
Islands in charged linear dilaton black holes

Byoungjoon Ahn ,1,* Sang-Eon Bak,1,† Hyun-Sik Jeong ,2,3,‡ Keun-Young Kim ,1,4,§ and Ya-Wen Sun2,3,∥
1Department of Physics and Photon Science, Gwangju Institute of Science and Technology,

123 Cheomdan-gwagiro, Gwangju 61005, Korea
2School of physics & CAS Center for Excellence in Topological Quantum Computation,

University of Chinese Academy of Sciences, Zhongguancun east road 80, Beijing 100049, China
3Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences,

Zhongguancun east road 80, Beijing 100049, China
4Research Center for Photon Science Technology, Gwangju Institute of Science and Technology,

123 Cheomdan-gwagiro, Gwangju 61005, Korea

(Received 11 October 2021; accepted 2 January 2022; published 16 February 2022)

We investigate the Page curve for a nonstandard black hole which is asymptotically nonflat/AdS/dS. For
this purpose, we apply the island prescription to the charged linear dilaton black holes and analyze, in
detail, the entanglement entropy of Hawking radiation for both the nonextremal case and the extremal case.
In the nonextremal case, we find the Page curve consistent with the unitarity principle: at early times the
entanglement entropy grows linearly in time without the island and at late times it saturates to double of the
Bekenstein-Hawking entropy in the presence of the island. We observe the Page time is universal for all

different models studied by our method: tPage ¼ 3
πc

SBH
TH

. For the extremal case, the island prescription

provides the well-defined entanglement entropy only with the island, which cannot be obtained from the
continuous limit of the nonextremal case. This implies that the Page curve may not be reproduced for the
extremal case and further investigation is needed.

DOI: 10.1103/PhysRevD.105.046012

I. INTRODUCTION

The black hole information is one of the fundamental
problems in many areas of physics such as quantum
mechanics, thermodynamics, and the theory of general
relativity [1–5]. One of the well-known black hole infor-
mation issues is initiated from the relation between the
entanglement entropy and Hawking radiation. In 1975,
Hawking proposed that the evaporating black hole under-
goes the thermal process so that the black hole behaves as
the thermal radiation: the Hawking radiation [2]. This
implies that, as the black hole is evaporating from the
pure state, the entanglement entropy outside the black hole
is supposed to be increasing. However, this result is
contrary to what the basic assumption of quantum mechan-
ics, the unitarity principle, requires: the entanglement

entropy has to be zero at the end of the evaporation process
since the final state still must be the pure state.
Information paradox and the Page curve: In addition to

the evaporating black hole [6–11], the eternal black hole also
has the similar information issue on the entanglement
entropy. At the “end stage” of the evaporation, the evapo-
rating black hole has a finite amount of radiation so that the
entanglement entropy is also bounded when the black hole
vanishes. On the other hand, the eternal black hole has an
infinite amount of radiation, so does the entanglement
entropy, which is also contrary to the unitarity principle
because unitarity requires the maximal limit of entropy of the
black hole to be the Bekenstein-Hawking entropy [12].
The behavior of the entanglement entropy of the Hawking

radiation is described by the Page curve [3,13,14]. Thus,
the information issue on the entanglement entropy of the
Hawking radiation can be translated into how to reproduce
the Page curve consistent with the unitarity principle; i.e., for
the eternal black hole, the entanglement entropy is increasing
and has to be bounded by the Bekenstein-Hawking entropy.
Since resolving the information issue with the Page curve is
related to rendering the gravity physics to be coherent with
quantum mechanics, it is important and essential to under-
standing quantum gravity.
Islands formula and the Page curve: In order to calculate

the Page curve of Hawking radiation, it is recently proposed
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that the island formula [6,9,11,15–17] for the entanglement
entropy of the Hawking radiation, SðRÞ, can deduce the
behavior of the Page curve for a unitary evolution,which reads

SðRÞ ¼ min ext½Sgen�;

Sgen ¼
Areað∂IÞ
4GN

þ SmatterðR ∪ IslandÞ; ð1:1Þ

whereGN is theNewton constant,R is the radiation region, ∂I
is the boundary of the island, and Smatter is the entropy of
quantum fields.
Let us give a quick description of how this formulaworks.

For more details, see [6,18] and references therein. First, one
can introduce the generalized entropy functional Sgen con-
taining two pieces as (i) Areað∂IÞ=4GN : the Bekenstein-
Hawking entropy of the island; (ii) SmatterðR ∪ IslandÞ: the
von Neumann entropy of the matter sector on the union
of radiation (R) and the island region. Next, one can eva-
luate Sgen with respect to all possible saddle points (or
extrema), ext½Sgen�, which is corresponding to the locations
of the island and when its minimum value exists we can
find SðRÞ ¼ min ext½Sgen�. In summary, the entanglement
entropy of Hawking radiation SðRÞ is identified with the
generalized entropy Sgen giving the minimum value over the
choice of location of the islands.
Islands in general black hole in higher dimension: We

further note two things of the island formula. First, anti–de
Sitter (AdS) space (and holography) is not a necessary
condition for the island formula. Although this island pre-
scription is first suggested in the context of the anti-de
Sitter/conformal field theory (AdS/CFT) correspondence
by Ryu and Takayanagi [19] and its further developments
[6,9–11,16,20–22], it can be applied to any quantum
system coupled to gravity. This is further supported by
the fact that the entanglement entropy has been found to
follow the Page curve in all the examples (e.g., asymp-
totically flat or dS) studied in the literature so far with the
island prescription. Furthermore, using the gravitational
replica method, it is shown that the island formula can be
derived from the Euclidean path integral without hologra-
phy [8,23–25]. Thus holography or AdS space is not
necessarily required to study the entropy of systems.
Second, the island formula can be applied to the higher

dimensional spacetime [10,26–32]. The initial study of the
Page curve was investigated for two-dimensional black
holes using the semiclassical method in Jackiw-Teitelboim
(JT) gravity [6,8,33] and most of the research on the infor-
mation issue is focused on the two-dimensional gravity
systems where more tractable analysis is allowed. For the
two-dimensional case, the island appears at the end stage of
the evaporation and the Page curve is produced. It is argued
that, in the higher dimensional systems, the island should
appear and the Page curve in a unitary evolution can also be
reproduced when the island is taken into account [10].

Recently, the literature supporting this argument is reported.
For instance, the Schwarzschild black holes [27], the
Reissner-Nordstrom black holes [29,34], and the dilaton
black holes [28,30] are considered in the higher dimen-
sions. For the recent developments in this direction, see
[6,8–10,23–78] and the references therein.
Motivation of this paper: Although the island structure

and the Page curve are investigated with the various black
hole geometries in higher dimensions, to our knowledge,
most of them considered the black holes in asymptotically
flat/AdS/dS. Thus, it is worthwhile to verify that whether
the island formula can be applied to other cases (non-
asymptotically flat/AdS/dS), which is called the nonstand-
ard black hole geometries. Checking the Page curve for the
nonstandard black hole geometries using the island formula
is important not only for the range of applicability of the
island method, but also for the quantum gravity. In this
paper, we make one step further in this direction.
For this purpose, we choose a charged linear dilaton black

hole in four dimensions [28]. This model is advantageous
because theanalytic backgroundgeometry solution is allowed.
The main focus of [28] is the case without the charge. We
generalize the analysis in the presence of charge, for both the
nonextremal and the extremal cases. The extremal case is
addressed in [28], but we find that we need to revisit the
analysis for two reasons. First, Ref. [28] reportedSðRÞwithout
the island, and the explicit computation ofSðRÞwith the island
is not shown. Second, the computation in [28] is based on the
Penrose diagram of the nonextremal case, which turns out to
be different from the extremal case. It is shown that, in order to
study the complete picture of the island, oneneeds toperforma
separate analysis for the extremal black hole and the non-
extremal black hole because they are essentially different [79].
For instance, the entanglement entropy, SðRÞ, in the extremal
case cannot be obtained from the continuous extremal limit of
the nonextremal case [34].
This paper is organized as follows. In Sec. II, we

introduce the charged linear dilaton black hole and discuss
its properties. In Sec. III, we review the method to calculate
the entanglement entropy without and with the island. In
Sec. IV, using the island formula, we study the entangle-
ment entropy of Hawking radiation for the nonextremal
black holes. In Sec. V, we analyze the entropy of the
extremal black holes. Section VI is devoted to conclusions.

II. THE CHARGED DILATON BLACK HOLE

Let us consider the four-dimensional dilaton action with
a Uð1Þ gauge field in the Einstein frame

I¼ 1

16πGN

Z
d4x

ffiffiffi
g

p �
R−

1

2
ð∂σÞ2þ4k2eσ−

1

4
eγσFμνFμν

�
;

ð2:1Þ
where k and γ are constants, σ is a scalar field, and Fμν ¼
∂μAν − ∂νAμ is a field strength tensor. It is originated from
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the linear dilaton model in the string frame. By varying the
action with respect to gμν, Aμ, and σ, we have the equations
of motion

Rμν −
1

2
gμνR ¼ 1

2
∂μσ∂νσ −

1

2
gμν

�
1

2
ð∂σÞ2 − 4k2eσ

�

þ 1

2
eγσ

�
FμλFλ

ν −
1

4
gμνFαβFαβ

�
; ð2:2Þ

∇μðeγσFμνÞ ¼ 0; ð2:3Þ

□σ ¼ −4k2eσ þ 1

4
γeγσFμνFμν: ð2:4Þ

The equations of motion are satisfied by the following
charged dilaton black hole solution:

ds2 ¼ −r2
�
1 −

2M
r2

þ Q2

4r4

�
dt2 þ

�
1 −

2M
r2

þ Q2

4r4

�−1
dr2

þ r2ðdx2 þ dy2Þ; ð2:5Þ

At ¼ −
μ

2γ
ðkrÞ2γ; Ar ¼ Ax ¼ Ay ¼ 0; ð2:6Þ

σ ¼ −2 log ðkrÞ; ð2:7Þ

where Q ¼ μffiffi
2

p
k
and γ ¼ −1. With respect to the metric

(2.5), we consider two cases separately: (i) the extremal
black hole and (ii) the nonextremal black hole.

(i) Nonextremal case In the case of 2M > Q, there exist
an inner horizon ðr−Þ and an outer horizon ðrþÞ on
the metric (2.5),

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −

Q2

4

rs
: ð2:8Þ

By using the analogy with the Reissner-
Nordström black hole case, one can rescale t into
rþt. Then, by taking into account the null geodesic,
one can introduce the tortoise coordinate:

r� ¼ rþ

Z
dr

rð1 − 2M
r2 þ Q2

4r4Þ

¼ 1

2κþ

�
log

jr − rþj
rþ

þ log
jrþ rþj

rþ

�

þ 1

2κ−

�
log

jr − r−j
r−

þ log
jrþ r−j

r−

�
: ð2:9Þ

Here, κ� ¼ r2�−r
2∓

rþr2�
is the surface gravity at each

horizon. The line element becomes

ds2 ¼ ðr2 − r2−Þðr2 − r2þÞ
r2þr2

ð−dt2 þ dr�2Þ

þ r2ðdx2 þ dy2Þ: ð2:10Þ

In terms of the Kruskal coordinate defined as

u ¼ −e−κþu� ¼ −e−κþðt−r�Þ; v ¼ eκþv
� ¼ eκþðtþr�Þ;

ð2:11Þ

the line element reads

ds2 ¼ −fðrÞ2dudvþ r2ðdx2 þ dy2Þ; ð2:12Þ

where the conformal factor is given by

fðrÞ2 ¼ r2−
κ2þr2

�
r2−

jr − r−jjrþ r−j
�κþ

κ−
−1
: ð2:13Þ

Note that this coordinate is singular at the inner
horizon r ¼ r− and is regular in ðr−;∞Þ. One cannot
define a coordinate that is nonsingular on both
horizons simultaneously.

(ii) Extremal case For the case Q ¼ 2M, two horizons
coincide so that the metric of the extremal charged
dilaton black hole (2.5) is written by

ds2 ¼−r2
�
1−

r2h
r2

�
2

dt2þ dr2

ð1− r2h
r2Þ

2
þ r2ðdx2þdy2Þ;

ð2:14Þ

and the event horizon locates at rh. As r → ∞ or
rh → 0, the geometry approaches

ds2 ¼ −r2dt2 þ dr2 þ r2ðdx2 þ dy2Þ: ð2:15Þ

Note that a causal structure is not asymptotically flat
and it has a naked singularity at r ¼ 0.

In the case of the extremal charged dilaton black hole, by
transforming t into rht and taking into account the null
geodesic, one can take the following tortoise coordinate:

r� ¼ rh

Z
dr

rð1 − r2h
r2Þ

2
; ð2:16Þ

in terms of which the metric is

ds2 ¼ ðr2 − r2hÞ2
r2hr

2
ð−dt2 þ dr�2Þ þ r2ðdx2 þ dy2Þ: ð2:17Þ

By defining the Kruskal coordinates as

u ¼ −e−
u�
rh ¼ −e−

ðt−r�Þ
rh ; v ¼ e

v�
rh ¼ e

ðtþr�Þ
rh ; ð2:18Þ
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we can rewrite the metric

ds2 ¼ −fðrÞ2dudvþ r2ðdx2 þ dy2Þ; ð2:19Þ

where the conformal factor is given by

fðrÞ2 ¼ ðr2 − r2hÞ2
r2

e−
2r�
rh : ð2:20Þ

Although the conformal factor of the charged dilaton black
hole is different from one of the Reissner-Nordström black
holes, the causal structure of both are the same. We will use
the Kruskal coordinate to derive the entanglement entropy
of the extremal charged dilaton black hole.

III. REVIEW ON THE APPROACH

Our goal is to derive the Page curve from the entangle-
ment entropy of the Hawking radiation of the charged
linear dilaton black holes by calculating it with/without
the islands.
One can identify the Hawking radiation of the black hole

with a matter sector coupled to the gravitational theory. In
the two-dimensional setup, this corresponds to a free CFT
with N ≫ 1 minimally coupled massless scalar fields,
where the central charge c is OðNÞ, but is much smaller
than the mass of the black hole. The region of the Hawking
radiation R is represented by the union of Rþ and R− in the
right and left wedges, respectively. We assume the distance
between the event horizon and the reservoir is large enough
to ignore the backreaction of the matter fields on the
geometry.
In four-dimensional models, the general expression of

the entanglement entropy is not known. Fortunately, the
charged dilaton black hole has a two-dimensional planar
horizon so that we can deal with a density of the
entanglement entropy on R2. Therefore, we apply the
well-known results to our case, which is obtained in
two-dimensional field theories.
We follow the way to calculate the entanglement entropy

that is suggested in [27]. Let us briefly review the argument.
One can consider two configurations, one of which has
islands and the other does not.
For the case without islands, the finite part of the matter

entanglement entropy comes from the separate two regions
Rþ andR−. Although the mutual information does not imply
the entanglement itself, one can assume as a necessary
condition that it is dealt with the finite part of the entangle-
ment entropy between two regions. Therefore, the finite part
of the matter entanglement entropy is given by

SðRÞ ¼ −IðRþ;R−Þ; ð3:1Þ

where the mutual information is defined by

IðA;BÞ≡ −SðA ∪ BÞ þ SðAÞ þ SðBÞ: ð3:2Þ

In the limit the distance between the boundary surfaces is
large, the mutual information is approximated by that of
the two-dimensional massless fields. Therefore, the entan-
glement entropy of the matter part without the island is
given by

Smatter ¼
c
3
log ½lðbþ; b−Þ�; ð3:3Þ

where bþ ¼ ðtb; bÞ and b− ¼ ð−tb − iπ=κþ; bÞ indicate the
cutoff surface for the right and left wedges. Here, the
geodesic distance l can be computed by

lðz; z0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞfðz0Þðuðz0Þ − uðzÞÞðvðzÞ − vðz0ÞÞ

p
: ð3:4Þ

In the configuration with the island, each of the two
boundaries of the island becomes much closer to the
boundary of R in the same wedge than to the boundaries
in the other wedge at late times. In the right wedge, the
dominant contribution comes from the finite part of
the entanglement entropy between Rþ and the island.
The contribution from the left wedge is equal to the right
one, so the matter entanglement entropy is twice of one in
the right wedge. Therefore, the finite part of the matter
entanglement entropy is given by

SðR ∪ IslandÞ ¼ −2IðRþ; IslandÞ: ð3:5Þ

Assume that the cutoff surface is located far from the
horizon, i.e., rþ ≪ b. Then, one can obtain the entangle-
ment entropy of the two-dimensional massless fields which
live on the radiation region (R) and the island region

Smatter ¼
c
3
log

�
lðaþ; a−Þlðbþ; b−Þlðaþ; bþÞlða−; b−Þ

lðaþ; b−Þlða−; bþÞ
�
;

ð3:6Þ

where aþ ¼ ðta; aÞ and a− ¼ ð−ta − iπ=κþ; aÞ denote the
boundary of the island.
Further comments on the matter entanglement entropy:

In [27], it was shown that the matter entanglement entropy
in four dimensions can be expressed as follows:

SmatterðR ∪ IslandÞ ¼ Areað∂IÞ
ϵ2

þ SðfiniteÞmatter ðR ∪ IslandÞ;
ð3:7Þ

where ϵ is the short distance cutoff scale. Then, using (3.7),
Sgen in (1.1) is rewritten as
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Sgen ¼
Areað∂IÞ
4GðrÞ

N

þ SðfiniteÞmatter ðR ∪ IslandÞ;

1

4GðrÞ
N

≔
1

4GN
þ 1

ϵ2
; ð3:8Þ

where GðrÞ
N is a renormalized Newton constant. Note that if

one regards GN in (1.1) as GðrÞ
N , then SmatterðR ∪ IslandÞ in

(1.1) can be considered as a finite piece of the matter

entanglement entropy, SðfiniteÞmatter ðR ∪ IslandÞ.
Equation (3.8) is the main proposed formula in [27] to

investigate SðRÞ in higher dimensions. Moreover, as the
way to evaluate the finite matter entanglement entropy,
the authors in [27] used the mutual information as (3.1)
or (3.5).1

Or alternatively, assuming the whole system is in the
pure state at t ¼ 0, Eq. (3.1) can be understood as the
entropy of the CFT within the interval [b−; bþ] as (3.3).
Similarly, Eq. (3.5) corresponds to the entropy of two
intervals ([b−; a−] and [aþ; bþ]) as (3.6).
For more detailed and further explanation for (3.8), we

refer the reader to [27]. See also [31] when the gravitational
action contains higher derivative terms.2

IV. ENTANGLEMENT ENTROPY OF
NONEXTREMAL CHARGED
DILATON BLACK HOLES

In this section, we derive the entanglement entropy with
or without island configuration in the four-dimensional
nonextremal charged dilaton black holes. Using these
results, the Page curve is discussed in the context of the
black hole information paradox, with the Page time and
scrambling time for our model. We employ the assumptions
in Sec. III to make the computation on the two-dimensional
field theory sensible. It means we will follow the approach
that is first argued in [27].

A. Entropy without island

In this section, we consider the entropy of the matter
sector in the absence of the island configuration. The
entropy of the matter field is computed semiclassically on
the charged dilaton black hole background.

By using Eq. (3.3), one could write the entropy of the
matter fields without islands in terms of the conformal
factor fðbÞ, surface gravity κ�, and tortoise coordinate r�,

SðRÞ ¼ Smatter ¼
c
3
log ½2fðbÞeκþr�ðbÞ cosh κþt�: ð4:1Þ

Assuming rþ ≪ b, we find that the entanglement entropy
increases linearly in time,

Smatter ¼
c
3
log ð2 cosh κþtÞ ≃

c
3
κþt: ð4:2Þ

In the last approximation, we look into the late time
behavior t ≫ b, where b is much larger than rþ. This
linear growth is problematic because the entanglement
entropy increases forever and exceeds the entropy of the
black hole in the end. Instead, we expect that the growth
of the entanglement entropy will finish in a finite time.
Finally, the entanglement entropy will saturate to twice the
Bekenstein-Hawking entropy for the unitarity of the black
holes. To resolve this problem, we will introduce the island
configuration and check that this prescription provides the
correct computation of the entanglement entropy for the
charged dilaton gravity.

B. Entropy with island

In the presence of the island, one should take into
account the island contribution when considering the
generalized entropy. Consider the case that the observer
outside the black hole collects the Hawking quanta that
cross the cutoff surfaces bþ ¼ ðtb; bÞ and b− ¼ ð−tb −
iπ=κþ; bÞ in Fig. 1. It means that the degrees of freedom of
the radiation are counted with respect to region
R≡ R− ∪ Rþ. However, the matter section of the gener-
alized entropy contains the island region whose boundary is
denoted by aþ ¼ ðta; aÞ and a− ¼ ð−ta − iπ=κþ; aÞ. We
will see that the generalized entropy including an island
contribution provides a correct description of the time
evolution of the entropy of radiation.
By using Eq. (3.6), one could calculate the entanglement

entropy of the matter field in the presence of the island

Smatter ¼
c
6
log ½24f2ðaÞf2ðbÞe2κþðr�ðaÞþr�ðbÞÞcosh2ðκþtaÞcosh2ðκþtbÞ�

þ c
3
log

�
cosh κþðr�ðaÞ − r�ðbÞÞ − cosh κþðta − tbÞ
cosh κþðr�ðaÞ − r�ðbÞÞ þ cosh κþðta þ tbÞ

�
: ð4:3Þ

1In the limit where the mutual information can be approximated by that of the two-dimensional massless fields, it was argued that the
mutual information might be related to the entanglement entropy: see (1.13) in [27].

2As argued in [31], the higher derivative terms may produce several divergence terms that can also be removed by the renormalization
of the coupling constants of the higher derivative terms, and the remaining finite matter entropy contribution may quantify the mutual
information.
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Using this formula, we want to consider the early time and late time behaviors of the entropy. Before investigating them,
one can impose that the cutoff surface is located far away from the outer horizon rþ ≪ b, obtaining the following
expression:

Smatter ≃
c
6
log

�
24b2

κ4þr4þa2

�ja2 − r2þj
r2þ

��ja2 − r2−j
r2þ

�
cosh2ðκþtaÞcosh2ðκþtbÞ

�

þ c
3
log

2
641 − 2

�ja2−r2þj
b2

�1
2

�
ja2−r2−j

b2

� κþ
2κ− cosh ðκþðta − tbÞÞ

1þ 2
�ja2−r2þj

b2

�1
2

�
ja2−r2−j

b2

� κþ
2κ− cosh ðκþðta þ tbÞÞ

3
75: ð4:4Þ

In what follows, we focus on the early and late time
limits for two reasons.3 First, in order to find the quantum
extremal surfaces analytically, we may need to take the
early/late time limits for the entanglement entropy
[27–30,34]. Note that one cannot find the quantum
extremal surfaces for all times even for the simplest setup,
i.e., the Schwarzschild black holes [27]. Second, it might
also be useful to take the early/late time limits for the
physical reason. One of the purposes of the study of the
Page curve would be to confirm that no island is present at
early time and investigate the entanglement entropy at late
times when the entropy becomes an issue for the informa-
tion paradox. Therefore, we may focus on the early and late
time limits for our interests.
Early time The early time behavior of the entanglement

entropy is obtained by taking into account the limit
ta; tb ≪ rþ. We can also assume that the extremal surface
is located near the outer horizon.

The generalized entropy is written as the sum of the area
term with respect to boundaries of the island and the
entropy of the quantum matter (1.1)

Sgen ¼
Areað∂IÞ
4GN

þ SmatterðR ∪ IslandÞ:

Note that the boundary of the island appears as planar
geometry as we discussed in Sec. III. Combining the above
facts, the generalized entropy is written as

Sgen ≃
a2

2GN
þ c
6
log

�
24b2

κ4þr4þa2

�ja2 − r2þj
r2þ

��ja2 − r2−j
r2þ

�

× cosh2ðκþtaÞcosh2ðκþtbÞ
�

−
4c
3

�ja2 − r2þj
b2

�1
2

�ja2 − r2−j
b2

� κþ
2κ−

× coshðκþtaÞ coshðκþtbÞ; ð4:5Þ

FIG. 1. (a) Penrose diagram of the nonextremal charged dilaton black holes without island. The union of Rþ and R− indicates the
radiation region. The boundaries of Rþ and R− are denoted by bþ and b−, which indicate cutoff surfaces. (b) Penrose diagram of the
nonextremal charged dilaton black holes with island. The boundaries of the island correspond to aþ and a−.

3We thank the referee for pointing this out.
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where the first term in (4.5), a2
2GN

, corresponds to
the contribution of the area of the island with a planar
geometry (2.10).4

To compute the entanglement entropy, one should find
the position of a extremizing (4.5) over all possible Cauchy
surfaces. Similar to the result in [29], at early times one can
find that Sgen is extremized in the vicinity of the singularity

a ≃
ffiffiffi
c
3

r
lP; ð4:6Þ

where lP is the Plank length. It seems that there is an island
at a distance of Plank length from the singularity. However,
this extremal point (4.6) cannot be the boundary of the
island. This is because we are taking into account the
Cauchy surface that only covers outside the inner horizon
(see Fig. 1), and the metric we used is not appropriate near
the inner horizon.
On the other hand, one can confirm that there is no

extremal surface at this early time limit when one attempts
to find an extremal surface near the outer horizon. In this
regard, the island region does not emerge at early time, and
the entanglement entropy should be determined by (4.2).
In other words, the entanglement entropy grows linear in
time at the early time regime, which takes the following
behavior:

SðRÞ ¼ c
3
log ð2 cosh κþtÞ ≃

c
3
κþt: ð4:7Þ

Late time The late time behavior of the entanglement
entropy is computed by taking the limit rþ < b ≪ ta; tb. In
this limit, we use the following approximation:

cosh ðκþta;bÞ ≃
1

2
exp ðκþta;bÞ: ð4:8Þ

Also, we employ the following approximation by assuming
a ≃ rþ:

log

"
1 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − r2þ

b2

s �
a2 − r2−

b2

� κþ
2κ−

#

≃ −2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − r2þ

b2

s �
a2 − r2−

b2

� κþ
2κ−
: ð4:9Þ

Using these approximations, one can write the generalized
entropy as a sum of the area term and the entanglement
entropy of the matter fields,

Sgen ≃
a2

2GN
þ c
3

�
2þ κþ

κ−

�
logbþ c

6
log

�ja2 − r2−j1−
κþ
κ−

κ4þr8þa2

�

−
2c
3

�ja2 − r2þj
b2

�1
2

�ja2 − r2−j
b2

� κþ
2κ−

cosh ðκþðta − tbÞÞ;

ð4:10Þ

where we take large ta, tb. The generalized entropy is
extremized at ta ¼ tb.
By extremizing (4.10) with respect to a, one can derive

the location of the island

a ≃ rþ þ 2c2G2
N

9rþb2

�
r2þ − r2−

b2

�κþ
κ−
: ð4:11Þ

To find the extremal point, we assume that the island is
located near the outer horizon a ≃ rþ and expand the result
by order ofGN . The result shows that the quantum extremal
surface exists slightly outside the outer horizon at the late
time regime. The existence of the island influences the
behavior of the entanglement entropy for late time.
To see the effect of the island configuration, we insert the

location of the island into the generalized entropy (4.10).
The entanglement entropy is determined by

SðRÞ ≃ r2þ
2GN

þ c
3

�
2þ κþ

κ−

�
log bþ c

6
log

�ðr2þ − r2−Þ−
κþ
κ−

κ3þr7þ

�

−
2c2G2

N

9b2

�
r2þ − r2−

b2

�κþ
κ−
: ð4:12Þ

Note that the entanglement entropy becomes constant at
late times. At the leading order, the entanglement entropy
reduces to twice the Bekenstein-Hawking entropy, i.e.,

SðRÞ ≈ 2SBH: ð4:13Þ

The subleading terms contain the quantum correction of the
entanglement entropy, which is not significant compared
to the leading contribution of SBH. This is what we can
expect from the eternal black hole case explained in the
Introduction. When we take Q → 0, our result is consistent
with that in the neutral linear dilaton model [28]. Based on
their work,5 we obtain the entanglement entropy for the
neutral linear dilaton model up to the second order of c,
which can be reproduced from (4.12),

4In other words, we deal with the entanglement entropy on R2.
Note that, for a spherical geometry, we may have 2πa2

GN
for the area

term in the island formula.

5In order to check if (4.12) can reproduce the neutral case
result in [28], one may need to compute the subleading terms of
the entanglement entropy. However, the authors in [28] only
presented the leading contribution. Thus, for the purpose of the
comparison, we also compute SðRÞ up to c2 order using the
presented formulas in [28], which corresponds to (4.14).
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SðRÞ ≃ r2h
2GN

þ 2c
3
log

b
rh

−
2c2GN

9b2
; ð4:14Þ

where rh is the horizon radius of the linear dilaton
black hole.

C. Page time and scrambling time

In the previous section, we have observed that the
entanglement entropy grows linearly in time at the early
time regime. This linear growth is originated from the
absence of the island. After converting into the late time
regime, the island appears near the outer horizon. In this
island phase, the entanglement entropy of the matter sector
becomes constant.
The transition between these two configurations can be

described by the Page curve shown in Fig. 2. In the Page
curve, the Page time at which the linear growth becomes
constant can be computed. By equating Eqs. (4.2) and
(4.12), one can obtain

tPage ¼
3r2þ

2cGNκþ
¼ 3

πc
SBH
TH

; ð4:15Þ

where we used the Hawking temperature TH ¼ κþ=2π. In
this formula, one can confirm that the island arises around
the Page time, which is proportional to the Bekenstein-
Hawking entropy of the black hole.
We can also consider the timescale for scrambling for the

charged dilaton black hole. In the context of black hole
information, the scrambling time is defined by the minimal
time that one can retrieve the information after sending the
information into the black hole. Note that the radiation
degrees of freedom are encoded in the union of two regions
ðR ∪ IslandÞ with the presence of the island. In this case,
the signal falling into the black hole comes up in the
radiation degrees of freedom after the signal approaches the
island. When the observer staying at the cutoff surface
throws the signal into the black hole at time t0, the signal
will get to the island at the time ta that is given by

ta ¼ t0 þ
1

κþ
log

�jb − rþjjbþ rþj
ja − rþjjaþ rþj

�

þ 1

κ−
log

�jb − r−jjbþ r−j
ja − r−jjaþ r−j

�
: ð4:16Þ

Consider the case that the signal can be decoded from
the Hawking radiation right after the signal reaches the
boundary of the island. In this situation, one can define the
scrambling time by tscr ¼ ta − t0. In (4.11), the island is
located near the event horizon a ∼ rþ þOððcGNÞ2=r3þÞ.
Then, the dominant term in Eq. (4.16) yields the scrambling
time as

tscr ≃
2

κþ
log

�
r2þ
GN

�
≃

1

2πTH
log SBH; ð4:17Þ

where we assumed that the central charge is much smaller
than the Bekenstein-Hawking entropy, i.e., c ≪ SBH.
The scrambling time is comparable to the logarithm of

the Bekenstein-Hawking entropy. This is consistent with
the argument of the fast scrambler in [80]. Our leading
order computation says that the fast scrambling of the
charged dilaton black holes can also be expected in the
island prescription. Also, the decoding process associated
with the scrambling time can be understood by the Hayden-
Preskill protocol [81].
So far, we have considered nonextremal charged dilaton

black holes. We have found the location of the boundary of
the island and by using it computed the entanglement
entropy. It is interesting that these results can reproduce the
Page curve that we expected for the unitary black holes.
Also, the scrambling time can be derived from the island
prescription.

V. ENTANGLEMENT ENTROPY OF EXTREMAL
CHARGED DILATON BLACK HOLES

In this section, we revisit the computation on the entropy
for the extremal charged linear dilaton black holes [28]. In
[28], the authors reported SðRÞ without the island, and the
explicit computation of SðRÞ in the presence of the island is
not shown yet.6 Also, SðRÞ without the island is computed
based on the Penrose diagram of the nonextremal case.
However, because the Penrose diagram of the extremal case
is not a continuous limit of the nonextremal case, we should
start from the extremal setup.
One may suspect that considering r� ¼ rh � ϵ, the

Penrose diagram of the nonextremal charged black holes
shrinks to one of the extremal black holes, but it cannot

FIG. 2. The Page curve for the charged linear dilaton black
holes. Without island configuration, the entanglement entropy
grows in time (blue dashed line). In the presence of the island, the
entanglement entropy becomes constant at late times (orange
solid line).

6Their main motivation is focused on the linear dilaton model
without the charge.
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happen. It is not a matter of how close two horizons are, but
of what a causal structure is. Even though we start from the
Penrose diagram of the extremal black holes, the Cauchy
surface cannot avoid meeting the singularity [34]. By
carefully considering the Penrose diagram, we calculate
the entanglement entropy of the extremal charged linear
dilaton black holes.

A. Entropy without island

As in Fig. 3, the Cauchy surface including bþ ¼ ðtb; bÞ
touches the singularity at b0 ¼ ðtb; 0Þ. In this case, the
entropy of the matter field is given by the geodesic distance
between bþ and b0. By using (3.3), the entanglement
entropy of the matter field is given by

Smatter ¼
c
3
log lðbþ; b0Þ ∼

c
6
log½fðbþÞfðb0Þðuðb0Þ

− uðbþÞÞðvðbþÞ − vðb0ÞÞ�: ð5:1Þ

However, since the line element in the Kruskal coor-
dinate has a singular point at r ¼ rh, the expression of the
geodesic distance between bþ and b0 is ambiguous in the
second line. Also, one can easily check that the fðb0Þ is ill-
defined: from (2.20), one can find that fð0Þ cannot be
evaluated due to the divergence at r ¼ 0. This fact makes it
difficult to compute the entropy of the matter sector for the
extremal case.

B. Entropy with island

In the presence of the island, one needs to compute the
geodesic distance between aþ ¼ ðta; aÞ and bþ ¼ ðtb; bÞ in
Fig. 3 to obtain the entropy of radiation. This is because
knowing that one can avoid a difficulty of singularity and
the geodesic distance lðaþ; bþÞ is well-defined. Using the
Kruskal coordinates for the extremal case in Sec. II, one can
obtain

Smatter ¼
c
3
log ½lðaþ; bþÞ� ¼

c
6
logA

þ c
6
log

�
Bþ 1

B
− 2 cosh

�
ta − tb
rh

��
; ð5:2Þ

where

A ¼ ða2 − r2hÞðb2 − r2hÞ
ab

;

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − r2h
a2 − r2h

s
exp

�
1

2

�
r2h

a2 − r2h
−

r2h
b2 − r2h

��
: ð5:3Þ

To compute the entropy of the matter field, we assume that
the cutoff surface locates far from the horizon b ≫ rh,

A ≃
b
a
ða2 − r2hÞ;

B ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

a2 − r2h

s
exp

�
1

2

�
r2h

a2 − r2h

��
: ð5:4Þ

By adding the area term originated from the island
contribution, the generalized entropy is given by

Sgen ≃
a2

4GN
þ c
6
log

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

a2 − r2h

s
exp

�
1

2

�
r2h

a2 − r2h

��
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − r2h
b2

s
exp

�
−
1

2

�
r2h

a2 − r2h

��#

þ c
6
log

�
b
a
ða2 − r2hÞ

�
−
2c
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − r2h
b2

s
exp

�
−
1

2

�
r2h

a2 − r2h

��
sinh2

�
ta − tb
2rh

�
: ð5:5Þ

Note that, for the extremal black holes, the contribution of the area of the island in (5.5) is a2
4GN

, which is half of the case for
the nonextremal black holes (4.5).

FIG. 3. (a) Penrose diagram of the extremal charged dilaton
black holes without island. The radiation region is denoted by Rþ.
The cutoff surface is located at bþ. Note that the Cauchy surface
hits the singularity b0. (b) Penrose diagram of the extremal
charged dilaton black holes with island. The island extends from
r ¼ 0 to aþ.
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The generalized entropy (5.5) has an extremal value at
ta ¼ tb. To extremize the generalized entropy with respect
to a, we consider the fact that the cutoff surface is located
far from the event horizon. Then, one can find the location
of the extremal surface:

a ≃ rh þ
ffiffiffiffiffi
c
12

r
lP; ð5:6Þ

where lP is the Planck length and we used a ≃ rh. By
inserting a into the generalized entropy, one can derive the
entanglement entropy of radiation in the extremal case

SðRÞ ≃ r2h
4GN

þ
ffiffiffiffiffi
c
12

r
rh
lP

þOðcÞ: ð5:7Þ

The entanglement entropy is constant with island con-
figuration even in the extremal case. It is noteworthy that
the entanglement entropy of the extremal charged dilaton
case is comparable to the Bekenstein-Hawking entropy:

SðRÞ ≈ SBH: ð5:8Þ

This result seems natural because the causal structure of the
extremal charged case forms a one-side black hole
(see Fig. 3).
Note that the entanglement entropy for the extremal

charged dilaton black hole cannot be obtained by the
continuous limit from the nonextremal charged dilaton
black hole. This caveat is originated from the difference of
causal structure, which causes a different appearance of
islands in our model. In addition, due to the different causal
structure, we could not find the linear growth of the
entanglement entropy in the early time phase. As a
consequence, we cannot derive the Page time in the
extremal case. The difficulty of the continuous extremal
limit in the entropy has also been discussed in [34,79].7

In summary, the charged linear dilaton model is the
natural extension and is complementary to the previous
works in many aspects explained above.

VI. CONCLUSIONS

We have studied the entanglement entropy of the
Hawking radiation, SðRÞ, of the eternal black hole using
the island formula (1.1). In particular, our work aims to
investigate the information paradox with the Page curve of
the four-dimensional charged linear dilaton model (2.1)
with two main motivations.
Motivation 1: why the linear dilaton model? It would be

important to check the range of applicability of the island
method if it can be applied to all kinds of black hole
geometries. For this purpose, the linear dilaton model could
be one of possible candidates in that it allows a metric not
asymptotically flat/AdS/dS, which is a nonstandard black
hole geometry. Note that this first motivation is significant
not only for the applicability perspective, but also for the
better understanding of the quantum gravity for the general
black holes.
Motivation 2: why do we need to consider the charge

on it? The action (2.1) can contribute to obtaining a
more complete picture of the Page curve in that it has
both the nonextremal black hole and the extremal black
hole because of the finite charge. Most of the literature
considered only for the nonextremal black holes and
there has reported, such as the asymptotically flat black
hole case [30,34], that the extremal case produces a
different result from the nonextremal case. Thus we
have studied the action (2.1) because it may help to
better understand the Page curve of the nonstandard
black holes in a more complete framework including
extremal black holes.
The nonextremal black hole: From the separate analysis

of the nonextremal black holes and the extremal black hole,
we found that the island formula works for the nonextremal
black holes; i.e., SðRÞ grows linearly in time without the
island, and it is bounded by double the Bekenstein-
Hawking entropy (2SBH) in the presence of the island,
which is consistent with the Page curve incorporating with
what the unitarity principle requires. Moreover, we also
derived the Page time and the scrambling time consistent
with the Hayden-Preskill protocol.

FIG. 4. The summary of results. Unlike the non-extremal black holes, the island formula can not produce the Page curve for the
extremal black holes.

7In [30] the authors show that the charged dilatonic black hole
gives the divergent or vanishing Page time for the extremal case.
However, it seems that their extremal case is considered as the
continuous limit of the nonextremal case, which is different from
our method.
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The extremal black hole: For the extremal black holes,
it turns out that SðRÞ without the island produces the ill-
defined result. However, SðRÞ in the presence of the island
can provide the finite entropy as SBH. Note that the result
of the extremal case [SðRÞ ∼ SBH] cannot be obtained
from the continuous extremal limit of the nonextremal
black hole case [SðRÞ ∼ 2SBH]. Note also that the origin of
the differences between the nonextremal black holes and
the extremal black holes comes from the fact that the
Penrose diagrams of them are different.
In Fig. 4, we make the summary table of our results. We

further make a few more comments on what we found. First,
using the same action (2.1), there was a previous study of
SðRÞ for the extremal case [28] and they argued: (i) SðRÞ
without the island can provide a well-defined quantity;
(ii) SðRÞ with the island behaves as 2SBH even for the
extremal black hole. These are different from what we found.
This disagreement appears because in [28] the generalized
entropy of the extremal case is evaluated with the formula for
the nonextremal black hole. In our paper, because the Penrose
diagram of the extremal case is not a continuous limit of the
nonextremal case, we start from the extremal setup directly.
Second, our results can be compared with the asymp-

totically flat black holes studies for the extremal black
holes [30,34]. For the Reissner-Nordstrom black holes [34],
the authors also reported the same results presented in
Fig. 4. On the other hand, for the Garfinkle-Horowitz-
Strominger dilaton black holes (the charged dilaton black
holes) [30], the authors argued the Page time is vanishing
or divergent for the extremal case, which is different from
our result and [34]. This disagreement again is related to
the way to study the extremal black holes: their result is
concluded from the extremal limit of the nonextremal black
hole results. One may expect that once the extremal black
hole analysis is separately performed with the Penrose
diagram such as Fig. 3, the Garfinkle-Horowitz-Strominger
dilaton black holes may also produce similar results in
Fig. 4. Inspired by this work, it would be interesting to
investigate if the table in Fig. 4 could be a universal feature
for all the black hole geometries at finite charges.
Third, note that the Page time (4.15) is universal for all

different models [27–30,34] studied by our method:

tPage ¼
3

πc
SBH
TH

:

Note also that one cannot tell the Page times for extremal
cases are vanishing (or divergent) unless SðRÞ is well defined.
Another interesting future direction would be consid-

ering the case with more than one island. In our work, we
have studied only the case with zero island or one island.
However, in general, it would be possible to see the
effect of the configuration with several islands on the
entanglement entropy; for instance, the multiple islands
may soften the sharp change of the Page curve at the

Page time. In addition to the configuration of the islands,
there is the open question about the island from the
information perspective: how is the information in the
island transformed into the radiation region? Although
the Page curve in the unitary fashion is reproduced, it
cannot tell the mechanism behind how the information
leaks out from the island and is transformed. One
intriguing argument to explain this leakage of the
information is ER ¼ EPR [82], although more formal
mathematical proof is needed.
It would also be interesting to study the relation

between the result from the extremal black hole in
Fig. 4 and the claims of the inconsistency condition
for the island prescription in [78].8 Note that the analysis
in [78] was focused on the nonextremal black hole with
the metric fluctuation to show the inconsistency condition
related to the theories of the massive gravity.9 Thus, we
speculate that the metric fluctuation analysis in the
extremal black hole may help not only to show the
clear connection between the claims in [78] and our
paper from the perspective of the discussion of consis-
tency of the island prescription but also to have a more
complete understanding of the island’s prescription itself.
We hope to address these questions and subjects in the

near future.
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