
Applying machine learning to the Calabi-Yau orientifolds with string vacua

Xin Gao1,* and Hao Zou 2,3,†

1College of Physics, Sichuan University, Chengdu 610065, China
2Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China

3Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China

(Received 27 December 2021; accepted 9 February 2022; published 25 February 2022)

We use the machine learning technique to search the polytope which can result in an orientifold Calabi-
Yau hypersurface and the “naive type IIB string vacua.” We show that neural networks can be trained to
give a high accuracy for classifying the orientifold property and vacua based on the newly generated
orientifold Calabi-Yau database with h1;1ðXÞ ≤ 6 [R. Altman, J. Carifio, X. Gao, and B. Nelson,
Orientifold Calabi-Yau threefolds with divisor involutions and string landscape, arXiv:2111.03078]. This
indicates the orientifold symmetry may already be encoded in the polytope structure. In the end, we try to
use the trained neural networks model to go beyond the database and predict the orientifold signal of
polytope for higher h1;1ðXÞ.
DOI: 10.1103/PhysRevD.105.046017

I. INTRODUCTION

Orientifold Calabi-Yau threefolds represent a rich
phenomenological starting point for the construction of
concrete string models for both particle physics and
cosmology. There are lots of important properties like
possible proper divisor exchange involutions, the classi-
fication and counts of orientifold planes under the involu-
tion, the nontrivial Hodge number splitting, which were
systematically studied recently in [1].
The authors of [1] construct an orientifold Calabi-Yau

threefold database in a systematic way for h1;1ðXÞ ≤ 6
(www.rossealtman.com/tcy) by considering nontrivial Z2

divisor exchange involutions. The orientifold Calabi-Yau
database is built on the threefolds database [2] constructed
from the Kreuzer-Skarke list [3,4], and the earlier classi-
ficaion of divisor exchange involutions [5]. In [1], con-
structing orientifold Calabi-Yau involves several technical
procedures which we summarized in Sec. II. This pro-
cedure include determining the topology for each individ-
ual divisor, identifying and classifying the proper nontrivial
involutions for each unique Calabi-Yau hypersurface. Each
of the proper involution will result in an new orientifold
Calabi-Yau manifold with nontrivial odd equivariant coho-
mology h1;1− ðX=σ�Þ ≠ 0. The authors clarified all possible

fixed loci under the proper involution, i.e., the locations of
O3, O5, and O7-planes in the type IIB projection. It was
found that under the proper involutions one ends up with a
majority of O3=O7-planes systems, most of which further
admit aa “naive type IIB string vacua” by checking the D3
tadpole cancellation condition.
As we can see, constructing orientifold Calabi-Yau

manifolds depends nontrivially on the underlying manifold
data and it presents an interesting challenge for machine
learning [6,7]. Machine learning has been a good imple-
ment in theoretical physics research and leads to fruitful
results during the last couple of years. With the help of
machine learning people are able to deal with problems
with more computational efficiency, especially the prob-
lems involving big data, for example, study the landscape
of string flux vacua [8–17] as well as F-theory compacti-
fications [18–20]. This technique allows people to learn lots
of quantities of Calabi-Yau manifolds, from its toric
building blocks like the polytope structure [21,22] and
triangulations [23,24], to the calculation of Hodge numbers
[11,25–27], numerical metrics [28–31] and line bundle
cohomologies [32,33]. Besides, machine learning has also
been applied to study and find certain structures on Calabi-
Yau for model building [34–41].
The newly established orientifold Calabi-Yau database

[1] and its corresponding polytopes are the ideal data for
machine learning in several aspects. First, the explicit
formulas to determine an orientifold Calabi-Yau are not
known and calculations rely on complicated and computa-
tionally intense algorithms [1]. It involves several computa-
tional algebraic geometry packages combined to work
together [42–46]. So such topological properties are an
interesting and challenging playground for machine

*xingao@scu.edu.cn
†hzou@bimsa.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 105, 046017 (2022)

2470-0010=2022=105(4)=046017(14) 046017-1 Published by the American Physical Society

https://orcid.org/0000-0002-9494-2212
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.046017&domain=pdf&date_stamp=2022-02-25
https://arXiv.org/abs/2111.03078
https://doi.org/10.1103/PhysRevD.105.046017
https://doi.org/10.1103/PhysRevD.105.046017
https://doi.org/10.1103/PhysRevD.105.046017
https://doi.org/10.1103/PhysRevD.105.046017
www.rossealtman.com/tcy
www.rossealtman.com/tcy
www.rossealtman.com/tcy
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


learning. It is very interesting to see whether the machine
learning can avoid these difficult calculations and is
capable of learning this particular interesting property to
get the desired polytope which can result in an orientifold
Calabi-Yau and further the “naive type IIB string vacua”.
Second, it was conjectured that the orientifold symmetry

(or more precisely the involution symmetry) on the Calabi-
Yau hypersurface is already encoded in the polytope
structure. It is similar to the fact that when calculating
the Hodge number of Calabi-Yau hypersurface X, one only
need information of the reflexive polytope without desin-
gularization [47], or triangulations in another word. So one
may wonder whether one can determine a polytope can
result in an orientifold Calabi-Yau hypersurface and naive
string vacua or not, before a detail calculation. We expect
by utilizing the power of the machine learning we may get
closer to this question in this paper.
Third, it is very difficult to scan the Kreuzer-Skarke

database to find the orientifold Calabi-Yau with higher h1;1.
This difficulty is threefold. One is due to the exponential
increased size of the Kreuzer-Skarke database when h1;1

goes higher [3,4]. For example, in [1] the authors consid-
ered 22974 favorable polytopes in total while only for
h1;1ðXÞ ¼ 7 itself, there are 50376 polytopes. Moreover,
when h1;1 increases it is more difficult to get all triangu-
lations of the polytope due to the exponentially increased
possible ways of doing that. Finally, the number of possible
involutions also increase exponentially and for some of
them it is extremely slow to get the fixed loci. Putting all
these difficulties together, it is very unlikely to scan all the
Kreuzer-Skarke database in a brute force way to get the
orientifold Calabi-Yau with an accessible computer power.
However, as shown in [1], the percentage of polytope which
can result in an orientifold Calabi-Yau and the “naive string
vacua” is very small (around 5% for h1;1 ≤ 6). Moreover
this percentage tends to decrease when h1;1 goes higher. So
the signal of orientifold is very rare in the full Kreuzer-
Skarke database. This is exactly what we want to try to see
whether the machine learning can help to pick out the
“orientifold” signal in higher h1;1. Considering there is no
concrete generic orientifold Calabi-Yau with high h1;1, our
efforts to explore such possibility using machine learning
would be very helpful.
Although there aremany benefits for themachine learning

todo theprediction, one should notemachine learningcannot
solve the problem once and for all. One has to check whether
these prediction is correct or not. However, usually these
check is hard to be done and the precision is not very high
even the test accuracy is extremely high in training the neural
network. This is due to the fact one has to use a subset of the
database to learn somethingmore complicated, just like in the
Kreuzer-Skarke database, the larger the h1;1 is, the more
complicated of the polytopes is.
This paper is organized as follows. In Sec. II, we briefly

summary the algorithm how to construct an orientifold

Calabi-Yau manifold and the naive type IIB string vacua. In
Sec. III we apply the machine learning method to study the
orientifold Calabi-Yau database with h1;1ðXÞ ≤ 6 [1]. Since
it gives a very high accuracy, we will try to apply our
network model to explore the higher h1;1ðXÞ case. In
Sec. IV we do the first step to predict the polytopes in
h1;1ðXÞ ¼ 7 which may give us the orientifold Calabi-Yau
and vacua. We pick out some favorable cases to explicitly
check whether our predictions give the right answer. We
make a conclusion in Sec. V.

II. CONSTRUCT THE ORIENTIFOLD
CALABI-YAU

Let us briefly recall some results from [1] in which the
standard procedure to identify an orientifold Calabi-Yau
threefolds is described in detail.
First we need a smooth description of our original

Calabi-Yau hypersurface X from the Kreuzer-Skarke data-
base [3,4]. In doing so, we must at least partially desingu-
larize the ambient toric variety, denoted as A, by blowing
up enough of its singular points. A method for doing so is
called maximal projective crepant partial (MPCP) desin-
gularization, which involves the triangulation of the polar
dual reflexive polytope Δ�, containing at least one fine,
star, regular triangulation (FSRT). We define the MPCP-
desingularized ambient 4D toric variety as:

A ¼ CknZ
ðC�Þk−4 ×G

; ð1Þ

where Z is the locus of points in Ck ruled out by the
Stanley-Reisner ideal ISRðAÞ, and G is the stringy funda-
mental group (trivial in most cases, there are only 14
polytopes in h1;1 ≤ 6 contain nontrivial G). The geometry
on this toric variety can be described by the projective
coordinates fx1;…; xkg and their toric C� equivalence
classes

ðx1;…; xkÞ ∼ ðλWi1x1;…; λWikxkÞ; ð2Þ

which define a projective weight matrixW. However, there
may exist two or more MPCP triangulations which result in
the same Calabi-Yau hypersurface due to Wall’s theorem
[48]. This theoremshows the compactCalabi-Yau3-folds are
classified by theirHodge numbers, intersection numbers, and
the second Chern Class. This leads to a “geometry-wise
description” in which the various triangulations (phases of
the completeKähler cone) corresponding to a distinctCalabi-
Yau threefold geometry were glued together. Furthermore,
we restrict ourselves to the so-called “favorable” description,
in which the toric divisor classes on the Calabi-Yau hyper-
surface X are all descended from ambient space A.
Starting from a favorable geometry-wise description, we

need to identify the proper involution σ which involves

XIN GAO and HAO ZOU PHYS. REV. D 105, 046017 (2022)

046017-2



exchanging one or more pairs of divisors. Those divisors
should have the same topology and at the same time have
different weights (nontrivial identical divisors (NID)):

σ∶xi ↔ xj ⇒ σ�∶Di ↔ Dj:

H•ðDiÞ ≅ H•ðDjÞ; OðDiÞ ≠ OðDjÞ ð3Þ

Furthermore, such involution should satisfy the symmetry
of Stanley-Reisner Ideal ISRðAÞ and the symmetry of the
linear ideal I linðAÞ. The first symmetry is to ensure the
involution be an automorphism of A, leaving invariant
the exceptional divisors from resolved singularities. The
later one ensures the defining polynomial of CY remains
homogeneous under involution. Putting these two together,
the involution should be a symmetry of the Chow-group:

A•ðAÞ ≅ ZðD1;…; DkÞ
I linðAÞ þ ISRðAÞ ; ð4Þ

indicating the triple intersection form defined in the Chow-
group is invariant under the involution σ. In this paper, we
only consider the “geometry-wise proper involution”which
are globally consistent across all disjoint phases of the
Kähler cone for each unique Calabi-Yau geometry.
The next task is to check whether there exist any point-

wise fixed loci for a given involution on the Calabi-Yau
threefold. The first step is to fix the invariant Calabi-Yau
hypersurface polynomial Psymm ¼ σðPsymmÞ and the min-
imal generators G generated by homogeneous polynomials
that are (anti-)invariant under σ:

G ¼ G0 ∪ Gþ ∪ G−: ð5Þ

The unexchanged coordinates in G0 are known from our
choice of involution. To find the nontrivial even and odd
parity generators in Gþ and G−, we must consider not only
σ, but all possible nontrivial “subinvolutions” ρ ⊆ σ given
by the nonempty subsets of fσ1;…; σng of size 1 ≤ m ≤ n.
Then we denote the new coordinate in G≡ fy1;…; yk0 g as:

y�ðaÞ ¼ xa1i1 x
a2
i2
…xamim � xa1j1 x

a2
j2
…xamjm ;

The condition for homogeneity, in terms of the columns wis
and wjs of the weight matrix W is given by:

a1ðwi1 −wj1Þ þ a2ðwi2 −wj2Þ þ � � � þ amðwim −wjmÞ ¼ 0:

ð6Þ

The second step is to perform a Segre embedding
transforming the projective coordinates into the (anti-)
invariant generators fx1;…; xkg ↦ fy1;…; yk0 g which
constructs a new weight matrix W̃ for fyig. Then we
can find out the naive fixed point loci in the new weight
matrix. In order for a codimension-1 subvariety D ⊂ X to

be point-wise fixed under the involution, the corresponding
coordinate exchange must force its defining polynomial to
vanish, i.e., σ∶yi ↦ −yi, so that Di ¼ fyi ¼ 0g is fixed.
For point-wise fixed point with codimension larger than
one, one needs to check whether the involution forces a
subset of generators F ⊆ G to vanish simultaneously.
Namely, one needs to check F ∩ G− ≠ ∅. It is important
to note that the torus C� actions provide r ¼ rankðW̃Þ
additional degrees of freedom for the generators to avoid
being forced to zero. In each subset of generators F , we
check for this by solving the system of equations

λW̃1i
1 λW̃2i

2 …λW̃ri
r ¼ σðyiÞ=yi; i ¼ 1;…; k0: ð7Þ

By the construction of the generator yi, the right-hand side
is equal to�1. The set is point-wise fixed if this equation is
solvable in the λi.
After finding out these naive fixed point loci, we need to

check whether each point-wise fixed loci lies in Stanley-
Reisner ideal ISR. The definition of ISR leads A to be split
into different patches fUig. For a given fixed set, we
compute in each sector Ui the dimension of the ideal
generated by the symmetry part of Calabi-Yau polynomial
Psymm and the fixed set generators F ≡ fy1;…; ypg

I fixed
ip ¼ hUi; Psymm; y1;…; ypi: ð8Þ

If dim I fixed
ip < 0 for allUi, then F does not intersect X. For

each subset that is not discarded, we repeat this calculation
for the ideal with one fixed set generator dim I fixed

i1 , and
then two dim I fixed

i2 , etc., until dim I fixed
il ¼ dim I fixed

ip when
adding more generators to the ideal no longer changes the
dimension for any region Ui. Then, the intersection fy1 ¼
� � � ¼ yl ¼ 0g of these generators gives the final point-wise
fixed locus, with redundancies eliminated. In the end,
an O3-plane corresponds to a codimension-3 point-wise
fixed subvariety, an O5- plane has codimension-2, and an
O7-plane has codimension-1. If no O-planes exist and the
invariant Calabi-Yau hypersurface is smooth, then the
involution defines a Z2 free action on X.
Finally, one can check whether the orientifold Calabi-

Yau manifold support the string vacua, we consider a
simple case where the D7-brane tadpole cancellation
condition is satisfied by simply placing eight D7-branes
on top of the O7-plane. Then we only need to check the
D3-brane tadpole condition which simplified to:

ND3 þ
Nflux

2
þ Ngauge ¼

NO3

4
þ χðDO7Þ

4
≡ −Qloc

D3: ð9Þ

with Nflux¼ 1
ð2πÞ4α02

R
H3∧F3, Ngauge ¼ −

P
a

1
8π2

R
Da

trF 2
a,

and ND3, NO3 the number of D3-branes, O3-planes
respectively. The D3-tadpole cancellation condition

APPLYING MACHINE LEARNING TO THE CALABI-YAU … PHYS. REV. D 105, 046017 (2022)

046017-3



requires the total D3-brane charge Qloc
D3 of the seven-brane

stacks and O3-planes to be an integer. If the involution
passes this naive tadpole cancellation check, we will denote
our geometry as a “naive orientifold type IIB string
vacuum.” One can further check the smoothness of the
orientifold Calabi-Yau and the Hodge number splitting
under the involutions.

III. MACHINE LEARNING FOR THE
ORIENTIFOLD CALABI-YAU

A. Dataset and processing

The database of orientifold Calabi-Yau threefolds
(h1;1 ≤ 6) we use to train our model was recently published
in [1] and we only explore the “geometry-wise proper
involution” which exchange the so-called proper nontrivial
identical divisor (NID). Therefore, we will share the same
assumptions as in [1], i.e., only consider favorable poly-
topes (22974 in total, with 14 admitting a nontrivial
fundamental group). Among these 22960 polytopes, there
are 1401 out of them contain geometry-wise proper

involution we are interested in and 996 out of the 1401
“orientifolds” polytopes admit “naive type IIB string
vacua” (see [1] for more details).
First of all, we use vertices of the favorable dual

polytopes as the input data, which are matrices after putting
together. There are two types of dual polytopes in the
database: unresolved toric dual polytopes and resolved toric
dual polytopes (which are more refined data). For the
h1;1 ≤ 6 case, we will use both data for comparison.
Unfortunately, for h1;1 > 6 cases, there are no database
for resolved polytopes yet, therefore we can only predict for
these cases using the model learning from the unresolved
dual polytopes.1The input data has different sizes as
matrices, ranging from 4 × 5 to 4 × 10. To resolve this
issue, we embed all the matrices into larger ones by adding
zeros columns, and for the purpose of this paper (to make
predictions for h1;1 ¼ 7 as example) we set the maximal
size as 4 × 11. Below is one example how we embed a
polytopy of Polyid#2 (in the database) into a 4 × 11 matrix
by adding another six columns of zeros on the right:

2
6664

−1 −1 −1 −1 4

0 0 0 1 −1
0 0 1 0 −1
0 1 0 0 −1

3
7775 ⟶

embedding

2
6664

−1 −1 −1 −1 4 0 0 0 0 0 0

0 0 0 1 −1 0 0 0 0 0 0

0 0 1 0 −1 0 0 0 0 0 0

0 1 0 0 −1 0 0 0 0 0 0

3
7775

Second, the size of the dataset we can exploit is relatively
small (22960) for machine learning and too small if
we want to make predictions for h1;1 ≥ 7 since the number
of polytopes goes exponential as h1;1 increases. One
notable fact is that the ordering of the vertices in one data
is only a matter of labeling and in principle we can always
reorder these vertices. Therefore, we choose 120 permuta-
tions to enlarge our dataset, which end up with 2755200
polytopes for machine learning. In practice, the permuta-
tions are realized by permuting columns of the original
matrices.
The output data we are targeting would be: 1. Whether a

polytope can result in an orientifold Calabi-Yau manifold
with geometry-wise proper involution and 2. Whether an
“orientifold” polytope from the first step can end up with a
naive (type IIB) string vacua. In either case, essentially this
is a binary classification problem, valued in True
or False.

B. CNN classifier and learning results

1. Model building

One of the neural networks suitable for our classification
problem is the convolutional neural network (CNN) (see for
example [6, Chapter 6] for an introduction). A typical CNN
model consists of the input layer, convolutional layers,
pooling layer(s), flatten layer, fully-connected layer(s) and
the output layer. Due to our input data is of quite “low
resolution” (4 × 11), we drop the pooling layer in ourmodel.
We add two fully connected layers and each has 100 neurons
so that they can provide enough free parameters (weights
and biases). But to prevent overfitting, we also add a dropout
layer before the output layer. Since we are dealing with the
classification problem, we choose the rectified linear acti-
vation function (ReLU) as the activation function for most
layers except for the output layer.
We construct the above model using the well-established

platform TensorFlow [49]. In more specific, our model
is defined as below:

(i) Layers (excluded the input layer):
- one 2D convolution layer, with 25 filters, kernel
size 3 × 3 and ReLU activation function,

1We will see in the next section, for h1;1 ≤ 6 our results from
learning both unresolved and resolved cases are almost identical,
therefore we believe the predicted results for h1;1 > 6 based
purely on unresolved dual polytopes are reliable.

XIN GAO and HAO ZOU PHYS. REV. D 105, 046017 (2022)

046017-4



- one flatten layer, with default setup,
- two full-connected layers (dense layers), both with
100 neurons and ReLU activation functions,

- one dropout layer, with a dropout rate of 0.1,
- one output layer (dense layer), with 2 neurons and
Softmax activation function.

(ii) Loss function: Categorical Crossentropy.
(iii) Optimizer: Adam, with default learning rate.

This model will be used to learn both orientifolds Calabi-
Yau manifold and naive type IIB string vacua. Note that
being orientifold is an necessary condition for a space to be
a naive type IIB string vacuum, therefore we use the whole
database (h1;1 ≤ 6) to train the model to identify an
“orientifold” polytope while use only orientifold data
(h1;1 ≤ 6 and orientifold==True) to learn whether
it can end up with the string vacua. Since we have
enlarged the database by permutations, the data size of

purely orientifolds is also considerably large enough
(1401 × 120 ¼ 168120) for machine learning. In practice,
we can train the model for learning orientifold and string
vacua separately as long as we use the restricted orienti-
folds database to train the vacua classifier.

2. Results

At this stage, we have feed the model with data of both
resolved and unresolved toric dual polytopes. The test
results are extremely accurate, ⪆99.9%, as summarized in
Table I, and they highly agree with the final training and
validation accuracy (see Fig. 1 for training unresolved
vertexes and Fig. 2 for training resolved vertexes). The
learning curves in Fig. 1 also suggest that the high accuracy
in our results is trustful and reliable, not obtained from
overfitting. The learning curves for using resolved dual
polytopes show the same features.
These test results also imply that, from the machine

learning point of view, there would be almost no difference
between using the resolved dataset and using the unre-
solved one when it classifies orientifolds or naive type IIB
string vacua. It is in this sense that we can confidently use
unresolved: confidently use an unresolved dataset to make

(a) (b)

FIG. 1. Learning curves for unresolved data. (a) Orientifold (b) Naive Type IIB string vacua.

(a) (b)

FIG. 2. Learning curves for resolved data. (a) Orientifold (b) Naive Type IIB string vacua

TABLE I. Test results for h1;1 ≤ 6.

Unresolved Resolved

Orientifold 99.906% 99.907%
Naive type IIB string vacua 99.802% 99.897%

APPLYING MACHINE LEARNING TO THE CALABI-YAU … PHYS. REV. D 105, 046017 (2022)

046017-5



predictions for higher h1;1 ≥ 7 in the next section. We leave
a full machine learning of resolved dual-polytopes in a
future work.
The high accuracy in the learning results only can tell us

that it is an accurate model. For an ideal binary classifying
model, the output θ only take values in f0; 1g (correspond-
ing to False and True respectively), namely there will be
only two bins located in 0 and 1 separately in the
distribution histograms. In practice, the output θ lies in
the interval [0, 1] and the distribution histograms will have
bins in between. We use the model to go through the
training data again (h1;1 ≤ 6) and see how our model
recognize it. See Figs. 3(a) and 3(c) and their corresponding
distributions in log-scale. (For later comparison with data-
set of different sizes, we draw the probability distribution
histograms.) We should emphasis that all the orientifold
distributions are drawn using the whole database, while all
the (naive type IIB string) vacua distributions are drawn
only using orientifolds database.
In order to see whether it is a good binary classifier, in

principle we should check its receiver operating character-
istic (ROC) curve [50]. To put it simply, the farther the
distributions of “signal” and “background” are separated,
the better classifier it would be. In our scenario, the “signal”

would indicate the orientifold or string vacuum. However, it
is unrealistic to separate the signals from the background and
what we really obtained is a combined signal-background
distribution. In the probability distribution histograms,
Fig. 3, there are two peaks, one is located at 0 and the
other one is located at 1,while the bins in between are at least
two orders of magnitude less (see the log-scale distribu-
tions). With the high accuracy from the learning results, we
can tell that the peak located around 1 is exactly where
our “signals” are highly concentrated at. Meanwhile the
“background” is highly concentrated around 0. The histo-
grams inform that the overlapping between the “signal” and
“background” distributions is extremely small and therefore,
we are confident to claim that our neural network is an
accurate and good classifier to pick out the polytopes which
can result in an orientifold Calabi-Yau and string vacua.
This high accuracy indicates the orientifold symmetry, or

more precisely the involution symmetry such as the Chow-
group symmetry, may already encoded in the polytope
structure with unknown formula. This is reasonable since at
least for involution, we require it to be the symmetries of
the graded Chow ring of the ambient space. It is very happy
to see the machine learning seems to pick out this property
quite efficiently.

(a) (b)

(c) (d)

FIG. 3. Probability histograms for training data, obtained by evaluating the model with data of h1;1 ≤ 6. (a) and (b) are orientifold
distributions of the whole data set, while (c) and (d) are (naive type IIB string) vacua distributions in all orientifolds (same meaning
in Fig. 4).

XIN GAO and HAO ZOU PHYS. REV. D 105, 046017 (2022)

046017-6



IV. TOWARD PREDICTION FOR ORIENTIFOLD
CALABI-YAU DATABASE WITH HIGHER h1;1

Another motivation of this paper is to search for
potential polytopes which may result in an orientifold
Calabi-Yau, and further the string vacua with higher
h1;1ðXÞ. As we discussed in the Introduction of this paper,
the difficulties including too much amount of polytopes,
too many possible triangulations and involutions, compli-
cated and computationally intense algorithm, make us hard
to do a brute force calculation to scan the orientifold
Calabi-Yau in the Kreuzer-Skarke database. Due to the fact
the orientifold signal is very rare in the full polytopes
(around 5% [1], see also Table II), it would be great even if
we just train our machine to narrow down the candidate
pool and increase the successful rate by one order. Thus
motivated by our learning result described in Sec. III B, we
will try to predict the possible polytopes with the desired
property using our trained model. Here, our approach to
achieve this goal is to utilize the classifier learnt from data
with h1;1 ≤ 6 to make predictions for h1;1 ≥ 7. In this
paper, we will only apply it to the h1;1 ¼ 7 case as an
example.

A. h1;1 = 7 case

We evaluate the model using the (unresolved) dual
polytopes with h1;1 ¼ 7, which can be obtained from the
database [3,4]. The number of these polytopes is 50376 and
it is much less than the size of data used to train our model
(50376=2755200 ∼ 1.83%), and thus the parameters set by
our training result is reliable to make predictions
for h1;1 ¼ 7.
The distributions of predictions are summarized in the

probability histograms in Fig. 4, and the shape of the
corresponding probability histograms suggests it is still a
very good classifier to pick out the signal of candidates of
“orientifold” polytopes and string vacua. Compared with
the histograms for h1;1 ≤ 6, one can see that although those
figures for h1;1 ¼ 7 are still with great shape, it is a little bit
flattened. This is due to the following reason: we trained
our model using favorable data but directly applied the
model on all data of h1;1 ¼ 7 without excluding the
nonfavorable ones since there is no such database available
before a complicated calculation.

We choose the classifying threshold θ ¼ 0.5, which
means the machine gives a orientifold (and further string
vacua) whenever its output value is greater than 0.5. With
this choice, the computer tells us that among the polytopes
with h1;1 ¼ 7, there would be 2086 of themmay result in an
orientifold Calabi-Yau manifold, 1399 out of these 2086
polytopes may admit the naive type IIB string vacua. This is
summarized in Table II. It is interested to notice that the
percentage of polytopes which may contains the orientifold
property indeed decrease following the trend when h1;1

increase.
We have tested our predictions on a few examples and

will present one specific example in the next section. These
are limited examples among the data with h1;1 ¼ 7 that can
actually be computed directly following the methods in [1].
The reason is that we only considered favorable toric
polytope in [1] while for h1;1 ≥ 7 many of them are not.
Even the polytope is favorable, due to the large number of
vertexes in h1;1 ¼ 7, it is very hard to triangulate it to a
smooth manifold in computing time. Nevertheless, after the
exact computations of some examples they do lie in our
predictions of “orientifold” labeled by machine learning.
We have attached a list of some favorable examples in the
Appendix which is classified as “orientifold.”

B. Predicted example

In this section, we present one particular example, which
is labeled as both “orientifold” and “vacua” by machine
learning. Let us check in detail whether it gives the right
answer. The toric dual-polytope is given by the following
11 vertices with Hodge number h1;1 ¼ 7; h2;1 ¼ 53.

2
6664

0 1 −1 −1 −1 0 0 −1 0 −1 1

0 1 −1 0 −1 0 0 −1 −1 0 0

0 0 −1 −1 −1 −1 0 0 0 0 1

−1 1 0 −1 −1 0 1 −1 0 −1 1

3
7775:

This example defines an MPCP desingularized ambient
toric variety with weight matrix W given by

TABLE II. Statistic counting on the polytopes which can result in orientifold Calabi-Yau. The result for h1;1 ≤ 6

comes from [1] while for h1;1 ¼ 7 comes from our trained neural network.

h1;1ðXÞ 1 2 3 4 5 6 7

Number of trianed polytopes 5 36 243 1185 4897 16608 50376
Number of “orientifold” polytopes 0 1 16 96 330 958 2086
% of “orientifold” polytopes 0 2.78 6.58 8.10 6.74 5.77 4.14

APPLYING MACHINE LEARNING TO THE CALABI-YAU … PHYS. REV. D 105, 046017 (2022)

046017-7



x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11
1 1 1 0 0 0 0 0 0 1 1

1 0 0 0 0 0 1 0 0 0 0

0 1 0 0 1 0 0 0 0 1 1

0 1 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 1 1 0

0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 1 1

ð10Þ

There are 12 different MPCP triangulations and we check the first one with Stanley-Reisner (SR) ideal as:

ISR ¼ hx1x3; x1x7; x2x3; x2x5; x2x8; x2x9; x4x8; x4x9; x4x11; x6x8; x6x10; x9x10; x3x11; x5x11; x5x7i:

The Hodge numbers of the corresponding individual toric divisors Di ≡ fxi ¼ 0g can be calculate by the cohomCalg
package [44,45]:

h•ðD1Þ ¼ h•ðD2Þ ¼ f1; 0; 1; 20g; h•ðD10Þ ¼ h•ðD11Þ ¼ f1; 0; 1; 22g
h•ðD4Þ ¼ h•ðD8Þ ¼ h•ðD9Þ ¼ f1; 0; 0; 8g
h•ðD3Þ ¼ f1; 0; 0; 7g; h•ðD5Þ ¼ f1; 0; 0; 5g; h•ðD7Þ ¼ f1; 0; 0; 13g ð11Þ

So there are several possible proper involutions. We first consider the involution as follows:

(a) (b)

(c) (d)

FIG. 4. Predicted probability histograms for data with h1;1 ¼ 7. (a) Orientifold (b) Orientifold (log-scale) (c) Vacua (d) Vacua
(log-scale).

XIN GAO and HAO ZOU PHYS. REV. D 105, 046017 (2022)

046017-8



σ∶ D1 ↔ D2; D4 ↔ D9; D10 ↔ D11: ð12Þ

In order to be a consistent orientifold, the volume form
Ω3 should have a definite parity under σ. And, indeed we
find σ�Ω3 ¼ −Ω3 and we would expect if there are any fix
points under the involution, it should be O3=O7-planes.
After a detailed calculation as described in Sec. II and [1],
we determined that there indeed are four O7-planes under
the involution without any O3-plane.

O7F1
∶x4x10−x9x11; O7F2

∶x3; O7F3
∶x5; O7F4

∶x6:

ð13Þ

Then by placing eightD7-branes on top of theO7-plane,
we only need to check the D3-tadpole cancellation
condition:

ND3 þ
Nflux

2
þ Ngauge ¼

NO3

4
þ χðDO7Þ

4

¼ 36þ 9þ 7þ 12

4

¼ 16 ð14Þ

So we indeed get an Orientifold Calabi-Yau three folds and
naive string vacua.
However, not all the involutions will end up with

orientifold and string vacua. For example, if we consider
other involutions like fD4 ↔ D9; D10 ↔ D11g, we can get
the fixed locus as three O7-plane ffx4x10 − x9x11g; fx6g;
fx5gg and one O3-plane located at fx3; x7; x4x10 þ x9x10g.
But they can not satisfy the D3 tadpole cancellation
condition.
One should note that this example is a favorable one. To

check whether one vertex is favorable or not, one should
desingularize the vertex up to determinant singularity. For
those toric Calabi-Yau which is not favorable, one could
possible favor it following a similar method introduced in
[51] where all complete intersection Calabi-Yau 3-folds
(CICYs) [52] can have a favorable description. Then for
favorable Calabi-Yau, one should exhaust all triangulations
to see whether there exist possible involutions and end up
with fixed locus which may time consuming. Then one can
check whether the D3 tadpole cancellation condition can be
satisfied.
One has to notice that the list presented in Appendix are

just predicted by the machine learning, and one has to
check whether these predictions is correct or not following
the method described in this subsection. Usually this check
is hard to be done and the precision is not very high even
though the test accuracy is extremely high (for h1;1 ≤ 6 it is
around 99.9%). This is usually the case when one use some
simple training data to predict a more complicated one, like
in the Kreuzer-Skarke database when increasing the h1;1.
We expect more than half of them will give the correct

answer, i.e, we successfully narrow down the candidate
pool and increase the successful rate by one order, from 5%
to 60%. This value is sensitive to the amount of training
data if it is not large. On the other hand, one may missing
some orientifold polytope due to the classifying threshold θ
one choose. We have checked if we train our neural
network for the database of h1;1 ≤ 5 and do a prediction
for h1;1 ¼ 6, it shows a similar picture. However, once we
include more than 10% of the h1;1 ≤ 6 data as training data,
we would end up with a relatively very high accuracy of
prediction (see Table III). For training the network with
10% of the whole h1;1 ≤ 6 database, the validation accuracy
does not increase but fluctuate around 91%, which indi-
cates the initial setting of training ratio is too small.
So one way to improve our prediction for h1;1 ¼ 7 is to
provide relatively small amount of data (>10%) for train-
ing. Another way to improve the prediction is to perform a
in principle unsupervised machine learning, such as the
generative adversarial network (GAN) [53] or variational
autoencoder (VAE) [54]. All of these difficulties need a
more detailed and systemic study of the neural network, we
will leave it for a further study.

V. CONCLUSION

In this paper, we use the machine learning to clarify the
polytope which can result in an orientifold Calabi-Yau
hypersurface and together with the naive type IIB string
vacua We show that indeed neural networks can be trained
to give a high accuracy (around 99.9%) for classifying the
orientifold property and vacua. This high accuracy indi-
cates the orientifold symmetry, or more precisely the
involution symmetry like the Chow-group structure, may
already encoded in the polytope structure with unknown
formula. In the end, we tried to use the trained neural
networks model to go beyond the database and predict the
orientifold property of polytope for higher h1;1ðXÞ. Again,
as being conservative, we should emphasize that some
checks on the predictions still need to be done even though
the machine learning has an extremely high accuracy on
training data. In fact, our work is just a starting point for
machine learning on the new orientifold Calabi-Yau data-
base. There are several ways we can improve it and do the
machine learning in a more systematic way.
First, it would be very interesting to improve and

generalize our work to have a more systemic machine
learning for higher h1;1. One may try other neural networks

TABLE III. The test accuracy varies according to the ratio of
training data in h1;1 ≤ 6.

Ratio of training data 30% 20% 10%

Training accuracy 99.70% 99.64% 99.22%
Validation accuracy 99.75% 99.16% 91.90%
Test accuracy 99.76% 99.14% 91.64%

APPLYING MACHINE LEARNING TO THE CALABI-YAU … PHYS. REV. D 105, 046017 (2022)

046017-9



like generative adversarial network (GAN) or variational
autoencoder (VAE) to improve the prediction. Beside these
in principle unsupervised training, we can still have a
supervised training. For example, to combine our method
of finding orientifold signal and the method of triangulation
[55] to generate enough training data for higher h1;1 (≳10%
of the target data). On the other hand, it would also be
interested to see whether learning the resolved dual-poly-
tope vertex will give a more precise prediction in the higher
h1;1 case. For the machine learning for higher h1;1 case, it
would be great if the computer can pick out the polytopes
which can result in a favorable Calabi-Yau and search for
the orientifold structure there, since we only know the
algorithm to do the brute force calculate the orientifold
Calabi-Yau in the favorable case.
Second, in the context of CICY, a landscape of orientifold

vacua has been constructed [56,57] from the most favorable
description of the CICY 3-folds database [51]. More general
free quotients have been classified and studied in the case of
CICYs [58–61]. Applying themachine learning technique to
these geometrywould also be great. In fact, amethodological
study of machine learning on such kind of CICYs has

been done in [27]. In the coming paper[62], we will show
that such kind of machine learning can also be done on the
so-called “generalized complete intersection Calabi-Yau”
(gCICYs) [63].
Third, a lot of work has been made in understanding the

statistical structure of the moduli in many classes of Calabi-
Yau threefolds, without considering the orientifold invo-
lution explicitly, such as the axion landscape or Swiss
cheese structure [24,55,64–69]. Moreover, the study of the
landscape of Calabi-Yau manifold with h1;1− ≠ 0 under the
exchange involution is also very interesting [57,70,71]. It
would be great to combine our work to study the string
model building in a real orientifold Calabi-Yau using
machine learning technique. All of these works contain
several technique problems and is important and worth-
while for a further study.

ACKNOWLEDGMENTS

The authors would like to thank Wei Cui, Jun Guo,
Arthur Hebecker, Jinmian Li, Andreas Schachner, Juntao
Wang for helpful discussions and correspondence. X. G.
was supported in part by NSFC under Grant No. 12005250.

APPENDIX: SOME PREDICTED “ORIENTIFOLD” POLYTOPES (h1;1 = 7)

Vertices Vacua

½½−1;−1; 0; 2�; ½−1;−1; 2; 1�; ½−1;−1; 2; 0�; ½−1;−1; 0; 1�; ½−1; 2; 0; 0�, ½1;−1;−1; 0�; ½−1;−1; 5;−1�� ✓

½½0; 0; 0;−1�; ½1; 1; 0; 1�; ½−1;−1;−1; 0�; ½−1; 0;−1;−1�; ½−1;−1;−1;−1�; ½0; 0;−1; 0�,
½0; 0; 0; 1�; ½−1;−1; 0;−1�; ½0;−1; 0; 0�; ½−1; 0; 0;−1�; ½1; 0; 1; 1��

✓

½½−1; 0; 0;−1�; ½−1; 0;−1; 0�; ½1; 1; 0; 0�; ½0;−1; 0; 0�; ½−1;−1;−1;−1�; ½−1;−1; 0;−1�,
½−1;−1;−1; 0�; ½0; 0; 0; 1�; ½0; 0;−1; 0�; ½0; 0; 0;−1�; ½0; 0; 1; 0��

✓

½½−1;−1; 0;−1�; ½−1;−1; 0; 0�; ½−1;−1;−1; 0�; ½−1; 0; 0; 0�; ½−1; 0; 0;−1�; ½0; 0; 1; 0�,
½−1;−1;−1;−1�; ½0; 0; 0;−1�; ½−1; 0;−1;−1�; ½0;−1;−1; 1�; ½1; 1; 0; 1��

✓

½½−1; 0;−1; 1�; ½−1; 0;−1; 0�; ½−1;−1; 0;−1�; ½−1;−1;−1; 0�; ½1; 0; 0; 0�; ½−1;−1; 0; 0�,
½−1;−1;−1;−1�; ½−1; 0; 0;−1�; ½0;−1;−1;−1�; ½0; 0; 0;−1�; ½1; 1; 1; 0��

½½−1; 1;−1; 1�; ½0; 1;−1; 1�; ½1;−1; 1;−1�; ½−1;−1;−1; 1�; ½−1;−1; 1; 0�; ½−1;−1;−1; 0�, ½0; 0;−1; 0�; ½1; 0; 1;−1�� ✓

½½0; 1; 1; 1�; ½−1;−1;−1;−1�; ½−1;−1;−1; 0�; ½−1;−1; 0;−1�; ½0;−1; 0;−1�; ½−1; 0;−1; 1�,
½−1; 0; 0;−1�; ½−1; 1; 1; 1�; ½0; 0;−1; 1�; ½1; 0; 0;−1��

✓

½½1; 1; 1; 1�; ½0; 0;−1; 1�; ½−1;−1;−1;−1�; ½−1; 0; 0;−1�; ½−1;−1; 0;−1�; ½−1; 0;−1; 1�,
½−1; 1; 1; 1�; ½0; 0; 0;−1�; ½−1;−1;−1; 0�; ½0;−1; 0;−1��

✓

½½−1; 0;−1; 0�; ½1; 0; 0; 0�; ½0;−1; 0;−1�; ½−1;−1; 0;−1�; ½−1;−1;−1;−1�; ½0; 0;−1; 0�,
½1; 0; 0;−1�; ½0; 1; 0; 1�; ½−1;−1;−1; 0�; ½−1; 0; 0; 0�; ½0; 0; 1; 0��

✓

½½0; 0;−1; 0�; ½−1;−1;−1; 0�; ½−1;−1;−1;−1�; ½−1;−1; 0;−1�; ½−1; 0;−1; 0�; ½−1; 0; 0;−1�,
½−1; 0; 0; 0�; ½−1;−1; 0; 0�; ½0;−1;−1; 0�; ½0;−1; 0;−1�; ½1; 1; 1; 1��

½½−1;−1;−1; 0�; ½0;−1; 0; 0�; ½−1; 0;−1; 0�; ½0; 1; 1; 0�; ½−1;−1; 0;−1�; ½0; 0; 0;−1�; ½−1; 0; 0;−1�,
½−1;−1;−1;−1�; ½1; 0; 0; 0�; ½−1; 0; 0; 0�; ½0; 0;−1; 1��

✓

½½0; 0;−1; 0�; ½−1;−1;−1; 0�; ½−1;−1;−1;−1�; ½−1;−1; 0;−1�; ½−1; 0;−1; 0�; ½−1; 0; 0;−1�,
½−1; 0; 0; 0�; ½−1;−1; 0; 0�; ½0;−1;−1; 0�; ½0;−1; 0;−1�; ½1; 1; 1; 1��

½½−1;−1;−1; 0�; ½0;−1; 0; 0�; ½−1; 0;−1; 0�; ½0; 1; 1; 0�; ½−1;−1; 0;−1�; ½0; 0; 0;−1�; ½−1; 0; 0;−1�,
½−1;−1;−1;−1�; ½1; 0; 0; 0�; ½−1; 0; 0; 0�; ½0; 0;−1; 1��

✓

(Table continued)

XIN GAO and HAO ZOU PHYS. REV. D 105, 046017 (2022)

046017-10



(Continued)

Vertices Vacua

½½0;−1; 1;−1�; ½−1; 0; 0;−1�; ½0;−1; 0;−1�; ½0; 0;−1; 0�; ½−1;−1;−1;−1�; ½0;−1;−1; 0�; ½0; 1; 0; 1�,
½−1;−1;−1; 0�; ½−1;−1; 0;−1�; ½−1; 0;−1; 0�; ½1; 1; 0; 1��

✓

½½0;−1; 0; 0�; ½0; 0;−1;−1�; ½−1; 0;−1;−1�; ½−1; 0;−1; 0�; ½0; 0; 0; 1�; ½−1;−1; 0; 0�,
½−1;−1;−1;−1�; ½−1;−1;−1; 0�; ½1; 1; 0; 0�; ½−1;−1; 0;−1�; ½0; 0; 1; 0��

✓

½½0; 0;−1; 0�; ½−1; 0;−1;−1�; ½−1;−1; 0; 0�; ½−1;−1;−1; 0�; ½1; 1; 0; 1�; ½0;−1; 0; 1�,
½0; 0;−1;−1�; ½−1; 0; 0;−1�; ½0; 0; 0;−1�; ½−1;−1;−1;−1�; ½0;−1; 1; 1��

✓

½½−1;−1; 0;−1�; ½0; 0;−1; 0�; ½−1;−1;−1; 0�; ½−1;−1;−1;−1�; ½0;−1; 0; 0�; ½0;−1;−1; 0�,
½−1; 0; 0; 0�; ½−1; 0;−1;−1�; ½0; 0;−1;−1�; ½1; 0; 1; 1�; ½0; 1; 1; 1��

✓

½½−1; 0;−1;−1�; ½0;−1; 0; 1�; ½−1;−1; 0;−1�; ½−1; 0; 0;−1�; ½−1; 0; 0; 0�; ½−1;−1;−1;−1�,
½0; 0; 0;−1�; ½−1;−1; 0; 0�; ½−1;−1;−1; 0�; ½0;−1;−1; 0�; ½1; 1; 1; 1��

½½−1; 0;−1;−1�; ½1; 1; 1; 0�; ½0;−1; 0; 0�; ½0; 0; 0; 1�; ½−1; 0;−1; 0�; ½−1;−1;−1; 0�,
½−1;−1;−1;−1�; ½−1;−1; 0; 0�; ½0; 0; 0;−1�; ½0; 0;−1; 0�; ½−1;−1; 0;−1��

✓

½½−1; 0;−1; 2�; ½−1;−1;−1; 2�; ½0; 0;−1; 2�; ½−1;−1;−1;−1�, ½0;−1; 0;−1�; ½−1;−1; 0;−1�; ½−1; 0; 0;−1�; ½1; 1; 1;−1�� ✓

½½−1;−1; 0; 2�; ½−1;−1; 1; 0�; ½0;−1; 0; 0�; ½−1; 2;−1;−1�; ½−1;−1; 0; 0�, ½1; 2;−1;−1�; ½0;−1; 1; 0�; ½−1; 1; 0;−1�; ½0; 1; 0;−1��
½½−1; 0; 0;−1�; ½−1;−1;−1; 1�; ½−1;−1; 0;−1�; ½−1; 0;−1; 0�; ½−1; 0; 0; 0�, ½−1;−1;−1;−1�; ½0;−1; 0;−1�; ½0; 0;−1; 0�; ½1; 1; 1; 1�� ✓

½½0; 0; 0;−1�; ½−1;−1;−1; 0�; ½−1;−1; 0;−1�; ½−1;−1;−1;−1�; ½−1; 0; 0;−1�; ½−1; 0; 0; 0�,
½0;−1; 0; 0�; ½−1;−1; 0; 0�; ½0;−1;−1; 0�; ½−1; 0;−1; 0�; ½1; 1; 1; 1��

½½0;−1; 0;−1�; ½−1;−1;−1; 0�; ½−1; 0;−1; 0�; ½−1; 0; 0; 0�; ½−1;−1;−1;−1�; ½−1; 0; 0;−1�,
½0;−1;−1; 0�; ½−1;−1; 0;−1�; ½0; 0;−1; 0�; ½1; 0; 0; 1�; ½0; 1; 1; 0��

½½−1; 0;−1; 0�; ½0; 0;−1; 0�; ½−1; 0; 0; 0�; ½0; 0; 1; 0�; ½0;−1; 0;−1�; ½−1;−1; 0;−1�,
½0;−1;−1; 0�; ½−1;−1;−1;−1�; ½−1;−1;−1; 0�; ½−1; 0; 0;−1�; ½1; 1; 0; 1��

½½−1; 0;−1;−1�; ½−1; 0; 0;−1�; ½−1; 0; 0; 0�; ½−1;−1;−1; 0�; ½−1;−1; 0;−1�; ½−1;−1;−1;−1�,
½0;−1; 0;−1�; ½−1;−1; 0; 0�; ½0;−1;−1; 0�; ½−1; 0;−1; 0�; ½1; 1; 1; 1��

½½−1;−1;−1; 0�; ½−1;−1;−1;−1�; ½−1; 0; 0;−1�; ½−1;−1; 0;−1�; ½−1;−1; 0; 0�; ½0;−1;−1; 1�,
½−1; 0;−1;−1�; ½0; 0; 1;−1�; ½0;−1;−1; 0�; ½0; 1; 0; 0�; ½1; 0; 0; 1��

½½−1;−1; 0;−1�; ½0; 0; 0; 1�; ½0;−1; 0; 0�; ½−1;−1;−1; 0�; ½0; 0;−1; 0�; ½−1; 0;−1;−1�,
½−1;−1;−1;−1�; ½0; 0;−1;−1�; ½−1;−1; 0; 0�; ½0; 1; 0; 0�; ½1; 0; 1; 1��

✓

½½0; 0;−1; 0�; ½−1; 0; 0;−1�; ½−1; 0;−1; 0�; ½−1;−1;−1; 0�; ½0;−1; 0; 0�; ½−1;−1;−1;−1�,
½−1;−1; 0;−1�; ½0; 0; 0;−1�; ½1; 1; 0; 1�; ½−1; 0;−1; 1�; ½0;−1; 1;−1��

✓

½½−1; 1; 1;−1�; ½−1;−1; 0; 0�; ½0;−1;−1; 1�; ½−1; 0;−1; 0�; ½−1;−1;−1; 1�; ½−1;−1;−1; 0�,
½0; 0;−1; 0�; ½−1; 1; 1; 0�; ½0;−1; 0; 0�; ½1; 1; 1; 0��

½½0; 1; 0; 0�; ½−1;−1;−1; 0�; ½0;−1; 1; 0�; ½0; 0;−1;−1�; ½−1;−1;−1;−1�; ½−1;−1; 0; 0�,
½−1; 0;−1;−1�; ½−1;−1; 0;−1�; ½−1; 0;−1; 0�; ½−1; 0; 0; 0�; ½1; 1; 1; 1��

✓

½½0; 0;−1; 0�; ½−1;−1; 0;−1�; ½0;−1; 0; 0�; ½−1;−1;−1;−1�; ½−1; 0;−1;−1�; ½−1;−1;−1; 0�,
½0; 0;−1; 1�; ½0; 1;−1; 0�; ½−1; 0; 0;−1�; ½1; 0; 1; 1�; ½0;−1; 1;−1��

✓

½½−1; 0;−1; 1�; ½−1; 0;−1; 0�; ½−1; 0; 0;−1�; ½−1;−1; 0;−1�; ½0;−1; 0; 0�; ½−1;−1;−1; 0�,
½−1;−1; 0; 0�; ½−1;−1;−1;−1�; ½0; 0; 0;−1�; ½0;−1;−1;−1�; ½1; 1; 1; 0��

½½0; 0;−1;−1�; ½0;−1; 0; 0�; ½0; 0;−1; 0�; ½0; 0; 0; 1�; ½−1;−1;−1; 0�; ½−1;−1;−1;−1�,
½−1;−1; 0;−1�; ½−1; 0;−1;−1�; ½1; 1; 0; 1�; ½−1; 0; 0;−1�; ½0;−1; 1; 0��

✓

½½0; 0;−1; 0�; ½−1;−1;−1; 0�; ½−1;−1; 0;−1�; ½−1; 0;−1; 0�; ½−1; 1; 1; 1�; ½1; 1; 1; 1�; ½−1; 0; 0; 1�,
½−1;−1;−1;−1�; ½−1; 0; 0;−1�; ½0;−1; 0;−1��

✓

½½−1; 0; 0;−1�; ½−1;−1; 0;−1�; ½−1;−1;−1;−1�; ½−1;−1;−1; 0�; ½0;−1;−1; 0�; ½0; 0; 1; 0�,
½−1;−1; 0; 0�; ½−1; 0; 0; 0�; ½0;−1;−1;−1�; ½−1; 0;−1; 0�; ½1; 1; 1; 1��

½½−1; 0;−1;−1�; ½0; 0;−1; 0�; ½−1;−1;−1; 0�; ½−1; 0;−1; 0�; ½0;−1; 0; 0�; ½−1;−1;−1;−1�,
½−1; 0; 0; 0�; ½−1;−1; 0; 0�; ½−1;−1; 0;−1�; ½0;−1;−1;−1�; ½1; 1; 1; 1��

(Table continued)

APPLYING MACHINE LEARNING TO THE CALABI-YAU … PHYS. REV. D 105, 046017 (2022)

046017-11



(Continued)

Vertices Vacua

½½−1;−1;−1; 0�; ½−1;−1; 0; 0�; ½−1; 0; 0; 0�; ½0;−1; 0; 0�; ½−1;−1; 0;−1�; ½−1; 0;−1; 0�,
½−1;−1;−1;−1�; ½0;−1;−1;−1�; ½0; 0;−1; 0�; ½−1; 0; 1;−1�; ½1; 1; 0; 1��

½½−1; 0;−1; 0�; ½−1; 0;−1;−1�; ½−1;−1; 0;−1�; ½−1;−1; 0; 0�; ½0;−1; 0; 1�; ½−1;−1;−1; 0�,
½−1; 0; 0;−1�; ½−1;−1;−1;−1�; ½0; 0; 0;−1�; ½0;−1;−1; 0�; ½1; 1; 1; 0��

½½−1; 0;−1; 1�; ½−1; 0;−1; 0�; ½−1;−1; 0; 0�; ½−1;−1; 0;−1�; ½−1;−1;−1; 0�; ½−1; 0; 0;−1�,
½0; 0; 0;−1�; ½−1;−1;−1;−1�; ½0;−1; 0;−1�; ½0;−1;−1; 0�; ½1; 1; 1; 0��

½½−1; 0; 0;−1�; ½−1;−1;−1; 0�; ½−1;−1; 0; 0�; ½0;−1;−1; 0�; ½−1;−1; 0;−1�; ½0;−1; 0; 0�,
½0;−1;−1;−1�; ½−1; 0; 0; 0�; ½−1;−1;−1;−1�; ½−1; 0;−1; 0�; ½1; 1; 1; 1��

½½−1;−1; 0; 0�; ½−1;−1;−1; 0�; ½−1; 0; 0;−1�; ½−1;−1;−1;−1�; ½0; 0; 0;−1�; ½−1;−1; 0;−1�,
½0;−1;−1;−1�; ½−1; 0; 0; 0�; ½−1; 0;−1; 0�; ½0; 0;−1; 1�; ½1; 1; 1; 0��

½½−1; 0;−1;−1�; ½−1; 0; 0;−1�; ½−1;−1; 0;−1�; ½−1;−1; 0; 0�; ½0;−1;−1; 0�; ½−1;−1;−1;−1�,
½−1;−1;−1; 0�; ½−1; 0; 0; 0�; ½0;−1;−1;−1�; ½0; 1; 1; 0�; ½1; 0; 0; 1��

✓

½½−1; 0;−1; 1�; ½−1;−1;−1; 0�; ½−1; 0; 0;−1�; ½−1;−1;−1;−1�; ½−1; 1; 1; 1�; ½0;−1; 0;−1�,
½1; 1; 1; 0�; ½−1;−1; 0;−1�; ½−1; 1; 1; 0�; ½0; 0;−1; 1��

✓

½½−1;−1; 1; 1�; ½−1;−1; 1; 0�; ½1; 1; 0;−1�; ½−1; 1; 0;−1�; ½−1; 1;−1; 0�; ½−1; 1;−1;−1�,
½0;−1; 0; 0�; ½0;−1; 0; 1�; ½−1;−1; 0; 0�; ½−1;−1; 0; 1��

✓

½½−1; 1; 0;−1�; ½0;−1; 1; 0�; ½0;−1; 0; 1�; ½−1; 1;−1; 0�; ½−1;−1; 0; 1�; ½0; 1;−1;−1�,
½−1; 1;−1;−1�; ½−1;−1; 0; 0�; ½−1;−1; 1; 0�; ½−1;−1; 1; 1�; ½1; 0; 0; 0��

✓

½½−1; 0;−1; 0�; ½−1; 0;−1;−1�; ½0;−1;−1; 1�; ½−1;−1; 0; 0�; ½−1;−1; 0;−1�; ½−1; 0; 0;−1�,
½0; 1; 1;−1�; ½0; 0; 0;−1�; ½−1;−1;−1;−1�; ½−1;−1;−1; 0�; ½1; 0; 0; 1��

✓

½½0;−1; 1; 0�; ½0;−1; 0; 0�; ½0;−1; 0; 1�; ½−1;−1; 0; 0�; ½−1;−1; 0; 1�; ½−1; 1;−1; 0�,
½−1;−1; 1; 0�; ½−1; 1;−1;−1�; ½−1;−1; 1; 1�; ½1; 0; 0; 0�; ½−1; 1; 0;−1��

✓

½½−1;−1; 0;−1�; ½−1;−1;−1; 0�; ½−1; 0;−1;−1�; ½−1;−1;−1;−1�; ½−1; 0; 0; 0�,
½1; 1;−1;−1�; ½1; 0; 1; 1�; ½0;−1; 1; 1�; ½−1;−1; 1; 1��

✓

½½−1;−1; 0; 3�; ½−1;−1; 0; 2�; ½−1;−1; 2; 0�; ½−1;−1; 1; 0�; ½1;−1; 0; 0�; ½−1; 2;−1; 0�; ½1;−1; 1;−1�� ✓

½½−1;−1; 0;−1�; ½0; 0;−1; 0�; ½−1;−1;−1; 0�; ½−1; 0;−1; 0�; ½−1; 1; 0; 1�; ½−1; 0; 0;−1�,
½0;−1; 0;−1�; ½1; 0; 0; 0�; ½−1;−1;−1;−1�; ½0;−1;−1; 0�; ½−1; 0; 1; 0��

✓

[1] R. Altman, J. Carifio, X. Gao, and B. Nelson, Orientifold
Calabi-Yau threefolds with divisor involutions and string
landscape, arXiv:2111.03078.

[2] R. Altman, J. Gray, Y.-H. He, V. Jejjala, and B. D. Nelson, A
Calabi-Yau database: Threefolds constructed from the
Kreuzer-Skarke list, J. High Energy Phys. 02 (2015) 158.

[3] M. Kreuzer and H. Skarke, Complete classification of
reflexive polyhedra in four-dimensions, Adv. Theor. Math.
Phys. 4, 1209 (2000).

[4] Kreuzer-Skarke database, http://hep.itp.tuwien.ac.at/kreuzer/
CY.

[5] X.Gao andP. Shukla,On classifying the divisor involutions in
Calabi-Yau threefolds, J. High Energy Phys. 11 (2013) 170.

[6] M. A. Nielsen, Neural Networks and Deep Learning (De-
termination Press, 2015).

[7] F. Ruehle, Data science applications to string theory, Phys.
Rep. 839, 1 (2020).

[8] A. Cole and G. Shiu, Topological data analysis for the string
landscape, J. High Energy Phys. 03 (2019) 054.

[9] A. Cole, A. Schachner, and G. Shiu, Searching the land-
scape of flux vacua with genetic algorithms, J. High Energy
Phys. 11 (2019) 045.

[10] S. Krippendorf, R. Kroepsch, and M. Syvaeri, Revealing
systematics in phenomenologically viable flux vacua with
reinforcement learning, arXiv:2107.04039.

[11] A. Cole, S. Krippendorf, A. Schachner, and G. Shiu,
Probing the structure of string theory vacua with genetic
algorithms and reinforcement learning, in Proceedings of
the 35th Conference on Neural Information Processing
Systems [arXiv:2111.11466].

XIN GAO and HAO ZOU PHYS. REV. D 105, 046017 (2022)

046017-12

https://arXiv.org/abs/2111.03078
https://doi.org/10.1007/JHEP02(2015)158
https://doi.org/10.4310/ATMP.2000.v4.n6.a2
https://doi.org/10.4310/ATMP.2000.v4.n6.a2
http://hep.itp.tuwien.ac.at/kreuzer/CY
http://hep.itp.tuwien.ac.at/kreuzer/CY
http://hep.itp.tuwien.ac.at/kreuzer/CY
http://hep.itp.tuwien.ac.at/kreuzer/CY
http://hep.itp.tuwien.ac.at/kreuzer/CY
http://hep.itp.tuwien.ac.at/kreuzer/CY
https://doi.org/10.1007/JHEP11(2013)170
https://doi.org/10.1016/j.physrep.2019.09.005
https://doi.org/10.1016/j.physrep.2019.09.005
https://doi.org/10.1007/JHEP03(2019)054
https://doi.org/10.1007/JHEP11(2019)045
https://doi.org/10.1007/JHEP11(2019)045
https://arXiv.org/abs/2107.04039
https://arXiv.org/abs/2111.11466


[12] Y.-H. He, The Calabi-Yau Landscape (Springer, New York,
2021).

[13] F. Ruehle, Evolving neural networks with genetic algo-
rithms to study the string landscape, J. High Energy Phys.
08 (2017) 038.

[14] J. Halverson, B. Nelson, and F. Ruehle, Branes with brains:
Exploring string vacua with deep reinforcement learning, J.
High Energy Phys. 06 (2019) 003.

[15] Y.-H. He, Universes as big data, Int. J. Mod. Phys. A 36,
2130017 (2021).

[16] I. Bena, J. Blabäck, M. Graña, and S. Lüst, Algorithmically
solving the Tadpole Problem, Adv. Appl. Clifford Algebras
32, 7 (2022).

[17] Y.-H. He, S. Lal, and M. Z. Zaz, The world in a grain of
sand: Condensing the string vacuum degeneracy,
arXiv:2111.04761.

[18] J. Carifio, J. Halverson, D. Krioukov, and B. D. Nelson,
Machine learning in the string landscape, J. High Energy
Phys. 09 (2017) 157.

[19] Y.-N. Wang and Z. Zhang, Learning non-Higgsable gauge
groups in 4D F-theory, J. High Energy Phys. 08 (2018)
009.

[20] M. Bies, M. Cvetič, R. Donagi, L. Lin, M. Liu, and F.
Ruehle, Machine learning and algebraic approaches towards
complete matter spectra in 4d F-theory, J. High Energy
Phys. 01 (2021) 196.

[21] D. Krefl and R.-K. Seong, Machine learning of Calabi-Yau
volumes, Phys. Rev. D 96, 066014 (2017).

[22] J. Bao, Y.-H. He, E. Hirst, J. Hofscheier, A. Kasprzyk, and
S. Majumder, Polytopes and machine learning, arXiv:
2109.09602.

[23] R. Altman, J. Carifio, J. Halverson, and B. D. Nelson,
Estimating Calabi-Yau hypersurface and triangulation
counts with equation learners, J. High Energy Phys. 03
(2019) 186.

[24] M. Demirtas, L. McAllister, and A. Rios-Tascon, Bounding
the Kreuzer-Skarke landscape, Fortschr. Phys. 68, 2000086
(2020).

[25] K. Bull, Y.-H. He, V. Jejjala, and C. Mishra, Machine
learning CICY threefolds, Phys. Lett. B 785, 65 (2018).

[26] Y.-H. He and A. Lukas, Machine learning Calabi-Yau four-
folds, Phys. Lett. B 815, 136139 (2021).

[27] H. Erbin and R. Finotello, Machine learning for complete
intersection Calabi-Yau manifolds: A methodological study,
Phys. Rev. D 103, 126014 (2021).

[28] L. B. Anderson, M. Gerdes, J. Gray, S. Krippendorf, N.
Raghuram, and F. Ruehle, Moduli-dependent Calabi-Yau
and SU(3)-structure metrics from machine learning, J. High
Energy Phys. 05 (2021) 013.

[29] V. Jejjala, D. K. M. Pena, and C. Mishra, Neural network
approximations for Calabi-Yau metrics, arXiv:2012.15821.

[30] M. R. Douglas, S. Lakshminarasimhan, and Y. Qi, Numeri-
cal Calabi-Yau metrics from holomorphic networks,
arXiv:2012.04797.

[31] M. Larfors, A. Lukas, F. Ruehle, and R. Schneider, Learning
size and shape of Calabi-Yau spaces, arXiv:2111.01436.

[32] D. Klaewer and L. Schlechter, Machine learning line bundle
cohomologies of hypersurfaces in toric varieties, Phys. Lett.
B 789, 438 (2019).

[33] C. R. Brodie, A. Constantin, R. Deen, and A. Lukas,
Machine learning line bundle cohomology, Fortschr. Phys.
68, 1900087 (2020).

[34] S. Krippendorf and M. Syvaeri, Detecting symmetries with
neural networks, arXiv:2003.13679.

[35] R. Deen, Y.-H. He, S.-J. Lee, and A. Lukas, Machine
learning string standard models, Phys. Rev. D 105, 046001
(2022).

[36] H. Otsuka and K. Takemoto, Deep learning and k-means
clustering in heterotic string vacua with line bundles, J. High
Energy Phys. 05 (2020) 047.

[37] A. Ashmore, R. Deen, Y.-H. He, and B. A. Ovrut, Machine
learning line bundle connections, arXiv:2110.12483.

[38] S. Abel, A. Constantin, T. R. Harvey, and A. Lukas, String
model building, reinforcement learning and genetic algo-
rithms, in Nankai Symposium on Mathematical Dialogues:
In Celebration of S. S. Chern’s 110th Anniversary
[arXiv:2111.07333].

[39] S. Abel, A. Constantin, T. R. Harvey, and A. Lukas,
Evolving heterotic gauge backgrounds: Genetic algorithms
versus reinforcement learning, arXiv:2110.14029.

[40] A. Constantin, T. R. Harvey, and A. Lukas, Heterotic string
model building with monad bundles and reinforcement
learning, arXiv:2108.07316.

[41] T. R. Harvey and A. Lukas, Quark mass models
and reinforcement learning, J. High Energy Phys. 08
(2021) 161.

[42] W. Stein et al., SageMathematics Software (Version 9.1), The
Sage Development Team, 2020, http://www.sagemath.org.

[43] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann,
Singular 3-1-6—A computer algebra system for polynomial
computations, http://www.singular.uni-kl.de.

[44] R. Blumenhagen, B. Jurke, T. Rahn, and H. Roschy,
Cohomology of line bundles: A computational algorithm,
J. Math. Phys. (N.Y.) 51, 103525 (2010).

[45] cohomCalg package, Download link: http://wwwth.mppmu
.mpg.de/members/blumenha/cohomcalg/, 2010. High-
performance line bundle cohomology computation based
on [45].

[46] M. Kreuzer and H. Skarke, PALP: A package for analyzing
lattice polytopes with applications to toric geometry, Com-
put. Phys. Commun. 157, 87 (2004).

[47] V. V. Batyrev, Dual polyhedra and mirror symmetry for
Calabi-Yau hypersurfaces in toric varieties, J. Algebraic
Geom. 3, 493 (1993).

[48] C. Wall, Classification problems in differential topology. V,
Inventiones Mathematicae 1, 355 (1966).

[49] M. Abadi et al., TensorFlow: Large-scale machine learning
on heterogeneous distributed systems, arXiv:1603.04467.

[50] Receiver operating characteristic, https://en.wikipedia.org/
wiki/Receiver_operating_characteristic.

[51] L. B. Anderson, X. Gao, J. Gray, and S.-J. Lee, Fibrations in
CICY threefolds, J. High Energy Phys. 10 (2017) 077.

[52] P. Candelas, A. Dale, C. Lutken, and R. Schimmrigk,
Complete Intersection Calabi-Yau manifolds, Nucl. Phys.
B298, 493 (1988).

[53] I. Goodfellow, J. Pouget-Abadie, M. Mehdi, B. Xu, D.
Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
Generative adversarial nets, in Proceedings of the

APPLYING MACHINE LEARNING TO THE CALABI-YAU … PHYS. REV. D 105, 046017 (2022)

046017-13

https://doi.org/10.1007/JHEP08(2017)038
https://doi.org/10.1007/JHEP08(2017)038
https://doi.org/10.1007/JHEP06(2019)003
https://doi.org/10.1007/JHEP06(2019)003
https://doi.org/10.1142/S0217751X21300179
https://doi.org/10.1142/S0217751X21300179
https://doi.org/10.1007/s00006-021-01189-6
https://doi.org/10.1007/s00006-021-01189-6
https://arXiv.org/abs/2111.04761
https://doi.org/10.1007/JHEP09(2017)157
https://doi.org/10.1007/JHEP09(2017)157
https://doi.org/10.1007/JHEP08(2018)009
https://doi.org/10.1007/JHEP08(2018)009
https://doi.org/10.1007/JHEP01(2021)196
https://doi.org/10.1007/JHEP01(2021)196
https://doi.org/10.1103/PhysRevD.96.066014
https://arXiv.org/abs/2109.09602
https://arXiv.org/abs/2109.09602
https://doi.org/10.1007/JHEP03(2019)186
https://doi.org/10.1007/JHEP03(2019)186
https://doi.org/10.1002/prop.202000086
https://doi.org/10.1002/prop.202000086
https://doi.org/10.1016/j.physletb.2018.08.008
https://doi.org/10.1016/j.physletb.2021.136139
https://doi.org/10.1103/PhysRevD.103.126014
https://doi.org/10.1007/JHEP05(2021)013
https://doi.org/10.1007/JHEP05(2021)013
https://arXiv.org/abs/2012.15821
https://arXiv.org/abs/2012.04797
https://arXiv.org/abs/2111.01436
https://doi.org/10.1016/j.physletb.2019.01.002
https://doi.org/10.1016/j.physletb.2019.01.002
https://doi.org/10.1002/prop.201900087
https://doi.org/10.1002/prop.201900087
https://arXiv.org/abs/2003.13679
https://doi.org/10.1103/PhysRevD.105.046001
https://doi.org/10.1103/PhysRevD.105.046001
https://doi.org/10.1007/JHEP05(2020)047
https://doi.org/10.1007/JHEP05(2020)047
https://arXiv.org/abs/2110.12483
https://arXiv.org/abs/2111.07333
https://arXiv.org/abs/2110.14029
https://arXiv.org/abs/2108.07316
https://doi.org/10.1007/JHEP08(2021)161
https://doi.org/10.1007/JHEP08(2021)161
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
https://doi.org/10.1063/1.3501132
http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/
http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/
http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/
http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg/
https://doi.org/10.1016/S0010-4655(03)00491-0
https://doi.org/10.1016/S0010-4655(03)00491-0
https://doi.org/10.1007/BF01389738
https://arXiv.org/abs/1603.04467
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://doi.org/10.1007/JHEP10(2017)077
https://doi.org/10.1016/0550-3213(88)90352-5
https://doi.org/10.1016/0550-3213(88)90352-5


International Conference on Neural Information Process-
ing Systems NIPS 2014 (2014), pp. 2672–2680.

[54] D. P. Kingma and M. Welling, Auto-encoding variational
bayes, arXiv:1312.6114.

[55] C. Long, L. McAllister, and P. McGuirk, Heavy tails in
Calabi-Yau moduli spaces, J. High Energy Phys. 10 (2014)
187.

[56] F. Carta, J. Moritz, and A. Westphal, A landscape of
orientifold vacua, J. High Energy Phys. 05 (2020) 107.

[57] F. Carta, A. Mininno, N. Righi, and A. Westphal, Thraxions:
Towards full string models, J. High Energy Phys. 01 (2022)
082.

[58] V. Braun, On free quotients of complete intersection Calabi-
Yau manifolds, J. High Energy Phys. 04 (2011) 005.

[59] J. Gray, A. S. Haupt, and A. Lukas, All complete inter-
section Calabi-Yau four-folds, J. High Energy Phys. 07
(2013) 070.

[60] P. Candelas, A. Constantin, and C. Mishra, Hodge numbers
for CICYs with symmetries of order divisible by 4, Fortschr.
Phys. 64, 463 (2016).

[61] A. Constantin, J. Gray, and A. Lukas, Hodge numbers for all
CICY quotients, J. High Energy Phys. 01 (2017) 001.

[62] W. Cui, X. Gao, and J. Wang, Machine learning on
generalized complete intersection Calabi-Yau (gCICY) (to
be published).

[63] L. B. Anderson, F. Apruzzi, X. Gao, J. Gray, and S.-J. Lee,
A new construction of Calabi–Yau manifolds: Generalized
CICYs, Nucl. Phys. B906, 441 (2016).

[64] J. Gray, Y.-H. He, V. Jejjala, B. Jurke, B. D. Nelson, and J.
Simon, Calabi-Yau manifolds with large volume vacua,
Phys. Rev. D 86, 101901 (2012).

[65] R. Galvez, Kahler moduli inflation in type IIB compacti-
fications: A random tumble through the Calabi-Yau land-
scape, Phys. Rev. D 94, 103521 (2016).

[66] C. Long, L. McAllister, and J. Stout, Systematics of axion
inflation in Calabi-Yau hypersurfaces, J. High Energy Phys.
02 (2017) 014.

[67] R. Altman, Y.-H. He, V. Jejjala, and B. D. Nelson, New large
volume Calabi-Yau threefolds, Phys. Rev. D 97, 046003
(2018).

[68] M. Demirtas, C. Long, L. McAllister, and M. Stillman, The
Kreuzer-Skarke axiverse, J.HighEnergyPhys. 04 (2020) 138.

[69] J. Halverson, C. Long, B. Nelson, and G. Salinas, Towards
string theory expectations for photon couplings to axionlike
particles, Phys. Rev. D 100, 106010 (2019).

[70] X. Gao and P. Shukla, F-term stabilization of odd axions in
LARGE volume scenario, Nucl. Phys. B878, 269 (2014).

[71] M. Cicoli, A. Schachner, and P. Shukla, Systematics of
type IIB moduli stabilisation with odd axions, arXiv:
2109.14624.

XIN GAO and HAO ZOU PHYS. REV. D 105, 046017 (2022)

046017-14

https://arXiv.org/abs/1312.6114
https://doi.org/10.1007/JHEP10(2014)187
https://doi.org/10.1007/JHEP10(2014)187
https://doi.org/10.1007/JHEP05(2020)107
https://doi.org/10.1007/JHEP01(2022)082
https://doi.org/10.1007/JHEP01(2022)082
https://doi.org/10.1007/JHEP04(2011)005
https://doi.org/10.1007/JHEP07(2013)070
https://doi.org/10.1007/JHEP07(2013)070
https://doi.org/10.1002/prop.201600005
https://doi.org/10.1002/prop.201600005
https://doi.org/10.1007/JHEP01(2017)001
https://doi.org/10.1016/j.nuclphysb.2016.03.016
https://doi.org/10.1103/PhysRevD.86.101901
https://doi.org/10.1103/PhysRevD.94.103521
https://doi.org/10.1007/JHEP02(2017)014
https://doi.org/10.1007/JHEP02(2017)014
https://doi.org/10.1103/PhysRevD.97.046003
https://doi.org/10.1103/PhysRevD.97.046003
https://doi.org/10.1007/JHEP04(2020)138
https://doi.org/10.1103/PhysRevD.100.106010
https://doi.org/10.1016/j.nuclphysb.2013.11.015
https://arXiv.org/abs/2109.14624
https://arXiv.org/abs/2109.14624

