r
rnl

�
lþl

expð−r2=2r2nlÞLlþ1=2
n−1 ðr2=r2nlÞ;

fnl ¼ Nnl

�
r
rnl

�
l
expð−r2=2r2nlÞ

×

��
nþ l −

1

2

�
Ll−1=2
n−1 ðr2=r2nlÞ þ nLl−1=2

n ðr2=r2nlÞ
�
;

ðA3Þ

where, rnl ¼ aω−1=4
q is a state-independent length para-

meter, and Nnl is an overall normalization constant
given by

N2
nl ¼

4ΓðnÞ
Γðnþ lþ 1=2Þ

ðωnl=rnlÞ
ð3E0

q þm0
qÞ
; ðA4Þ

andLlþ1=2
n−1 ðr2=r2nlÞ etc. are associated Laguerre polynomials.

The radial solutions yield an independent quark bound-state
condition in the form of a cubic equation,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωq=aÞ

q
ðE0

q −m0
qÞ ¼ ð4nþ 2l − 1Þ: ðA5Þ

The solution of the cubic equation provides the zeroth order
binding energies of the confined quark and antiquark for all
possible eigenmodes.
In the relativistic independent particle picture of this

model, the constituent quark and antiquark are thought
to move independently inside the Bc-meson bound state
with momentums p⃗b and p⃗c, respectively. Their individual
momentum probability amplitudes are obtained in this
model via momentum projection of respective quark
orbitals (A1) in following forms:
For ground state mesons (n ¼ 1; l ¼ 0),

Gbðp⃗bÞ ¼
iπN b

2αbωb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEpb

þmbÞ
Epb

s
ðEpb

þ EbÞ exp
�
−
p⃗b

2

4αb

�
;

G̃cðp⃗cÞ ¼ −
iπN c

2αcωc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEpc

þmcÞ
Epc

s
ðEpc

þ EcÞ

× exp
�
−
p⃗c

2

4αc

�
: ðA6Þ

For the excited meson state (n ¼ 2; l ¼ 0),

Gbðp⃗bÞ ¼
iπN b

2αb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEpb

þmbÞ
Epb

s
ðEpb

þ EbÞ
ðEb þmbÞ

×

�
p⃗b

2

2αb
−
3

2

�
exp

�
−
p⃗b

2

4αb

�
;

G̃cðp⃗cÞ ¼
iπN c

2αc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEpc

þmcÞ
Epc

s
ðEpc

þ EcÞ
ðEc þmcÞ

×

�
p⃗2
c

2αc
−
3

2

�
exp

�
−

p⃗2
c

4αc

�
: ðA7Þ

For the excited meson state (n ¼ 3; l ¼ 0),

Gbðp⃗bÞ ¼
iπN b

2αb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEpb

þmbÞ
Epb

s
ðEpb

þ EbÞ
ðEb þmbÞ

×

�
p⃗b

4

8αb
2
−
5p⃗2

b

4αb
þ 15

8

�
exp

�
−

p⃗2
b

4αb

�
;

G̃cðp⃗cÞ ¼
iπN c

2αc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEpc

þmcÞ
Epc

s
ðEpc

þ EcÞ
ðEc þmcÞ

×

�
p⃗c

4

8αc
2
−
5p⃗2

c

4αc
þ 15

8

�
exp

�
−

p⃗2
c

4αc

�
: ðA8Þ

The binding energies of constituent quarks and antiquarks
for the ground state of Bc mesons as well as the ground and
excited final meson states for n ¼ 1, 2, 3; l ¼ 0 can also be
obtained by solving respective cubic equations representing
appropriate bound state conditions.
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