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Freudenthal duality (F-duality), an anti-involution of charge vectors, keeps the entropy and attractor
solutions invariant for an extremal supersymmetric black hole. We analyze the effect of F-duality on the
entropy of a near-extremal STU black hole in N ¼ 2 ungauged, four-dimensional supergravity. We
consider double-extremal black holes, whose attractor solutions are fixed in terms of the black hole charges
throughout the moduli space. It is well known that Jackiw-Teitelboim (JT) gravity governs the dynamics of
the near-horizon regions of higher-dimensional, near-extremal black holes. Owing to this fact, we reduce
the four-dimensional supergravity theory to two dimensions to construct a JT gravity–like model and
compute the near-extremal entropy. We then analyze the effect of F-duality on this entropy. We show that
the F-duality breaks down for the case of near-extremal solutions if one considers the duality operation
generated through near-extremal entropy rather than the extremal one.
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I. INTRODUCTION

Jackiw-Teitelboim (JT) gravity [1,2], a two-dimensional
dilaton gravity model has recently become the pursuit of
interest for many theoretical physicists, as it provides
the simplest playground to study gravitational dynamics.
JT gravity, which is basically a particular class of two-
dimensional dilaton gravity theories, does not have any
propagating degrees of freedom. Thus, the effective action
crucially depends on the symmetries of the boundary
theory. At the boundary of a JT gravity in asymptotically
two-dimensional anti–de Sitter (AdS2) spacetimes, the
time reparametrization symmetry gets slightly broken.
As a consequence, the solution to it is given by a nearly
AdS2, or N AdS2, spacetime that possesses a nearly one-
dimensional conformal field theory, or N CFT1, symmetry
[3]. Conversely, in the case of a nearly extremal black hole,
the near-horizon geometry is given by a N AdS2 geometry
which makes a manifest connection between JT gravity and
a near-extremal black hole [3,4]. Like the nearly extremal
black holes, Sachdev-Ye-Kitaev (SYK) models [5,6] have
an approximate conformal symmetry (N CFT1) in the

infrared limit. This link prompts one to investigate the
connection between JT gravity, near-extremal black
holes and the SYK model at the low energy limit [7–9].
A suitable modification of JT gravity using higher
derivative terms also captures the dynamics of a higher
derivative modified, higher-dimensional near-extremal
black hole [10,11].
More generally, JT gravity theories defined on any

manifold with at least one asymptotic boundary depend
on the choice of the boundary curves, and one has to do a
path integral over the different choices for these curves as
well [3,8,12]. These choices of boundary curves or wiggles
are governed by the same Schwarzian theory as the low
energy limit of the SYK models. Refer to [9] for an
excellent review and references therein to further explore
this connection. This observation was further explored in
[13], showing that the JT gravity path integral on arbitrary
orientable surfaces can be computed through ensembles of
Hermitian matrices in a particular double scaling limit.
This correspondence can also be generalized to different
classes of matrix ensembles and JT gravity theories, even
JT supergravity theories [14]. The relationship among JT
supergravity, the matrix model, and minimal strings,
including the nonperturbative effects, has also been ana-
lyzed [15,16]. The JT model has also been well studied in
the context of N AdS2=N CFT1 holography [17–19].
In this paper, we are interested in studying the behavior

of near-extremal black holes using JT gravity as a tool.
Extremal black holes have the fascinating property of
having finite entropy but zero temperature. An interesting
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phenomenon possessed by the extremal black hole is the
attractor mechanism [20,21], in which that the moduli
fields always take the charge dependent fixed values at the
horizon, regardless of their arbitrary asymptotic values.
Thus, the entropy of an extremal black hole can always be
written in terms of the black hole charges only. There
are numerous works on both supersymmetric and non-
supersymmetric attractors [22,23] which have also been
generalized for nonextremal black holes [24,25]. One may
wonder whether the properties that hold for an extremal
black hole in supergravity also hold true for a nearly
extremal black hole. In particular, we are interested in
studying the effect of Freudenthal duality (F-duality) on
near-extremal black holes. Freudenthal triple systems have
long been known to mathematicians due to Hans
Freudenthal [26], and they were then connected to the
entropy of a supersymmetric black hole [27]. In the case
of four-dimensional extremal, supersymmetric black holes,
the entropy and corresponding attractor solutions are
invariant under an anti-involutive operation of charges.
This discrete duality is called Freudenthal duality [26–36].
It differs from U-duality (electromagnetic duality), as
the quantities which remain invariant under U-duality,
except for entropy and attractor solutions, change with
Freudenthal duality.
In [37], it was explicitly shown that for N ¼ 2, type IIA

supergravity, an extremal supersymmetric D0-D4-D6
black hole is Freudenthal dual to an extremal super-
symmetric D0-D2-D4-D6 black hole. Using the H-FGK
[extension of FGK (Ferrara-Gibbons-Kallosh) formalism
with an extra variable H] formalism [38], it was shown in
[39] that Freudenthal duality behaves as part of a local
symmetry for the cases of both extremal and nonextremal
black holes in N ¼ 2, d ¼ 4 ungauged supergravity.
Freudenthal duality has also been studied in the context
ofN > 2 supergravities [31]. In this paper, we consider the
STU model in four-dimensional, ungauged, N ¼ 2 type
IIA supergravity in asymptotically flat space, with all
possible dyonic black hole charges. Entropy of the
extremal, supersymmetric black hole solution in this model
is Freudenthal invariant. Here we explicitly check to
determine whether this duality is preserved in the case
of a near-extremal black hole in the context of a JT-like
theory that we get after dimensionally reducing the higher-
dimensional theory. Asymptotically flat, rotating, nonex-
tremal black hole solutions were studied in [40–42]. Our
final aim is to study F-duality for these generic nonextremal
cases; this work takes the initial step in that direction by
studying near-extremal versions.
In asymptotically flat space, the near-horizon region of a

higher-dimensional extremal (or near-extremal) black hole
contains a throatlike region with AdS2 × S2 geometry,
whereas the far-horizon region is asymptotically flat.
One of the solutions to the equations of motion that come
from the effective action [43] after dimensional reduction is

AdS2 with a constant dilaton Φ0 [45]. We call this the
background solution. It can be easily checked to see that
this background AdS2 solution is the same as that appear-
ing in the near-horizon limit of the higher-dimensional
extremal black hole and Φ0 is the radius of both AdS2
and S2. To go beyond extremality, we introduce a pertur-
bation around this background solution. Expanding the
reduced effective action around this fluctuation, we find a
JT-like action. Following [3], one can then find the entropy
of the near-extremal black hole in terms of the value of the
dilaton fluctuation at the boundary—namely, ϕb. As we are
interested in the nature of higher-dimensional physics, we
fix the boundary at the overlapping region of near-horizon
and far-zone geometries in a higher-dimensional black hole
solution [44,46,47]. At this boundary, the dilaton fluc-
tuation takes a fixed value given by black hole charges.
Thus, we can effectively fix the entropy of a near-extremal
black hole in terms of the black hole charges, where we
consider the charges to remain fixed while moving away
from extremality.
Semiclassically, at low temperatures, the mass difference

between the extremal state and the near-extremal state
ΔM ¼ M −Mext scales as ΔM ∼ T2

Mgap
for a fixed charge

black hole. Here M and T denote the mass and the
temperature of the near-extremal state and Mext is the mass
of the extremal state of the black hole. This calls the
reliability of the semiclassical analysis into question, as the
black hole does not radiate at the temperature T ≲Mgap,
since the energy required to Hawking radiate is of the order
of the temperature T. Thus, previously it was believed that
there was a mass gap between the extremal state and the
near-extremal state in the mass spectrum at very low
temperature when a fixed charge black hole was studied
semiclassically. Including quantum effects, it was shown in
[44] that for a nonsupersymmetric black hole mass gap can
be removed, thus enabling black holes to Hawking radiate
at any nonzero temperature. As an effect, the entropy of a
near-extremal black hole achieves an extra term, logarith-
mic in ðTϕbÞ, in addition to a term linear in Tϕb.
Conversely, in [47] it was shown that there is a mass
gap for a near-extremal, near–Bogomol’nyi-Prasad-
Sommerfield (near-supersymmetric) black hole solution
in N ¼ 2 pure four-dimensional, ungauged supergravity
by matching with N ¼ 4 super-JT gravity. In fact,
the existence of a mass gap is justified in this case as
the degeneracy of the black hole is consistent with the
Bekenstein-Hawking entropy formula [47]. However, in
our current context, we are looking at the entropy of a near-
extremal black hole in fermionic truncated supergravity;
thus, there is no mass gap in our black hole spectrum once
we include quantum corrections.
Reserving the details for the main text, in a simplified

form, F-duality for black holes can be understood as an
anti-involution mapping of the charge vector QA as
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F∶Q̂A → ΩAB
∂S0ðQÞ
∂QB ; ð1:1Þ

with ΩAB being some symplectic metric and S0ðQÞ is the
extremal, supersymmetric entropy. Under this mapping
S0ðQÞ remains invariant [S0ðQ̂Þ ¼ S0ðQÞ]. We show
that for a double-extremal attractor solution (for which
the values of the moduli fields remain fixed in terms of
the charges throughout the moduli space) for a four-
dimensional ungauged STU model the near-extremal
entropy takes the following form:

SNE ¼ S0 þATS
3
2

0 þ
3

2
logðBTS3

2

0Þ; ð1:2Þ

where T is the temperature of the black hole and A and B
are charge and temperature independent constants. We
analyze the effect of Freudenthal duality on this form of
near-extremal entropy. We show that SNE is not invariant
under F-duality if one takes the full entropy SNE as the
function generating the F-dualization. The F-duality invari-
ance of black holes instead always has to be defined
through the extremal entropy through Eq. (1.1), in which
case SNE remains invariant.
We have structured the paper as follows. In Sec. II, we

lay out a bare-bones description of the bosonic sector of the
N ¼ 2 supergravity and F-duality. We show the near-
extremal entropy calculations in Sec. III, following a
dimensional reduction of the full four-dimensional metric
to derive an effective two-dimensional dilaton gravity
theory. In Sec. IV, we discuss the fate of F-duality for
the near-extremal scenario, and we finally conclude in
Sec. V. In the Appendix, we tabulate the necessary details
of the STU black hole and the attractor solutions.

II. BRIEF REVIEW OF N = 2 SUPERGRAVITY
AND F-DUALITY

In four dimensions, the bosonic part of the N ¼ 2
supergravity action coupled with an arbitrary number of
vector multiplets is given by

S ¼ −1
8πG4

Z
d4x

ffiffiffiffiffiffiffi
−G

p �
−
R
2
þ hab̄∂μxa∂νxb̄Gμν

− μΛΣFΛ
μνFΣ

λρG
μλGνρ − νΛΣFΛ

μν � FΣ
λρG

μλGνρ

�
; ð2:1Þ

where Gμν is the spacetime metric with the Ricci scalar R
and determinant G. xa are the n complex moduli
scalar fields with the moduli space metric hab̄. The field
strength FΛ corresponds to the (nþ 1) one-form AΛ

μ ,
Λ ¼ 0; 1;…; n. The gauge coupling constants μΛΣ and
νΛΣ and the moduli space metric are determined by the
prepotential F. The number of vector multiplets is denoted

by n and G4 denotes the four-dimensional Newton’s
constant.
We are interested in a four-dimensional, type IIAN ¼ 2

supergravity that arises at the low energy limit when type
IIA string theory is compactified on a Calabi-Yau manifold
M in the large volume limit. This theory is described
by a holomorphic function called the prepotential that is
given by

F ¼ Dabc
XaXbXc

X0
; ð2:2Þ

where the symplectic section Xa is related to the complex
moduli as xa ¼ Xa

X0. Dabc is the triple intersection number
Dabc ¼ 1

6

R
M αa ∧ αb ∧ αc of two-form αa, the basis of the

cohomology group H2ðM; ZÞ. The Kahler potential is
given by

K ¼ − log

�
i
Xn
Λ¼0

ðXΛ∂ΛF − XΛ ¯∂ΛFÞ
�
; ð2:3Þ

which can be further simplified using the gauge X0 ¼ 1 as
follows:

K ¼ − log ½−iDabcðxa − x̄aÞðxb − x̄bÞðxc − x̄cÞ�: ð2:4Þ

The moduli space metric can be constructed as
hab̄ ¼ ∂a∂ b̄K, i.e., by taking the partial derivative of the
Kahler metric K with respect to the complex moduli xa.
The gauge coupling constants are given by the real and
imaginary parts of N as μ ¼ ImðN Þ and ν ¼ −ReðN Þ,
where

N ¼ FΛΣ þ 2i
ImðFΛΩÞImðFΠΣÞXΩXΠ

ImðFΩΠÞXΩXΠ ð2:5Þ

and FΛΣ ¼ ∂Λ∂ΣF.
In this paper, for simplicity, we consider the STU model

where the number of coupled vector multiplets is n ¼ 3
and the only nonzero intersection matrix isD123 ¼ 1=6. For
a D0-D2-D4-D6 black hole in STU supergravity, the
entropy of an extremal, supersymmetric black hole is given
by [48]

SD0-D2-D4-D6
STU;susy ¼ π

p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3d123
Δ1Δ2Δ3 − ðp0ðp:qÞ − 2DÞ2

s
;

ð2:6Þ

where Δa ¼ Dabcx̃bx̃c ¼ 3Dabcpbpc − p0qa with a real x̃a

and D ¼ Dabcpapbpc. Following [37], one can write the
above expression as
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SD0-D2-D4-D6
STU;susy ¼ π

3p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3

ð3D−p0qapaÞ3
D

−9ðp0ðp:qÞ−2DÞ2
r

;

ð2:7Þ

where p:q ¼ p0q0 þ paqa. q0,p0,qa and pa are the D0-,
D6-, D2-, andD4-brane charges. As mentioned in [49], for
a generic supergravity model, there could be more than one
set of supersymmetric attractor solution with different
forms of entropies for different charge sectors, depending
on the value of the involutory matrix Iab. The properties of
Iab are

IacIcb ¼ δab and DadeIdbI
e
c ¼ Dabc:

For the STU model, there is only one choice of the matrix
where Iab ¼ δab. Thus, in the STU model we have only one
expression for the entropy for all possibleD-brane charges.
Now we will briefly summarize F-duality, which is a

nonlinear, anti-involutive transformation of charge vector
QM ¼ ðpΛ; qΛÞ in which the entropy and the attractor
values of an extremal, supersymmetric black hole remain
fixed under this transformation. The transformation acts as
follows:

πQ̂M ¼ ΩMN ∂SðQÞ
∂QN ;

ˆ̂Q ¼ −Q; and SðQ̂Þ ¼ SðQÞ; ð2:8Þ

where SðQÞ is the extremal entropy of a supersymmetric
black hole corresponding to the charge vector QM ¼
ðpΛ; qΛÞ. ΩMN is 2ðnþ 1Þ × 2ðnþ 1Þ symplectic matrix
with ΩT ¼ −Ω and Ω2 ¼ −I. We consider Ω ¼ ð0I −I0 Þ.
Thus, by F-dualizing an extremal D0-D2-D4-D6 super-

symmetric black hole, one would expect to get another
extremal D0-D2-D4-D6 supersymmetric black hole whose
charges nonlinearly depend on that of the former one.

Nevertheless, an extremal D0-D2-D4-D6 supersymmetric
black hole can also be mapped to an extremal D0-D4-D6
supersymmetric black hole via F-duality [37].

III. JT-LIKE THEORY FROM D= 4, N = 2
SUPERGRAVITY

Extremal black holes are interesting objects in both
classical gravity and supergravity by their own virtues.
In both cases, the near-horizon geometry of a four-
dimensional extremal, charged black hole in asymptotically
flat space factorizes as AdS2 × S2 with the same radius for
AdS2 and S2. In this section, we show that, starting with a
supergravity theory in four dimensions, we find a JT-like
dilaton gravity theory in two dimensions upon dimensional
reduction. This JT-like theory captures the dynamics of the
near-extremal black hole solution of the supergravity
theory, where the extremal solution that we are interested
in is supersymmetric. It has been seen that, for an extremal
black hole in supergravity, irrespective of whether or not it
is supersymmetric, the entropy is fixed in terms of black
hole charges. Also, the values of the moduli fields are fixed
in terms of charges at the horizon, we call them attractor
solutions. We are interested in the fate of F-duality once we
perturb away from the extremal scenario.

A. Dimensional reduction

We start with a dimensional reduction on the sphere at
the near-horizon region by considering a spherically
symmetric ansatz for the metric such as [50,51]

ds2 ¼ Gμνdxμdxν ¼ g̃αβdxαdxβ þΦ2dΩ2
2: ð3:1Þ

We are interested in dyonic black hole solutions, i.e.,
having both electric charges QΛ and magnetic charges
PΛ. Dimensionally reducing the bulk action over Eq. (3.1)
while further assuming that FΛ

θϕ ¼ PΛ sin θ, we find

S̃bulk ¼ −8πG4Sbulk ¼ 4π

Z
d2x

ffiffiffiffiffiffi
−g̃

p
Φ2

�
−
Rðg̃Þ
2

−
1

Φ2
ð∇αΦÞ2 − 1

Φ2
− μΛΣFΛ

αβF
Σαβ −

2

Φ4
μΛΣPΛPΣ

�

− 4π

Z
d2xð4νΛΣPΛFΣ

rtÞ þ 8π

Z
d2x

ffiffiffĩ
g

p ∇αðΦ∇αΦÞ þ 4π

Z
d2x

ffiffiffiffiffiffi
−g̃

p
Φ2hab̄∂αxa∂βxb̄g̃αβ: ð3:2Þ

One should note that the scalar fields xa only have a dependence on the radial direction. For our convenience, we write
this reduced action in the following way by introducing a two-dimensional Levi-Civita symbol ϵαβ such that ϵrt ¼ 1:

S̃bulk ¼ 4π

Z
d2x

ffiffiffiffiffiffi
−g̃

p
Φ2

�
−
Rðg̃Þ
2

−
1

Φ2
ð∇αΦÞ2 − 1

Φ2
− μΛΣFΛ

αβF
Σαβ −

2

Φ4
μΛΣPΛPΣ

�

− 4π

Z
d2xð2νΛΣPΛϵαβFΣ

αβÞ þ 8π

Z
drdt

ffiffiffĩ
g

p ∇αðΦ∇αΦÞ þ 4π

Z
d2x

ffiffiffiffiffiffi
−g̃

p
Φ2hab̄∂αxa∂βxb̄g̃αβ: ð3:3Þ
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This two-dimensional action contains a derivative on the
dilationΦ. As our target is to get a JT-like theory, we do not
want a term like that in the two-dimensional action.
A simple way to get rid of that is Weyl rescaling of the
metric in the following way:

gαβ ¼
Φ
Φ0

g̃αβ: ð3:4Þ

The Weyl rescaled bulk action is then given by

S̃bulk ¼ 4π

Z
d2x

ffiffiffiffiffiffi
−g

p
Φ2

�
−
RðgÞ
2

−
Φ0

Φ3
−

Φ
Φ0

μΛΣFΛ
αβF

Σαβ −
2Φ0

Φ5
μΛΣPΛPΣ

�

− 4π

Z
d2xð2νΛΣPΛFΣ

αβϵ
αβÞ þ 6π

Z
d2x

ffiffiffiffiffiffi
−g

p ∇αðΦ∇αΦÞ þ 4π

Z
d2x

ffiffiffiffiffiffi
−g

p
Φ2hab̄∂αxa∂βxb̄gαβ: ð3:5Þ

We also need to dimensionally reduce the Gibbons-
Hawking-York (GHY) boundary term and the boundary
term for the gauge field as well. From Eq. (2.1), one can
check to see that the three-dimensional GHY boundary
term corresponding to −8πG4S is given by

Sð3ÞGHY ¼ −
Z

d3x
ffiffiffiffi
H

p
Kð3Þ; ð3:6Þ

where H is the induced hypersurface metric of the full
metric G and Kð3Þ is the three-dimensional extrinsic
curvature tensor. Defining hμν as the induced metric and
K̂ as the reduced extrinsic curvature from the reduced 1D
point of view, one can write

SGHY ¼ −4π
Z ffiffiffiffiffiffi

−h
p

Φ2

�
K̂ þ 2

Φ
n̂:∇Φ

�
; ð3:7Þ

where n̂α is the unit normal vector on the hypersurface.
After Weyl rescaling, this can be rewritten as

SGHY ¼ −4π
Z ffiffiffiffiffiffi

−h
p

Φ2

�
K þ 3

2Φ
n:∇Φ

�
; ð3:8Þ

where n is the Weyl rescaled unit vector and K is the
corresponding extrinsic curvature. A three-dimensional
boundary term needed for the well behaved variation of
−8πG4S with respect to the gauge field is given by [52]

Sð3Þgauge ¼ 4

Z
d3x

ffiffiffiffiffiffiffiffi
−H

p
½μΛΣnμFΛμνAΣ

ν þ νΛΣnμ � FΛμνAΣ
ν �:

ð3:9Þ

After dimensional reduction and the Weyl transformation,
this term can be written as

Sgauge ¼ 16π

Z
dt

ffiffiffiffiffiffi
−h

p Φ3

Φ0

μΛΣnαFΛαβAΣ
β

þ 16π

Z
dt

ffiffiffiffiffiffi
−h

p
ffiffiffiffiffiffi−gp νΛΣ

Φ2

Φ2
0

nrPΛAΣ
t : ð3:10Þ

Thus, the full dimensionally reduced, Weyl rescaled
action is

Stot ¼ −4π
Z

d2x
ffiffiffiffiffiffi
−g

p �
Φ2RðgÞ

2
þΦ0

Φ
þΦ3

Φ0

μΛΣFΛ
αβF

Σαβ þ 2Φ0

Φ3
μΛΣPΛPΣ −Φ2hab̄∂αxa∂βxb̄gαβ

�

− 4π

Z
d2xð2νΛΣPΛFΣ

αβϵ
αβÞ þ 16π

Z
dt

ffiffiffiffiffiffi
−h

p �
Φ3

Φ0

μΛΣnαFΛαβAΣ
β þ

1ffiffiffiffiffiffi−gp νΛΣnrPΛAΣ
t

�
− 4π

Z ffiffiffiffiffiffi
−h

p
Φ2k: ð3:11Þ

Corresponding dilaton and gravity equations of motion are

ΦRðgÞ −Φ0

Φ2
þ 3

Φ2

Φ0

μΛΣFΛ
αβF

Σαβ − 6
Φ0

Φ4
μΛΣPΛPΣ − 2Φhab̄∂αxa∂βxb̄gαβ ¼ 0 ð3:12Þ

−
1

2
gγδ

�
−
Φ2R
2

−
Φ0

Φ
−
Φ3

Φ0

μΛΣFΛ
αβF

Σαβ −
2Φ0

Φ3
μΛΣPΛPΣ þΦ2hab̄∂αxa∂βxb̄gαβ

�
−
Φ2

2
Rγδ

−
2Φ3

Φ0

μΛΣFΛ
δβF

Σ
γψgβψ þΦ2hab̄∂γxa∂δxb̄ −∇γΦ∇δΦ −Φ∇γ∇δΦþ ðð∇μΦÞ2 þΦ∇2ΦÞgγδ ¼ 0: ð3:13Þ
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We also have equations for gauge fields and the moduli
fields. As our case of interest is the double-extremal
solution; i.e., when the moduli fields take a constant value
in terms of the black hole charges throughout the moduli
space, equations corresponding to them are trivially sat-
isfied. Consequently Eq. (3.12) and a trace of Eq. (3.13)
simplify to

ΦRðgÞ −Φ0

Φ2
þ 3

Φ2

Φ0

μΛΣFΛ
αβF

Σαβ − 6
Φ0

Φ4
μΛΣPΛPΣ ¼ 0;

ð3:14Þ

Φ0

Φ
−
Φ3

Φ0

μΛΣFΛ
αβF

Σαβ þ 2Φ0

Φ3
μΛΣPΛPΣ

þ ð∇μΦÞ2 þΦ∇2Φ ¼ 0: ð3:15Þ

Remembering that the gauge field equation of motion
coming out of the full 4D theory has the following property
in the near-horizon limit,

∂μð
ffiffiffi
g

p
Φ2μΛΣ

FΣμν þ νΛΣ
PΣϵμνÞ ¼ 0; ð3:16Þ

the solution to the above equation can be written as

ffiffiffi
g

p
Φ2μΛΣ

FΣμν þ νΛΣ
PΣϵμν ¼ −QΛϵ

μν; ð3:17Þ

with the usual convention ϵrt ¼ −ϵtr ¼ 1 and ϵrt ¼ gϵrt.
For convenience, we rescale the electric and magnetic

charges as PΛ ¼
ffiffiffiffi
G4

2

q
pΛ and QΛ ¼

ffiffiffiffi
G4

2

q
qΛ. Then in two

dimensions, following Eq. (3.17), the solution to the gauge
field equation takes the following form:

ffiffiffi
g

p Φ3

Φ0

μΛΣ
FΣμν þ

ffiffiffiffiffiffi
G4

2

r
νΛΣ

pΣϵμν ¼ −
ffiffiffiffiffiffi
G4

2

r
qΛϵμν: ð3:18Þ

To get a JT-like action, we integrate out the gauge fields
from Eq. (3.11). The effective theory is given by the
following action:

S ¼ 4π

Z
d2x

ffiffiffiffiffiffi
−g

p �
−
Φ2R
2

−
Φ0

Φ

−
2Φ0

Φ3

�
X þ G4

2
μΛΣpΛpΣ

��

− 4π

Z
dt

ffiffiffiffiffiffi
−h

p
Φ2k; ð3:19Þ

where

XðμΛ;Σ; νΛ;Σ; P;QÞ ¼ G4

2
ððμ−1ÞΛΣqΛqΣ

þ pΣðνμ−1ÞΣΛqΛ þ qΛðμ−1νÞΛΣp
Σ

þ pΛðνμ−1νÞΛΣpΣÞ: ð3:20Þ

We can also get Eq. (3.19) by using the on-shell value
(3.18) of the gauge field strength in Eq. (3.11). The
equations of motion derived from this effective action are

ΦRðgÞ−Φ0

Φ2
−6

Φ0

Φ4

�
XþG4

2
μΛΣpΛpΣ

�
¼0;

1þ 2

Φ2

�
XþG4

2
μΛΣpΛpΣ

�
þ Φ
Φ0

ð∇μΦÞ2þΦ2

Φ0

∇2Φ¼0:

ð3:21Þ

This alternate action can be simply viewed as some 2D
dilaton theory as S ¼ Sbulk þSbdy, where

Sbulk ¼ −
1

2G4

Z
d2x

ffiffiffiffiffiffi
−g

p �
−
Φ2R
2

− UðΦÞ
�
;

Sbdy ¼
1

2G4

Z
dt

ffiffiffiffiffiffi
−h

p
Φ2K; ð3:22Þ

with the effective dilaton potential UðΦÞ ¼ Φ0

Φ þ
2Φ0

Φ3 ðX þ G4

2
μΛΣpΛpΣÞ. We have inserted the normalization

−1
8πG4

in front of the action so as to carefully track the
gravitational constant from now on.
One of the solutions to Eq. (3.21) is given by

Φ¼ r; with ds2¼ Φ
Φ0

�
−fðrÞdt2þ dr2

fðrÞ
�

fðrÞ¼1þ C
Φ
þ2ΘðQÞ

Φ2
; ΘðQÞ¼−

�
XþG4

2
μΛΣpΛpΣ

�
;

ð3:23Þ

where C is an integration constant, which we shall fix
shortly. As elaborately explained in [46] and further
addressed in [44,47], it is always beneficial to consider
the near-horizon and the far-horizon regions of the
four-dimensional, near-extremal black hole spacetime
separately. The near-horizon (NH) region can be well
approximated as AdS2 × S2. This approximation holds true
in the region where the radial distance r − r0 ≪ r0, with r0
being the horizon radius for the extremal case. The far-
horizon (FH) metric remains well approximated by the
extremal case even in the nonextremal scenario, and it is
given by

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
2: ð3:24Þ

ARGHYA CHATTOPADHYAY and TANIYA MANDAL PHYS. REV. D 105, 046014 (2022)

046014-6



In the extremal limit, near the horizon, the metric (3.24)
reads as

ds2¼−
ðr−r0Þ2

L2
2

dt2þ L2
2

ðr−r0Þ2
dr2þr20dΩ2

2; L2¼ r0;

ð3:25Þ

whereas the solution (3.23) takes the following form:

ds2 ¼ −
ðr − r0Þ2

L2
2

dt2 þ L2
2

ðr − r0Þ2
dr2; Φ ¼ r0: ð3:26Þ

Using this blackening factor as the boundary condition,
one can now fix the integration constant in Eq. (3.23) as
C ¼ −2r0 in the large r limit. Also, in this limit,ΘðQÞ ¼ r0

2
.

Both of these regions overlap inside the bulk where the
radial distance satisfies the condition that the AdS2 radius
L2 ≪ r − r0 ≪ r0. One should note at this point that in the
present context we are dealing with an asymptotically flat
four-dimensional metric, and therefore for our purposes
L2 ¼ r0 ¼ Φ0 for the extremal situation. Interestingly, if
one considers a holographic screen at an arbitrary radial
distance r ¼ r0 þ rb inside the overlapping NH and FH
regions, the leading low temperature behavior is indepen-
dent of the choice of rb [44,46]. In the following, we will
use this crucial aspect to fix the near-extremal entropy as a
function of the dyonic charges.

B. Near-extremal entropy

Thus far, we have focused only on the near-horizon
region and have dimensionally reduced the action corre-
sponding to Eq. (2.1) on S2. We have also derived the two-
dimensional, effective dilaton gravity action (3.22). At the
horizon, dilaton Φ takes the constant value r0, which gets
fixed from Eq. (3.21) as

r20 ¼ 2ΘðQÞ; R ¼ −
2

Φ2
0

: ð3:27Þ

In the near-horizon region where r − r0 ≪ r0, the values of
the dilaton and the metric are given by small perturbation
around the background solution, i.e., a constant dilaton and
AdS2 metric. In two dimensions, the metric can be written
in terms of a single independent parameter. In conformal
gauge we write the metric as

ds2 ¼ e2ωð−dt2 þ dρ2Þ: ð3:28Þ

For the background solution we set ω ¼ ω0. Using the
coordinate transformation

L2
2

ρ
¼ r − r0; ð3:29Þ

where r0 is the horizon of extremal solution, and identify-
ing L2 ¼ r0 one can write the two-dimensional background
metric (3.26) with a constant dilaton as

ds2 ¼ e2ω0ð−dt2 þ dρ2Þ; e2ω0 ¼ L2
2

ρ2
; ð3:30Þ

where ρ≡ ρðrÞ is a function of the original radial coor-
dinate. For Eq. (3.28) the Ricci scalar boils down simply to

R ¼ −2e−2ω
�∂2ω

∂ρ2 −
∂2ω

∂t2
�
: ð3:31Þ

Therefore, the bulk part of the dilaton action (3.22) can be
written for Eq. (3.28) and a generic dilaton Φ as

Sbulk ¼
1

2G4

Z
d2x

ffiffiffiffiffiffi
−g

p �
Φ2e−2ω

�∂2ω

∂ρ2 −
∂2ω

∂t2
�
−UðΦÞ

�
:

ð3:32Þ

The effective potential UðΦÞ vanishes for the background
constant dilaton solution (3.26). To evaluate the complete
action (3.22), one can now switch to the Euclidean time
τ ¼ it and simply write the extrinsic curvature scalar as
K ¼ 1=r0. The complete action (3.22) for this background
solution provides the extremal entropy. Using the attractor
functional method [53], one can see that the extremal
entropy is

S0 ¼
πr20
G4

¼ 2πjΘðQÞj
G4

: ð3:33Þ

In terms of charges, it takes the following explicit form [21]:

S0 ¼
π

2
jðμ−1ÞΛΣqΛqΣ þ pΣðνμ−1ÞΣΛqΛ þ qΛðμ−1νÞΛΣp

Σ

þ pΛðνμ−1νÞΛΣpΣ þ μΛΣpΛpΣjhorizon: ð3:34Þ

In the above formula, the values of μΛΣ and νΛΣ have to be
evaluated at the horizon using the attractor values and
Eq. (2.5). For an STU black hole with all possible D-brane
charges in type IIA supergravity, one can use the attractor
values pointed out in the Appendix and rewrite the entropy
as [48]

SD0-D2-D4-D6
STU ¼ π

p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
Δ1Δ2Δ3−ðp0ðp:qÞ−2DÞ2

r
: ð3:35Þ

It was shown in [37] that D0-D2-D4-D6 black hole has a
Freudenthal dual black hole with charge configuration
D0-D4-D6. One can further show that an STU
D0-D2-D4-D6 black hole can also be F-dual to another
D0-D2-D4-D6 black hole.
We will now switch on the perturbation around the

dilaton and the metric as

FREUDENTHAL DUALITY OF NEAR-EXTREMAL BLACK HOLES … PHYS. REV. D 105, 046014 (2022)

046014-7



Φ ¼ r0ð1þ ϕÞ; ω ¼ ω0 þΩ: ð3:36Þ

With this scheme of perturbation S can be written as
Sbulk ¼ S0

bulk þS1
bulk þS2

bulk þOðϕ3Þ, where

S0
bulk ¼

1

2G4

Z
d2x

ffiffiffiffiffiffi
−g

p �
r20e

−2ω
�∂2ω

∂ρ2 −
∂2ω

∂t2
�
− UðΦ0Þ

�
;

S1
bulk ¼

Φ2
0

2G4

Z ffiffiffi
g

p �
−ϕðt; zÞ

�
−
R
2
−

1

Φ2
0

��
: ð3:37Þ

The boundary action can also be written as a power series of
ϕ and Ω as Sbdy ¼ S0

bdy þS1
bdy þS2

bdy þOðϕ3Þ. As

stated earlier, S0
bulk þS0

bdy provides the extremal entropy.
Using Eq. (3.27), we see thatS1

bulk vanishes and we are left
with the boundary actionS1

bdy linearly in ϕ. In a Euclidean
signature, the boundary action is

S1
bdy ¼ −

r20
G4

Z
dx

ffiffiffi
h

p
ϕK: ð3:38Þ

To evaluate the above integral, we consider the curve
separating the near-horizon and far-horizon regions of a
four-dimensional, near-extremal black hole as our boun-

dary. On this boundary, the induced metric is h ¼ L2
2

ϵ2
and the

proper length is
R
du

ffiffiffi
h

p ¼ βL2

ϵ . Here, β is the periodicity of
the boundary time u and the constant boundary value of the
dilaton is ϕjbdy ¼ ϕb

ϵ . This boundary cuts out a patch of
near-horizon AdS2 space. In Poincaré coordinate, AdS2
metric takes the form ds2 ¼ L2

2

ρ2
ðdt2 þ dρ2Þ which implies

guu ¼ L2
2

ρ2
ðt02 þ ρ02Þ ¼ L2

2

ϵ2
. The solution of this equation

gives the equation of the boundary curve as ρðuÞ ≃
ϵt0ðuÞ in the small ϵ limit, where the prime denotes the
derivative with respect to the boundary time u. Then the
extrinsic curvature at the boundary takes the following
form:

K¼ t0ðt02þρ02þρρ00Þ−ρρ0t00

L2ðt02þρ02Þ32 ¼ 1

L2

ð1þϵ2schðt;uÞÞ; ð3:39Þ

where

schðt; uÞ ¼ −
1

2

�
t00

t0

�
2

þ
�
t00

t0

�0
: ð3:40Þ

Thus, the boundary action can be written as

S1
bdy ¼ −

r20
G4

Z
β

0

duϕbschðt; uÞ: ð3:41Þ

The corresponding partition function, which includes
quantum corrections, takes into account the path integrals

over all possible boundaries tðuÞ up to SLð2; RÞ identi-
fication and is given by [10,44]

Zschðϕb; βÞ ¼
�
ϕ̂b

β

�3
2

e
2π2 ϕ̂b

β ; ð3:42Þ

where ϕ̂b ¼ r2
0

G4
ϕb. The entropy derived from this partition

function provides the entropy of a near-extremal black hole
above extremality and is [44]

δS ¼ 3

2
þ 4π2ϕ̂bT þ 3

2
logðTϕ̂bÞ; ð3:43Þ

where we take the identification of the temperature T with
the inverse of the periodicity of the boundary time as
T ¼ 1=β. Now we need to interpret the value of ϕb in terms
of the parameter of the near-extremal black hole.
The generic solution for the equation for the dilaton

derived from Eq. (3.21) is given by Φ ¼ r, which at the
horizon of the extremal solution takes the value Φ ¼ r0.
Thus, at any point near the horizon it takes the value given
by Φ ¼ r0ð1þ ϕÞ as Eq. (3.36). In global coordinates,
we fix the position of the boundary separating NH and FH
as r ¼ r0 þ rb. Dilaton takes the constant value Φ ¼ r ¼
r0ð1þ ϕb

ϵ Þ at the boundary. Thus, at the boundary

ϕb ¼ ðr−r0Þϵ
r0

. Using the relation between the global coor-
dinate and the Poincaré patch (3.29), one can see that

ϕb ¼ L2
2

r0
¼ r0 at the boundary where ρ → ϵ [44]. Thus, we

find from Eq. (3.43) that

δS ¼ 3

2
þ 4π2

G4

r30T þ 3

2
log

�
r30T
G4

�
: ð3:44Þ

The near-extremal entropy is

SNE¼S0þδS¼πr20
G4

ð1þ4πTr0Þþ
3

2
log

�
r30T
G4

�
þ3

2
; ð3:45Þ

which is now manifestly independent of the boundary.

IV. NEAR-EXTREMAL LIMIT AND F-DUALITY

At this point it is worth reviewing what we have
calculated thus far. We started with the bosonic sector of
the N ¼ 2 supergravity and dimensionally reduced that to
two dimensions for a very specific case. Our main goal is to
probe the fate of F-duality in this kind of scenario.
Therefore, it is imperative that we keep track of the charge
dependence in all our variables. As can be seen from the
two-dimensional effective action (3.22), information of the
initial charge configuration is embedded in the coefficient
denoted by ΘðQÞ, which is fixed for a specific supergravity
theory under consideration.
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As summarized briefly in Sec. II, Freudenthal duality in
the physics literature is defined using [27–30] an anti-
involutive operator on the moduli space of the black hole
charges as

Q̂A ¼ ΩAB
∂ ffiffiffiffiffiffiffiffiffiffiffiffiffiffijΔðQÞjp

∂QB : ð4:1Þ

With ΔðQÞ being an invariant quartic polynomial and Ω is
a 2m × 2m symplectic metric (ΩT ¼ −Ω, Ω2 ¼ −1), with
m being the number of vector fields of the theory. Where
the Bekenstein-Hawking (BH) entropy can be written as

S ¼ π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔðQÞj

p
: ð4:2Þ

This duality is ill defined for small black holes where
jΔðQÞj ¼ 0. Contrary to the usual U-duality, where the
black hole charges transform linearly, F-duality is highly
nonlinear, as evident from the quartic polynomial defined
above, although both of them conserve the BH entropy.
In fact, following [31–33] one can show that the critical
points of the black hole potential are also preserved under
F-duality. Freudenthal duality and its generalities also
appear in various other contexts in the literature, such as
in the study of multicentered black holes [34] and in the
formulation of gauge theories with symplectic scalar
manifolds [30]. For other interesting avenues one may
refer to [35,36].
We now return to the present content. As discussed at the

end of Sec. II, F-duality entails that

πQ̂M ¼ ΩMN ∂SðQÞ
∂QN ;

ˆ̂Q ¼ −Q; and SðQ̂Þ ¼ SðQÞ; ð4:3Þ

where ΩMN is a 2ðnþ 1Þ × 2ðnþ 1Þ symplectic matrix
with ΩT ¼ −Ω and Ω2 ¼ −I. We have already derived that
for our case as

S0ðQÞ ¼ 2πΘðQÞ
G4

¼ π

3p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3

ð3D − p0qapaÞ3
D

− 9ðp0ðp:qÞ − 2DÞ2
r

:

ð4:4Þ

One can now check to ensure that S0ðQÞ remains
invariant as advertised under Eq. (4.3) with SðQÞ ¼ S0ðQÞ.
The anti-involution of this operation can be checked
starting with Eq. (4.4) as the generating function for the
F-dualization. In fact, continual use of extremal entropy to
generate F-duality indeed preserves the near-extremal
entropy SNE as well.

The current setup leads us to ask a question about the fate
of F-duality invariance beyond the extremal limit. Naively,
one might consider that F-duality can also be generated
by the complete near-extremal entropy [assuming that
SðQÞ ¼ SNE]. As pointed out in Eq. (3.45), the boundary
condition at the overlapping region of the NH and the FH
forces the complete entropy into a nonlinear dependence on
ΘðQÞ. One can now check by using Eq. (3.45) in Eq. (4.3)
and taking

SðQÞ ¼ SNE ¼ 2πΘðQÞ
G4

ð1þ 4πT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ΘðQÞ

p
Þ

þ 3

2
log

�
2ΘðQÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ΘðQÞ

p T
G4

�
þ 3

2
; ð4:5Þ

with

ΘðQÞ ¼ G4

6p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3

ð3D − p0qapaÞ3
D

− 9ðp0ðp:qÞ − 2DÞ2
r

:

ð4:6Þ

We find that, in this case, F-duality mapping is no longer a
symmetry of entropy. This mapping also fails to retain the
anti-involution property. Since the quantum correction
appearing at the nonzero temperature diverges at the
zero temperature limit, one might consider ignoring the
quantum correction discussed in Eq. (3.45) and generate
the F-duality through the classical piece of the near-
extremal entropy. It can be checked to see that, even in
that case, the F-duality fails to be a symmetry of the
entropy. Therefore, we conclude that F-duality continues to
hold when the transformation is generated by the extremal
entropy, although it does not hold when it is generated by
the near-extremal entropy with or without the quantum
correction.

V. CONCLUSION

In this paper, we have studied the invariance of the
entropy of a near-extremal, four-dimensional black hole in
N ¼ 2 ungauged supergravity under Freudenthal duality
(F-duality), which is an anti-involutional mapping of a
black hole charge vector. We have considered spherically
symmetric, dyonically charged black holes in asymptoti-
cally flat space. When the black hole is extremal and
supersymmetric, the entropy is F-duality invariant. As we
approach the near-extremal limit, the theory is well
captured by JT gravity upon a dimensional reduction on
S2. Using JT gravity theory as our apparatus, we find that
the invariance of entropy of a near-extremal black hole
depends on how we define the duality itself. Originally, for
a supersymmetric, extremal black hole, the duality derives a
new set of charge vectors by taking derivatives of the
extremal, supersymmetric entropy S0ðQÞ with respect
to the corresponding charges. Considering this definition
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of F-duality, we find a new set of charges. We see that
the entropy corresponding to the new charges is the same
as the near-extremal entropy of the original charges,
i.e., the entropy is F invariant. However, when we tweak
the mapping of the charges, to be explicit, if we
define the new set of charges as the variation of the near-
extremal entropy SNE, we find that in this case near-extremal
entropy is not F invariant. Therefore, we see that the effect of
F-duality on the entropy of a near-extremal black hole
depends on howwedefine themapping of the chargevectors.
F-duality in supergravity is broadly studied for extremal,

supersymmetric black holes. In this paper, we have
extended this study to a near-extremal black hole as a
deviation of an extremal, supersymmetric black hole. It
would be interesting to analyze the effect of Freudenthal
duality on extremal, nonsupersymmetric, and nonextremal
black holes in both ungauged and gauged supergravity,
with and without truncation of the fermions. It would also
be interesting to analyze the invariance of entropy under
F-duality for a rotating black hole solution in supergravity.
An extremal black hole in gauged supergravity is
Freudental invariant [54]. Thus, it would be interesting
to analyze the effect of Freudenthal duality on a near-
extremal black hole in gauged supergravity. In this work,
we have considered a double-extremal solution to study the
near-extremal limit of F-duality, where we have benefited
from the constant moduli fields but have not had other
parameters to control the duality transformation. The
inclusion of nonconstant moduli could give us a better
handle on how F-duality acts away from extremality.
Therefore, it would be interesting to generalize our study
to a near-extremal black hole without considering the
double-extremal limit. We reserve these considerations
for future endeavors.
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APPENDIX: BACKGROUND SOLUTION

In this appendix we discuss the attractor solutions while
following [55]. This rather simple case consists of three
complex scalar and four gauge fields:

x1 ¼ S; x2 ¼ T; x3 ¼ U; and

Dabc ¼
�
1=6 ∀ a ≠ b ≠ c;

0 otherwise:
ðA1Þ

The justification of this naming comes partially from the
fact that in these cases the prepotential can be written as
F ¼ STU. The prepotential F defined earlier in Eq. (2.2)
boils down simply to

F ¼ X1X2X3

X0
: ðA2Þ

Since we are taking the double-extremal black hole,
we have a much simpler tractable setup, as the scalars
xa ¼ ðxa1 þ ixa2Þ take a constant value over all the spacetime
[56]. a denotes the number of vector multiplets in the case
where STU a ¼ 3. For a supersymmetric D0-D2-D4-D6
system, the attractor values are [48]

xa1 ¼
3

2

x̃a

p0ðΔcx̃cÞ
ðp0ðp:qÞ − 2DÞ þ pa

p0
; ðA3Þ

xa2 ¼
3

2

x̃a

ðΔcx̃cÞ
S
π
; ðA4Þ

with q0 and qa denoting D0- and D2-brane charges,
respectively, while p0 and pa denote D6- and D4-brane
charges, respectively. The entropy S is [48]

S ¼ π

3p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3
ðΔax̃aÞ2 − 9ðp0ðp:qÞ − 2DÞ2

r
ðA5Þ

and x̃a is the real solution of Δa ¼ Dabcx̃bx̃c ¼
3Da − p0qa, with Da ¼ Dabcpbpc.

Considering an ansatz in which x̃a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3D−p0qapa

D

q
pa, we

see that the entropy can be written as [37]

S ¼ π

3p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3

ð3D − p0qapaÞ3
D

− 9ðp0ðp:qÞ − 2DÞ2
r

: ðA6Þ
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