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M-theory compactified on a G2 manifold with resolved E8 singularity is a promising candidate for a
unified theory. The experimentally observed masses of quarks and charged leptons put a restriction on the
moduli of theG2 manifold. These moduli in turn uniquely determine the Dirac interactions of the neutrinos.
In the paper, we explicitly compute the Dirac terms for neutrino mass matrix using the moduli from a
localized model with resolved E8 singularities on a G2 manifold. This is a novel approach as the Dirac
terms are not assumed but derived from the structure of quarks’ and charged leptons’masses. Using known
mass splittings and mixing angles of neutrinos, we show the acceptable region for Majorana terms. We also
analyze the theoretical region for Majorana terms induced from the expectation values of right-handed
neutrinos through the Kolda-Martin mechanism. The intersection of the two regions indicates a restriction
on neutrino masses. In particular, the lightest neutrino must have small but nonzero mass. Moreover, this
also puts constraints on possible Majorana contributions from Kähler potential and superpotential, which
can be traced down to a restriction on the geometry. We conclude that the masses of the two heavier light
neutrinos are about 0.05 eV and 0.009 eV (0.05 eV and 0.05 eV) for normal (inverted) hierarchy. In both
hierarchies, we predict the light neutrinos are mostly Dirac type. Hence neutrinoless double-beta decay will
be small. This is a testable result in a near future. Some bounds on heavy neutrinos are also derived.
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I. INTRODUCTION

The origin of the light left-handed neutrinos in the
Standard Model (SM) has been a mystery. Cosmological
probes have constrained the sum of the left-handed neutrino
masses to be Σmν < 0.12ð0.15Þ eV for normal (inverted)
ordering [1]. Neutrino mass splittings observed from neu-
trino oscillation are Δm2

12 ¼ 7.6 × 10−5 eV2, and Δm2
13 ¼

2.5 × 10−3 eV2 [1]. Moreover, the oscillation angles are
about θ12 ¼ 33.44°, θ23 ¼ 49.0°, and θ13 ¼ 8.57° [1,2],
which can be used to explicitly compute the flavor compo-
nents of mass eigenstates.
Due to nonzero mixing angles, neutrino flavor eigen-

states (electron, muon, and tau) are not the same as the
neutrino mass eigenstates (simply labeled “1,” “2,” and
“3”). It is not known which of these three is the heaviest. In
analogy with the mass hierarchy of the charged leptons, the
configuration with mass 2 being lighter than mass 3 is

conventionally called the “normal hierarchy,” while in the
“inverted hierarchy,” the opposite would hold. Several
major experimental efforts are underway to help establish
which is correct. Current data favors the normal hierarchy,
although the confidence for this hierarchy has been
decreasing over the years [1]. In this paper we will assume
the normal hierarchy first, and then apply a similar
framework to the inverted hierarchy.
We show that viable neutrino masses can arise within the

framework of M-theory with resolved E8 singularities,
which is a highly nontrivial result, given the constrained
nature of M-theory constructions. From our previous work
[3], we numerically compute a local solution for moduli of
G2 manifold from the experimental masses of quarks and
charged leptons. As these moduli locally control the
geometry structure of the manifold, they determine all
other interactions in the model. Therefore, we can use them
to compute the Dirac terms of the neutrinos. This distin-
guishes our approach from previous works with neutrino
Dirac mass [4–13] as we do not make an estimation, instead
we compute the Dirac terms explicitly.
The origin of Majorana mass terms has been complicated

to realize from the string theory perspective [4]. For
instance, it is possible to obtain large Majorana mass terms
from instanton effects [14–16], large volume compactifi-
cation [17], or orbifold compactifications of the heterotic
string [18]. In this work, we use the Kolda-Martin
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mechanism [19,20] to generate vacuum expectation values
(VEVs) for the scalar components of right-handed neutrino
supermultiplets and their conjugates. The Kolda-Martin
(K-M) mechanism includes effects of nonperturbative
terms via the Kähler potential. A similar approach has
been done by Acharya et al. for an SOð10Þ gauge group [4].
Our work expands the idea to an explicit resolved E8

singularities model, with three generations fitting the
experimental data for quarks and charged leptons, and
computes neutrino Dirac terms. The computed Dirac terms
put constraints on the Majorana terms through the seesaw
mechanism, and the Majorana terms are generated from the
VEVs of the conjugates of right-handed neutrinos.
Additionally, when the right-handed neutrinos get

VEVs, we inevitably generate bilinear R-parity violating
terms of the form ϵijLiHj. There are many works dedicated
to study these terms [21–23]. In general, due to the
presence of large Majorana terms, the bilinear mixing
between Higgs and leptons may spoil the Higgs physics.
It is more favorable to have a small ϵij. This puts a stringent
constraints on the aforementioned VEVs. In this paper, we
show that there are solutions for the VEVs in which the
mixing between leptons and Higgses is minimal. As a result
of the constraints, with a generic unsuppressed Kähler
potential coefficient, the lightest neutrino can be neither
massless nor heavy.
Furthermore, the nature of lightest neutrinos are

expected to be determined in a near future. The most
important process for this effort is the neutrinoless double-
beta decay, in which the total lepton number is violated by
two units. The prediction for the Standard Model including
nonperturbative effects via K-M mechanism is that the
neutrinos are Dirac. That implies neutrinoless double beta
decay will be small under those assumptions, and therefore
a good window for new physics, e.g., neutralinos (which
are Majorana particles), R-parity violating interactions, and
new physics in general. If the light neutrinos are signifi-
cantly Majorana, the experiments should be able to detect
them. Otherwise, the particles must be mostly Dirac [24]. In
this paper, we predict that the light particles are mostly
Dirac, hence the decay will be small.
This paper is organized as following: Sec. II will briefly

cover the local model of M-theory compactified on a G2

manifold with resolved E8 singularities [3]. Section III will
list all of the contributions to the neutrino mass matrix.
Section IV discusses the VEVs for the right-handed
neutrinos and their conjugates through the K-Mmechanism
while discussing the ϵij problem. Section V contains the
computed Dirac matrix and sets up the framework for the
neutrino mass matrix. In Sec. VI we discuss the Majorana
mass matrix from the experimental data and from the right-
handed neutrino VEVs. In Sec. VII we deduce a limit on
the neutrino masses. We predict the masses of the mass
eigenstate neutrinos, though we cannot yet exclude one of
the normal or inverted case. This will lead to Sec. VIII

where the ratio of Dirac to Majorana components are
estimated. Finally, some insight about heavy neutrino
masses are presented in Sec. IX.

II. BACKGROUND

A. General setup

M-theory is compactified on a G2 manifold which is
a 7-d manifold. We are interested inG2 manifold as an ALE
fiberation of C2=Γ on a 3-d base M3. Locally the manifold
looks like

M3 ×
dC2=Γ ð2:1Þ

where dC2=Γ is some resolution of ADE singular space
C2=Γ which is a quotient of complex space C2 by a finite
subgroup Γ of SUð2Þ, resulting in a singularity at the origin.
In our case, the singularity is E8.
There is a metric g, 3-form C, gravitino spinor Ψ, and G2

structure 3-form ω on the 7-d X. The 3-form ω completely
determines the metric g of the G2 manifold; therefore, C,Ψ
and ω govern all of the physics in M-theory. Integrating C
and ω on the basis of three cycles of X gives axions ai and
moduli fields si respectively [25–27]. The superfield Φi is
then of the form

Φi ¼ ai þ isi þ fermionic terms ð2:2Þ

The moduli si controls the size of the three cycles in X.
When si varies along the baseM3, the singularity E8 can be
deformed and resolved to lower singularities or even
completely smooth points. These singularities have a
one-to-one correspondence with the gauge group of
M-theory [28]. The moduli si corresponding to an E8

singularity are listed in [29]. Vanishing moduli correspond
to the simple roots of the gauge group. When a simple root
modulus vanishes the gauge group is enhanced to a larger
one. Furthermore, chiral fermions localize in places along
these ADE singularites where nonsimple-roots three cycles
vanish to form conical singularities [30]. Bourjaily et al.
[29] and Gonzalez et al. [3] give detailed explanations and
example computations for the presentations of the chiral
fermions. In our model, the resolved E8 singularity results
in matter as in Tables 9 and 10 in [29]. In the following, the
charges are listed in the same order as in Table 10 in [29],
namely in order a, b, c, d, Y. Then we have

E8 → SUð3Þ × SUð2Þ ×Uð1Þa ×Uð1Þb
×Uð1Þc ×Uð1Þd ×Uð1ÞY: ð2:3Þ

The hypercharge Y has a factor of 6 compared to the
conventional hypercharge normalization to make all
the charges integer and does not effect the calculation.
The charge a is identically set to zero, following [3], to drop
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terms dependent on a. Then, the relevant particles for this
study are

Hd
1 ¼ ð1; 1Þð1;1;2;2;−3Þ Hu

1 ¼ ð1; 1Þð1;1;2;2;3Þ
L1 ¼ ð1; 2Þð1;1;−1;3;−3Þ νc1 ¼ ð1; 1Þð1;1;−1;−5;0Þ
Hd

2 ¼ ð1; 1Þð1;−1;2;2;−3Þ Hu
2 ¼ ð1; 1Þð1;−1;2;2;3Þ

L2 ¼ ð1; 2Þð1;−1;−1;3;−3Þ νc2 ¼ ð1; 1Þð1;−1;−1;−5;0Þ
Hd

3 ¼ ð1; 1Þð0;−1;2;2;−3Þ Hu
3 ¼ ð1; 1Þð0;−1;2;2;3Þ

L3 ¼ ð1; 2Þð−2;0;−1;3;−3Þ νc3 ¼ ð1; 1Þð−2;0;−1;−5;0Þ: ð2:4Þ

The reason for a ¼ 0 is to allow large top quark mass [3].
Note that the simple root cycles do not shrink under this
condition, so there is no enhanced gauge group. This is
similar to taking the diagonal Uð1Þa ×Uð1Þb. Notice that a
μ termHu

i H
d
j is generally not allowed, but can be generated

by the Giudice-Masiero mechanism [6].

B. Yukawa couplings

The couplings for the interactions in the superpotential
are given by the instanton effect [25,31–34]

Y ¼ 1

Λ
e−V3 cycles ð2:5Þ

whereΛ is a scaling factor proportional to the volume of the
G2 manifold [25,31]. In our model, the local moduli are not
enough to determine the volume, so we treat Λ as a
parameter. V3 cycles is the volume of the three cycles
stretching between the three singularities where the three
particles in the cubic terms are located. This volume is a
function of the moduli

VolðΣABCÞ¼
1

2
ð−vTAH−1

A vA−vTBH
−1
B vB

þðvAþvBÞTðHAþHBÞ−1ðvAþvBÞÞ: ð2:6Þ

Here, ΣABC is a three cycle covering three particle singu-
larities A, B, and C. Moreover, each singularity’s location
on M3 is determined by the critical point of

f ¼ 1

2
tTHtþ vTtþ c ð2:7Þ

where t is the local 3-d coordinate on M3, H is a 3 × 3
matrix, v is a 3-vector, and c is a scalar. Using this setup, we
can write down the mass matrix for quarks and charged
leptons. Then, by fitting to experimental data, we can find
the solutions for fi’s in the local model. We will use the fit
result of b, c, d, and Y from [3]. In a full theory on a
determined G2 manifold, the moduli should uniquely
determine every other quantity in the theory as they
determine the geometry of the manifold. In our local

model, as there is some global structure we are missing,
the fi’s will determine many quantities, such as Dirac
neutrino terms, but leave some other quantities, such as
Majorana terms and the soft breaking mechanism [4],
subject to tuning. Nonetheless, most of our main results
will not depend of the tuning.

III. TERMS

A. Neutrino-neutrino mixing terms

At tree level, the contribution from the superpotential is

Wtree ⊃ y123Hu
1L2ν

c
3 þ y132Hu

1L3ν
c
2 þ y312Hu

3L1ν
c
2

þ y321Hu
3L2ν

c
1 þ y213Hu

2L1ν
c
3 þ y231Hu

2L3ν
c
1

þ y333Hu
3L3ν

c
3 ð3:1Þ

where yijk are coupling constants computed from Eq. (2.5).
There are also contributions to the same terms from the
Kähler potential with coefficients of order 1

mpl
which is

negligible [4]. Similar to the work done by Acharya et al.
[4] to generate a Majorana mass term, we get contributions
to the superpotential of the form

W ⊃
X

0≤h;l;m≤n

X
i;j; k¼1;2;3

Ch;l;m

m2n−3
pl

ðνci ν̄ci Þhðνcj ν̄cjÞlðνckν̄ckÞm ð3:2Þ

where mpl ¼ 2.4 × 1018 GeV is the reduced Planck
mass. Ideally, the constants Ch;k;l should be determined
completely by the moduli of the G2 manifold. In the local
model of [3], we do not consider ν̄j fields as they are
controlled by global moduli beyond the local patch. As a
result, Ch;l;m is considered a tunable parameter in our
local model.
Contributions from the Kähler potential to the same

terms are expected. They can be computed from the full
Kähler potential [35,36]

K ¼ −3 log
�
V
2π

�
ð3:3Þ

where V is the volume of G2 manifold. Unfortunately, the
precise dependence of the volume on the global moduli in
resloved E8 orbifold is unknown. We assume it is not
significant due to the generic suppression as in [4].
By solving D term and F term equations from the terms

in Eq. (3.2), one can find the VEVs for right-handed
neutrinos. Assuming the leading term is quartic which we
will justify later, the Majorana mass terms in the super-
potential would have the form

X
i;j

C2;1

mpl
ðhν̄ci ihν̄cjiÞνci νcj : ð3:4Þ
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Additionally, we also receive terms of the form LiHu
j from

expression (3.1) when right-handed neutrinos get VEVs.
We will discuss this in Sec. IV. In the same manner, the
Dirac mass terms emerge from Eq. (3.1) when the Higgses
get VEVs.

B. Mixing matter with Higgs superfields

When the scalar components of the right-handed neu-
trino superfields νci get VEVs, cubic terms of the form
YijkHu

i Ljν
c
k will give rise to the mixing between Lj and Hu

i
superfields. They appear in superpotential as

μijHu
i Lj ð3:5Þ

where

μij ¼ Yijkhνcki: ð3:6Þ

This mixing can potentially spoil the Higgs physics, so it is
generally more favorable to consider small μij relative to
Dirac mass terms in the neutrino mass matrix. This creates a
stringent condition which requires hνcki < hHu

i i while hν̄cki
remains large due to Eq. (3.4) and the seesaw mechanism.
This will be realized in Sec. IV.
Furthermore, the presence of R-parity violating bilinear

terms (B-RPV) induces a subelectroweak scale (EWS)
VEV on the scalar components of the ν-type fields. In
our case, below the EWS, we expect all ν-type scalars to
acquire a nonvanishing VEV, generating a mixing between
right-handed neutrino and Higgsinos [4]

ϵijHu
i ν

c
j : ð3:7Þ

Although this can create some correction to our analysis,
the contribution is usually expected to be smaller then the
Dirac mass terms [4].

C. Mixing matter with gauginos

Finally, as in the minimal supersymmetric Standard
Model (MSSM), the presence of VEVs will mix some
fermions with gauginos through kinetic terms, namely the
Higgsinos with B̃1, W̃0 due to the Higgses VEVs [37]. In
our case we also have νc-type and ν-type scalar VEVs,
which will mix gauginos with matter fermions through
kinetic terms. Explicitly, we have, for the SUð2Þ states (left-
handed neutrinos),

L ⊃ g0B̃heνiiνi þ gW̃0heνiiνi þ gbB̃bheνiiνi
þ gcB̃cheνiiνi þ gdB̃dheνiiνi ð3:8Þ

where the coefficients are gauge couplings. There will
be an extra [charge ×

ffiffiðp 2Þ] coefficient for each specific

particle [37]. For the νc-states, which are singlets under the
SM gauge group, mixing takes the form

L ⊃ gbB̃bheνiiνi þ gcB̃cheνiiνi þ gdB̃dheνiiνi: ð3:9Þ

D. General mass matrix

Combining all of the previous arguments, we can write
down the general mass matrix for neutrinos. Considering
the basis

ðB̃; W̃0; B̃b;c;d; Hu0
1;2;3; ν1;2;3; ν

c
1;2;3Þ; ð3:10Þ

the mass matrix will be

M ¼
 

M8×8
χ0

M8×6
χν

ðM8×6
χν ÞT M6×6

ν

!
: ð3:11Þ

where M8×6
χν is the mixing submatrix between gauginos,

Higginos, and neutrinos which is insignificant in our
analysis of the magnitude of neutrino masses. M8×8

χ0
is

the pure gauginos-Higginos submatrix. Although this
submatrix can be significant in size, the small mixing with
neutrinos makes M8×8

χ0
irrelevant for the magnitude of

neutrino masses. It would be interesting to study their
effects in detail in future works. Thus, for the scope of this
paper, we will focus only on the neutrino submatrix M6×6

ν .

IV. VEVs OF RIGHT-HANDED NEUTRINOS
AND THEIR CONJUGATES

In order to explicitly write down the entries for M6×6
ν , in

this section we will consider a semigeneral method to give
VEVs to right-handed neutrinos and their conjugates.

A. Case 1: No mixing

First, we consider a standard superpotential that gives
rise to right-handed neutrino VEVs without mixing of
families

μνci ν̄
c
i þ

Cn;0;0

m2n−3
pl

ðνci ν̄ciÞn ð4:1Þ

where μ¼m3=2
s

mpl
¼Oð103ÞGeV with m3=2¼Oð104ÞGeV

is the mass of gravitino, s
mpl

≡ 0.1 GeV is a generic moduli

VEVs contribution in Kähler potential [4]. The latter
should be determined completely from the value of the
moduli if we have a complete description of G2 manifold.
Unfortunately, we will use this estimated value due to our
lack of knowledge for a complete G2 structure.
D-flat directions impliesX

i

qjiðjhνci ij2 − jhν̄ci ij2Þ − ξj ¼ 0 ð4:2Þ
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for j ¼ b, c, d, Y and ξ’s are from Fayet-Iliopoulos terms.
F-flat directions give

μνci þ
nCn;0;0

m2n−3
pl

ðνci Þnðν̄ciÞn−1 ¼ 0 ð4:3Þ

μν̄ci þ
nCn;0;0

m2n−3
pl

ðνci Þn−1ðν̄ci Þn ¼ 0 ð4:4Þ

The VEVs for νci can be problematic because they can
create terms such as yhνciHuL which may spoil Higgs
physics. On the other hand, large VEVs for νic are needed
to generate large Majorana terms for right-handed neutrinos
and hence seesaw mechanism. Thus, we consider
hνci i ¼ ϵihν̄ci i. From F-terms, this will imply

hνci i ¼ ϵihν̄ci i ¼
ffiffiffiffi
ϵi

p �
−
μm2n−3

pl

nCn;0;0

� 1
2ðn−1Þ

: ð4:5Þ

Plugging this into the D-term, we get a restriction for Fayet-
Iliopoulos coefficients.

ξb ¼ ðϵ21 − 1Þhν̄c1i − ðϵ22 − 1Þhν̄c2i ð4:6Þ

ξc ¼ −
X3
i¼1

ðϵ2i − 1Þhν̄ci i ð4:7Þ

ξd ¼ −5
X3
i¼1

ðϵ2i − 1Þhν̄ci i ð4:8Þ

ξY ¼ 0 ð4:9Þ

This cannot give too much texture to Majorana terms
without tuning Cn;0;0. From the observed data, as we will
see later, a rich texture is needed. Therefore, it is inviting to
consider the mixing case.

B. Case 2: Mixing with two families

Consider the simplest mixing Kähler potential

μνiν̄i þ μνjν̄j þ
Cn−k;k;0

m2n−3
pl

ðνiν̄iÞn−kðνjν̄jÞk: ð4:10Þ

The D-flat equations are the same as in Eq. (4.2). Again we
consider hνci i ¼ ϵihν̄ci i. F-flat directions give

μνi þ ðn − kÞCn−k;k;0

m2n−3
pl

ðνiÞn−kðνjν̄jÞkðν̄iÞn−k−1 ¼ 0; ð4:11Þ

μνj þ ðkÞCn−k;k;0

m2n−3
pl

ðνiν̄iÞn−kðνjÞkðν̄jÞk−1 ¼ 0 ð4:12Þ

Interchange ν ↔ ν̄: ð4:13Þ

which imply

hνci i ¼ ϵihν̄ci i

¼ ffiffiffiffi
ϵi

p �
−

μ

Cn−k;k;0

ðn − kÞk−1
kk

m2n−3
pl

� 1
2ðn−1Þ

; ð4:14Þ

hνcji ¼ ϵjhν̄cji

¼ ffiffiffiffi
ϵj

p �
−

μ

Cn−k;k;0

kn−k−1

ðn − kÞn−k m
2n−3
pl

� 1
2ðn−1Þ

: ð4:15Þ

A hierarchy for Majorana terms is possible here as
right-handed antineutrinos from different families get
different VEVs.

C. Case 3: Mixing with three families

We can consider the simplest mixing of three families in
the Kähler potential

μνc1ν̄
c
1 þ μνc2ν̄

c
2 þ μν3ν̄3

þ Ch;k;l

m2n−3
pl

ðν1ν̄1Þhðν2ν̄2Þkðν3ν̄3Þl: ð4:16Þ

where hþ kþ l ¼ n. The D-flat equations are the same as
in Eq. (4.2). Again we consider hνci i ¼ ϵihν̄ci i. Then, F-term
equations are

μþ hCh;k;l

m2n−3
pl

ðνc1ν̄c1Þh−1ðνc2ν̄c2Þkðν3ν̄c3Þl ¼ 0; ð4:17Þ

Permute 3 pairs ð1; hÞ; ð2; kÞ; and ð3; lÞ; ð4:18Þ

permute ν ↔ ν̄: ð4:19Þ

The solution is

hνc1i ¼ ϵihν̄ci i ¼
ffiffiffiffi
ϵi

p �
−
μhkþlþ1m2n−3

pl

Ch;k;lkkll

� 1
2ðn−1Þ

; ð4:20Þ

Permute 3 pairs ð1; hÞ; ð2; kÞ; and ð3; lÞ: ð4:21Þ

Note that in all of the above cases, in practice, we can
drop the negative signs inside the brackets as they can be
absorbed as a phase in the oscillation matrix of neutrinos.
Another scenario is that one of the right-handed neutrinos
completely decouples from the other two. The Kähler
potential will then be a sum of case 1 and case 2, and
the solutions are the same as case 1 and case 2.

V. MASS MATRIX FROM NEUTRINO MIXING

A. Mass matrix setup

We investigate the matrix with only right-handed neu-
trinos and left-handed neutrinos. Using the moduli values
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computed from quarks and charged lepton mass in [3],1 we
compute Dirac mass terms from the cubic Yukawa cou-
plings at tree level

Wtree ⊃ y123Hu
1L2ν

c
3 þ y132Hu

1L3ν
c
2 þ y312Hu

3L1ν
c
2

þ y321Hu
3L2ν

c
1 þ y213Hu

2L1ν
c
3 þ y231Hu

2L3ν
c
1

þ y333Hu
3L3ν

c
3 ð5:1Þ

where yijk’s are computed from the moduli. The Yukawa
couplings yijk form a matrix

Y¼

0B@ 0 6.93×10−7 4.52×10−10

7.25×10−1 0 3.19×10−1

2.53×10−5 1.71×10−2 3.22×10−2

1CA: ð5:2Þ

When the Higgs get VEVs, the Dirac terms (in GeV) are
approximately

D¼

0B@ 0 2.32×10−5 −3.28×10−8

2.42×101 0 −4.93×101

−1.83×10−3 −2.64×100 1.08×100

1CA: ð5:3Þ

The first two diagonal entries vanish because there are no
charge invariant terms for those. This comes down to the
fact that when breaking from E8, particles from the same
family have the same b charge. If their charges are nonzero,
they cannot couple in cubic level, which is the case for the
first two families with b charge�1. The explanation for the
size of the rest is complicated as the Yukawa is related to
the moduli by exponentiated inverse matrices. However, the
significant different in sizes of the entries can be traced
back to the hierarchy of the up-type quarks whose b and c
charges are the same as the neutrinos.
TheMajorana contribution comes form the superpotential

W ⊃ yνci ν̄
c
i νjν̄

c
j ð5:4Þ

which was discussed in Sec. III. When neutrino conjugate
terms ν̄ci get VEVs, terms of the form in Eq. (5.4) constitute
the Majorana mass matrix RM. The mass matrix is in the
basis of fL1; L2; L3; νc1; ν

c
2; ν

c
3g�

0 D

D⊺ RM

�
where RM is the right-handed Majorana matrix. Notice that
RM must be symmetric. RM gets large entries when right-
handed neutrinos get VEVs. Before computing theVEVs for
right-handed neutrinos through a variety of methods, we

want to see if it is possible to get a sensible left-handed
neutrino hierarchy and flavor-ratio for the mass eigenstates.
According to the experimental data, orthonormal eigenvec-
tors are approximately V ≡ ðv1 v2 v3Þ, and

V ¼

0B@ c13c12 c13s12 s13
−c23s12 − s13s23c12 c23c12 − s13s23s12 c13s23
s23s12 − s13c23c12 −s23c12 − s13c23s12 c13c23

1CA
ð5:5Þ

where cij ¼ cosðθijÞ, sij ¼ sinðθijÞ, and we omitted the
possible phase for simplicity. We use the oscillation angles

θ12 ¼ 33.44° θ13 ¼ 8.57° θ23 ¼ 49.0°: ð5:6Þ

Assuming normal hierarchy, the eigenvalues are

Λ≡ diagðm1; m2; m3Þ
¼ diag

�
x;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

21 þ x2
q

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

31 þ x2
q

;
�

ð5:7Þ

where x is the mass of the lightest left-handed neutrino and
the mass-square differences are

Δm2
31 ¼ 2.32 × 10−21 GeV2

Δm2
21 ¼ 7.6 × 10−23 GeV2: ð5:8Þ

Finally, we denote the remaining components of the left-
handed neutrino eigenvectors as

E≡ ð ϵ1 ϵ2 ϵ3 Þ ð5:9Þ

which we expect to be small but nonzero. The final
eigenvector expression is�

0 D

D⊺ RM

��
V

E

�
¼
�
V

E

�
Λ: ð5:10Þ

VI. MAJORANA MASS MATRIX

A. Majorana mass matrix from seesaw mechanism

Performing the explicit multiplication in Eq. (5.10),
we get

DE ¼ VΛ ⇒ E ¼ D−1VΛ; ð6:1Þ

D⊺V þ RME ¼ EΛ ⇒ RMD−1VΛ ¼ EΛ −D⊺: ð6:2Þ

The lightest neutrino cannot be massless, otherwise
ðRMD−1V − EÞΛ would have a vanishing third column
while D⊺ does not. Thus, Λ is invertible. Combining the
two equations we get an expression for RM

1Note that although we can only find one solution in [3], it is
likely not unique. Study about the uniqueness of local solution is
left for future study.
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RM ¼ D−1VΛV−1D −D⊺VΛ−1V−1D: ð6:3Þ

Notice that as Λ has very small diagonal entries, the second
term is dominant

RM ≈ −D⊺VΛ−1V−1D: ð6:4Þ

For convenience, we absorb negative signs by a phase in V.
We can investigate the small x regime by writing

RMij ≈ ðD⊺VÞi1
1

x
ðV−1DÞ1j ¼

ðV−1DÞ1iðV−1DÞ1j
x

: ð6:5Þ

Thus, at small x, the Majorana terms will behave as a
hyperbolic curve with respect to the lightest neutrino mass
x, and the texture of RM, modulo the magnitude of x, is
given by the first column of V−1D which is fixed.
Whenm1 is close to the largest mass splitting, allmi have

the same magnitude and the approximation becomes

RMij ≈
X
k

ðD⊺VÞik
1

mk
ðV−1DÞkj ð6:6Þ

¼
P

kðV−1DÞkiðV−1DÞkj
x

ð6:7Þ

which is also a hyperbola with respect to x, although the
texture of RM relies on all of V−1D here.
To build an intuition on the magnitude of RM, we plug in

x ¼ 10−11.5 GeVwhich is about the size of the second mass
splitting. The diagonalized left-handed neutrino mass
matrix is diagð4.9×10−5;8.6×10−6;3.2×10−12Þ, absorb-
ing negative signs by a phase in V, we get

RM ¼

0B@ 6.6 × 1013 4.6 × 1012 1.4 × 1014

4.6 × 1012 5.8 × 1011 9.5 × 1012

1.4 × 1014 9.5 × 1012 2.8 × 1014

1CA ð6:8Þ

which is a symmetric matrix as we wanted. We will see that
this matrix can be constructed with appropriate right-
handed neutrino VEVs. For readability, the above entries
of this Majorana matrix are being rounded from the actually
precise values needed for the hierarchy. In fact, the
hierarchy and oscillation of left-handed neutrinos can only
be achieved with a high level of precision in the entries of
RM. We cannot round the entries up because that would
destroy the final hierarchy and oscillation. This is a
consequence of Eq. (6.2), where the entries of RM are
in general much larger than those of Λ, independent of E.
So for the equality in Eq. (6.2) to happen, entries of RM
need to cancel out in RME precisely to very small nonzero
numbers.

B. Majorana mass from VEVs of νci
We will argue that contributions beyond the order of

Eq. (3.4) will be insignificant. In fact, the contribution from
order 2N in the superpotential isX

i;j

CN;N;0

m4N−3
pl

hν̄ci iNhν̄cjiNhνci iN−1hνcjiN−1νci ν
c
j ð6:9Þ

Plugging in the VEVs from Eq. (4.20), the coefficients are
of the form

CN;N;0m
n−2N
n−1
pl

ϵ

�
ðhkÞlþ1hk−hkh−k

μ2

C2
n

� 2N−1
2ðn−1Þ ð6:10Þ

where h, k, l are permuted to get other terms. Instead of
separate ni and nj for hνci i and hνji, we can consider

ni ¼ nj ¼ n for some fractional n. Assume CN;1

CNþ1;1
≈Oð1Þ.

The h, k, l dependent part is also approximately Oð1Þ.and
the coefficient is decreasing with respect to N if

μ

CN;N;0mpl
< 1 ð6:11Þ

which implies

CN;N;0 >
μ

mpl
≈

103

1018
¼ 10−15 Gev: ð6:12Þ

Thus, as long as the suppression coefficient is not too small,
the main contribution is always at quadric order.
Henceforth, we assume C ∈ ½10−15; 1� which is consistent
with Acharya et al. [4].

VII. LIMIT FOR NEUTRINOS

A. Lower bound for ϵi
When the right-handed neutrinos get VEVs, along with

familiar Dirac terms of the form

yhHu
j iLiν

c
k; ð7:1Þ

there are terms of the from

yhνckiLiHu
j : ð7:2Þ

which may potentially spoil the Higgs’ physics. Therefore,
it is desirable for the couplings to be smaller than those of
the μ terms μHu

i H
d
j (generated at electroweak scale) and the

Dirac terms. As our computed Dirac coupling y isOð10Þ, it
is sufficient to have the right-handed neutrino VEVs
smaller than those of the Higgses

hνci i ≲ 102: ð7:3Þ
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Plugging the result from (4.20) in, we get

ffiffiffiffi
ϵi

p ≲ 102
�
μhkþlþ1m2n−3

pl

Ch;k;lkkll

� −1
2ðn−1Þ ð7:4Þ

which implies

ffiffiffiffi
ϵi

p ≲ 102
�
μm2n−3

pl

Ch;k;l

� −1
2ðn−1Þ ð7:5Þ

where we have again assumed the k, h, l dependent factor to
be approximately Oð1Þ.

B. Normal hierarchy analysis

Using the upper bound for ϵ we can find a lower bound
for the Majorana mass term

RMij ¼
C1;1

mpl
hν̄ci ihν̄cji ¼

C1;1m
nij−2
nij−1

pl μ
1

nij−1

ϵC
1

nij−1

h;k;l

≥ 104
�
μm

2nij−3
pl

Ch;k;l

� 1
ðnij−1Þ C1;1m

nij−2
nij−1

pl μ
1

nij−1

C
1

nij−1

h;k;l

¼ 104 × C1;1 ×m
3nij−5
nij−1

pl × μ
2

nij−1

C
2

nij−1

h;k;l

x ð7:6Þ

Instead of considering separate ni and nj for hνci i and hνcji,
we again consider ni ¼ nj ¼ nij for some fractional nij.
Following the analysis of the previous section, we find

ðD⊺VΛ−1V−1DÞij ¼ RMij ¼
C2;1

mpl
hν̄ci ihν̄cji: ð7:7Þ

We will analysis the upper bound for m3 in many scenarios
and deduce those the rest of the neutrinos accordingly.
For convenience, we let m1 ¼ 1

km3 and m2 ¼ 1
hm3. Then

we get

1

m3

½ðD⊺VÞi3ðV−1DÞ3j þ hðD⊺VÞi2ðV−1DÞ2j
þ kðD⊺VÞi1ðV−1DÞ1j� ¼ RMij ð7:8Þ

which implies

m3 ¼
1

RMij
ððD⊺VÞi3ðV−1DÞ3j þ hðD⊺VÞi2ðV−1DÞ2j

þ kðD⊺VÞi1ðV−1DÞ1jÞ: ð7:9Þ

Now, before we use inequality in Eq. (7.6) to estimate the
bound, we should consider specific limiting cases and get
the best bound.
First, we consider all masses are of the same order,

i.e., k ¼ h ¼ Oð1Þ. Consider i ¼ j ¼ 2 the numerator is
Oð10Þ, and the upper bound is

m3 ≈
10

RM11

≤
10C

2
n2−1
h;k;l

104 × C1;1 ×m
3n2−5
n2−1
pl × μ

2
n2−1

< 10−12 ð7:10Þ

for all n2 ≥ 2 where we use C ∈ ½10−15; 1�. As the largest
mass splitting is 10−10.5 GeV, it rules out the possibility of
equal magnitude for neutrino masses.
A second case is when m1 and m2 are of the same

magnitude but much smaller then m3. Then m3 will be
approximately the mass splitting which is 10−10.5 GeV and
h ≈ k ≫ 1. However, due to the smaller mass splitting
10−11.5 GeV, we need m1 ≈m2 ≫ 10−11.5 which implies
h ≈ k ≪ 10. If we consider ði; jÞ ¼ ð1; 2Þ, we find

m3 ≤
10

RM12

≤
10C

2
n12−1
h;k;l

104×C1;1×m
3n2−5
n12−1
pl ×μ

2
n12−1

< 10−12: ð7:11Þ

Thus, m3 fails to satisfy the mass splitting constraint in
this case.
Finally, whenm1 ≪ m2; m3, the magnitude of each entry

in RMij is determined by the magnitude of m1. The
estimate in Eq. (7.9) will be dominated by k and provide
an upper bound larger than the mass splitting. Hence this is
a viable case that agrees with experimental observation.
Nonetheless, as mentioned in Sec. VI, m3 cannot be
massless in this model. Thus, in general, we predict the
lightest neutrino to be massive but light comparing the
other two. This implies

m3 ≈ 0.05 eV m2 ≈ 0.009 eV ð7:12Þ

C. Inverted hierarchy analysis

We can carry out a similar analysis for the inverted
hierarchy of left-handed neutrino masses. Notice that the
oscillations for each label i for mi do not change. The only
thing we need to modify is the diagonal mass matrix

Λ≡ diagðm1; m2; m3Þ
¼ diag

�
x;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ Δm2

21

q
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − Δm2

31

q �
: ð7:13Þ

Asm2 is the largest, we will mimic the previous analysis as
m1 ¼ 1

hm2 and m3 ¼ 1
k m2 and end up with
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m2 ¼
1

RMij
ðkðD⊺VÞi3ðV−1DÞ3j þ ðD⊺VÞi2ðV−1DÞ2j

þ hðD⊺VÞi1ðV−1DÞ1jÞ: ð7:14Þ

First, we consider all masses are of the same order, i.e.,
k ¼ h ¼ Oð1Þ. Then, consider i ¼ j ¼ 2. We arrive at the
same conclusion of m2 < 10−12 which fails to satisfy
the mass splitting constraint. Unlike the normal hierarchy,
the second case where m1 ≈m3 ≪ m2 is not possible
with inverted hierarchy. As the large mass splitting
Δm2

32 requires m1 ≈m3 > 1010.5, the small mass splitting
Δm2

12 ≪ Δm2
32 will imply m2 ≈m1. Again, we arrive at the

conclusion the lightest left-handed neutrino, in this case
m3, is light compared to the other two. This implies

m1 ≈m2 ≈ 0.05 eV: ð7:15Þ

The results from both hierarchies are consistent with the
current knowledge of light neutrinos, for instance, the work
of Gonzalo et al. [38].

VIII. RATIOS OF DIRAC AND
MAJORANA CONTRIBUTIONS

It is also important to study the percentage of Dirac and
Majorana components in the three light neutrinos. From
Eq. (6.1), we have

E ¼ D−1VΛ ð8:1Þ

Following the previous discussion, for the normal hier-
archy, we use

Λ ¼ diagðx; 0.009 × 10−9; 0.05 × 10−9Þ ð8:2Þ

where x is nonzero and smaller then 10−12 GeV. Then,
varying the value of x, element of E is of order at most
Oð10−6Þ. Recall that V is chosen to be orthonormal and
hence of order Oð1Þ. Thus, the ratio of Majorana compo-
nents to Dirac components is less than 10−6.
Similarly, we consider inverted hierarchy with

Λ ¼ diagð0.05 × 10−9; 0.005 × 10−9; xÞ ð8:3Þ

where x is nonzero and smaller then 10−12 GeV. Although
the Majorana components look slightly different, we arrive
at the same conclusion that the ratio of Majorana compo-
nents to Dirac components is less than 10−6.
This would predict light neutrinos are mostly Dirac type.

Theoretically, this is consistent with the current works, such
as that of Gonzalo et al. [38]. Experimentally, that implies
they behave as four component Dirac spinors, and the
double beta decay would be small [24]. There are several
experiments in progress of testing this [39].

IX. HEAVY NEUTRINO MASS

We can also extract some information about heavy
neutrinos by considering the eigenvector equations similar
to Eq. (5.10)�

0 D

D⊺ RM

��
V 0

E0

�
¼
�
V 0

E0

�
Λ0 ð9:1Þ

where Λ0 is the diagonal mass matrix of the heavy
neutrinos. In contrast with light neutrinos, We expect V 0
to be small compared to E0. Similarly to light neutrino case,
we can pick E to be orthonormal. This would imply

DE0 ¼ V 0Λ0 ð9:2Þ

D⊺V 0 þ RME0 ¼ E0Λ0 ð9:3Þ

As both D and V 0 are small compared to RM and E0
respectively, we have the estimation

RME0 ≈ E0Λ0 ð9:4Þ

or

E0−1RME0 ≈ Λ0: ð9:5Þ

As E0 is orthonormal, we conclude that Λ0 is approximately
the diagonalized matrix of RM. This means the lower
bound for the heaviest eigenvalue is

λmax ≥
trðRMÞ

3
≳ 1014 GeV ð9:6Þ

Using this, we can estimate the upper bound for the lightest
of the heavy neutrinos.Y

i¼1;2;3

λheavyi ¼ detRM: ð9:7Þ

Hence,

λheavymin ≤
�
detðRMÞ
λmax

�1
2

: ð9:8Þ

detðRMÞ is inversely proportional to the mass of the lightest
neutrino, so in general detðRMÞ is not bounded above when
the lightest neutrino becomes lighter and lighter. On the
other hand, in the heaviest case, the lightest neutrino is
about 10−11.5 GeV, detðRMÞ is about Oð1039Þ. Then, the
upper bound for the lightest heavy neutrino is

λheavymin ≤ 1012.5 GeV ð9:9Þ
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X. CONCLUSION

In this paper, our primary goal is to analyze the mass
matrix of neutrinos using the result from a localized model
of M-theory compactified on G2 manifold with resolved E8

singularity [3]. We learn in this work that the neutrinos
originate in the need for the full content of the representa-
tions of the resolved E8 singularity. Similar to the work of
Acharya et al. [4], there are two main contributions: pure
neutrino mixing, and neutralinos and Higginos mixing with
neutrinos. We argue that the former is more significant and
therefore the focus of the paper.
Dirac terms of the neutrino mass matrix are explicitly

computed from the moduli of the localized model on G2

manifold. We computed the contribution on the cubic level.
The texture of the neutrino masses is highly hierarchical as
a result of the correlation to hierarchy from the up-type
quark. From experimental data of the mixing angles and
mass splittings, assuming the normal ordering, we can use
the Dirac terms to compute the Majorana mass matrix as a
function of the lightest neutrino mass.
The Kolda-Martin mechanism is the main theoretical

tool to generate Majorana terms in this paper. In this
picture, the right-handed neutrinos (and their antiparticles)
get VEVs and generate Majorana masses through quadric
terms. The VEVs along with the Dirac terms and exper-
imental data oscillation angles create an upper bound for
the masses of left-handed neutrinos. Considering this upper

bound in both scenarios of normal and inverted hierarchies,
we conclude that the last neutrino should always be light
comparing the other two families regardless of the choice of
hierarchy. However, the model and the computed Dirac
terms generally forbid the lightest neutrino to be massless.
The very light mass of the one of the neutrinos implies that
the other two left-handed neutrinos have masses about
0.05 eV and 0.009 eV (0.05 eV and 0.05 eV)) for normal
(inverted) hierarchy. Moreover, the ratio of Majorana
components to Dirac components is less than 10−6 for
the three light neutrino in both hierarchy scenarios. This
leads to the prediction that in both hierarchies, the light
neutrinos are mostly Dirac type. Hence neutrinoless dou-
ble-beta decay will be small. This is a testable result in a
near future. On the other hands, we achieve some restriction
on heavy neutrinos. The bounds are not stringent enough to
make a testable prediction.
For future work, we expect more predictive results when

we understand better about the contributions from the
global structures which determine all the coefficients,
including those being tunable in our local theory.
Locally, it is also intriguing to explore the uniqueness of
the solution. If other solutions exist, it is interesting to see
the implication on the physics, especially the neutrinos. As
our work can be repeated for other solutions in a relatively
straightforward way, it is inviting to examine a large class
of solutions using bigger computational power.
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