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We study dimensional reduction of M5 branes on a circle bundle when the supersymmetry parameter is
not constant along the circle. When the gauge group is Abelian and the fields appear quadratically in the
Lagrangian, we can always obtain a supersymmetric five-dimensional theory by keeping fermionic nonzero
modes that match with the corresponding nonzero modes of the supersymmetry parameter, and by keeping
the zero modes for the bosonic fields as usual. But a supersymmetric non-Abelian generalization can be
found only under special circumstances. One instance where we find a non-Abelian supersymmetric
generalization is when we perform dimensional reduction along a null direction.
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I. INTRODUCTION

There is a supersymmetric (2,0) Abelian tensor multiplet
in R1;5 which has a self-dual three-form, five scalar
fields and four real Weyl fermionic fields. We can put this
tensor multiplet on any six-manifold for which there exists
a nontrivial solution to the six-dimensional conformal
Killing spinor equation

∇Mε ¼ ΓMη: ð1:1Þ

Here M ¼ 0, 1, 2, 3, 4, 5 is a vector index on the six-
manifold that we will take to be Lorentzian, and ε will then
be the supersymmetry parameter. Equation (1.1) can be
relaxed by turning on supergravity background fields. But
we will not study such a generalization here. So ∇M here is
denoting a curvature covariant derivative that only involves
the spin connection and no R-gauge field is turned on.
The classical non-Abelian tensor multiplet is not known

and perhaps it does not exist. One approach is then to
consider the Abelian tensor multiplet on a circle bundle and
perform dimensional reduction along the circle. Then one
finds an Abelian 5d Yang-Mills theory for which one can
find a non-Abelian generalization. If the supersymmetry
parameter is constant along the circle, then it will survive as
a supersymmetry under dimensional reduction. Otherwise
the supersymmetry will be broken but one may then get a
supersymmetric theory by turning on a background
R-gauge field that will relax the requirement (1.1). But

that changes the problem that one may want to study. So we
would like to analyze whether one can avoid turning on the
R-gauge field and somehow take advantage of the fact that
the 6d theory is supersymmetric.
One example that one may want to study is the M5 brane

on S6 that one may conformally map to S1 ×H5. If one
wants to study this problem without any background fields
turned on, then one finds that the supersymmetry parameter
will have a nontrivial dependence on S1 in S1 ×H5, and
dimensional reduction down to H5 yields a nonsupersym-
metric Yang-Mills theory that is quite difficult to study.
Being a nonrenormalizable theory it has no clear well-
defined perturbative expansion and there are not many tools
to study this theory and supersymmetric localization cannot
be used if the Yang-Mills theory one gets on H5 is not
supersymmetric.
In this paper we will study the following situation. We

assume that the 6d theory is supersymmetric on a circle
bundle with fiber coordinate u. We also assume that the
supersymmetry parameter is not constant along u. So under
dimensional reduction along u all supersymmetry is gone.
That is the case if we consider the bosonic and fermionic zero
modes. But what if we consider the bosonic zero modes and
some fermionic nonzero modes? Is there a consistent
trunctation of supersymmetry where bosonic zero modes
are kept such that supersymmetry exists in that 5d truncation?
If the fields appear only quadratically in the Lagrangian

so that the gauge group is Abelian, then there always exists
such a consistent truncation. To see this, let us schemati-
cally write the 6d Lagrangian as

L6d ¼ ð∂ϕÞ2 þ ψ∂ψ
where ϕ denotes bosonic fields and ψ denotes fermionic
fields. The supersymmetry variation is schematically on the
form
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δϕ ¼ εψ ; δψ ¼ ε∂ϕ:
Then the supersymmetry variation of the Lagrangian is a
sum of terms on the form

0 ¼ δL6d ¼
X ∂2ϕεψ

and the sum vanishes since the 6d Lagrangian is super-
symmetric. Now let us make the truncation where we keep
the bosonic zero mode along the u direction,

ϕ0 ¼
Z

duϕ:

Its supersymmetry variation is

δϕ0 ¼
Z

duεψ : ð1:2Þ

Now let us assume that the supersymmetry parameter has
only two nonzero modes,

ε ¼ eiauεþ1 þ e−iauε−1

for some real parameter a that depends on the geometry of
the six-manifold. This is the generic structure for any
solution of (1.1) on a circle bundle. Here subscripts denote
the mode number. Then the integral in (1.2) picks up
corresponding nonzero modes from ψ ,

δϕ0 ¼ εþ1ψ−1 þ ε−1ψþ1

whose supersymmetry variations are

δψ�1 ¼ ε�1∂ϕ0:

Now let us check if the truncated Lagrangian

L5d ¼ ð∂ϕ0Þ2 þ ψþ1∂ψ−1 þ ψ−1∂ψþ1

is supersymmetric. We get

δL5d ¼
X ∂2ϕ0ðεþ1ψ−1 þ ε−1ψþ1Þ

but this we can also write as

δL5d ¼
Z

du
X ∂2ϕ0εψ :

Now let us go back to the 6d Lagrangian. If we expand ϕ in
its Fourier modes as ϕ ¼ P

n ϕneinu, then we get

0 ¼ δL6d ¼
XX

n

∂2ϕneinuεψ ;

and we know that this is zero since the 6d Lagrangian is
supersymmetric. Of course, if we integrate zero along the
fiber, it is still zero, so we have

0 ¼
Z

duδL6d ¼
X
n

X ∂2ϕn

Z
dueinuεψ :

If we then put ϕn ¼ 0 for all n except for the zero mode ϕ0,
then this reduces to

0 ¼
X ∂2ϕ0

Z
duεψ ¼ δL5d;

which means that the truncated Lagrangian, where
only ϕ0 is kept, is supersymmetric under the truncated
supersymmetries.
This general argument fails for the non-Abelian gener-

alization where the Lagrangian has higher order terms. For
instance if the 6d Lagrangian contains a cubic interaction
term of the form ϕþ2ψ−1ψ−1 and if we have a supersym-
metry variation of the form δϕþ2 ¼ εþ1ψþ1, then the
variation of that term will contain a term of the form
εþ1ψþ1ψ−1ψ−1 that should survive if the truncation down
to the modes ϕ0 and ψ�1 were a consistent truncation. But
we will never get that term if we first truncate the
Lagrangian to the modes ϕ0 and ψ�1 and then make the
supersymmetry variation since then we will put the term
ϕþ2ψ−1ψ−1 to zero in that truncated Lagrangian. So the
truncation becomes inconsistent in general, when there are
higher order terms. However, there can be exceptions
where a truncated non-Abelian generalization can be found
that is supersymmetric.
This argument also shows that the critical term to analyze

in the supersymmetry variation of the non-Abelian
Lagrangian will be the terms that are cubic in the fermionic
fields. Typically these terms are the most difficult ones to
analyze since it usually requires a Fierz rearrangement to
see whether the sum of these cubic terms is zero or not. But
it is really important to analyze precisely these cubic terms
to see whether the non-Abelian Lagrangian is supersym-
metric or not. This will become more clear as we proceed
with our concrete examples.
In this paper we will study the M5 brane on R × S5

where we have the Lorentzian time along R. The super-
symmetry parameter depends nontrivially on the time
direction. First, in Sec. II, we perform dimensional reduc-
tion along the time direction and obtain a supersymmetric
Abelian Lagrangian. We then show that no non-Abelian
generalization exists if we insist on keeping all the super-
symmetries of the Abelian theory. In Sec. II A we reduce
the amount of supersymmetry and consider the smaller
tensor multiplet that has just one real scalar field. Here we
almost seem to find a supersymmetric non-Abelian
Lagrangian in 5d by using our truncation, but it turns
out to fail. While most terms cancel out nicely, there are
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cubic terms in the fermionic fields that arise upon a
supersymmetry variation and these have to vanish by using
a Fierz rearrangement, but these terms do not vanish in that
way. We then make a further Weyl projection that reduces
supersymmetry further, and then finally we are able to find
a supersymmetric Lagrangian. But then, in Sec. II B, we
discover that if we make a simple field redefinition, our
Lagrangian becomes identical with the Lagrangian that was
already found in the literature on S5 [1] and that was
derived from the M5 brane in [2] by turning on an R-gauge
field along the time direction.
We next consider our second example, in Sec. III, where

we consider a null reduction by following closely [3]. We
take our null direction as a combination of the Hopf circle
on S5 and the time direction. We first obtain the Abelian
truncated theory and show that it is supersymmetric. We
next show that the Abelian theory does not immediately
generalize to the non-Abelian case, but if we impose further
Weyl projections, then we are able to obtain a non-Abelian
Lagrangian.
There are five appendixes. In particular, in Appendix A

we review a 6d formulation of non-Abelian 5d SYM where
one introduces an auxiliary geometrical vector field [4–6]
and present the closure relations that one gets for these
supersymmetry variations and it was this analysis that
originally led us to consider the two examples that we are
presenting in this paper. Namely these two examples are
following from making the two Weyl projections in
Eqs. (A8) and (A9) respectively. The first Weyl projection
leads us to the time reduction and the small tensor
multiplet. The second Weyl projection leads us to the null
reduction.

II. M5 BRANE ON R × S5

The six-manifold R × S5 can be conformally mapped to
S6 if we assume a Euclidean signature. But here we will
assume a Lorentzian signature with time along the R
direction. Our first goal is to see whether we can derive
a supersymmetric theory on S5 from an M5 brane on
R × S5 without turning on an R-gauge field along the time
direction. The Abelian M5 brane on R × S5 is well
understood. In fact one can generalize to any six-manifold
for which (1.1) has at least one solution. In that case we
have the following supersymmetry variations:

δϕA ¼ iε̄ΓAψ ;

δBMN ¼ iε̄ΓMNψ ;

δψ ¼ 1

12
ΓMNPεHMNP þ ΓMΓAε∇Mϕ

A − 4ΓAηϕA;

and the supersymmetric Lagrangian may be expressed as

L ¼ LB −
1

2
ð∇Mϕ

AÞ2 þ i
2
ψ̄ΓM∇Mψ −

R
10

ðϕAÞ2;

where LB is some Lagrangian for the self-dual tensor field
whose precise form will not be very important for us now,
since we will shortly reduce this Lagrangian down to five
dimensions. Here R is the Ricci curvature scalar on a six-
manifold. We will now specialize to R × S5 and write the
metric as

ds2 ¼ gMNdxMdxN ¼ −dt2 þGmndxmdxn:

To reduce down to S5, we will represent the gamma
matrices in terms of five-dimensional gamma matrices
γm and τA as follows:

Γt ¼ iσ2 ⊗ 1 ⊗ 1;

Γm ¼ σ1 ⊗ γm ⊗ 1;

ΓA ¼ σ3 ⊗ 1 ⊗ τA:

The 6d chirality matrix is

Γ ¼ σ3 ⊗ 1 ⊗ 1

and ε and ψ have opposite chiralities

Γε ¼ −ε; Γψ ¼ ψ ;

and they are Majorana spinors in 11 dimensions,

ε̄ ¼ εTC11d; ψ̄ ¼ ψTC11d;

where the Dirac conjugate is defined as ψ̄ ¼ ψ†Γt. We may
solve (1.1) by separating its components as

∂tε ¼ Γtη; ∇mε ¼ Γmη: ð2:1Þ

We use the relation

Γmn∇m∇nε ¼ −
R
4
ε

where R ¼ 20
r2 is the Ricci scalar on S

5 with radius r, to find
the solution

ε ¼ e
i
2rt

�
0

E

�
þ e−

i
2rt

�
0

F

�
:

We also get

η ¼ i
2r

e
i
2rt

�
E

0

�
−

i
2r

e−
i
2rt

�
F

0

�
:

Here

∇mE ¼ i
2r

γmE; ∇mF ¼ −
i
2r

γmF :
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Perhaps the best way to see that this solves (1.1) is by
simply plugging in this solution into (2.1) to see that these
equations are both satisfied. Let us now study the Majorana
condition more closely. The 11-dimensional charge con-
jugation matrix is antisymmetric,

CT
11d ¼ −C11d;

and we will represent it as

C11d ¼ ε ⊗ C ⊗ C̃;

where C and C̃ are antisymmetric charge conjugation
matrices in 5d, and ε is the antisymmetric tensor. At this
point, things get clearer when we write out all the spinor
indices explicitly though, so let us do that here,

ðC11dÞaα _α;bβ _β ¼ εabCαβC _α _β:

Then the Majorana condition becomes

ðψaα _αÞ�iðσ2Þab ¼ ψaβ _βεabCβαC _β _α:

We will define the antisymmetric tensor εab such that

εþ− ¼ 1

and then we get

ðψþα _αÞ� ¼ ψþβ _βCβαC _β _α; ðε−α _αÞ� ¼ ε−β _βCβαC _β _α:

From now on wewill drop the 6d chirality indices� as they
play no significant role in 5d. In 5d we do not really have a
Majorana condition for the nonzero modes. What we have
instead is a relation between E and F ,

ðEα _αÞ� ¼ CαβC _α _βF
β _β; ðF α _αÞ� ¼ CαβC _α _βE

β _β:

These relations follow easily from using the explicit form
of our solution, Eq. (2.2). But now we would also like to
derive the second condition from the first one by taking the
complex conjugate. Taking the complex conjugate of the
first equation, we get

Eα _α ¼ ðCαβÞ�ðC _α _βÞ�ðF β _βÞ�:

We may now multiply by charge conjugation matrices on
both sides to get

CαβC _α _βE
β _β ¼ CαβC _α _βðCβγÞ�ðC _β _γÞ�ðF γ _γÞ�:

We shall require that

CαβðCβγÞ� ¼ −δγα:

The reason why we put the minus sign here will become
clear later on. We can now introduce the inverse

Cγβ ¼ ðCβγÞ�:

We use Cαβ and Cαβ to lower and rise spinor indices by
always acting from the left,

ψα ¼ Cαβψ
β; ψα ¼ Cαβψβ:

So we define for example

ðγmÞαβ ¼ CβγðγmÞαγ:

We may now find the following relations:

Cα
β ¼ CαγCγβ ¼ δαβ; Cα

β ¼ CβγCαγ ¼ −δαβ:

We have the Fierz expansion of two anticommuting
spinors,

ψαψβ ¼ ACαβ þ BmðγmÞαβ þ CmnðγmnÞαβ:

It corresponds to the following expansion of the tensor
product of two spinor representations:

4 ⊗ 4 ¼ 1a ⊕ 5a ⊕ 10s:

The subscripts a and s stand for antisymmetric and
symmetric representations, so we must have that Cαβ

and ðγmÞαβ are antisymmetric, whereas ðγmnÞαβ is sym-
metric in α and β. Our 5d spinor notations follow
closely Ref. [1].
The time direction in Euclidean R × S5 is noncompact if

this shall be related by a conformal map to S6. But in
Lorentzian signature that we will consider here, the time
direction can be taken to be a compact circle with radius
2πr. We will refrain from discussing any physical impli-
cations of having a compact time direction. From a purely
mathematical viewpoint of classical supersymmetric field
theory, having a compact time direction simply means that
we may expand the fields in Fourier modes in the
time direction by assuming that time has a periodicity
t ∼ tþ 2πr. For fermions there is as always a possibility of
having either periodic or antiperiodic boundary conditions.
Since the supersymmetry parameter depends on time
through the exponential factors e� i

2rt which is antiperiodic
as t goes to tþ 2πr, we conclude that fermions shall have
antiperiodic boundary conditions if we want to have a
supersymmetric theory. The bosonic fields must be periodic
and therefore only even modes are kept for the bosonic
fields, whereas for the fermionic field only the odd modes
are kept. And if only the odd modes are kept, it means that
there is no fermionic zero mode present.

ANDREAS GUSTAVSSON PHYS. REV. D 105, 046010 (2022)

046010-4



But we do not think that we will be able to find a non-
Abelian theory if we keep infinitely many Kaluza-Klein
modes, neither dowe think this is really the right thing to do
when the gauge group is non-Abelian because then we shall
have instanton particles that are expected to fill in missing
modes when we truncate the modes to a finite number of
modes. Now instead of truncating to the fermionic zero
modes as one normally does in usual dimensional reduc-
tion, we will truncate to the lowest lying odd Fourier modes

ψ ¼ e
i
2rt

�
χ

0

�
þ e−

i
2rt

�
ζ

0

�
:

Then the fermionic field has the same type of expansion as
the supersymmetry parameter ε and there is a chance that
this will preserve some supersymmetry. There is no
Majorana condition on these modes but instead there is
a relation between the two modes,

ðχα _αÞ� ¼ CαβC _α _βζ
β _β:

The supersymmetry variations can be derived easily by
truncating the supesymmetry variations for the Abelian M5
brane. We get

δϕA ¼ −iE†τAχ − iF †τAζ;

δAm ¼ −iE†γmχ − iF †γmζ;

δχ ¼ 1

2
γmnEFmn − γmτAE∇mϕ

A −
2i
r
τAEϕA;

δζ ¼ 1

2
γmnFFmn − γmτAF∇mϕ

A þ 2i
r
τAFϕA:

The corresponding supersymmetric Lagrangian is given by

L ¼ 1

4
F2
mn −

1

2
ð∇mϕ

AÞ2 þ i
2
χ†γm∇mχ þ

i
2
ζ†γm∇mζ

−
2

r2
ðϕAÞ2 þ 1

4r
ðχ†χ − ζ†ζÞ:

The natural choice is to take ε to be an anticommuting
parameter. In that case the variations of the bosonic fields
become Hermitian, and we may write these variations as

δϕA ¼ −iE†τAχ þ iχ†τAE;

δAm ¼ −iE†γmχ þ iχ†γmE;

δχ ¼ 1

2
γmnEFmn − γmτAE∂mϕ

A −
2i
r
τAEϕA:

We may also write the Lagrangian as

L ¼ 1

4
F2
mn −

1

2
ð∇mϕ

AÞ2 þ iχ†γm∇mχ

−
2

r2
ðϕAÞ2 þ 1

2r
χ†χ:

One may now easily verify that this Lagrangian is invariant
under these supersymmetry variations by just using the
Killing spinor equation

∇mE ¼ i
2r

γmE:

This result is encouraging because it provides our first
example of a dimensionally reduced theory that has
supersymmetry although the 6d theory has a supersym-
metry parameter that depends nontrivially on the circle
along which we reduce. Having a supersymmetric
Lagrangian, we may also expect that these supersymmetry
variations close on some symmetry variations of the
Lagrangian.
However, we will now see that no non-Abelian gener-

alization of this Abelian Lagrangian can be constructed that
is supersymmetric. To show this we will proceed iteratively.
First we just replace all the derivatives ∇m with gauge
covariant derivatives Dm ¼ ∇m − i½Am; •� and assume all
fields are in the adjoint representation. Then of course the
Lagrangian will not be supersymmetric. We then find
correction terms such that we cancel the unwanted terms,
but such correction terms will also generate new terms that
we also need to cancel by adding further correction terms.
This can be analysed fairly systematically. In the end, we
will find a fully corrected Lagrangian and corresponding
supersymmetry variations but still that Lagrangian will not
be supersymmetric. Because of the apparent uniqueness of
each term we find in each iteration step, we consider this to
be a no-go proof.
First, if we just replace∇m withDm everywhere, then we

get the following nonvanishing variation of the Lagrangian:

δL ¼ −
1

2
χ†γmnτAE½Fmn;ϕA� − χ†γmE½ϕA;Dmϕ

A�

where we define the gauge covariant derivative so that

½Dm;Dn�ϕ ¼ −i½Fmn;ϕ�:

We next cancel both these terms by adding to the
Lagrangian the following coupling term:

L1 ¼ χ†τA½χ;ϕA�

We cannot imagine any other term that can do this job. But
by adding this term, some new terms will be generated as
well, and so now we get
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δLþ δL1 ¼
1

2
χ†τABγmEDmð½ϕA;ϕB�Þ þ 2i

r
χ†τABE½ϕA;ϕB�

plus some cubic terms in χ that we will not need to analyze
further here. Now these two terms can be canceled by
modifying the supersymmetry variation by adding the term

δ1χ ¼ i
2
τABE½ϕA;ϕB�

to δχ. But that will also generate another term

δ1L1 ¼ iχ†τCE½½ϕA;ϕC�;ϕC�

but that we can easily cancel by adding the term

L2 ¼ −
1

4
½ϕA;ϕB�2:

But even when taking into account all these non-Abelian
correction terms, we will still end up with a nonvanishing
variation

ðδþ δ1ÞðLþ L1Þ ¼
�
−
5i
4r

þ i
4r

þ 2i
r

�
χ†τABE½ϕA;ϕB�

¼ i
r
χ†τABE½ϕA;ϕB�

plus those cubic terms in the fermionic fields that we did
not analyze here since it is already clear that no non-
Abelian Lagrangian can be found. There now is no further
terms that we can add that could cancel this nonvanishing
variation. This finishes our no-go proof.

A. The small vector multiplet

We may be more successful with finding a non-Abelian
generalization if we make our tensor multplet smaller. To
this end we will impose the Weyl projection

τ5E ¼ E ð2:2Þ

on the supersymmetry parameter, thus reducing the
amount of supersymmetry by half. This will reduce the
R-symmetry as SOð5Þ → SUð2ÞR. But of course, by
selecting the fifth direction in (2.2), we will just break
SOð5Þ → SOð4Þ ¼ SUð2ÞF × SUð2ÞR but the SUð2ÞF will
not rotate the supercharges, it will be a flavor symmetry.
The original Abelian tensor multiplet breaks into one
smaller tensor multiplet with just one real scalar field
ϕ ¼ ϕ5 and a fermionic field that is also subject to the Weyl
projection

τ5ψ ¼ ψ :

Then the remaining fields are four real scalars, and another
fermionic field subject to the opposite Weyl projection

τ5ψ ¼ −ψ . These fields form a hypermultiplet. We will
discard this hypermultiplet and only focus on the small
tensor multiplet.
Let us now introduce some index notations for the

R-symmery. We denote a spinor as

ψα _α ¼
�

ψα
I

ψαA

�
:

The flavor index A is a two-component spinor index that
shall not be confused with the SOð5Þ vector index A. We
define the gamma matrices τA ¼ ðτi; τ5Þ as

τi ¼
�

0 σiIB
σi;AJ 0

�
; τ5 ¼

�
δJI 0

0 −δAB

�
:

The supersymmetry parameter that satisfies τ5E ¼ E has a
nonvanishing component EI ,

E ¼
�
EI

0

�
:

The antisymmetric charge conjugation matrix is repre-
sented as

C _α _β ¼
�
εIJ 0

0 εAB

�
:

We have

ðEα
I Þ� ¼ Cαβε

IJF β
J; ðχαI Þ� ¼ Cαβε

IJζβJ: ð2:3Þ

The Killing spinor equations are

∇mEI ¼
i
2r

γmEI; ∇mF I ¼ −
i
2r

γmF I;

where the second equation can be obtained from the first by
complex conjugation.
The supersymmetry variations for the small tensor

multiplet are

δϕ ¼ −iðEIÞ†χI − iðF IÞ†ζI;
δAm ¼ −iðEIÞ†γmχI − iðF IÞ†γmζI;

δχI ¼
1

2
γmnEIFmn − γmEIDmϕ −

2i
r
EIϕ:

and the supersymmetric Lagrangian is

L ¼ 1

4
F2
mn −

1

2
ðDmϕÞ2 −

2

r2
ϕ2

þ iðχIÞ†γmDmχI þ
1

2r
ðχIÞ†χI:

The closure relations for these supersymmetry variations
are nonstandard,
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½δ2; δ1�ϕ ¼ 2iLvϕ;

½δ2; δ1�Am ¼ 2iLvAm þDmΛ;

½δ2; δ1�χI ¼ 8iLBχI þ
12

r
AI

JχJ − ið3AI
J þ 3BpI

Jγp − CpqI
JγpqÞ

�
γm∇mχJ þ

1

2r
χJ

�

þ 8iLB̃χI −
16

r
ÃI

JζJ −
4

r
B̃mI

JγmζJ − ið3ÃI
J þ 3B̃pI

Jγp − C̃pqI
JγpqÞ

�
γm∇mζJ −

1

2r
ζJ

�
;

where

LBχI ≔ Bm
I
J∇mχJ þ

1

4
∇mBnI

JγmnχJ

¼ Bm
I
J∇mχJ þ

i
2r

CmnI
JγmnχJ;

LB̃ζI ≔ B̃m
I
J∇mζJ þ

1

4
∇mB̃nI

JγmnζJ ¼ B̃m
I
J∇mζJ:

Here the various coefficients are defined as

EIðEJÞ† ¼ AJ
I þ Bm

J
Iγ

m þ Cmn
J
Iγ

mn;

EIðF JÞ† ¼ ÃJ
I þ B̃m

J
Iγ

m þ C̃mn
J
Iγ

mn;

where

AJ
I ¼ −

1

4
ðEJÞ†EI;

Bm
J
I ¼ −

1

4
ðEJÞ†γmEI;

Cmn
J
I ¼

1

8
ðEJÞ†γmnEI;

and

ÃJ
I ¼ −

1

4
ðF JÞ†EI;

B̃m
J
I ¼ −

1

4
ðF JÞ†γmEI;

C̃mn
J
I ¼

1

8
ðF JÞ†γmnEI:

There are the following differential relations between these
coefficients that one may derive by using the Killing spinor
equations,

∇mAJ
I ¼ 0;

∇mBm
J
I ¼

2i
r
Cmn

J
I;

∇mÃ
J
I ¼ −

i
r
B̃m

J
I;

∇mB̃n
J
I ¼

i
r
ÃJ

IGmn:

These closure relations reflect the fact that there are
many more fermionic degrees of freedom than there are

bosonic ones, so closure on the fermion does not give back
the same fermion translated or gauge transformed, but
instead it maps us back into a linear combination of χI
and ζI.
Let us now turn our attention to the non-Abelian

generalization. The only candidate Lagrangian appears
to be

L ¼ 1

4
F2
mn −

1

2
ðDmϕÞ2 −

2

r2
ϕ2

þ iðχIÞ†γmDmχI þ
1

2r
ðχIÞ†χI þ eðχIÞ†½χI;ϕ�

since its supersymmetry variation is given by δL ¼ T
where T is used to denote the cubic terms in the fermionic
fields,

T ≔ eðχIÞ†½χI; δϕ� þ iðχIÞ†γmð−ieÞ½δAm; χI�
¼ −ieðEγ

JÞ�½χγcJ ðχβaI Þ� − ðγmÞγδχδcJ ðχαaI Þ�ðγmÞαβ�χβbI :

We should then ask whether T is vanishing by a Fierz
rearrangement. It turns out to not vanish, so the Lagrangian
is not supersymmetric and therefore we conclude that no
non-Abelian generalization exists with this amount of
supersymmetry.
We can reduce the amount of supersymmetry so that the

R-symmetry is further reduced from SUð2ÞR down to
Uð1ÞR by imposing the Weyl condition

ðσ3ÞIJEJ ¼ EJ:

Then there is just one complex supersymmetry parameter
E ¼ E1. With this projection, one finds that the component
χ2 does not enter the supersymmetry multiplet as its
supersymmetry variation becomes zero,

δχ2 ¼ 0;

and so we define χ ≔ χ1 for which we find the supersym-
metry variations
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δϕ ¼ −iE†χ − iF †ζ;

δAm ¼ −iE†γmχ − iF †γmζ;

δχ ¼ 1

2
γmnEFmn − γmEDmϕ −

2i
r
Eϕ:

The Lagrangian is1

L ¼ 1

4
F2
mn −

1

2
ðDmϕÞ2 −

2

r2
ϕ2

þ iχ†γmDmχ þ
1

2r
χ†χ þ eχ†½χ;ϕ�:

The Killing spinor equation is

∇mE ¼ i
2r

γmE:

Originally we had

F α
2 ¼ ε21CαβðEβ

1Þ�; ζα2 ¼ ε21Cαβðχβ1Þ�:

Now we define F α ≔ F α
2 and ζ

α ≔ ζα2 so with ε12 ¼ 1, we
get the relations

F α ¼ CαβðEβÞ�; ζα ¼ CαβðχβÞ�:

Let us now again analyze the cubic terms in the fermionic
field that arise upon a supersymmetry variation of this
Lagrangian. These terms are

T ≔ eðχÞ†½χ; δϕ� þ iðχÞ†γmð−ieÞ½δAm; χ�;
¼ −ieðEγÞ�½χγcðχβaÞ� − ðγmÞγδχδcðχαaÞ�ðγmÞαβ�χβb:

We expand

χαaðχβbÞ� ¼ δαβA
ab þ ðγmÞαβBab

m þ ðγmnÞαβCab
mn

and then

T ¼ 4ieðEγÞ�½δγβAca − ðγmÞγβBca
m �χβb:

Here

Aca ¼ −
1

4
ðχαaÞ�χαc;

Bca
m ¼ −

1

4
ðχαaÞ�ðγmÞαβχβc:

So we have

T ¼ ieðEγÞ�χγcðχαaÞ�χαb
− ieðEγÞ�ðγmÞγβχβcðχδaÞ�ðγmÞδϵ χϵb:

We now see that we got back the same expression as the one
we started with, but with an overall minus sign, so T ¼ −T,
which clearly shows that T ¼ 0 and the Lagrangian is
supersymmetric.

B. A dual description with an R-gauge field

By making a few changes of viewpoint we may recover
the theory one gets by turing on an R-gauge field and make
contact with the results in [1]. We relabel the spinor field
and its complex conjugate field as

χ ¼ ψ1; ζ ¼ ψ2;

and similarly

E ¼ E1; F ¼ E2:

Then we may state a Majorana condition as

ψα
I ¼ εIJCαβðψβ

JÞ�

that we get from

ζα ¼ CαβðχβÞ�:

Moreover, the Killing spinor equations for χ and ζ can now
be grouped together into one Killing spinor equation for the
Majorana spinor EI

∇mEI ¼
i
2r

ðσ3ÞIJγmEJ:

So there is a map between the theory we get by turning on
an R-gauge field, and the theory we get in this entirely
different way by keeping nonzero modes for the fermionic
field and not turning on any R-gauge field.
In one viewpoint, χ and ζ are nonzero Kaluza-Klein

modes who receive an extra mass simply by the fact that
they are nonzero modes. In the other viewpoint, χ and ζ
form two components in an SUð2ÞR Majorana spinor which
is a zero mode spinor upon dimensional reduction with an
R-gauge field turned on and the mass of these fermions is
induced from that R-gauge field in the six-dimensional
theory. Both ways result in the same 5d theory, but the 6d
theories seem to be very different.

1However, we still have the Lagrangian for χ2 as well,

L2 ¼ iðχ2Þ†γmDmχ2 þ
1

2r
ðχ2Þ†χ2 þ eðχ2Þ†½χ2;ϕ�;

but this Lagrangian is not supersymmetric since the correspond-
ing cubic term T upon a supersymmetry variation will not be
vanishing, but it is now consistent with supersymmetry to
truncate to χ2 ¼ 0 since the supersymmetry variation of χ2 is
vanishing. So then we will simply get L2 ¼ 0 and we retain
supersymmetry of L2 trivially by putting χ2 ¼ 0 as a truncation
that is consistent with supersymmetry.
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Once having realized this kind of dual description, we
can proceed and use all knowledge that we already have of
this 5d theory from say [1]. Following [1], we may take the
supersymmetry variations off-shell,

δϕ ¼ −iðEIÞ†ψ I;

δAm ¼ −iðEIÞ†γmψ I;

δψ I ¼
1

2
γmnEIFmn − γmEI∂mϕ −

i
r
ðσ3ÞIJEJϕþ EJDJ

I;

δDJ
I ¼ 2ðEJÞ†

�
iγm∇mψ I þ

1

2r
ðσ3ÞILψL

�

−
1

r
ðσ3ÞIJðEKÞ†ψK

− δJI ðEKÞ†
�
iγm∇mψK þ 1

2r
ðσ3ÞKLψL

�
;

where the second line in the variation of DJ
I removes the

trace part, where we notice that σ3 is already traceless. The
Lagrangian is

L ¼ 1

4
F2
mn −

1

2
ð∇mϕÞ2

þ 1

4
DI

JDJ
I þ

i
2r

ðσ3ÞIJDI
Jϕ −

5

2r2
ϕ2

þ i
2
ðψ IÞ†γm∇mψ I þ

1

4r
ðψ IÞ†ðσ3ÞIJψJ:

Integrating out DI
J amounts to putting

DI
J ¼ −

i
r
ðσ3ÞIJϕ: ð2:4Þ

The non-Abelian generalization can now also be easily
identified from matching our result with [1].
We should stress that the correspondence between keep-

ing a nonzero fermionic KK mode and turning on an
R-gauge field only works for the small tensor multiplet. We
were not able to couple this multiplet to hypermultiplets in
our approach. But of course the coupling to hypermultiplets
can be obtained by turning on an R-gauge field along the
time direction upon dimensional reduction. So that means
that this correspondence is not one-to-one. Finally, there are
many 5d theories that are not obtained from the M5 brane
such as those with hypermultiplets in other representations
[1] whose UV completion may be five-dimensional rather
than six-dimensional.

III. NULL REDUCTION

A general null reduction of the M5 brane was studied in
[3]. Here we will stay with our example of R × S5 with
Lorentzian time alongR for simplicity, although we believe
that our results can be generalized to any Lorentzian six-
manifold without any new conceptional difficulties, beyond

those we will address here. We will perform the dimen-
sional reduction along the null direction that is formed out
of the time direction and a circle fiber direction on S5 when
viewed as a circle fiber over CP2. However, once we
specify a circle fiber, there are two null directions, xþ and
x− and we need to make a choice. We will make the choice
such that we perform the dimensional reduction along the
x− direction. This choice of null direction is correlated with
some chirality choices for the supersymmetry parameter
that we wish to make, as we will now explain.
We start by writing the metric onR × S5 as a metric over

the base-manifold R × CP2. The M5 brane on (a Hopf
circle bundle over) R × CP2 was first studied in [7]. We
start by writing the 6d metric in the form

ds2 ¼ r2ðdyþ κidxiÞ2 − dt2 þHijdxidxj

where the five coordinates xm on S5 are separated as y ∼
yþ 2π for the circle fiber, and xi for the base manifold
CP2, and κi is the graviphoton whose nonvanishing
curvature components are

w1̂ 2̂ ¼ w3̂ 4̂ ¼
2

r2

where the hats on these indices indicate that they are
tangent space indices ofCP2. Here we useGij to denote the
4d metric tensor on CP2 whose inverse is denoted Gij.
Further details regarding this Hopf fibration over CP2 can
be found in Appendix D.
We then also split the indices in the 5d Killing spinor

equation

∇mEα _α ¼ i
2r

ðγmÞαβEβ _α

on S5 into two equations

∇yE ¼ i
2r

γyE; ∇iE ¼ i
2r

γiE; ð3:1Þ

associated to the fiber and the base manifold respectively
(and from now, we suppress the spinor indices). To analyze
these equations further, we need expressions for these
covariant derivatives in terms of spin connections and we
need to express the 5d gamma matrices and in terms of 4d
gamma matrices. To this end, we start by writing down
expressions for the vielbein

et̂ ¼ dt; eŷ ¼ rðdyþ κidxiÞ; eî ¼ Eî
jdxj;

and its inverse

et̂ ¼ ∂t; eŷ ¼
1

r
∂y; eî ¼ Ej

îð∂j − κj∂yÞ:
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Using these vielbeins, we may expand the 5d gamma
matrices γm in terms of 4d gamma matrices γ̃i ¼ Eî

iγ î and

γ ≔ γ1̂ 2̂ 3̂ 4̂ as follows:

γy ¼ rγ; γi ¼ γ̃i þ rκiγ;

and then we use standard circle bundle expressions for the
5d covariant derivative acting on a 5d spinor ψ,

∇yψ ¼ ∂yψ −
r2

8
wijγ̃

ijψ ;

∇iψ ¼ ∇̃iψ −
r2

8
κiwklγ̃

klψ þ r
4
wijγ̃

jγψ ;

where ∇̃i denotes the covariant derivative with respect to
the metric on the 4d base space. We are now ready to
express (3.1) in 4d quantities,

∂yE −
r2

8
wijγ

ijE ¼ i
2
γE;

∇iE −
r2

8
κiwklγ

klE þ r
4
wijγ

jγE ¼ i
2r

ðγi þ rκiγÞE;

where now all quantities are 4d quantities, and so we have
dropped the tildes for notational simplicity. We may also
express the second equation more simply as

DiE ¼ i
2r

γiE −
r
4
wijγ

jγE

where we have introduced the curly derivative

Diψ ¼ ∇iψ − κi∂yψ :

But let us first analyze the first equation. Plugging in the
explicit form of wij, this equation reads

∂yE ¼ 1

2
ðγ1̂ 2̂ þ γ3̂ 4̂ þ iγÞE:

Of course the spinor Eα _α has four different indices α. To see
the meaning of these various indices more clearly, we will
introduce a spin notation α ¼ ðs1; s2Þ where the spins s1
and s2 are defined by

i
2
γ1̂ 2̂E ¼ s1E;

i
2
γ3̂ 4̂E ¼ s2E:

Let us first consider the spinor component ðs1; s2Þ ¼
ðþ;þÞ where � represent spins � 1

2
. The Killing spinor

equations then reduce to

∂yE ¼ −
3i
2
E; DiE ¼ 0:

Moving up to 6d, we have the conformal Killing spinor
solution

ε ¼ e
i
2rt−

3i
2
yE þ e−

i
2rtþ3i

2
yF :

This is the singlet solution. The other cases are ðs1; s2Þ ¼
fð−;−Þ; ðþ;−Þ; ð−;þÞg that form a triplet. For any of
these components, the first Killing spinor equation
becomes

∂yE ¼ i
2
E

and then the 6d solution becomes

ε ¼ e
i
2rtþi

2
yE þ e−

i
2rt−

i
2
yF ;

but the Killing spinor equations for E and F now become
more complicated. We introduce light-cone coordinates

x� ¼ 1ffiffiffi
2

p ðt� ryÞ:

Expressed in these light-cone coordinates, the singlet
solution is

ε ¼ e
i

r
ffiffi
2

p ð−xþþ2x−ÞE þ e−
i

r
ffiffi
2

p ð−xþþ2x−ÞF

and the triplet solutions are

ε ¼ e
i

r
ffiffi
2

p xþE þ e−
i

r
ffiffi
2

p xþF :

Since these triplet supersymmetry parameters do not depend
on x−, the corresponding supersymmetry survives upon
dimensional reduction along x− without any need to turn
on an R-gauge field. While this is nice, the price we have to
pay is having a more complicated Killing spinor equation.
We will study the singlet solution instead. This has a

simplerKilling spinor equation, and it gives us anopportunity
to study a situation where the supersymmetry parameter
depends nontrivially on the fiber direction along which we
dimensionally reduce. But again the question arises, along
which direction we shall reduce. Let us start by recalling the
6d Weyl condition Γε ¼ −ε that we will write as

ΓtyΓ1234ε ¼ −ε: ð3:2Þ

Aswementioned in the Introduction, we alsowant to impose
the Weyl projection

ΓMεvM ¼ 0

where vM is now to be either one of the light-cone directions,
vM ¼ δM� . So the above Weyl projection amounts to
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Γ�ε ¼ 0

where

Γ� ¼ 1ffiffiffi
2

p
�
Γt �

1

r
Γy

�

so we may also express this Weyl projection as

Γtyε ¼∓ ε: ð3:3Þ

Now by combining (3.2) and (3.3), we get

Γ1234ε ¼ �ε:

The singlet supersymmetry parameter has Γ1234ε ¼ −ε and
thereforewe shall takevM ¼ δM− andperform thedimensional
reduction along thex− direction. Let uswrite down the singlet
solution again as

ε ¼ e
i
ffiffi
2

p
r x−E þ e−

i
ffiffi
2

p
r x−F :

Then upon dimensional reduction, we shall expand the
fermionic field in the same modes as

ψ ¼ e
i
ffiffi
2

p
r x−χ þ e−

i
ffiffi
2

p
r x−ζ:

Of course we do not know the non-Abelian supersymmetry
variations for the M5 brane. The strategy therefore will be to
start with the Abelian supersymmetry variations for the M5
brane, and reduce these along the x− direction by using the
above mode expansion for the fermionic field. These steps
are in parallel with what we have already done when we
reduced along the time direction, although the reduction
along x− requires a lot more computations. Once we have
obtained these Abelian supersymmetries and Lagrangian,
the generalization to the non-Abelian case will be examined.
We start by replacing derivatives with gauge covariant
derivatives and examine the term in the variation of the
Lagrangian that is cubic in the fermionic field. But this term
is vanishing, not because of some Fierz rearrangment,
but simply because, as we will see, the supersymmetry
variation of the following combination of gauge fields is
vanishing,2

δðAi − κiAyÞ ¼ 0

and it is precisely this combination that enters in the kinetic
term for the fermionic field

iχ†γiDiχ:

So when we vary the gauge potential in this term, there will
be no cubic term generated. Let us now show this in more
detail. Let us start with the 6d supersymmetry variation

δAM ¼ −iψ̄ΓMNεvN

from which we obtain

δAi ¼ −
irffiffiffi
2

p κiψ̄ε; δAþ ¼ −iψ̄ε:

Then

Diψ ¼ ðDi − κiDyÞψ ¼
�
Di −

rffiffiffi
2

p κiDþ

�
ψ :

The important observation is now that

δDi ¼ −ieδ
�
Ai −

rffiffiffi
2

p κiAþ

�
¼ 0:

For this computation we have used

Γ� ¼ Γ�̂; Γi ¼ Γ̃i þ
rffiffiffi
2

p ðΓþ − Γ−Þ;

and then

Γi� ¼ Γ̃iΓ� þ rffiffiffi
2

p κiΓþ−:

We have

Γ� ¼ 1ffiffiffi
2

p
�
Γt � 1

r
Γy

�
; Γ� ¼ 1ffiffiffi

2
p ðΓt � rΓyÞ;

and then we get

Γþ− ¼ Γt̂ ŷ:

We impose the Weyl projection

Γ−ε ¼ 0

and then we get

Γ−Γþε ¼ ðfΓ−;Γþg − ΓþΓ−Þε ¼ −2ε;

where we notice the metric is

ds2 ¼ −2eþ̂e−̂ þ eîeî:

Now having shown that δDi ¼ 0 is, as we will see below,
just one crucial step among many other steps towards
obtaining a supersymmetry non-Abelian Lagrangian.

2In 6d we also have the gauge fixing condition AMvM¼A−¼0
that can be seen as a consequence of AM ¼ BMNvN .
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We begin with assuming the gauge group is Abelian and
first study the supersymmetry variation of the tensor gauge
field in 6d,

δHMNP ¼ −3i∂Mðψ̄ΓNPεÞ

for an anticommuting supersymmetry parameter, for which
we have the relation

ε̄ΓMNψ ¼ ðεTCΓMNψÞT ¼ −ψTð−CΓMNC−1Þð−CÞε
¼ −ψ̄ΓMNε

where we used the 11d Majorana condition. We would first
like to show a correspondence with the fermionic equation
of motion and self-duality of HMNP. In 6d, this correspon-
dence is almost trivial to show. Namely, we have

ðδHMNPÞ− ¼ −
i
2
∇Qðψ̄ΓQΓMNPεÞ

and by using the identity ΓQΓMNPΓQ ¼ 0 and∇Mε ¼ ΓMη,
we get

ðδHMNPÞ− ¼ −
i
2
∇Qψ̄ΓQΓMNPε

and we see that this variation vanishes on the fermionic
equation of motion ΓM∇Mψ ¼ 0.
Wewould now like to show this correspondence between

self-duality and the fermionic equation of motion again, but
now in light-cone coordinates, following closely [3]. To
this end, we define

Gij ¼ Gij − r
ffiffiffi
2

p
Fiþκj

where

Gij ¼ Hijþ; Fiþ ¼ Hiþ−;

and we want to show that the self-dual part vanishes,
ðδGijÞþ ¼ 0, on the fermionic equation of motion. So we
first need to obtain the explicit expressions for the super-
symmetry variation and for the fermionic equation of
motion in light-cone coordinates. We begin with the
supersymmetry variation. We have

δGij ¼ −2i∇iðψ̄ΓjþεÞ − i∂þðψ̄ΓijεÞ;
δFiþ ¼ −i∂iðψ̄Γþ−εÞ þ i∂þðψ̄Γi−εÞ − i∂−ðψ̄ΓiþεÞ;

where ∇i are 4d covariant derivatives. We expand

ε ¼ e
i
ffiffi
2

p
r x−E þ e−

i
ffiffi
2

p
r x−F ; ψ ¼ e

i
ffiffi
2

p
r x−χ þ e−

i
ffiffi
2

p
r x−ζ;

where

∇iE ¼ −
3i
2
κiE; ∂þE ¼ −

i

r
ffiffiffi
2

p E;

and corresponding relations for F. We also expand

Γi� ¼ Γ̃iΓ� þ rffiffiffi
2

p κiΓþ−;

Γij ¼ Γ̃ij − r
ffiffiffi
2

p
κiΓ̃jðΓþ − Γ−Þ:

Then we get

δGij ¼ −2i∇iðχ̄Γ̃jΓþEÞ − i
ffiffiffi
2

p
r∇iðχ̄Γþ−EκjÞ

− i∂þðχ̄Γ̃ijEÞ þ i
ffiffiffi
2

p
r∂þðκiχ̄Γ̃jΓþEÞ:

We may now notice the appearance of a curly derivative
from

−2i
�
∇i −

rffiffiffi
2

p κi∂þ

�
ðχ̄Γ̃jΓþEÞ ¼ −2iDiðχ̄Γ̃jΓþEÞ;

where we assume that ∂þκi ¼ 0. So then we have

δGij¼−2iDiðχ̄Γ̃jΓþEÞ− i
ffiffiffi
2

p
r∇iðχ̄Γþ−EκjÞ− i∂þðχ̄Γ̃ijEÞ:

We have

δFiþ ¼ −i∇iðχ̄Γþ−EÞ þ
irffiffiffi
2

p κi∂þðχ̄Γþ−EÞ

and then we get

δGij ¼ −2iDiðχ̄Γ̃jΓþEÞ − i
ffiffiffi
2

p
rχ̄Γþ−E∇iκj − i∂þðχ̄Γ̃ijEÞ

or if we define

wij ¼ ∇iκj −∇jκi

then we can write this as

δGij ¼ −2iDiðχ̄Γ̃jΓþEÞ −
irffiffiffi
2

p χ̄Γþ−Ewij − i∂þðχ̄Γ̃ijEÞ:

We are now interested in extracting the self-dual part of this
variation. To do this, we first recall the Weyl projection

Γ−E ¼ 0:

We have

Γ� ¼ 1ffiffiffi
2

p
�
Γt �

1

r
Γy

�
; Γ� ¼ 1ffiffiffi

2
p ðΓt � rΓyÞ:

The Weyl projection can be written in the following
alternative forms:
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Γt̂ ŷE ¼ E; Γþ−E ¼ E:

Expressed in terms of 4d gamma matrices, we get

δGij ¼ 2
ffiffiffi
2

p
iDiχ

�γjE −
irffiffiffi
2

p χ�Ewij − i∂þðχ�γijEÞ:

We can further write this as

δGij ¼
iffiffiffi
2

p Dkχ
�½γk; γij�E − i∂þχ�γijE

−
1

r
ffiffiffi
2

p χ�γijE −
irffiffiffi
2

p χ�Ewij:

Here we have rewritten this in terms of 6d Weyl compo-
nents so that now all that remains of the Γ−E ¼ 0 Weyl
projection is

γE ¼ −E

which amounts to that γijE will be self-dual, and also γijγkE
will be antiself-dual simply because γkE is satisfying the
opposite Weyl projection

γγkE ¼ γkE

as fγk; γg ¼ 0. Also since wij is self-dual, we can now
extract the self-dual part of the variation,

ðδGijÞþ ¼ iffiffiffi
2

p Dkχ
�γkγijE − i∂þχ�γijE

−
1

r
ffiffiffi
2

p χ�γijE −
irffiffiffi
2

p χ�Ewij:

We can also write this in the form

δGij ¼ −2
ffiffiffi
2

p
iF �γjDiζ þ

irffiffiffi
2

p F �ζwij þ i∂þðF �γijζÞ

and then

ðδGijÞþ ¼ −
iffiffiffi
2

p F �γijγkDkζ þ
irffiffiffi
2

p F �ζwij þ iF �γij∂þζ

þ 1

r
ffiffiffi
2

p F �γijζ

that we can write as

¼ −
iffiffiffi
2

p F �γij

�
γkDkζ −

ffiffiffi
2

p ∂þζ þ
i
r
ζ

�
þ irffiffiffi

2
p F �ζwij:

We now use the identity

E ¼ ir2

8
γijEwij

to rewrite one term as

−
1

r
ffiffiffi
2

p χ�γijE ¼ −
ir

8
ffiffiffi
2

p χ�γijγklEwkl

and then we decompose

γijγ
kl ¼ fγij; γklg − γklγij:

Noting that fγij; γklg ¼ −8δklij when acting on self-dual wkl,
the first term gives rise to a term

−
irffiffiffi
2

p χ�Ewij

that cancels that corresponding term in δGij, and we are left
with

δGij ¼
iffiffiffi
2

p Dkχ
�½γk; γij�E − i∂þχ�γijE þ ir

8
ffiffiffi
2

p χ�γklγijE

and consequently

ðδGijÞþ ¼ iffiffiffi
2

p Dkχ
�γkγijE − i∂þχ�γijE þ ir

8
ffiffiffi
2

p χ�γklγijE:

We can write this as

ðδGijÞþ ¼ iffiffiffi
2

p
�
Dkχ

�γk −
ffiffiffi
2

p ∂þχ� þ
r
8
χ�γklwkl

�
γijE:

We now wish to show that this vanishes when the fermionic
equation of motion is satisfied. Taking the complex con-
jugate of what is inside the parentheses, we get the
requirement

γiDiχ −
ffiffiffi
2

p ∂þχ −
r
8
γklχwkl ¼ 0

and indeed this is (a Weyl component of) the equation of
motion.
Let us complete the supersymmetry variations. We have

δFiþ ¼ −i
�
∇iðχ̄EÞ −

rffiffiffi
2

p κi∂þðχ̄EÞ
�

¼ −iDiðχ̄EÞ
¼ −iDiðχ�EÞ

and, quite interestingly,

δF ij ¼ −
irffiffiffi
2

p χ�Ewij:
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This is interesting, because it is zero, up to a term that is
proportional to wij. This is nothing like the usual super-
symmetry variation, and in fact δDi ¼ 0. And trivially

ðδF ijÞ− ¼ 0

since wij is self-dual. We do not even need to use the
fermionic equation of motion here.
We will now derive a 5d Lagrangian from the self-dual

tensor field in 6d dimensions, following closely [3]. We
start by noting that

Hî ĵ �̂ ¼ Ei
îE

j
ĵðHij� − r

ffiffiffi
2

p
Hiþ−κjÞ;

Hî ĵ k̂ ¼ Ei
îE

j
ĵ
Ek

k̂

�
Hijk −

3rffiffiffi
2

p Hijþκk þ
3rffiffiffi
2

p Hij−κk

�
;

Hî þ̂ −̂ ¼ Ei
îHiþ−;

or if we define

Fij ¼ Hij−; Gij ¼ Hijþ; Fiþ ¼ Hiþ−;

then

Hî ĵ þ̂ ¼ Ei
îE

j
ĵðGij − r

ffiffiffi
2

p
FiþκjÞ;

Hî ĵ −̂ ¼ Ei
îE

j
ĵðFij − r

ffiffiffi
2

p
FiþκjÞ;

Hî ĵ k̂ ¼ Ei
îE

j
ĵ
Ek

k̂

�
Hijk þ

3rffiffiffi
2

p ðFij −GijÞκk
�
;

Hî þ̂ −̂ ¼ Ei
îFiþ:

We have the Bianchi identity

3∂ ½iHjk�þ − ∂þHijk ¼ 0 ð3:4Þ

and we have the self-duality relation

Hî ĵ k̂ ¼ εî ĵ k̂
l̂ þ̂ −̂Hl̂ þ̂ −̂:

We define

εî ĵ k̂ l̂ þ̂ −̂ ¼ εî ĵ k̂ l̂

so we have

Hî ĵ k̂ ¼ −εî ĵ k̂ l̂Hl̂ þ̂ −̂

that we can write as

Hijk þ
3rffiffiffi
2

p ðFij − GijÞκk þ εijk
lFlþ ¼ 0:

The Bianchi identity (3.4) then becomes

3∂ ½iGjk� ¼ −∂þ

�
3rffiffiffi
2

p ðFij − GijÞκk þ εijk
lFlþ

�
: ð3:5Þ

We define

Gij ¼ Gij − r
ffiffiffi
2

p
Fiþκj; F ij ¼ Fij − r

ffiffiffi
2

p
Fiþκj;

that enable us to express (3.5) in the following simple form:

εijklDiGjk ¼ −2∂þFlþ

and from

Hî ĵ þ̂ ¼ 1

2
εî ĵ þ̂

k̂ l̂ þ̂Hk̂ l̂ þ̂

we get, by noting that εî ĵ þ̂
k̂ l̂ þ̂ ¼ −εî ĵ þ̂ k̂ l̂ −̂ ¼ −εî ĵ k̂ l̂ þ̂ −̂ ¼

−εî ĵ k̂ l̂,

Gij ¼ −
1

2
εij

klGkl; F ij ¼
1

2
εij

klF kl:

The next step will therefore be to replace straight capital
letters with curly ones,

∂ ½iðGjk� þ r
ffiffiffi
2

p
FjþκkÞ

þ ∂þ

�
rffiffiffi
2

p ðF ij − GijÞκk þ
1

3
εijk

lFlþ

�
¼ 0

because then we can dualize and get

−DiGil þ rffiffiffi
2

p εijklDiðFjþκkÞ

þ rffiffiffi
2

p κi∂þðF il þ GilÞ þ ∂þFlþ ¼ 0:

As a consequence of this equation, we have

−ðDiGilÞκl þ ∂þFlþκl ¼ 0

that we can also write as

−DiðGijκjÞ þ
1

2
Gilwil þ ∂þFlþκl ¼ 0

but the second term is vanishing, as one can see by
replacing Gil with Gil which is antiself-dual so contracting
with a self-dual wil gives zero. And moreover κlwil ¼ 0. So
we have

DiðGijκjÞ ¼ κi∂þFiþ

which will be a useful relation that we will use later. We
may also write
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−DiGil þ rffiffiffi
2

p εijklDiðFjþκkÞ þ
rffiffiffi
2

p κi∂þF il þ ∂þFlþ ¼ 0:

We have the Bianchi identity

3∂ ½iHjk�− ¼ ∂−Hijk

but if we put ∂− ¼ 0 upon dimensional reduction, then this
reduces to

εijkl∂iFjk ¼ 0:

Again replacing straight capital F with curly F, we
first get

εijkl∂iðF jk þ r
ffiffiffi
2

p
FjþκkÞ ¼ 0

and then by using self-duality this becomes

DiF il þ rffiffiffi
2

p εijklDiðFjþκkÞ ¼ 0:

But the nicest way to express this same equation is as

εijklDiF jk ¼ 0:

We have the Bianchi identity

2∂ ½iFj�þ þ ∂þFij ¼ 0:

Replacing F with F it becomes

2D½iFj�þ þ ∂þF ij ¼ 0:

Finally, we return to

Hijk þ
3rffiffiffi
2

p ðFij − GijÞκk þ εijk
lFlþ ¼ 0

and apply the Bianchi identity εijkl∂lHijk ¼ 0. We then get

DiFiþ ¼ r

2
ffiffiffi
2

p F ijwij

where we define

Di ¼ Di −
rffiffiffi
2

p κi∂þ:

We thus have two types of equations of motion,

−DiGilþ rffiffiffi
2

p εijklDiðFjþκkÞþ
rffiffiffi
2

p κi∂þF ilþ1

2
∂þFlþ ¼ 0;

DiFiþ−
r

2
ffiffiffi
2

p F ijwij¼ 0;

and in addition to these, we have the self-duality equations

Gij ¼ −
1

2
εij

klGkl; F ij ¼
1

2
εij

klF kl:

The equation

DiF il þ rffiffiffi
2

p εijklDiðFjþκkÞ ¼ 0 ð3:6Þ

surely looks very much like an independent equation
of motion, but actually it is not. It is a direct consequence
of εijkl∂iFjk ¼ 0 together with the self-duality equation of
motion for F ij. That means we do not need to demand that
Eq. (3.6) follows from an action upon the variation of a
gauge field as one normally would expect. Now one may
ask some questions about the number of components. Let
us be very brief and just notice that self-dual HMNP has 10
components, just as do self-dual Fij and Fiþ together,
as 6þ 4 ¼ 10. So we do not expect Gij shall be part of the
supermultiplet upon dimensional reduction. Only Fij; Fiþ
should be part of the vector muliplet. It then seems
reasonable to assume that the antiself-dual Gij shall be
viewed as a Lagrange multiplier field that is imposing
self-duality on F ij, rather than as a dynamical field
that contributes to additional degrees of freedom. We
now make the following ansatz for a gauge field
Lagrangian:

LA ¼ bF ijGijþcFiþFiþþdεijklFijFkþκlþeεijklGijFkþκl

and treat Gij (assumed to be antiself-dual from the outset),
Ai, and Aþ as independent fields that we shall vary to derive
the classical equations of motion. Then these equations of
motion become

F ij−
1

2
εij

klF kl¼0;

ðbr
ffiffiffi
2

p
þ2eÞDiðGijκjÞ−2cDiFiþ−dF ijwij¼0;

−2bDiGimþðbr
ffiffiffi
2

p
þ2eÞκi∂þGimþ2dεmiklDiðFkþκlÞ

þ2d∂þFmjκjþ2c∂þFmþ¼0:

We now write the second relation as

−2cDiFiþ þ ðbr
ffiffiffi
2

p
þ 2eÞκi∂þFiþ − dF ijwij ¼ 0:

By now requiring the combination Di ¼ Di − rffiffi
2

p κi∂þ to

appear, we get the following equations:

br
ffiffiffi
2

p þ 2e
2c

¼ rffiffiffi
2

p ;
br

ffiffiffi
2

p þ 2e
2b

¼ rffiffiffi
2

p ;

d
b
¼ −

rffiffiffi
2

p ;
c
b
¼ 1:
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These equations have the following unique solution:

b ¼ 1; c ¼ 1;

d ¼ −
rffiffiffi
2

p ; e ¼ 0

up to one overall constant. Fixing that overall constant to be
1=4, the Lagrangian is given by

LA ¼ 1

4

�
F ijGij þ FiþFiþ −

rffiffiffi
2

p εijklF ijFkþκl

�

where we have also replaced F with F in the graviphoton
term, which we can do freely by just noting that κjκl ¼ 0

upon antisymmetrization in j and l. The supersymmetry
variation of this Lagrangian is

δLA ¼ −
iffiffiffi
2

p χ�γjEDiF ij þ i
4
χ�γijE∂þF ij þ

i
2
χ�EDiFiþ

−
ir

4
ffiffiffi
2

p χ�EGijwij −
ir

2
ffiffiffi
2

p χ�EF ijwij:

The fourth term is identically zero because Gij is anti-
self-dual.
Next, we obtain the supersymmetry variation

δψ ¼ 1

12
ΓMNPεHMNP

in 4d. To this end, it is advantageous to first recast this in
flat space indices,

δψ ¼ 1

4
Γî ĵ þ̂εHî ĵ þ̂ þ 1

4
Γî ĵ −̂εHî ĵ −̂ þ 1

2
Γî þ̂ −̂εHî þ̂ −̂:

Then it immediately follows that

δψ ¼ 1

4
Γ̃ijΓ−̂εF ij þ

1

2
Γ̃iΓþ̂ −̂εFiþ

which in terms of 4d gamma matrices reads

δχ ¼ 1

2
ffiffiffi
2

p γijEF ij −
1

2
γiEFiþ:

Then let us look at each term in turn in the fermionic action

LF ¼ i
2
χ�γiDiχ −

iffiffiffi
2

p χ�P−∂þχ

þ 1

r
χ�Pþχ −

ir
16

χ�γijP−χwij:

The variation of the first two derivative terms becomes,
after using two types of Bianchi identities,

δðLI
F þ LII

F Þ ¼
iffiffiffi
2

p χ�γiEDjF ji −
1

2
χ�EDiFiþ

−
i
4
χ�γijE∂þF ij −

1

r2
ffiffiffi
2

p χ�γijEF ij:

The first line is exactly canceling corresponding terms in
δLA. The variation of the two last mass terms gives

δðLII
F þ LIV

F Þ ¼ −
1

r
χ�γiEFiþ −

ir

16
ffiffiffi
2

p χ�γijγklEwijF kl:

Ideally we had wanted these to cancel against the last term
in δLA,

δLVI
A ¼ −

ir

2
ffiffiffi
2

p χ�EwijF ij:

We do not seem to get a perfect cancellation, but let us note
that we can rewrite the last term in δðLII

F þ LIV
F Þ as

−
ir

16
ffiffiffi
2

p χ�ðfγij; γklg − γklγijÞEwijF kl

¼ ir

2
ffiffiffi
2

p χ�EwijF ij þ ir

16
ffiffiffi
2

p χ�γklγijEwijF kl

¼ ir

2
ffiffiffi
2

p χ�EwijF ij þ 1

r2
ffiffiffi
2

p χ�γijEF ij:

The first term cancels against δLVI
A and the second term

cancels the last term in δðLI
F þ LII

F Þ. The final result is that
we have the following nonzero variation of the Lagrangian:

δL ¼ −
1

r
χ�γiEFiþ: ð3:7Þ

Since the 6d metric inverse gij is equal to the 4d metric
inverse Hij and since the index i in Fiþ ¼ Hiþ− can be
extended to indices þ and − without changing anything
since Hþþ− and H−þ− are zero anyway, we can view i as
a 6d index contracted by the 6d metric. This means
that we can write this result in terms of 6d flat space
indices as

δL ¼ i

r
ffiffiffi
2

p δBîþ̂Hî þ̂ −̂

and by using the self-duality relation

Hî ĵ k̂ ¼ −εî ĵ k̂ l̂Fl̂ þ̂ −̂

we can further write this as

δL ¼ i

r
ffiffiffi
2

p εî ĵ k̂ l̂ þ̂ −̂δBî þ̂Hĵ k̂ l̂:
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Now we can change to 6d curved space indices and then
this becomes

δL ¼ −
i

r
ffiffiffi
2

p εijklHijkδBlþ

where we define εijkl ¼ −εijklþ−. We now wish to show
that this can be expressed as a total variation of some
topological term of the form

Ltop ¼ εijklHijkBlþ

up to some constant factor. When we expand its variation,
we find two types of terms,

δLtop ¼ 3εijkl∂iδBjkBlþ þ εijklHijkδBlþ:

The first term here can be further be written as

−3εijklδBjk∂iBlþ ¼ −
3

2
εijklδBjkHilþ

where we dropped a couple of total derivative terms. Now,
if we change to flat space indices we see the emergence of
an antiself-dual Hî ĵ þ̂ ¼ Gî ĵ and so what this term becomes
is something that is proportional to δBijGij and this is zero,
because δBij ∼ χ�γijE and we have that γijEGij ¼ 0 since
Gij is antiself-dual and E is Weyl. One way to see this is by
noting that γijEwij is nonzero where wij is self-dual. This
means that we are left with only the second term,

δLtop ¼ εijklHijkδBlþ

as we wanted to show. So by adding the topological term

Ltop ¼
i

r
ffiffiffi
2

p εijklHijkBlþ

we find that its variation cancels the variation δL in
(3.7) above.
Let us now study the matter part supersymmetry. The

Lagrangian is

LF ¼ i
2
χ†γiDiχ −

iffiffiffi
2

p χ†P−∂þχ þ
1

r
χ†Pþχ

−
i
2r

χγ12P−χ −
ir

2
ffiffiffi
2

p κiχ
†γi∂þχ −

1

2
κiχ

†γiχ:

The supersymmetry variation is

δχ ¼ −γiτAEDiϕ
A −

2i
r
τAEϕA

where we define

Di ¼ Di − κi∂y; ∂y ¼
rffiffiffi
2

p ð∂þ − ∂−Þ:

Using this generalized derivative on the fermion, and the
expansion where

∂−χ →
i

ffiffiffi
2

p

r
χ

we find that the Lagrangian simplifies to

LF ¼ i
2
χ†γiDiχ −

iffiffiffi
2

p χ†P−∂þχ þ
1

r
χ†Pþχ −

i
2r

χγ12P−χ:

We thus need to carefully define the operator Di acting on
bosons and fermions respectively, as

Diϕ ¼ ∂iϕ −
rffiffiffi
2

p ∂þϕ;

Diχ ¼ Diχ −
rffiffiffi
2

p κi∂þχ þ iκiχ:

Similarly then when this generalized derivative acts on the
supersymmetry parameter, one then finds the following
Killing spinor equation:

DiE ¼ 0:

We then get the supersymmetry variation

δLF ¼ −
i
2
χ†γijτAE½Di;Dj�ϕA − iχ†τAED2

iϕ
A

−
2

ffiffiffi
2

p

r
χ†τAE∂þϕA

þ 2i
r2
χ†τAEϕA −

2

r
χ†γ12τAEϕA:

Two terms cancel by using

½Di;Dj�ϕ ¼ −
rffiffiffi
2

p wij∂þϕ

and

γ12E ¼ −iE; γ34E ¼ −iE;

and we get

δLF ¼ −iχ†τAED2
iϕ

A þ 4i
r2

χ†τAEϕA:

Let us now turn to the scalar fields’ Lagrangian

LS ¼ −
1

2
ðDiϕ

AÞ2 − 2

r2
ðϕAÞ2:
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Using the variation

δϕA ¼ iχ†τAE

we find that δLS þ δLF ¼ 0.
Before turning to the non-Abelian case, let us first

summarize the Abelian case. We have the Lagrangian

L ¼ LA þ Lmatter þ Ltop

where

LA ¼ 1

4

�
F ijGij þ FiþFiþ −

rffiffiffi
2

p εijklF ijFkþκl

�
;

Lmatter ¼
i
2
χ�γiDiχ −

iffiffiffi
2

p χ�P−∂þχ

þ 1

r
χ�Pþχ −

ir
16

χ�γijP−χwij

−
1

2
ðDiϕ

AÞ2 − 2

r2
ðϕAÞ2;

Ltop ¼
i

r
ffiffiffi
2

p εijklHijkBlþ;

and the supersymmetry variations

δϕA ¼ iχ�τAE;

δχ ¼ 1

2
ffiffiffi
2

p γijEF ij −
1

2
γiEFiþ − γiτAEDiϕ

A −
2i
r
τAEϕA;

δAi ¼ −
irffiffiffi
2

p κiχ
�E;

δAþ ¼ −iχ�E;

δFiþ ¼ −iDiðχ�EÞ;

δF ij ¼ −
irffiffiffi
2

p χ�Ewij;

δGij ¼ 2
ffiffiffi
2

p
iDiχ

�γjE −
irffiffiffi
2

p χ�Ewij − i∂þðχ�γijEÞ:

We notice that the supersymmetry variation δGij is antiself-
dual only on-shell, which naively means that imposing the
antiself-dual constraint on Gij breaks supersymmetry. On
the other hand, we may also notice that the supersymmetry
variation of δF ij is self-dual off-shell. We can always
decompose F ij ¼ Fþ

ij þ F−
ij into self-dual and antiself-

dual parts as these transform in different representations
under the 4d rotation group and then we can impose the
constraint that the antiself-dual part is zero, F−

ij ¼ 0 by
hand as a constraint that we impose on top of the
Lagrangian. At this stage, this constraint cannot be derived
from the Lagrangian. This constraint does not break
supersymmetry. From the coupling term ∼F ijGij in the
Lagrangian we see that this constraint implies that only the

antiself-dual part of Gij enters in the Lagrangian, which is
to say that Gij is constrained to be antiself-dual and then we
can change our viewpoint and take that constraint as a
starting assumption and derive F−

ij ¼ 0 as an equation of
motion.
To see whether a non-Abelian generalization is possible,

let us start by replacing all derivatives with gauge covariant
derivatives,

Diϕ
A ¼ Diϕ

A − κiDyϕ
A;

Diϕ
A ¼ ∂iϕ

A − ie½Ai;ϕA�;
Dyϕ

A ¼ ∂yϕ
A − ie½Ay;ϕA�

in the supersymmetry variations. Then by noting that

½Di;Dj�ϕA ¼ −ie½F ij;ϕA�

we get

δL ¼ −
e
2
χ�γijτAE½F ij;ϕA�:

To cancel this variation, one might be tempted to add the
following term to the Lagrangian:

ΔL ¼ effiffiffi
2

p χ�τA½χ;ϕA�

But if we do that, then that term will upon a supersymmetry
variation generate a host of new terms, such as

χ�γiE½Diϕ
A;ϕA� ð3:8Þ

but we cannot cancel this term by anything. The only
candidate term ðDiϕ

AÞ2 does not work because the super-
symmetry variation of the gauge potential Ai is vanishing,
so it cannot give rise to something that is proportional to
χ�γiE. So we cannot cancel the variation (3.8) and therefore
we shall not add any extra commutator terms to the
Lagrangian.
Instead we shall modify the supersymmetry variation of

Gij by adding a term3

ΔδGij ¼
e
2
½χ�γijτAE;ϕA�:

3This is in accordance with the Lambert-Papageorgakis theory
[4], where

δHMNP ∼ ::þ ½ϕA; ψ̄ �ΓAΓMNPQεvQ

if we notice that the only surviving combination of gamma
matrices can be Γijþ−, which simply means that the commutator
only enters in Hijþ, or in other words Gij.
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If we could make the gauge choice Aþ ¼ 0 and then just
forget about δAþ altogether, then since δAi ¼ 0, we would
have no cubic term in the fermionic fields that could appear
when we vary the gauge potential in the fermionic kinetic
term. But imposing the gauge choice Aþ ¼ 0 is unsatis-
factory since this gauge choice breaks supersymmetry by
itself. We can avoid this problem of gauge fixing by
reducing supersymmetry by another half. We then impose
the Weyl projection

τ5E ¼ E:

Then we have the supersymmetry variation

δϕ5 ¼ iχ�E

and we see that the combination Aþ − ϕ5 is a super-
symmetric invariant,

δðAþ − ϕ5Þ ¼ 0:

We then obtain a supersymmetric Lagrangian by simply
adding commutator terms that involve ϕ5 for each place
where there is a gauge field Aþ. Such commutator terms are
of course gauge invariant by themselves. But we can
repackage these terms into a new derivative

Dþ ¼ Dþ þ ie½ϕ5; •�

where Dþ ¼ ∂þ − ie½Aþ; •�. One may worry that an
ordinary derivative acts on a fermionic field, but that is
just because of how we have set up our Lagrangian. We
have already taken into account all those curvature cor-
rections when we analyzed the Abelian case and those
curvature corrections will not be affected in any significant
way by the non-Abelian generalization. We now obtain a
full supersymmetric non-Abelian Lagrangian by replacing
every occurrence of ∂þ with Dþ as we defined it above
(with an ordinary derivative ∂þ rather than a curvature
covariant∇þ). There is now at this stage no need to impose
any gauge fixing condition on Aþ.
The B ∧ H term is straightforwardly generalized to the

non-Abelian case as Ba ∧ Ha where a is the adjoint gauge
group index. The supersymmetry variation of B̃iþ is
similarly generalized by just attaching that adjoint gauge
group index as δBa

iþ ¼ −i
ffiffiffi
2

p ðχaÞ�γiE. We also assume the
duality relation is generalized to the non-Abelian case
as Ha

ijk ¼ εijklFa
lþ.

As we did not put any component of the fermionic field
to zero here, as we did for the case of time reduction, we do
not expect our 5d Lagrangian will be possible to derive by
turing on an R-gauge field in some dual formulation.
In particular, we do not expect the closure relations will
be of a standard form.

It would be interesting to see if our null reduction here
can be generalized to the generic null geometries of [3]. If
that is the case, then that would mean that we would have a
supersymmetric five-dimensional Lagrangian description
for M5 branes on any Lorentzian geometry that has a
Killing vector along a null direction.

IV. DISCUSSION

For any supersymmetric Abelian theory on a circle
bundle, we have shown by a general argument that we
can always obtain a corresponding supersymmetric
Lagrangian in one dimension lower by keeping nonzero
KK fermionic modes. We have demonstrated this explicitly
for the Abelian M5 brane on R × S5 by first reducing along
the time direction and next along a null direction.
The main problem we would like to focus on however is

not the Abelian case, which is somewhat trivial, but the non-
Abelian generalization. A non-Abelian generalization of the
M5 brane Lagrangian may not exist.We have also found that
it is very difficult to find a non-Abelian generalization of the
dimensionally reduced theory when we keep a nonzero
fermionic KK mode. But this problem is due to the fact that
our reduction is in general not consistent with supersym-
metry. So even if there had been a non-Abelian Lagrangian in
6d we would still have troubles in general to find a
corresponding supersymmetric Lagrangian in 5d in this way.
Nevertheless, we have seen that a non-Abelian

Lagrangian could be found by reducing the amount of
supersymmetry sufficiently much for the two cases of time
and null reductions on R × S5.
It would be interesting if our result can be generalized to

arbitrary null geometries since then we would have a large
class of supersymmetric 5d Lagrangians that might be
helpful to get a better understanding of the non-Abelian M5
brane theory as we then can make use of this supersym-
metry to quantize these 5d theories. It would also be nice if
one could recover the Lagrangian in [8] as a special case
from such a more general supersymmetric Lagrangian.
In our dimensional reduction we keep nonzero KK

modes for the fermionic fields and zero modes for the
bosonic fields. One may want to gain some intuition for
what this means by putting M5 branes on R1;4 × S1 and
reduce down to R1;4. Then to relate to our work, one may
impose an antiperiodic boundary condition for the fermions
around the S1. If we assume this, then we have only the odd
KK modes for the antiperiodic fermions and only the even
KKmodes for the periodic bosons. By looking at the theory
at energies below the second KK mode, dimensional
reduction could amount to keeping bosonic zero modes
and the first excited nonzero fermionic KK modes,
although this dimensional reduction would not be as good
as usual dimensional reduction since we would never get
very far from the second KK mode if we consider
excitations above the first KK mode, so the validity of
such a dimensional reduction may be subject to some
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criticism. Nevertheless, such an example may provide some
intuition for the dimensional reduction that we have studied
in this paper. However, this is not really the kind of
situation that we have studied in this paper, and the intuition
this flat spacetime example may provide us is quite
misleading. If we impose antiperiodic boundary conditions
around S1 then all supersymmetry is broken, since in flat
space, the supersymmetry parameter is constant along S1.
The supersymmetry preserving boundary condition will be
the periodic boundary condition and then we should keep
the fermionic zero mode and study the usual dimensional
reduction.
The upshot of this example is that we cannot use much of

our flat spacetime intuition to understand the dimensional
reduction that we have studied in this paper. We need to put
the M5 brane on a curved spacetime that removes the zero
mode around S1 in the supersymmetry parameter. In a
curved spacetime there is no clear cut relation between
energy levels and KK mode numbers when we compare
different kinds of fields. One example that we considered
was dimensional reduction on R × S5 down to S5.
Unfortunately this is a subtle example from a physics
viewpoint, since dimensional reduction is along time and
moreover, time is naturally noncompact. Nevertheless, the
supersymmetry parameter has an oscillatory behavior along
time in Lorentzian signature in this example and we can use
this fact to obtain a 5d SYM theory on S5. Although we
kept a nonzero KK mode for the fermionic field, we ended
up with the same 5d Lagrangian as we would get if instead
we had started with a 6d theory with a background R-gauge
field turned on along the time direction chosen so that the
supersymmetry parameter has a zero mode and we perform
usual dimensional reduction. This example indicates that in
curved spacetime there may not be a simple correspon-
dence between the KK level and the energy level as there is
in flat spacetime. The energy level for different fields may
involve different kinds of curvature corrections and super-
gravity background fields, and it may be that a nonzero
fermionic mode has the exact same energy as a bosonic
zero mode so that these different modes can be related by
supersymmetry.
Inspired by a conjectured relation between 5d max-

imally SYM on R1;4 and M5 branes on R1;4 × S1 [9,10],
one may ask whether some 5d YM theory could also
capture all of a corresponding M5 brane theory on a more
general Uð1Þ bundle geometry. But to generalize the
conjecture in [9,10] to Uð1Þ bundles, one needs a further
specification in curved spacetimes because we may have a
supersymmetric M5 brane for either a periodic or for an
antiperiodic spin structure around the Uð1Þ isometry
circle. We will thus have to distinguish between these
two different boundary conditions or spin structures on the
Uð1Þ. When the spin structure is even, the supersymmetric
boundary condition is the periodic boundary condition
and if the supersymmetry parameter is constant along the

Uð1Þ direction, then we can perform usual dimensional
reduction by keeping only the zero modes of bosonic and
fermionic fields and arrive at the SYM theory that was
discussed in, for instance, [11]. When the spin structure is
odd, the supersymmetric boundary condition is antiperi-
odic and the usual dimensional reduction removes the
fermionic modes. We get a purely bosonic YM theory in
5d. However, in this paper we have shown that it is
possible in some cases to get a supersymmetric 5d YM if
instead we keep the first nonzero fermionic modes. Which
of these two 5d theories (if any) would correspond to the
non-Abelian M5 brane for the case of an antiperiodic spin
structure? It seems difficult to generate the missing
fermionic KK modes from a purely bosonic YM theory
by quantizing the fluctuation fields around its instanton
particles. In a supersymmetric YM the fermionic KK
modes arise as fermionic zero modes when one quantizes
the fluctuations around an instanton particle. One
might speculate that perhaps the supersymmetric 5d
SYM theory that we have constructed by performing a
null reduction could capture all of the non-Abelian M5
brane theory with an odd spin structure, but this remains to
be seen.
We have motivated our route to get from the Abelian M5

brane to the Abelian 5d SYM that has a unique non-
Abelian generalizations that under certain circumstances is
also supersymmetric. The next question is of course
whether we can use this non-Abelian 5d supersymmetric
YM theory to get information about the corresponding
non-Abelian M5 brane theory. We should not claim that
the 5d theory is the non-Abelian M5 brane. First, this
depends on whether the conjecture in [9,10] is correct, and
second whether that conjecture can be generalized to other
geometries such as those that we have studied in this paper.
Still one may ask a more modest question, whether one can
quantize the 5d theory that we have obtained. A similar
question has been studied in [2,12] (and in many papers
following these two seminal works) where one studied 5d
SYM on S5 and computed its partition function by using
localization. A match with corresponding dual supergrav-
ity computation was found, which suggested that this
location method seemed to give the M5 brane partition
function. For our null reduction, since we have a super-
symmetric 5d theory, perhaps we can apply the localization
technique also on this 5d supersymmetric theory. However,
we need to impose at least one self-duality constraint by
hand, on either F ij or Gij. The question is whether it is
possible to handle this constraint in a way that is consistent
with such a localization computation. Another way to
approach the quantum theory is by using the method of
discrete light-cone quantization. That amounts to deriving
a corresponding quantum mechanics Lagrangian on the
instanton moduli space that one may subsequently try to
quantize [13]. However this approach will be difficult to
carry out if the instanton moduli space is too complicated.
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APPENDIX A: A 6D FORMULATION
OF 5D SYM

There is a 6d formulation of 5d SYM where one
introduces a vector field vM and requires all fields to have
vanishing Lie derivatives along that vector field [4–6]. We
did not make explicit use of this 6d formulation of 5d SYM.
But it was this formulation that originally motivated us to
search for consistent supersymmetric truncations, and the
two cases that we have studied in this paper can be at least
intuitively quite clearly understood by looking at this
formulation of the theory where they emerge as the
Weyl projections (A8) and (A9) respectively.
The 6d supersymmetry variations look like a non-

Abelian generalization of the Abelian M5 brane, but of
course there is a catch. Namely we do not have closure
relations satisfied for these variations, unless two terms
vanish, namely the terms in (A3) and (A4). Let us present
this in detail. The supersymmetry variations are given by

δϕA ¼ iε̄ΓAψ ;

δHMNP ¼ 3iDPðε̄ΓMNψÞ þ eε̄ΓMNPQΓA½ψ ;ϕA�vQ;
δAN ¼ iε̄ΓNPψvP;

δψ ¼ 1

12
ΓMNPεHMNP þ ΓMΓAεDMϕ

A − 4ΓAηϕA

−
ie
2
ΓMΓABε½ϕA;ϕB�vM:

Here

DMϕ
A ¼ ∂Mϕ

A − ie½AM;ϕA� þ VAB
M ϕB

where VM is an R-gauge field, and

DMε ¼ ΓMη −
1

8
ΓAΓRSTΓMεTA

RST;

DM ε̄ ¼ −η̄ΓM −
1

8
ε̄ΓMΓRSTΓATA

RST: ðA1Þ

Here vM is a Killing vector field and Lv denotes the Lie
derivative along this Killing vector field. We will impose
the gauge condition

AMvM ¼ 0 ðA2Þ

which is a very natural gauge condition if we think on AM as
BMNvN . Now this correspondence is at present unknown to
us for the non-Abelian case whereHMNP is all that we have.

Wewould like to know how to express the theory in terms of
some non-Abelian gauge potential BMN but at present we do
not have such a formulation. Nevertheless, the gauge
potential will be assumed to satisfy the gauge condition (A2).
We define the 6d chirality matrix

Γ ¼ Γ0̂ 1̂ 2̂ 3̂ 4̂ 5̂

in flat tangent space and we assume that the spinor and
supersymmetry parameter have opposite chiralities

Γψ ¼ ψ ; Γε ¼ −ε:

We use 11d gamma matrices where ΓM denote spacetime
gamma matrices for M ¼ 0; 1;…; 5 and ΓA denote five
transverse space gamma matrices for A ¼ 1, 2, 3, 4, 5 and
these anticommute, fΓM;ΓAg ¼ 0.
For the closure computation of these supersymmetry

variations, we define

SM ¼ ε̄ΓMε

and the gauge parameter

Λ ¼ −iε̄ΓQΓAεϕAvQ

and we assume that ε is a commuting spinor, since that
simplifies the closure computation a bit yet without
imposing any restrictions.
The superconformal algebra in curved space is

δ2ε ¼ −iLS − 2iW − 2ε̄ΓABηRAB þ δgauge

where

RAB ¼ i
2
ΓAB; RAB

CD ¼ 2iδABCD;

and

WϕA ¼ 2; Wψ ¼ 5

2
; WHMNP

¼ 0

are the Weyl weights.
As always with closure relations, we can express these in

terms of conventional Lie derivatives LS, or in terms of
gauge covariant Lie derivatives LS. These are related as

−iLSϕ
A ¼ −iLSϕ

A − ie½ϕA;Δλ� − iSMVAB
M ϕB;

−iLSψ ¼ −iLSψ − ie½ψ ;Δλ� − i
4
SMVAB

M ΓABψ ;

−iLSHMNP ¼ −iLSHMNP − ie½HMNP;Δλ�;
−iLSAM ¼ −iSNFNM

¼ −iLSAM þDMðΔλÞ;
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where Δλ ¼ iSMAM. We thus see that from LS we get LS plus some extra gauge transformation and R-rotation.
If we assume that ε is commuting, then we find the following closure relations:

δ2ϕA ¼ −iLSϕ
A − 4iε̄ηϕA − 4iε̄ΓABηϕB − ie½ϕA;Λ�;

δ2HMNP ¼ −iLSHMNP þ 3iDMðSTðH−
NPT − 6ϕATA

NPTÞÞ

− 4iSTD½PHMNT� − eεMNPQRSε̄ΓSε½DRϕ
A;ϕA�vQ −

ie
2
ε̄ΓVεεMNPQUV ψ̄

bΓUψavQ

þ 3eε̄ΓPΓAε½HMNQvQ − FMN;ϕA� − ie½HMNP;Λ� þ
e
2
Lvðε̄ΓABΓMNPεÞ½ϕA;ϕB�;

δ2ψ ¼ −iLSψ − 2iη̄ε
5

2
ψ − iη̄ΓABεΓABψ − ie½ψ ;Λ�

þ 3i
8
SQΓQ

�
ΓPDPψ þ 1

4
ΓRSTΓAψTA

RST − ieΓMΓA½ψ ;ϕA�vM
�

þ 2icQBΓQΓB

�
ΓPDPψ þ 1

4
ΓRSTΓAψTA

RST − ieΓMΓA½ψ ;ϕA�vM
�
;

δ2AM ¼ −iLSAM þDMð−iε̄ΓNΓAεϕAvNÞ þ iSTFTM − iSTðHþ
MNT þ 6TA

MNPϕ
AÞvN þ iLvðε̄ΓMΓAεϕAÞ:

Apart from the term

e
2
Lvðε̄ΓABΓMNPεÞ½ϕA;ϕB� ðA3Þ

in δ2HMNP and the term

iLvðε̄ΓMΓAεϕAÞ ðA4Þ

in δ2AM, we can now obtain closure up to a gauge trans-
formation with gauge parameter λ ¼ −iε̄ΓMΓAεϕAvM if
certain equations of motion are satisfied. Closure on
HMNP requires the following equations of motion:

H−
NPT − 6ϕATA

NPT ¼ 0; ðA5Þ

HMNQvQ − FMN ¼ 0; ðA6Þ

and closure on AM requires the equation of motion

FTM − ðHþ
MNT þ 6TA

MNPÞvN ¼ 0: ðA7Þ

By adding 0 ¼ H−
NPT − 6ϕATA

NPT toH
þ
MNT þ 6TA

MNPϕ
A we

get HMNT ¼ Hþ
MNT þH−

MNT and (A7) reduces to (A6). Of
course the presence of the terms (A3) and (A4) means that
these 6d supersymmetry variations do not close, unless both
these terms vanish. Oneway to make these two terms vanish
is by requiring the Lie derivative vanishes on every field and
also on the supersymmetry parameter, Lvε ¼ 0, where Lv

denotes the Lie derivative along vM. This is the usual
dimensional reduction along the vector field vM.
Could there be some other ways to achieve closure? At

least for the first term (A3), we can make that term
disappear without requiring Lvε ¼ 0. To see this more
clearly, let us notice that a corresponding commutator term

sits in the supersymmetry variation of the (2,0) tensor
multiplet fermion ψ as

δψ ¼ … −
ie
2
ΓMΓABε½ϕA;ϕB�vM

and here we can see two ways for this commutator term to
vanish.
One is by just keeping one scalar field, say ϕ5, and

reduce supersymmetry by imposing the R-symmetry Weyl
projection

ΓA¼5ε ¼ ε ðA8Þ

and discarding the hypermultiplet. Of course, with just one
scalar field, there will be no nontrivial commutator term
½ϕA;ϕB�, but having to discard the hypermuliplet is of
course unsatisfactory.
The other way to get rid of this term is by taking vM to be

a null vector and imposing the Weyl projection

ΓMεvM ¼ 0 ðA9Þ

and again this commutator term will vanish. The advantage
of the null reduction is clearly that we can keep the full
tensor multiplet structure with the five scalar fields intact.

APPENDIX B: THE EUCLIDEAN M5 BRANE

So far we have discussed only the Lorentzian M5 brane.
But if we eventually would like to study the M5 brane on
say S6, then we will need to understand what the Euclidean
M5 brane really means in terms of its tensor multiplet
structure and its supersymmetry. So here we will clarify this
point. First we begin with what is familiar to us though,
namely the Lorentzian tensor multiplet, and then we seek a

ANDREAS GUSTAVSSON PHYS. REV. D 105, 046010 (2022)

046010-22



way to modify this so that we can allow a Euclidean
signature.

1. The Lorentzian (2,0) and (0,2) tensor multiplets

We begin with Lorentzian SOð1;5Þ×SOð5Þ⊂SOð1;10Þ
where we have the Dirac conjugate ε̄ ¼ ε†Γ0 and the
Majorana condition ε̄ ¼ εTC that in terms of Weyl com-
ponents reads ε∓†Γ ¼ ε∓TC and hence is compatible with
Weyl projection εþ ¼ 0. We then have the chiral (2,0)
tensor mutliplet

δϕþA ¼ iε̄ΓAψþ;

δBþ
MN ¼ iε̄ΓMNψ

þ;

δψþ ¼ 1

12
ΓMNPεHþ

MNP þ ΓMΓAεDMϕ
þA − 4ΓAηϕþA:

We may also consider the antichiral (0,2) tensor multiplet

δϕ−A ¼ iε̄ΓAψ−;

δB−
MN ¼ iε̄ΓMNψ

−;

δψ− ¼ 1

12
ΓMNPεH−

MNP þ ΓMΓAεDMϕ
−A − 4ΓAηϕ−A;

and if we put them together we can write a Lagrangian,

Lð2;0Þþð0;2Þ ¼ −
1

24
H2

MNP þ Lþ þ L−;

L� ¼ −
1

2
ðDMϕ

�AÞ2 − 1

2
μABϕ�Aϕ�B

þ i
2
ψ̄�ΓMDMψ

� þ i
8
ψ̄�ΓMNPΓAψ�T∓A

MNP;

that is invariant under both the (2,0) and the (0,2) super-
conformal symmetries where the corresponding supersym-
metry parameters satisfy

DMε
∓ ¼ ΓMη

� −
1

8
ΓAΓRSTΓMε

∓T∓A
RST:

These Killing spinor equations are compatible with the
Majorana conditions ε∓†Γ0 ¼ ε∓TC only if we require that

ðη�Þ†Γ0 ¼ ðη�ÞTC; ðT∓A
RSTÞ� ¼ T∓A

RST:

To see that we use ðΓMÞ† ¼ Γ0ΓMΓ0.

2. The Euclidean (2,2) tensor multiplet

We change to Euclidean signature SOð6Þ × SOð5Þ ⊂
SOð6; 5Þ by defining the Dirac conjugate as ε̄ ¼ ε†Γ. We
impose the 11d Majorana condition ε̄ ¼ εTC with that new
Dirac conjugate. In terms of Weyl components, this reads
ðε�Þ†Γ ¼ ðε∓ÞTC and we cannot impose the 6d Weyl
condition. We have the Euclidean nonchiral (2,2) multiplet

δϕ�A ¼ iε�†ΓΓAψ�;

δBMN ¼ ε†ΓΓMNψ ;

δψ� ¼ i
12

ΓMNPε∓HMNPþΓMΓAε∓DMϕ
�A−4ΓAη�ϕ�A;

where we have removed a factor of i from the variation
δB�

MN to make the variation Hermitian by using the
Majorana condition. We also multiplied HMNP by a factor
of i in δψ to make the variation compatible with the
Majorana condition with HMNP real. Because of this i,
there is a change of sign in the kinetic term for the tensor
field and the Lagrangian is

Lð2;2Þ ¼
1

24
H2

MNP þ Lþ þ L−

where the matter part looks identical with that of the
Lorentzian ð2; 0Þ þ ð0; 2Þ theory if we write the Dirac
conjugates as ψTC. But if we use the new Majorana
condition then it will look like

L� ¼ −
1

2
ðDMϕ

�AÞ2 − 1

2
μABϕ�Aϕ�B

þ i
2
ψ∓†ΓΓMDMψ

� −
1

8
ψ∓†ΓΓMNPΓAψ�T∓A

MNP

where we also multiplied TA
MNP with a factor of i, which is

in line with having the same factor of i multiplying HMNP.
We may notice that the chiral parts H�

MNP will be complex
fields, but the sum, HMNP ¼ Hþ

MNP þH−
MNP will be real.

This observation may be used for holomorphic factoriza-
tion of the partition function in Euclidean signature. We get
back to the (2,0) tensor multiplet by replacing ψ−†Γ with
ψþTC. Once we have done that replacement, we drop the
11d Majorana condition and impose the Weyl projection
ψ− ¼ 0. Then Lþ will become identical with Lð2;0Þ
[although we are now in signature SOð6; 5Þ]. We can do
the corresponding replacements for the (0,2) theory. These
two supersymmetries do not mix once we formulate the
theory in terms of ψTC. The supersymmetry parameters
satisfy

DMε
∓ ¼ ΓMη

� −
i
8
ΓAΓRSTΓMε

∓T�A
RST

where consistency with the Majorana condition implies
that

η�†Γ ¼ −η�TC; ðT�A
MNPÞ† ¼ T�A

MNP:
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APPENDIX C: THE MAJORANA CONDITION
IN VARIOUS DIMENSIONS

The 11d Majorana condition is

ψ̄ ¼ ψTC

where we define ψ̄ ¼ ψ†Γt. We will represent the 11d
gamma matrices as

Γt ¼ iðσ2ÞABδαβδ _α_β;
Γm ¼ ðσ1ÞABðγmÞαβδ _α_β;
ΓA ¼ ðσ3ÞABδαβðτAÞ _α _β:

The charge conjugation matrix is

C ¼ εABCαβC _α _β:

Hence the 11d Majorana condition is

ðψAα _αÞ�iðσ2ÞAB ¼ ψBβ _βεBACβαC _β _α:

The 6d chirality matrix is

Γ ¼ ðσ3ÞABδαβδ _α_β:

So if we define εþ− ¼ 1, then we find

ðψþα _αÞ� ¼ CαβC _α _βψ
þβ _β; ðε−α _αÞ� ¼ CαβC _α _βε

−β _β:

If we reduce to 5d then we have the spinor zero modes that
satisfy the above Majorana condition, but the chirality has
lost its significance so we choose to not display it when we
work in 5d language, so instead of writing ψþα _α, we will
just write ψα _α when this is a 5d spinor.
From

DMε ¼ ΓMη

we get

DMε
†Γt ¼ −η†ΓtΓM; DMε

TC ¼ −ηTCΓM:

Applying the Majorana condition on the left-hand side of
the first equation, we get

DMε
TC ¼ −η†ΓtΓM

and by identifying this with the right-hand side of the
second equation, we conclude that

η†Γt ¼ ηTC:

APPENDIX D: METRIC AND KAHLER
FORM ON CP2

Here we follow [7,14] and obtain the explicit form of the
metric and of the Kahler form on CP2. We begin by
defining S5 as a sphere that is embedded in C3

r2 ¼ jZ0j2 þ jZ1j2 þ jZ2j2

with the ambient flat space metric

ds2 ¼ jdZ0j2 þ jdZ1j2 þ jdZ2j2:
We define inhomogeneous coordinates

ζ1 ¼ Z1

Z0
; ζ2 ¼ Z2

Z0
;

and put

Z0 ¼ ρeiy

where

ρ2 ¼ r2

1þP
a¼1;2jζaj2

and

y ∼ yþ 2π:

We then get the metric on S5 as

ds2 ¼ r2
�
ðdyþ VÞ2 þ dζadζ̄a

1þP
ajζaj2

−
ζaζ̄bdζ̄adζb

ð1þP
ajζaj2Þ2

�

where

V ¼ i
2ð1þP

ajζaj2Þ
ðζadζ̄a − ζ̄adζaÞ:

If we parametrize

ζ1 ¼ fðχ;ψÞ cos θ
2
e
iφ
2 ; ζ2 ¼ fðχ;ψÞ sin θ

2
e−

iφ
2 ;

where

fðχ;ψÞ ¼ tan χe
iψ
2

then we get

ds2 ¼ r2ðdyþ VÞ2 þ ds2CP2

where

V ¼ 1

2
sin2 χσ3;

ds2CP2 ¼ r2
�
dχ2 þ 1

4
sin2 χðσ21 þ σ22 þ cos2 χσ23Þ

�
;
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and

σ1 ¼ sin θ cosψdφ − sinψdθ;

σ2 ¼ sin θ sinψdφþ cosψdθ;

σ3 ¼ dψ þ cos θdφ;

for which we find that

dσ3 ¼ σ1 ∧ σ2

and cyclically related relations. We define tan χ ≥ 0 so that
χ ∈ ½0; π=2� and we make the identification

ψ ∼ ψ þ 4π:

We define the vielbein

e4 ¼ rdχ; e1 ¼ r
2
sin χσ1;

e2 ¼ r
2
cos χσ2; e3 ¼ r

2
sin χ cos χσ3:

We then find that

F ¼ dV ¼ 2

r2
J

where

J ¼ e4 ∧ e3 þ e1 ∧ e2

is the Kahler form.

APPENDIX E: THE VIELBEIN COMPONENTS
IN LIGHT-CONE COORDINATES

In light-cone coordinates on R × S5, the vielbein has the
components

0
B@

eþ̂þ eþ̂− eþ̂i

e−̂þ e−̂− e−̂i

eîþ eî− eîi

1
CA ¼

0
B@

1 0 rffiffi
2

p κi

0 1 − rffiffi
2

p κi

0 0 Eî
i

1
CA

and its inverse is

0
B@

eþþ̂ eþ−̂ eþ î

e−þ̂ e−−̂ e− î
eiþ̂ ei−̂ eiî

1
CA ¼

0
B@

1 0 − rffiffi
2

p κî

0 1 rffiffi
2

p κî

0 0 Ei
î

1
CA:

The metric is

ds2 ¼ −2eþ̂e−̂ þ eîeî

and Eî denotes the vielbein on CP2. Since κi is a Killing
vector, we have the important identity

κiwij ¼ 0

where wij is the Kahler form. Here κ was denoted as V and
w ¼ dκ was denoted as J in Appendix D.
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