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We study dimensional reduction of M5 branes on a circle bundle when the supersymmetry parameter is
not constant along the circle. When the gauge group is Abelian and the fields appear quadratically in the
Lagrangian, we can always obtain a supersymmetric five-dimensional theory by keeping fermionic nonzero
modes that match with the corresponding nonzero modes of the supersymmetry parameter, and by keeping
the zero modes for the bosonic fields as usual. But a supersymmetric non-Abelian generalization can be
found only under special circumstances. One instance where we find a non-Abelian supersymmetric
generalization is when we perform dimensional reduction along a null direction.
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I. INTRODUCTION

There is a supersymmetric (2,0) Abelian tensor multiplet
in R!® which has a self-dual three-form, five scalar
fields and four real Weyl fermionic fields. We can put this
tensor multiplet on any six-manifold for which there exists
a nontrivial solution to the six-dimensional conformal
Killing spinor equation

(1.1)

Here M =0, 1, 2, 3, 4, 5 is a vector index on the six-
manifold that we will take to be Lorentzian, and & will then
be the supersymmetry parameter. Equation (1.1) can be
relaxed by turning on supergravity background fields. But
we will not study such a generalization here. So V,; here is
denoting a curvature covariant derivative that only involves
the spin connection and no R-gauge field is turned on.
The classical non-Abelian tensor multiplet is not known
and perhaps it does not exist. One approach is then to
consider the Abelian tensor multiplet on a circle bundle and
perform dimensional reduction along the circle. Then one
finds an Abelian 5d Yang-Mills theory for which one can
find a non-Abelian generalization. If the supersymmetry
parameter is constant along the circle, then it will survive as
a supersymmetry under dimensional reduction. Otherwise
the supersymmetry will be broken but one may then get a
supersymmetric theory by turning on a background
R-gauge field that will relax the requirement (1.1). But
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that changes the problem that one may want to study. So we
would like to analyze whether one can avoid turning on the
R-gauge field and somehow take advantage of the fact that
the 6d theory is supersymmetric.

One example that one may want to study is the M5 brane
on S° that one may conformally map to S' x Hs. If one
wants to study this problem without any background fields
turned on, then one finds that the supersymmetry parameter
will have a nontrivial dependence on S' in S! x Hs, and
dimensional reduction down to Hs yields a nonsupersym-
metric Yang-Mills theory that is quite difficult to study.
Being a nonrenormalizable theory it has no clear well-
defined perturbative expansion and there are not many tools
to study this theory and supersymmetric localization cannot
be used if the Yang-Mills theory one gets on Hs is not
supersymmetric.

In this paper we will study the following situation. We
assume that the 6d theory is supersymmetric on a circle
bundle with fiber coordinate u. We also assume that the
supersymmetry parameter is not constant along #. So under
dimensional reduction along u all supersymmetry is gone.
Thatis the case if we consider the bosonic and fermionic zero
modes. But what if we consider the bosonic zero modes and
some fermionic nonzero modes? Is there a consistent
trunctation of supersymmetry where bosonic zero modes
are kept such that supersymmetry exists in that 5d truncation?

If the fields appear only quadratically in the Lagrangian
so that the gauge group is Abelian, then there always exists
such a consistent truncation. To see this, let us schemati-
cally write the 6d Lagrangian as

Leq = (0¢)* +wdyr
where ¢ denotes bosonic fields and y denotes fermionic

fields. The supersymmetry variation is schematically on the
form
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op = ey, Oy = e0¢.

Then the supersymmetry variation of the Lagrangian is a
sum of terms on the form

0= 5£6d = Z 82¢8lll
and the sum vanishes since the 6d Lagrangian is super-

symmetric. Now let us make the truncation where we keep
the bosonic zero mode along the u direction,

bo= [ dup.

Its supersymmetry variation is

Sy = /duey/. (1.2)

Now let us assume that the supersymmetry parameter has
only two nonzero modes,

—iau

zaug_'_1 +e ey

e=e
for some real parameter a that depends on the geometry of
the six-manifold. This is the generic structure for any
solution of (1.1) on a circle bundle. Here subscripts denote

the mode number. Then the integral in (1.2) picks up
corresponding nonzero modes from v,

0o = w1 +e_ 1y
whose supersymmetry variations are
Oy = €110¢y.
Now let us check if the truncated Lagrangian
Lsq = (0po)* + w1 Ow_y +w_ 10y
is supersymmetric. We get
0Lsy = 252¢0(5+1W—1 +e_wy)

but this we can also write as

0Lsy = /du Z P poey.

Now let us go back to the 6d Lagrangian. If we expand ¢ in
its Fourier modes as ¢ = >, ¢, e, then we get

0=05Ley = Z Zazqﬁnei’lltSW,

and we know that this is zero since the 6d Lagrangian is
supersymmetric. Of course, if we integrate zero along the
fiber, it is still zero, so we have

0= /du5£6d = Z 26245,, / due™ ey .

If we then put ¢, = O for all n except for the zero mode ¢,
then this reduces to

0= z o / dugy = 6Ls,,

which means that the truncated Lagrangian, where
only ¢, is kept, is supersymmetric under the truncated
supersymmetries.

This general argument fails for the non-Abelian gener-
alization where the Lagrangian has higher order terms. For
instance if the 6d Lagrangian contains a cubic interaction
term of the form ¢ Ly _;yw_; and if we have a supersym-
metry variation of the form d¢,, =€, ,p., then the
variation of that term will contain a term of the form
e, 1w yw_w_; that should survive if the truncation down
to the modes ¢, and y,; were a consistent truncation. But
we will never get that term if we first truncate the
Lagrangian to the modes ¢, and . and then make the
supersymmetry variation since then we will put the term
¢ ow_1p_; to zero in that truncated Lagrangian. So the
truncation becomes inconsistent in general, when there are
higher order terms. However, there can be exceptions
where a truncated non-Abelian generalization can be found
that is supersymmetric.

This argument also shows that the critical term to analyze
in the supersymmetry variation of the non-Abelian
Lagrangian will be the terms that are cubic in the fermionic
fields. Typically these terms are the most difficult ones to
analyze since it usually requires a Fierz rearrangement to
see whether the sum of these cubic terms is zero or not. But
it is really important to analyze precisely these cubic terms
to see whether the non-Abelian Lagrangian is supersym-
metric or not. This will become more clear as we proceed
with our concrete examples.

In this paper we will study the M5 brane on R x $3
where we have the Lorentzian time along R. The super-
symmetry parameter depends nontrivially on the time
direction. First, in Sec. II, we perform dimensional reduc-
tion along the time direction and obtain a supersymmetric
Abelian Lagrangian. We then show that no non-Abelian
generalization exists if we insist on keeping all the super-
symmetries of the Abelian theory. In Sec. II A we reduce
the amount of supersymmetry and consider the smaller
tensor multiplet that has just one real scalar field. Here we
almost seem to find a supersymmetric non-Abelian
Lagrangian in 5d by using our truncation, but it turns
out to fail. While most terms cancel out nicely, there are
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cubic terms in the fermionic fields that arise upon a
supersymmetry variation and these have to vanish by using
a Fierz rearrangement, but these terms do not vanish in that
way. We then make a further Weyl projection that reduces
supersymmetry further, and then finally we are able to find
a supersymmetric Lagrangian. But then, in Sec. II B, we
discover that if we make a simple field redefinition, our
Lagrangian becomes identical with the Lagrangian that was
already found in the literature on S5 [1] and that was
derived from the M5 brane in [2] by turning on an R-gauge
field along the time direction.

We next consider our second example, in Sec. III, where
we consider a null reduction by following closely [3]. We
take our null direction as a combination of the Hopf circle
on §° and the time direction. We first obtain the Abelian
truncated theory and show that it is supersymmetric. We
next show that the Abelian theory does not immediately
generalize to the non-Abelian case, but if we impose further
Weyl projections, then we are able to obtain a non-Abelian
Lagrangian.

There are five appendixes. In particular, in Appendix A
we review a 6d formulation of non-Abelian 5d SYM where
one introduces an auxiliary geometrical vector field [4-6]
and present the closure relations that one gets for these
supersymmetry variations and it was this analysis that
originally led us to consider the two examples that we are
presenting in this paper. Namely these two examples are
following from making the two Weyl projections in
Eqgs. (A8) and (A9) respectively. The first Weyl projection
leads us to the time reduction and the small tensor
multiplet. The second Weyl projection leads us to the null
reduction.

II. M5 BRANE ON R x §°

The six-manifold R x S° can be conformally mapped to
S® if we assume a Euclidean signature. But here we will
assume a Lorentzian signature with time along the R
direction. Our first goal is to see whether we can derive
a supersymmetric theory on S from an M5 brane on
R x $3 without turning on an R-gauge field along the time
direction. The Abelian M5 brane on R x $° is well
understood. In fact one can generalize to any six-manifold
for which (1.1) has at least one solution. In that case we
have the following supersymmetry variations:

St = ielMy,
0Byn = gl yny,

1
51// = EFMNPEHMNP + FMFAEVM¢A - 4FA7’]¢A,

and the supersymmetric Lagrangian may be expressed as

1 i_ R
L=Lg— 5 (Vig*)? + EWFMVMU/ 10 (¢*)2,

where L is some Lagrangian for the self-dual tensor field
whose precise form will not be very important for us now,
since we will shortly reduce this Lagrangian down to five
dimensions. Here R is the Ricci curvature scalar on a six-
manifold. We will now specialize to R x S and write the
metric as

ds® = gyndxMdx" = —dr* + G,,,dx"dx".

To reduce down to S, we will represent the gamma
matrices in terms of five-dimensional gamma matrices
y™ and 74 as follows:

IN=ic’®@1®1,
"m=0¢'®y"®1,
M=sQ1Q.

The 6d chirality matrix is
r=6'@1®l
and € and y have opposite chiralities
e = —¢, Iy =vy,
and they are Majorana spinors in 11 dimensions,
7 =y Ciq,

£ = 8TC1 1d,

where the Dirac conjugate is defined as r = w'T”. We may
solve (1.1) by separating its components as

81‘8 =TI, vmg =T (21)

We use the relation

R
rmv,V,e=— 7€

where R = Zr—? is the Ricci scalar on S° with radius r, to find

the solution
£ = e e 2r .
& F

We also get

Here
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Perhaps the best way to see that this solves (1.1) is by
simply plugging in this solution into (2.1) to see that these
equations are both satisfied. Let us now study the Majorana
condition more closely. The 11-dimensional charge con-
jugation matrix is antisymmetric,

and we will represent it as
Clld =& ® C ® C,

where C and C are antisymmetric charge conjugation
matrices in 5d, and € is the antisymmetric tensor. At this
point, things get clearer when we write out all the spinor
indices explicitly though, so let us do that here,

(Ci14) aaionpp = €avCapCip-

Then the Majorana condition becomes

(@) i(0®)"y = e CpuaCiy

We will define the antisymmetric tensor ¢,, such that
e, =1
and then we get

<W+ad>* — w+ﬂﬂcﬁacﬁd’

(g—ao't)* — g_ﬂbcﬁacﬁg’,‘
From now on we will drop the 6d chirality indices =+ as they
play no significant role in 5d. In 5d we do not really have a
Majorana condition for the nonzero modes. What we have
instead is a relation between £ and F,

EPB.

PP P

(5(1{1)* — Caﬁca (J':'aa)* — CaﬁC&

These relations follow easily from using the explicit form
of our solution, Eq. (2.2). But now we would also like to
derive the second condition from the first one by taking the

complex conjugate. Taking the complex conjugate of the
first equation, we get

£ = (Cop)*(Cyp) (FIP.

We may now multiply by charge conjugation matrices on
both sides to get

CapCapE = CapCfy(Cp,) (Cyy)* (FTT)".
We shall require that

Ca/i(cﬁy)* == —52.

The reason why we put the minus sign here will become
clear later on. We can now introduce the inverse

Ccrr = (Cﬁy)*-

We use Cyp and C% to lower and rise spinor indices by
always acting from the left,

Va = aﬂwﬂ7 o= Caﬂl//ﬂ‘

So we define for example

() = e,

We may now find the following relations:

C = C7Cypp = 55, cl=crc, = —5j.
We have the Fierz expansion of two anticommuting
spinors,

l//al//ﬂ — Acaﬂ + Bm(},m)aﬂ + Cmn(ymn)aﬂ_

It corresponds to the following expansion of the tensor
product of two spinor representations:

44=1,®5, ® 10;,.

The subscripts a and s stand for antisymmetric and
symmetric representations, so we must have that C%
and (y™)* are antisymmetric, whereas (y"")% is sym-
metric in a and f. Our 5d spinor notations follow
closely Ref. [1].

The time direction in Euclidean R x S° is noncompact if
this shall be related by a conformal map to S°. But in
Lorentzian signature that we will consider here, the time
direction can be taken to be a compact circle with radius
2zr. We will refrain from discussing any physical impli-
cations of having a compact time direction. From a purely
mathematical viewpoint of classical supersymmetric field
theory, having a compact time direction simply means that
we may expand the fields in Fourier modes in the
time direction by assuming that time has a periodicity
t ~ t + 2zr. For fermions there is as always a possibility of
having either periodic or antiperiodic boundary conditions.
Since the supersymmetry parameter depends on time

through the exponential factors e®>* which is antiperiodic
as t goes to ¢ + 2zr, we conclude that fermions shall have
antiperiodic boundary conditions if we want to have a
supersymmetric theory. The bosonic fields must be periodic
and therefore only even modes are kept for the bosonic
fields, whereas for the fermionic field only the odd modes
are kept. And if only the odd modes are kept, it means that
there is no fermionic zero mode present.
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But we do not think that we will be able to find a non-
Abelian theory if we keep infinitely many Kaluza-Klein
modes, neither do we think this is really the right thing to do
when the gauge group is non-Abelian because then we shall
have instanton particles that are expected to fill in missing
modes when we truncate the modes to a finite number of
modes. Now instead of truncating to the fermionic zero
modes as one normally does in usual dimensional reduc-
tion, we will truncate to the lowest lying odd Fourier modes

i X was
= e + e .
vl <0> ‘ <0>

Then the fermionic field has the same type of expansion as
the supersymmetry parameter ¢ and there is a chance that
this will preserve some supersymmetry. There is no
Majorana condition on these modes but instead there is
a relation between the two modes,

()(a('x) ko Ca/j C&/'} é«[i/} )

The supersymmetry variations can be derived easily by
truncating the supesymmetry variations for the Abelian M5
brane. We get

St = —ilT Ay — iF AL,
6Am = —iST}/m)( - iFTymC’
1 2i
5)( = E},mngan - ymTAgvm(pA - 7ZTA€¢A7

1 2
8 = SV FF = "IV + = AT,

The corresponding supersymmetric Lagrangian is given by

1
L=2F,
2 AN2 1 T +
—p(d’ ) +E()H(—C {).

1 a2 Lo iotom
Z(Vmcﬁ ) 32 Vm;(JrZCV V.l

The natural choice is to take &€ to be an anticommuting
parameter. In that case the variations of the bosonic fields
become Hermitian, and we may write these variations as

ot = —iE Ty + iy AL,
5Am = _igf},m)( + iZTymg’

1 2i
5)( = E},mngan - 7mTAgam¢A - 7ITA€¢A

We may also write the Lagrangian as

1 1
L= ZF%’H’! - E (vm¢A)2 + iZTymvm)(

2 an 1
r2(¢) oA

One may now easily verify that this Lagrangian is invariant
under these supersymmetry variations by just using the
Killing spinor equation

i
vmg - 5 ymg'

This result is encouraging because it provides our first
example of a dimensionally reduced theory that has
supersymmetry although the 6d theory has a supersym-
metry parameter that depends nontrivially on the circle
along which we reduce. Having a supersymmetric
Lagrangian, we may also expect that these supersymmetry
variations close on some symmetry variations of the
Lagrangian.

However, we will now see that no non-Abelian gener-
alization of this Abelian Lagrangian can be constructed that
is supersymmetric. To show this we will proceed iteratively.
First we just replace all the derivatives V,, with gauge
covariant derivatives D,, = V,, —i[A,,,*] and assume all
fields are in the adjoint representation. Then of course the
Lagrangian will not be supersymmetric. We then find
correction terms such that we cancel the unwanted terms,
but such correction terms will also generate new terms that
we also need to cancel by adding further correction terms.
This can be analysed fairly systematically. In the end, we
will find a fully corrected Lagrangian and corresponding
supersymmetry variations but still that Lagrangian will not
be supersymmetric. Because of the apparent uniqueness of
each term we find in each iteration step, we consider this to
be a no-go proof.

First, if we just replace V,, with D,, everywhere, then we
get the following nonvanishing variation of the Lagrangian:

1
0L = =1 " T EF s ¢*] = 2Ty "E[P* D]
where we define the gauge covariant derivative so that

[Dm’Dn]qb = _i[me ¢]

We next cancel both these terms by adding to the
Lagrangian the following coupling term:

Ly =y, ¢
We cannot imagine any other term that can do this job. But

by adding this term, some new terms will be generated as
well, and so now we get
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5L+ 5L, = 7 EBPIED, (91, 47]) + A EE G 4]

plus some cubic terms in y that we will not need to analyze

further here. Now these two terms can be canceled by

modifying the supersymmetry variation by adding the term
s = 5T 4]

to dy. But that will also generate another term
8Ly = iy tEl[¢". ¢°). ¢

but that we can easily cancel by adding the term

1
£2 = _Z [¢A’ ¢B]2'
But even when taking into account all these non-Abelian
correction terms, we will still end up with a nonvanishing

variation
(G+8)(L+ L) = (‘_f —r + ?)x*r’wﬂqﬁf‘,rﬂ
L reeign g

plus those cubic terms in the fermionic fields that we did
not analyze here since it is already clear that no non-
Abelian Lagrangian can be found. There now is no further
terms that we can add that could cancel this nonvanishing
variation. This finishes our no-go proof.

A. The small vector multiplet

We may be more successful with finding a non-Abelian
generalization if we make our tensor multplet smaller. To
this end we will impose the Weyl projection

PE=E (2.2)
on the supersymmetry parameter, thus reducing the
amount of supersymmetry by half. This will reduce the
R-symmetry as SO(5) - SU(2)g. But of course, by
selecting the fifth direction in (2.2), we will just break
SO(5) - SO(4) = SU(2) x SU(2) but the SU(2)  will
not rotate the supercharges, it will be a flavor symmetry.
The original Abelian tensor multiplet breaks into one
smaller tensor multiplet with just one real scalar field
¢ = ¢ and a fermionic field that is also subject to the Weyl
projection

vy =y.

Then the remaining fields are four real scalars, and another
fermionic field subject to the opposite Weyl projection

2y = —y. These fields form a hypermultiplet. We will
discard this hypermultiplet and only focus on the small
tensor multiplet.

Let us now introduce some index notations for the
R-symmery. We denote a spinor as

aa __ W?
v = l//aA :

The flavor index A is a two-component spinor index that
shall not be confused with the SO(5) vector index A. We
define the gamma matrices 74 = (7', 7°) as

=1 , o= .
oA 0 0 -5

The supersymmetry parameter that satisfies 7°€ = £ has a
nonvanishing component &£;,

== (s)

The antisymmetric charge conjugation matrix is repre-

sented as
c B <8” 0 )
o 0  esp '

(E8)" = Cope 7,

We have

(8) = Cope ). (2.3)

The Killing spinor equations are

vmgl = L}/n’lé‘lv

i
2 vm‘FI = _Z}/mfl’

where the second equation can be obtained from the first by
complex conjugation.

The supersymmetry variations for the small tensor
multiplet are

o = _i(gl)T){I - i(}—I)TC],
8A, = —i(EN) Y mxr — 1((F D) rul,

1 2i
oy = EYmHEIan —y"ED, ¢ — 751¢~

and the supersymmetric Lagrangian is

1
C_—F2
_4 mn

1 2
——(D 2 _ = a2

2( m¢) r2¢

. . 1 .
+ i) Y Doy + 5 Cen)

The closure relations for these supersymmetry variations
are nonstandard,
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(62,81]¢p = 2iL,¢p,
[52, 51]Am - 21£LAI11 + DmA,

. 12 } . 1
(65,6111 = 8iLlpy, + 7141])(1 —i(3A7 + 3B,y - CquJYM) (7 Vo + —r)(1>

16 4

2

. ~ = i = ~ " 1
+8ilpy — 7A1JCJ - ;Bm/?’mCJ - 1(3141] + 3Bp1J7p - CquJJ’pq) (7 V& - ;C1>,

where

1
Lyyr=B"/'V,xy;+ vaBnIJV'"")(J
i
2r
- 1 - -
LS =B"’'V ¢, + vaBnljyng:J =B"/V,¢;.

=B" Vs + 5= Cont’v"x1

Here the various coefficients are defined as

EENT =AY+ B, iy + Co ir™,
‘S,I(]:J)Jr = AJI + ijl}/m + Cmnjlymn’

where
J 1 T
A I = __(8.]) 517
4
1 .
BmJI = _Z(g./)H/mgl’
1 ;
Cmnjl = g (g./) rymngh
and

1
AJI = _Z(fJ)Tglv
- 1
B, = _Z(fJ)TYmgh
~ 1
Cmnjl = g(]:J)Tymngl'

There are the following differential relations between these
coefficients that one may derive by using the Killing spinor
equations,

vaJI - 0,
2i
vamJI = CanIv
r
~ I~
vaJI = _;ijl’

- I~
vanJI = ;AJIGmn.

These closure relations reflect the fact that there are
many more fermionic degrees of freedom than there are

I
bosonic ones, so closure on the fermion does not give back
the same fermion translated or gauge transformed, but
instead it maps us back into a linear combination of y;
and ¢;.

Let us now turn our attention to the non-Abelian
generalization. The only candidate Lagrangian appears
to be

1
L=_F
4 mn

i) 7" Do + 5 00) s+ ) T8

1 2
~5 (D,,¢)* - pff’z

since its supersymmetry variation is given by 6L =T
where T is used to denote the cubic terms in the fermionic
fields,

T:= e()h)W(hM’] + i(ZI)Tan(_ie)[‘SA'n’)(l]
— —ie(E)) I ) = (ra) % () (™) s

We should then ask whether 7 is vanishing by a Fierz
rearrangement. It turns out to not vanish, so the Lagrangian
is not supersymmetric and therefore we conclude that no
non-Abelian generalization exists with this amount of
supersymmetry.

We can reduce the amount of supersymmetry so that the
R-symmetry is further reduced from SU(2)p down to
U(1), by imposing the Weyl condition

(53)1151 =¢&.

Then there is just one complex supersymmetry parameter
& = &,. With this projection, one finds that the component
x> does not enter the supersymmetry multiplet as its
supersymmetry variation becomes zero,

5){2 == 0,

and so we define y := y; for which we find the supersym-
metry variations
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op = —iEly —iFT¢,
0A,, = —iE v,y — iFy.,C.

I
Sy =5y EF
X 2}, mn

2
— €D, p— L E.

r
The Lagrangian is!

1
L =—_F?
4 mn

1 2
—--(D 2 _ = 42
2( m¢) r2 ¢
, 1
+ iy y" D,y + 5}(*}( +ex'lx. 4]

The Killing spinor equation is

i
Vmé’ = ;ymg

Originally we had

Fi = 821C“/}(5/1})*v G = 821C"ﬁ()(/1})*-

Now we define F := F§ and {* == {§ so with €2 = 1, we
get the relations

Fa — Caﬂ(gﬂ)*’ Ca — Caﬁ()(ﬂ)*.
Let us now again analyze the cubic terms in the fermionic

field that arise upon a supersymmetry variation of this
Lagrangian. These terms are

T :=e(y) [y,00] +i(y) y"(=ie)[6A,.. x],
= —ie(E) P (") = () s () (r™) sl

We expand
LG = AT+ (7B + () C
and then
T = 4ie(E)"[5pA = (v ) y By L
Here

'However, we still have the Lagrangian for y, as well,

1
Ly =i(x2)"y"Dyys + Z()(z)T)(z +e(x2) [r2. 9,

but this Lagrangian is not supersymmetric since the correspond-
ing cubic term T upon a supersymmetry variation will not be
vanishing, but it is now consistent with supersymmetry to
truncate to y, = 0 since the supersymmetry variation of y, is
vanishing. So then we will simply get £, =0 and we retain
supersymmetry of £, trivially by putting y, = 0 as a truncation
that is consistent with supersymmetry.

1
Aca — _ Z (yea)* ac’
20
Bce = _1 aa\x a . pc
m 4()( )(ym) ﬂ)( .
So we have

T = ie(gy)*)(yc()(aa)*)(ab
_ ie(gy)*(ym)yﬂ)(ﬂc()(ﬁa>*(},m)éexeb‘

We now see that we got back the same expression as the one
we started with, but with an overall minus sign, so 7 = —T,
which clearly shows that 7 =0 and the Lagrangian is
supersymmetric.

B. A dual description with an R-gauge field
By making a few changes of viewpoint we may recover
the theory one gets by turing on an R-gauge field and make
contact with the results in [1]. We relabel the spinor field
and its complex conjugate field as

X =y, {=ws,

and similarly

E:gl, .7::62

Then we may state a Majorana condition as

Wi = eucaﬁ(‘l/;)*

that we get from
Ca — Caﬂ(){ﬂ)*‘

Moreover, the Killing spinor equations for y and { can now
be grouped together into one Killing spinor equation for the
Majorana spinor &;

i

vmgl = Z (63)/]/,”5].

So there is a map between the theory we get by turning on
an R-gauge field, and the theory we get in this entirely
different way by keeping nonzero modes for the fermionic
field and not turning on any R-gauge field.

In one viewpoint, y and { are nonzero Kaluza-Klein
modes who receive an extra mass simply by the fact that
they are nonzero modes. In the other viewpoint, y and {
form two components in an SU(2) , Majorana spinor which
is a zero mode spinor upon dimensional reduction with an
R-gauge field turned on and the mass of these fermions is
induced from that R-gauge field in the six-dimensional
theory. Both ways result in the same 5d theory, but the 6d
theories seem to be very different.
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Once having realized this kind of dual description, we
can proceed and use all knowledge that we already have of
this 5d theory from say [1]. Following [1], we may take the
supersymmetry variations off-shell,

54] = _i<€1)-i-l//]7
5Am = _i<51)+yml//17

1 i
oy = Eanglan —y"E10nd — B () &1+ €D,
. 1
6D’ =2(&)) (i}’mvm% + 5 (0'3)1L1//L>
1
- (63)11(8K)TWK

. 1
- 6/(Ek)" <Wmvmll/1< + 5 (53)KLWL> ,
where the second line in the variation of D’/; removes the

trace part, where we notice that ¢° is already traceless. The
Lagrangian is

1 1
L=-F2 ——(V, ¢)>
4 mn 2( nl¢)
1DI DJ i 3 .IDI 5 2
TP I+Z(G)I J¢_W¢
i . 1
+ 5 (wi)' Y"Vuw + ar ) () w,.

Integrating out D’; amounts to putting

i
DIJ == - (0'3)1j¢-

(2.4)

The non-Abelian generalization can now also be easily
identified from matching our result with [1].

We should stress that the correspondence between keep-
ing a nonzero fermionic KK mode and turning on an
R-gauge field only works for the small tensor multiplet. We
were not able to couple this multiplet to hypermultiplets in
our approach. But of course the coupling to hypermultiplets
can be obtained by turning on an R-gauge field along the
time direction upon dimensional reduction. So that means
that this correspondence is not one-to-one. Finally, there are
many 5d theories that are not obtained from the M5 brane
such as those with hypermultiplets in other representations
[1] whose UV completion may be five-dimensional rather
than six-dimensional.

II1. NULL REDUCTION

A general null reduction of the M5 brane was studied in
[3]. Here we will stay with our example of R x > with
Lorentzian time along R for simplicity, although we believe
that our results can be generalized to any Lorentzian six-
manifold without any new conceptional difficulties, beyond

those we will address here. We will perform the dimen-
sional reduction along the null direction that is formed out
of the time direction and a circle fiber direction on S> when
viewed as a circle fiber over CP?. However, once we
specify a circle fiber, there are two null directions, x™ and
x~ and we need to make a choice. We will make the choice
such that we perform the dimensional reduction along the
x~ direction. This choice of null direction is correlated with
some chirality choices for the supersymmetry parameter
that we wish to make, as we will now explain.

We start by writing the metric on R x $° as a metric over
the base-manifold R x CP?. The M5 brane on (a Hopf
circle bundle over) R x CP? was first studied in [7]. We
start by writing the 6d metric in the form

ds®> = r*(dy + x;dx')* — di* + H;;dx'dx/

where the five coordinates x™ on S° are separated as y ~
y + 2z for the circle fiber, and x’ for the base manifold
CP?, and «; is the graviphoton whose nonvanishing
curvature components are

2
Wis = Wa; = —
i2 372

where the hats on these indices indicate that they are
tangent space indices of CP?. Here we use G;; to denote the
4d metric tensor on CP? whose inverse is denoted G.
Further details regarding this Hopf fibration over CP? can
be found in Appendix D.

We then also split the indices in the 5d Killing spinor
equation

. i .
V&% = Z (7m)a[}5ﬁa
on $3 into two equations
(3.1)

associated to the fiber and the base manifold respectively
(and from now, we suppress the spinor indices). To analyze
these equations further, we need expressions for these
covariant derivatives in terms of spin connections and we
need to express the 5d gamma matrices and in terms of 4d
gamma matrices. To this end, we start by writing down
expressions for the vielbein

el = dt,

e’ = r(dy + k;dx"), el = E?jdx/,

and its inverse

e; = 0, e

e; = EV5(0; — k;0,).

J J
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Using these vielbeins, we may expand the 5d gamma

matrices y,, in terms of 4d gamma matrices 7; = E';y; and
1234

yi=y as follows:

ry=1rs Vi=Vit Ky,
and then we use standard circle bundle expressions for the
5d covariant derivative acting on a 5d spinor y,

}"2 ..
sz@w—gwﬂw,
2

~ T -
Viy =V — gKisz}’klll/ +

r o
ZWUJ’J Y,

where ﬁ,. denotes the covariant derivative with respect to
the metric on the 4d base space. We are now ready to
express (3.1) in 4d quantities,

r? i i
8),5 - §W”y 5 = E]/(c/‘,
2 kl r . i
V& - g KWy &+ ZWUV’}"S = 5(7’:’ + k7)€,

where now all quantities are 4d quantities, and so we have
dropped the tildes for notational simplicity. We may also
express the second equation more simply as

i

r .
&= yiyE
2r}’z Wiiv'r

D. =
i€ )

where we have introduced the curly derivative
Dy =Vy — INTERTS

But let us first analyze the first equation. Plugging in the
explicit form of w;;, this equation reads

1 on s
9, = 5(7,12 + 734 +iy)€.

Of course the spinor £°¢ has four different indices a. To see
the meaning of these various indices more clearly, we will
introduce a spin notation a = (s, s,) where the spins s,
and s, are defined by

[ ‘s
—y12E =5,E, PAE = 5,€E.

2
Let us first consider the spinor component (s;,s,) =
(4.+) where + represent spins +3. The Killing spinor
equations then reduce to

06— ¢

y 2 Dlg — O

Moving up to 6d, we have the conformal Killing spinor
solution

i3y, g 3iy
£=en'"E + eI,

This is the singlet solution. The other cases are (s, s,) =
{(=.=).(+,=),(=,+)} that form a triplet. For any of
these components, the first Killing spinor equation
becomes
i
0, = 55
and then the 6d solution becomes

£ = e TVE eV,

but the Killing spinor equations for £ and F now become
more complicated. We introduce light-cone coordinates

1
xt=—(t+ry).

V2

Expressed in these light-cone coordinates, the singlet
solution is

i

= oA T g g AT
and the triplet solutions are
iy iy
e=e? E4 e F.

Since these triplet supersymmetry parameters do not depend
on x~, the corresponding supersymmetry survives upon
dimensional reduction along x~ without any need to turn
on an R-gauge field. While this is nice, the price we have to
pay is having a more complicated Killing spinor equation.
We will study the singlet solution instead. This has a
simpler Killing spinor equation, and it gives us an opportunity
to study a situation where the supersymmetry parameter
depends nontrivially on the fiber direction along which we
dimensionally reduce. But again the question arises, along
which direction we shall reduce. Let us start by recalling the
6d Weyl condition ['e = —¢ that we will write as
[OT128%e = —¢. (3.2)
As we mentioned in the Introduction, we also want to impose
the Weyl projection

Tyev™ =0

where v is now to be either one of the light-cone directions,
v = 5%, So the above Weyl projection amounts to
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F:tE':O

where

1 1
. - (rt :I:;Fy>

so we may also express this Weyl projection as

e =7F e¢. (3.3)
Now by combining (3.2) and (3.3), we get

234 = e,
The singlet supersymmetry parameter has I''*3*¢ = —¢ and

therefore we shall take v = 6 and perform the dimensional
reduction along the x™ direction. Let us write down the singlet
solution again as

2 - 2 -
e=er*E4+e " F.

Then upon dimensional reduction, we shall expand the
fermionic field in the same modes as

2 — V2 -
szj(+e‘72x ¢.

w=e
Of course we do not know the non-Abelian supersymmetry
variations for the M5 brane. The strategy therefore will be to
start with the Abelian supersymmetry variations for the M5
brane, and reduce these along the x~ direction by using the
above mode expansion for the fermionic field. These steps
are in parallel with what we have already done when we
reduced along the time direction, although the reduction
along x~ requires a lot more computations. Once we have
obtained these Abelian supersymmetries and Lagrangian,
the generalization to the non-Abelian case will be examined.
We start by replacing derivatives with gauge covariant
derivatives and examine the term in the variation of the
Lagrangian that is cubic in the fermionic field. But this term
is vanishing, not because of some Fierz rearrangment,
but simply because, as we will see, the supersymmetry
variation of the following combination of gauge fields is
vanishing,’

5(Al - KiAy) == O

and it is precisely this combination that enters in the kinetic
term for the fermionic field

ix'yDix.

’In 6d we also have the gauge fixing condition A, v¥ =A_=0
that can be seen as a consequence of Ay = Byyv".

So when we vary the gauge potential in this term, there will
be no cubic term generated. Let us now show this in more
detail. Let us start with the 6d supersymmetry variation

5AM = —il/_/FMNé"L]N
from which we obtain
ir

5Ai:__ U

K;We,
\/Z "4

SA. = —ije.

Then

r

Di = Di_KiD = Di__KiD .
w = Y < 7 +>w

The important observation is now that

r
5Di = —ied Ai - —KiA =0.
)

For this computation we have used
Fi == F &, Fi == fi +

and then

~ r
Fi = FZF +7Kl‘l—‘ .
+ + \/i +

We have
Fi:L<F’i1F> Fi:L(F’irFy)
and then we get
r,_=r1%.

We impose the Weyl projection
Ie=0
and then we get
T e={T_,I'.}-T.T_)e=-2e
where we notice the metric is
ds® = —2ete” + elel.
Now having shown that §D; = 0 is, as we will see below,

just one crucial step among many other steps towards
obtaining a supersymmetry non-Abelian Lagrangian.

046010-11



ANDREAS GUSTAVSSON

PHYS. REV. D 105, 046010 (2022)

We begin with assuming the gauge group is Abelian and
first study the supersymmetry variation of the tensor gauge
field in 6d,

SHynp = =3i0y (WL ype)

for an anticommuting supersymmetry parameter, for which
we have the relation

Elyny = (T CTyny)" = =y (=CTynC™1)(=C)e
= —ylyne
where we used the 11d Majorana condition. We would first
like to show a correspondence with the fermionic equation

of motion and self-duality of H,;yp. In 6d, this correspon-
dence is almost trivial to show. Namely, we have

i _
(6Hynp)™ = — 5 Vo (T T yype)

and by using the identity FQFMNPFQ =0and Ve =Ty,
we get

o
(6Hynp)™ = _EVQWFQFMNPE

and we see that this variation vanishes on the fermionic
equation of motion 'V, = 0.

We would now like to show this correspondence between
self-duality and the fermionic equation of motion again, but
now in light-cone coordinates, following closely [3]. To
this end, we define

gl] = Gl/ —_ r\/EFiJrKj
where
Gij = Hij+’ Fi, =H;, _,

and we want to show that the self-dual part vanishes,
(69,-]-)Jr =0, on the fermionic equation of motion. So we
first need to obtain the explicit expressions for the super-
symmetry variation and for the fermionic equation of
motion in light-cone coordinates. We begin with the
supersymmetry variation. We have

6G;; = =2iV,(yT'je) — i0, (yTe),
6F;y = —i0;(yT'y_e) +i0, (pTi_e) — i0_(pT; ¢),
where V,; are 4d covariant derivatives. We expand
iv2 V2 -

V2 — 2 - - 2
P NN F, w=e " y+e *¢,

where

3i i
Vig = EK'I((/‘, a+5 = —755,
and corresponding relations for 7. We also expand
- r
Ly =5 + %Kir+—v

Fij e flj — r\/EKifj(F+ —_ F_)
Then we get
8G;j = =2iV, (71, T &) — ivV2rV, (7T, _&k;)

We may now notice the appearance of a curly derivative
from

where we assume that 0, «; = 0. So then we have
We have

o /- ir _
5F,‘+ = —lvi()(r‘+_g) + %K,’8+O{F+_£)

and then we get

or if we define

Wij = V,-Kj - v]'K'i
then we can write this as
(o F ir _ P
5g1/ = —ZID,()(FJF+E) - 7§ZF+_(€WU - la+()(r‘,]€)

We are now interested in extracting the self-dual part of this
variation. To do this, we first recall the Weyl projection

r-&=o.

We have

r, - (r ill“> r = g )
=— -T, |, =— ).
+ \/i t - y \/E

The Weyl projection can be written in the following
alternative forms:
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e=¢ T, £=E

Expressed in terms of 4d gamma matrices, we get

o~ ir
8G;; = 2V2iDy vi€— 75)( Ew;j —

We can further write this as

i8+ ()(*Vijg)-

i
Dix*[rh.vi1€ -

V2
1 ir
——— - —
. \/i)( Vij NG
Here we have rewritten this in terms of 6d Weyl compo-

nents so that now all that remains of the '_€ = 0 Weyl
projection is

6Gi; = 10, 1"7;€

¥ Ew

ije

€ =-€
which amounts to that y;;€ will be self-dual, and also y;;y,&
will be antiself-dual simply because y,€ is satisfying the

opposite Weyl projection

7€ = i€

as {yx.y} = 0. Also since w;; is self-dual, we can now
extract the self-dual part of the variation,

i . .
((Sgij)+ = ﬁpk)(*?kﬂjg — 0.y 7;’/5

1 ir
iy E— Y Ew.
P2t e T Rk M

We can also write this in the form

5Gi; 2\/_15’:*ij§+\/_5’:*§%,+15 (F*rii0)
and then
i, ir _, .
(6Gy)" = —75’: 7ij7*Dil +ﬁf Swij + iF7y;0,.8
+—7:*}’le

rv2

that we can write as

r

i, i
~ 55 (ykvkc:— fzmu;c) 5

We now use the identity

2
g = ?]/Ugwij

to rewrite one term as

1
/2 Vi

and then we decompose

_L *a.. klgw
8\/2)( }/ljy kl

}’iﬂ’kl = {7[]'7]/“} - Vklyij-

Noting that {y;;, 7*'} = =86/ when acting on self-dual wy,,
the first term gives rise to a term

that cancels that corresponding term in 6G;;, and we are left
with
i * [,k
6G;; = EDM [V, vil€ =0, x'yi;€ + sﬁx My

and consequently

i
(6G;))*" = \7291(;(*7"7/1-1-5 10,0 yi;€ + 8\/51 Myi€.

We can write this as

(6G;;)*

i r

=— —)(*}""w/d) vij€-
V2

We now wish to show that this vanishes when the fermionic

equation of motion is satisfied. Taking the complex con-

jugate of what is inside the parentheses, we get the
requirement

‘ r
r'Diy = V201 = g7 wa = 0
and indeed this is (a Weyl component of) the equation of

motion.
Let us complete the supersymmetry variations. We have

oF,. = —i(vioz@ - ﬁxim@s))
= —iD;(¥€)
D)

and, quite interestingly,

ir
6‘7:1'1' - —7§

X EW;;.
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This is interesting, because it is zero, up to a term that is
proportional to w;;. This is nothing like the usual super-
symmetry variation, and in fact 6D; = 0. And trivially

(6F )~

since w;; is self-dual. We do not even need to use the
fermionic equation of motion here.

We will now derive a 5d Lagrangian from the self-dual
tensor field in 6d dimensions, following closely [3]. We
start by noting that

Higs = BB (Hys — r/OH, ;).
. 3r 3r
Hysp = ERELEN (g —7§Hij+’<k + ﬁHu— ,
H}_;_; :EiiHH-—’
or if we define
Fij=H;_, Gij=H;j, Fip =Hj,

then

Hi;p = Ei?Ej}(Gij - r\/EFH-Kj)’
Hyj2 = E5E(Fij = rV2F k).
Hiyi = ERELEY ( H T (Fy -G
ik = ijk+ﬁ( i — Gijki )
Hiy . = EGFy,.
We have the Bianchi identity
38[1'ij]+ - 8+H,-jk - O (34)

and we have the self-duality relation

H-

ijk = &k Hize
We define
&kite = &jkl
so we have
U |
Hi]k_ &5k Hy; -

that we can write as

3r (F
vzl

The Bianchi identity (3.4) then becomes

Hj + = Gyj)ky + €' Fry = 0.

3r

38[1(;]]{] = —8+ <ﬁ (Flj _Gij)Kk+8ijlel+>' (35)

We define
gij:Gij—r\/EFi+Kj, Fij:Fij—r\/EFi+Kj7

that enable us to express (3.5) in the following simple form:

E'ijleigjk = —28+Fl+

and from

Hipe = e W3

ijF = 2 ij+ kil+

we get, by noting that e;ﬂkﬁr =—&3110e = ~&jkite =
—€ij1is

1 1

ki
g[/ 581‘/ gkl? ft/ 581‘] ‘Fkl

The next step will therefore be to replace straight capital
letters with curly ones,

3[,(gjk] + r\/EFj+Kk)

+0, <\%(.¢

because then we can dualize and get

1
ij = Gij)Ke +38ijlel+> =0
. r ..
- D,G" + 7€ljlei(Fj+Kk)

As a consequence of this equation, we have

+

~(DiG"K, + 0, F' 1k =0

that we can also write as

. |

—-D;(G"k;) + EG'lWiz + O, F =0

but the second term is vanishing, as one can see by
replacing G with G/ which is antiself-dual so contracting

with a self-dual w;; gives zero. And moreover k'w;; = 0. So
we have

Dy(G7k;) = k0, F',

which will be a useful relation that we will use later. We
may also write
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. r .. r R
_'Digll 4 ﬁgljlei(FjJrKk) + 7§K,~8+}"” 4 8+F1+ —0.

We have the Bianchi identity
38[['ij]_ - 3_H,-jk

but if we put _ = 0 upon dimensional reduction, then this
reduces to

ijkl _
el 81'ij = U.

Again replacing straight capital F with curly F, we
first get

ek (F e + F\/iFj+Kk) =0
and then by using self-duality this becomes
D, Fil + \/Lze’jk’D,-(FjJrKk) =0.
But the nicest way to express this same equation is as
s"fk’Dl-]-"jk =0.
We have the Bianchi identity
20iF; +0.F;; =0.
Replacing F with F it becomes
2D;F . + 0. F;; = 0.

Finally, we return to

3r
H;j + 5 (Fij = Gij)kx + €' Fry =0
and apply the Bianchi identity ¢/¥'9,H,; = 0. We then get
DIF,, = ——Fwi
i+ = =W
+ 2\/§ ]
where we define
-
D; = D; — —x;0
\/z +

We thus have two types of equations of motion,

. roo r 21
—D,-g’l +E€UHD[(F/+K;{) +7§K,-8+]:” +56+F1+ = 0,
. r ..
PFi =T =0

and in addition to these, we have the self-duality equations

1
Gij = —Eé’ijklgkz, Fij= —&; M F .

The equation

. r ..

D, Fi + Ee’flei(FHKk) =0 (3.6)
surely looks very much like an independent equation
of motion, but actually it is not. It is a direct consequence
of £M9,F ;; = 0 together with the self-duality equation of
motion for F;;. That means we do not need to demand that
Eq. (3.6) follows from an action upon the variation of a
gauge field as one normally would expect. Now one may
ask some questions about the number of components. Let
us be very brief and just notice that self-dual H;yp has 10
components, just as do self-dual F;; and F;  together,
as 6 +4 = 10. So we do not expect G;; shall be part of the
supermultiplet upon dimensional reduction. Only F;, F;
should be part of the vector muliplet. It then seems
reasonable to assume that the antiself-dual G; j shall be
viewed as a Lagrange multiplier field that is imposing
self-duality on F;;, rather than as a dynamical field
that contributes to additional degrees of freedom. We
now make the following ansatz for a gauge field
Lagrangian:

LA = bf”g,/ + CFi+FH_ +d8ijk]Fiij+K'l + €8ijleiij+Kl

and treat G;; (assumed to be antiself-dual from the outset),
A;,and A, as independent fields that we shall vary to derive
the classical equations of motion. Then these equations of
motion become

1
ij 5

(br\/i—l—Ze)Di(gi/Kj) —2¢D'Fi —dF ;;w’ =0,
—2bD;G™ + (brv/2+2¢)k;0, G™ +2de™ D, (Fy k)
+2d0, F™k;+2cd, F™, =O0.

F MFu=0,

We now write the second relation as
—2¢D;Fiy + (brv/2 + 2e)x;0, F' | — dF jw' = 0.

By now requiring the combination D; = D; — ﬁkia | to
appear, we get the following equations:

br\/§+2e_ br\/§—|—2e_ r
T2 A 26 V2
d__r <y
b V2 b ’
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These equations have the following unique solution:

up to one overall constant. Fixing that overall constant to be
1/4, the Lagrangian is given by

EA (.7:1 g,]+Fl+Fl+—ES ./,T Fk+Kl>

where we have also replaced F' with F in the graviphoton
term, which we can do freely by just noting that x;x; = 0
upon antisymmetrization in j and /. The supersymmetry
variation of this Lagrangian is

i * 1] l *q 0] l * i
&CA:_EX ]/]((/’le]‘l’z)( ]/]ga+f,]+§)( (C./‘,DFi+
ir iy ir ..
———=*EGYw;; — ——=)*EFIw,;.
VAN A

The fourth term is identically zero because G;; is anti-

self-dual.
Next, we obtain the supersymmetry variation

1 I‘*MNP

oy = 1 eHynp

in 4d. To this end, it is advantageous to first recast this in
flat space indices,

| TN
—F']_e‘H?j; +

1 _na
oy = ZF”+€H?}$ + 1

1 +n.
ST ey
Then it immediately follows that
1”,‘j 2 1~,’ J2
5W21FF€f,]+§FF 8Fi+

which in terms of 4d gamma matrices reads

1
5 yIEF -~y EF;,.
X = 2\/— +

Then let us look at each term in turn in the fermionic action

i . i

Lr==x"YDy——y"P_0

F 2)(}’ iX \/i)( +X
+1 *p ir * ijP

r)( +X 16)( Vo _YWij.

The variation of the first two derivative terms becomes,
after using two types of Bianchi identities,

1 R 1 .
S(Lh + Ly = 5 XVEDIF ;=1 ED'Fy,
i, 1 .
— S YIED, Fi — —— Y IEF .
A N

The first line is exactly canceling corresponding terms in
0L ,. The variation of the two last mass terms gives

1
S(LY +LY) = ——X7EF ———x M EWFy.

16[

Ideally we had wanted these to cancel against the last term
in 6L As

SLYT = — T, .
A 5 \/5)( J

We do not seem to get a perfect cancellation, but let us note
that we can rewrite the last term in §(LY + £1Y) as

r .. ..
Lk Ij’ kI _ ki, ij gwi_]:
16[;{(@ 7Y =) Ew Fu
*EWZ ]:z 5kl ”5Wi F
2\/— i 16\/_){}/ 4 JjY okl
1 i,
2 EW T+ —yyIEF,
2[ N

The first term cancels against 5L}’ and the second term
cancels the last term in 5(L}, + £4). The final result is that
we have the following nonzero variation of the Lagrangian:

oL = —];)(*yiEFi+. (3.7)
Since the 6d metric inverse ¢”/ is equal to the 4d metric
inverse H'/ and since the index i in F;, = H;,_ can be
extended to indices + and — without changing anything
since H,,_ and H_, _ are zero anyway, we can view i as
a 6d index contracted by the 6d metric. This means
that we can write this result in terms of 6d flat space
indices as

5C——_sBl, W H; -
r\/* I+=

and by using the self-duality relation

Hysp = =€ Fig 2

we can further write this as

5L = —=e TN T25B,  Hpy.

2
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Now we can change to 6d curved space indices and then
this becomes

5L = _r;ﬂguszi OB,

where we define /% = —gl/k+= We now wish to show
that this can be expressed as a total variation of some
topological term of the form

_ Lijkl
‘Ctop =& HijkBl+

up to some constant factor. When we expand its variation,
we find two types of terms,

6£t0p = 38ijklai58jk81+ + eijlel-jkéBH.

The first term here can be further be written as
ijki 3 ijkl
—38 5Bjk(9iBH_ = —58 5Bijil+

where we dropped a couple of total derivative terms. Now,
if we change to flat space indices we see the emergence of
an antiself-dual H; 51 = G 3 and so what this term becomes
is something that is proportional to 68"/ §;; and this is zero,
because 6BY ~ y*y" € and we have that y/£G;; = 0 since
G,j is antiself-dual and & is Weyl. One way to see this is by
noting that y/Ew;; is nonzero where w;; is self-dual. This

means that we are left with only the second term,
6£top = gijleijkéBl+

as we wanted to show. So by adding the topological term
i
‘Ctop = E gljleijkBl-‘r

we find that its variation cancels the variation 6L in
(3.7) above.

Let us now study the matter part supersymmetry. The
Lagrangian is

i i

, 1
Lr=-x"v'Dy - PO —x'P
Y e X+ X P
i 10 ir i Y,
- P yv—— kv v,y — =k .
T AWt R A L

The supersymmetry variation is
: 4 20 "
Sy = 't EDPt — —1E¢
r

where we define

D, =D, k0, 0, = \/Li(m —a.).

Using this generalized derivative on the fermion, and the
expansion where

0 V2
X = T)(

we find that the Lagrangian simplifies to

i
2

. i 1 i
Lr=-x"vDy——=x"P_0 —x"Poy——xy*P_y.
F XrVEix \/5)( X+ r)( +X 2})(7 X
We thus need to carefully define the operator D; acting on
bosons and fermions respectively, as

Dip = 0igp — éfm
r

V2

Similarly then when this generalized derivative acts on the
supersymmetry parameter, one then finds the following
Killing spinor equation:

Dy = Dy — —=k;0.y + iky.

Dig - 0
We then get the supersymmetry variation

i

B
r

2i 2
+ r—éff‘&bf‘ - X'rEgt.

)(TTAgaer,A

Two terms cancel by using

r

[D;, Djlp = NG

Wija+¢

and
y2E = —i€, rHE = —ik,
and we get
SLp = —iy T EDIPA + g 1 ITAEP.

Let us now turn to the scalar fields’ Lagrangian

1 2
Ls= D) (Dig*)* - 2 ().
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Using the variation
ot = iy'tAE

we find that 6Lg + 0Ly = 0.
Before turning to the non-Abelian case, let us first
summarize the Abelian case. We have the Lagrangian

L= ‘CA + ‘Cmatter + 'Ctop

where

1 3 ) roo..
Ly = 1 (f”gij +F L F = ﬁgl'lkl}—ijFHKl)’
i

i, .
Lonatier = EZ*WD[)( - \/E)(*P_a_,_)(

1, ir . .
TP = TP

16
1 2
= (DY =S @)

~ N

Ly = —=€"H ;B
Jr
® o2 e

and the supersymmetry variations

5¢A = i;{*rAS,
by = — e F, - e, — pereD gt - H g
22l T M
ir
5141' = ——=K; *5,
NG X
0A, = —iy*€&,

6F; = —iDi(y*E),
ir

V2
ir

8G;; = 2V2iDyy ;€ —75)(*5%]‘ — 10, (1)

We notice that the supersymmetry variation 6G;; is antiself-
dual only on-shell, which naively means that imposing the
antiself-dual constraint on §,; breaks supersymmetry. On
the other hand, we may also notice that the supersymmetry
variation of 6F;; is self-dual off-shell. We can always
decompose F;; = F ZJ; + F;; into self-dual and antiself-
dual parts as these transform in different representations
under the 4d rotation group and then we can impose the
constraint that the antiself-dual part is zero, F7; = 0 by

6fl] = }(*(‘:Wij,

hand as a constraint that we impose on top of the
Lagrangian. At this stage, this constraint cannot be derived
from the Lagrangian. This constraint does not break
supersymmetry. From the coupling term ~F;;G" in the
Lagrangian we see that this constraint implies that only the

antiself-dual part of G,; enters in the Lagrangian, which is
to say that G, is constrained to be antiself-dual and then we
can change our viewpoint and take that constraint as a
starting assumption and derive F;; = 0 as an equation of
motion.

To see whether a non-Abelian generalization is possible,
let us start by replacing all derivatives with gauge covariant
derivatives,

Di¢A = Di¢A - KiD)'¢A’
D;p* = 0,9" - ie[Ai7¢A]v
qu’)A = 8),45“ — ie[Ay, e

in the supersymmetry variations. Then by noting that
[Diij](:bA = _ie[fijv¢A]
we get
e *q 0]
oL = X 7JTA€[~7:U7¢A]'

To cancel this variation, one might be tempted to add the
following term to the Lagrangian:

AL = —r Tl

But if we do that, then that term will upon a supersymmetry
variation generate a host of new terms, such as
XV EDi, ¢ (3.8)
but we cannot cancel this term by anything. The only
candidate term (D;¢*)? does not work because the super-
symmetry variation of the gauge potential A4; is vanishing,
so it cannot give rise to something that is proportional to
x¥7:€. So we cannot cancel the variation (3.8) and therefore
we shall not add any extra commutator terms to the
Lagrangian.
Instead we shall modify the supersymmetry variation of
G;; by adding a term’

A5gij = g W*VijTA& ¢A]-

3This is in accordance with the Lambert-Papageorgakis theory
[4], where

SHynp ~ - + [ @0 T yypoev®

if we notice that the only surviving combination of gamma
matrices can be I';;, _, which simply means that the commutator
only enters in H; 4 OF in other words g,-j.
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If we could make the gauge choice A, = 0 and then just
forget about 6A , altogether, then since 6.A; = 0, we would
have no cubic term in the fermionic fields that could appear
when we vary the gauge potential in the fermionic kinetic
term. But imposing the gauge choice A, = 0 is unsatis-
factory since this gauge choice breaks supersymmetry by
itself. We can avoid this problem of gauge fixing by
reducing supersymmetry by another half. We then impose
the Weyl projection

E=E.
Then we have the supersymmetry variation
o> = iy €

and we see that the combination A, —¢° is a super-
symmetric invariant,

5(A, —¢’) =0.

We then obtain a supersymmetric Lagrangian by simply
adding commutator terms that involve ¢° for each place
where there is a gauge field A . Such commutator terms are
of course gauge invariant by themselves. But we can
repackage these terms into a new derivative

D, =D, +ie[$.

where D, =0, —ie[A,,*]. One may worry that an
ordinary derivative acts on a fermionic field, but that is
just because of how we have set up our Lagrangian. We
have already taken into account all those curvature cor-
rections when we analyzed the Abelian case and those
curvature corrections will not be affected in any significant
way by the non-Abelian generalization. We now obtain a
full supersymmetric non-Abelian Lagrangian by replacing
every occurrence of 0, with D_ as we defined it above
(with an ordinary derivative 0, rather than a curvature
covariant V). There is now at this stage no need to impose
any gauge fixing condition on A,.

The B A H term is straightforwardly generalized to the
non-Abelian case as B A H* where a is the adjoint gauge
group index. The supersymmetry variation of B,-+ is
similarly generalized by just attaching that adjoint gauge
group index as 6B¢, = —iv/2(y*)*y;E. We also assume the
duality relation is generalized to the non-Abelian case
as H;l]k = gijle;l+'

As we did not put any component of the fermionic field
to zero here, as we did for the case of time reduction, we do
not expect our 5d Lagrangian will be possible to derive by
turing on an R-gauge field in some dual formulation.
In particular, we do not expect the closure relations will
be of a standard form.

It would be interesting to see if our null reduction here
can be generalized to the generic null geometries of [3]. If
that is the case, then that would mean that we would have a
supersymmetric five-dimensional Lagrangian description
for M5 branes on any Lorentzian geometry that has a
Killing vector along a null direction.

IV. DISCUSSION

For any supersymmetric Abelian theory on a circle
bundle, we have shown by a general argument that we
can always obtain a corresponding supersymmetric
Lagrangian in one dimension lower by keeping nonzero
KK fermionic modes. We have demonstrated this explicitly
for the Abelian M5 brane on R x S° by first reducing along
the time direction and next along a null direction.

The main problem we would like to focus on however is
not the Abelian case, which is somewhat trivial, but the non-
Abelian generalization. A non-Abelian generalization of the
MS brane Lagrangian may not exist. We have also found that
itis very difficult to find a non-Abelian generalization of the
dimensionally reduced theory when we keep a nonzero
fermionic KK mode. But this problem is due to the fact that
our reduction is in general not consistent with supersym-
metry. So even if there had been a non-Abelian Lagrangian in
6d we would still have troubles in general to find a
corresponding supersymmetric Lagrangian in 5d in this way.

Nevertheless, we have seen that a non-Abelian
Lagrangian could be found by reducing the amount of
supersymmetry sufficiently much for the two cases of time
and null reductions on R x $°.

It would be interesting if our result can be generalized to
arbitrary null geometries since then we would have a large
class of supersymmetric 5d Lagrangians that might be
helpful to get a better understanding of the non-Abelian M5
brane theory as we then can make use of this supersym-
metry to quantize these 5d theories. It would also be nice if
one could recover the Lagrangian in [8] as a special case
from such a more general supersymmetric Lagrangian.

In our dimensional reduction we keep nonzero KK
modes for the fermionic fields and zero modes for the
bosonic fields. One may want to gain some intuition for
what this means by putting M5 branes on R'# x §' and
reduce down to R'*. Then to relate to our work, one may
impose an antiperiodic boundary condition for the fermions
around the S'. If we assume this, then we have only the odd
KK modes for the antiperiodic fermions and only the even
KK modes for the periodic bosons. By looking at the theory
at energies below the second KK mode, dimensional
reduction could amount to keeping bosonic zero modes
and the first excited nonzero fermionic KK modes,
although this dimensional reduction would not be as good
as usual dimensional reduction since we would never get
very far from the second KK mode if we consider
excitations above the first KK mode, so the validity of
such a dimensional reduction may be subject to some
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criticism. Nevertheless, such an example may provide some
intuition for the dimensional reduction that we have studied
in this paper. However, this is not really the kind of
situation that we have studied in this paper, and the intuition
this flat spacetime example may provide us is quite
misleading. If we impose antiperiodic boundary conditions
around S' then all supersymmetry is broken, since in flat
space, the supersymmetry parameter is constant along S'.
The supersymmetry preserving boundary condition will be
the periodic boundary condition and then we should keep
the fermionic zero mode and study the usual dimensional
reduction.

The upshot of this example is that we cannot use much of
our flat spacetime intuition to understand the dimensional
reduction that we have studied in this paper. We need to put
the M5 brane on a curved spacetime that removes the zero
mode around S' in the supersymmetry parameter. In a
curved spacetime there is no clear cut relation between
energy levels and KK mode numbers when we compare
different kinds of fields. One example that we considered
was dimensional reduction on R x S down to S°.
Unfortunately this is a subtle example from a physics
viewpoint, since dimensional reduction is along time and
moreover, time is naturally noncompact. Nevertheless, the
supersymmetry parameter has an oscillatory behavior along
time in Lorentzian signature in this example and we can use
this fact to obtain a 5d SYM theory on S°. Although we
kept a nonzero KK mode for the fermionic field, we ended
up with the same 5d Lagrangian as we would get if instead
we had started with a 6d theory with a background R-gauge
field turned on along the time direction chosen so that the
supersymmetry parameter has a zero mode and we perform
usual dimensional reduction. This example indicates that in
curved spacetime there may not be a simple correspon-
dence between the KK level and the energy level as there is
in flat spacetime. The energy level for different fields may
involve different kinds of curvature corrections and super-
gravity background fields, and it may be that a nonzero
fermionic mode has the exact same energy as a bosonic
zero mode so that these different modes can be related by
supersymmetry.

Inspired by a conjectured relation between 5d max-
imally SYM on R'# and M5 branes on R'# x §' [9,10],
one may ask whether some 5d YM theory could also
capture all of a corresponding M5 brane theory on a more
general U(1) bundle geometry. But to generalize the
conjecture in [9,10] to U(1) bundles, one needs a further
specification in curved spacetimes because we may have a
supersymmetric M5 brane for either a periodic or for an
antiperiodic spin structure around the U(1) isometry
circle. We will thus have to distinguish between these
two different boundary conditions or spin structures on the
U(1). When the spin structure is even, the supersymmetric
boundary condition is the periodic boundary condition
and if the supersymmetry parameter is constant along the

U(1) direction, then we can perform usual dimensional
reduction by keeping only the zero modes of bosonic and
fermionic fields and arrive at the SYM theory that was
discussed in, for instance, [11]. When the spin structure is
odd, the supersymmetric boundary condition is antiperi-
odic and the usual dimensional reduction removes the
fermionic modes. We get a purely bosonic YM theory in
5d. However, in this paper we have shown that it is
possible in some cases to get a supersymmetric 5d YM if
instead we keep the first nonzero fermionic modes. Which
of these two 5d theories (if any) would correspond to the
non-Abelian M5 brane for the case of an antiperiodic spin
structure? It seems difficult to generate the missing
fermionic KK modes from a purely bosonic YM theory
by quantizing the fluctuation fields around its instanton
particles. In a supersymmetric YM the fermionic KK
modes arise as fermionic zero modes when one quantizes
the fluctuations around an instanton particle. One
might speculate that perhaps the supersymmetric 5d
SYM theory that we have constructed by performing a
null reduction could capture all of the non-Abelian M5
brane theory with an odd spin structure, but this remains to
be seen.

We have motivated our route to get from the Abelian M5
brane to the Abelian 5d SYM that has a unique non-
Abelian generalizations that under certain circumstances is
also supersymmetric. The next question is of course
whether we can use this non-Abelian 5d supersymmetric
YM theory to get information about the corresponding
non-Abelian M5 brane theory. We should not claim that
the 5d theory is the non-Abelian M5 brane. First, this
depends on whether the conjecture in [9,10] is correct, and
second whether that conjecture can be generalized to other
geometries such as those that we have studied in this paper.
Still one may ask a more modest question, whether one can
quantize the 5d theory that we have obtained. A similar
question has been studied in [2,12] (and in many papers
following these two seminal works) where one studied 5d
SYM on $° and computed its partition function by using
localization. A match with corresponding dual supergrav-
ity computation was found, which suggested that this
location method seemed to give the M5 brane partition
function. For our null reduction, since we have a super-
symmetric 5d theory, perhaps we can apply the localization
technique also on this 5d supersymmetric theory. However,
we need to impose at least one self-duality constraint by
hand, on either F;; or G;;. The question is whether it is
possible to handle this constraint in a way that is consistent
with such a localization computation. Another way to
approach the quantum theory is by using the method of
discrete light-cone quantization. That amounts to deriving
a corresponding quantum mechanics Lagrangian on the
instanton moduli space that one may subsequently try to
quantize [13]. However this approach will be difficult to
carry out if the instanton moduli space is too complicated.
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APPENDIX A: A 6D FORMULATION
OF 5D SYM

There is a 6d formulation of 5d SYM where one
introduces a vector field »™ and requires all fields to have
vanishing Lie derivatives along that vector field [4-6]. We
did not make explicit use of this 6d formulation of 5d SYM.
But it was this formulation that originally motivated us to
search for consistent supersymmetric truncations, and the
two cases that we have studied in this paper can be at least
intuitively quite clearly understood by looking at this
formulation of the theory where they emerge as the
Weyl projections (A8) and (A9) respectively.

The 6d supersymmetry variations look like a non-
Abelian generalization of the Abelian M5 brane, but of
course there is a catch. Namely we do not have closure
relations satisfied for these variations, unless two terms
vanish, namely the terms in (A3) and (A4). Let us present
this in detail. The supersymmetry variations are given by

S — iy,
8Hynp = 3iDp(ETyny) + eElynpol™ [y, ¢4]02,
5AN = l.g'FNpl//UP,

1
51// = EFMNPEHMNP -+ FMFAgDM¢A - 4FA7’]¢A

ie
- EFMFABS[QbA, ¢B]’UM.
Here
Dy* = Oy — ie[Ay. ¢*] + V4 PP

where V), is an R-gauge field, and
1 arrst A
DMS = FMi’] - §F I FMeTRST’

_ _ 1_
DM8 = _’YFM - g&'FMFRSTFATfR}ST. (Al)
Here ™ is a Killing vector field and £, denotes the Lie
derivative along this Killing vector field. We will impose
the gauge condition
which is a very natural gauge condition if we think on A,; as

ByvN. Now this correspondence is at present unknown to
us for the non-Abelian case where H ;yp is all that we have.

We would like to know how to express the theory in terms of

some non-Abelian gauge potential B,y but at present we do

not have such a formulation. Nevertheless, the gauge

potential will be assumed to satisfy the gauge condition (A2).
We define the 6d chirality matrix

I — 012345

in flat tangent space and we assume that the spinor and
supersymmetry parameter have opposite chiralities

Ty =vy, e = —e.

We use 11d gamma matrices where I, denote spacetime
gamma matrices for M =0,1,...,5 and 'y denote five
transverse space gamma matrices for A = 1, 2, 3, 4, 5 and
these anticommute, {I'y,,['y} = 0.

For the closure computation of these supersymmetry
variations, we define

SM = gr'Me
and the gauge parameter
A = —igl pIMegtv?

and we assume that e is a commuting spinor, since that
simplifies the closure computation a bit yet without
imposing any restrictions.

The superconformal algebra in curved space is

82 = —ilg — 20 — 2eT4ByRAB 4 §

gauge

where

i
AB _ ' AB
R = —T"¥,

ST R = 2iath,

and

W¢A = 2’ WHMNP =0

are the Weyl weights.

As always with closure relations, we can express these in
terms of conventional Lie derivatives Lg, or in terms of
gauge covariant Lie derivatives Lg. These are related as

—ilgpt = —iLg" —iep*, AL — iSMVAE PP,
—illgy = —iLgy — iely, Al — L%SMVAMBFABW,
—ilsHynp = —iLsHyyp — ie[Hyyp, A,
—ll]_5AM - —iSNFNM
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where Al = iSMA,,. We thus see that from g we get Ly plus some extra gauge transformation and R-rotation.
If we assume that € is commuting, then we find the following closure relations:

S = il g — disnd® — 4iETMBgP — ie[gh, Al,
8 Hynp = —ilsgHyyp + 3iDy (ST (Hypr — 6 T pr))

. _ ie _ _
- 4ZSTD[PHMNT] - eeMNPQRserse[DRfﬁA, ¢A]UQ - 58FV€8MNPQUVWbFUV/aUQ

_ . 4 _
+ 3eel pIMe[H yngv? — Fyy, ¢*] — ie[Hyyp, A] + Eﬁv(grABFMNPe)[¢Av 9",

5
Py = —ilgy — 2i1"1€§1// — i BelBy — ey, A]

3i

1
+3 ST, <rP Dpy + ZFRSTFAWT;@ST —iely Ay, ¢ oM >

1
+ 2ic9BT I8 <FPDPI// + ZFRSTFAI,/T,A;ST —iely Ty, pA oM > ,

(SZAM = —lu_5AM + DM(—I.E'FNFAEQSA'UN) + iSTFTM - l'ST(HX}NT + 6T?4NP¢A)UN + l-EH(E'FMFASQ’)A).

Apart from the term

S LU ETyype) [, 7] (A3)
in °H,,yp and the term
i, (FTyTAeg) (A4)

in 5°A,;, we can now obtain closure up to a gauge trans-
formation with gauge parameter A = —iel",, e oM if
certain equations of motion are satisfied. Closure on
H,yp requires the following equations of motion:

Hypr = 6¢" Thpr =0, (A5)
Hynov? — Fyy =0, (A6)

and closure on A, requires the equation of motion
Fry = (Hypyr + 6Tyyyp)0" = 0. (A7)

By adding 0 = Hypy — 64T py t0 Hijyyy + 6T npd" we
get Hynr = Hiny + Hynr and (A7) reduces to (A6). Of
course the presence of the terms (A3) and (A4) means that
these 6d supersymmetry variations do not close, unless both
these terms vanish. One way to make these two terms vanish
is by requiring the Lie derivative vanishes on every field and
also on the supersymmetry parameter, £,e = 0, where L,
denotes the Lie derivative along »™. This is the usual
dimensional reduction along the vector field v™.

Could there be some other ways to achieve closure? At
least for the first term (A3), we can make that term
disappear without requiring £,e = 0. To see this more
clearly, let us notice that a corresponding commutator term

sits in the supersymmetry variation of the (2,0) tensor
multiplet fermion y as

Sy =...— %FMFABe[qﬁA,qﬁB]UM

and here we can see two ways for this commutator term to
vanish.

One is by just keeping one scalar field, say ¢°, and
reduce supersymmetry by imposing the R-symmetry Weyl
projection

Mg =¢ (AB)
and discarding the hypermultiplet. Of course, with just one
scalar field, there will be no nontrivial commutator term
[¢*, #P], but having to discard the hypermuliplet is of
course unsatisfactory.

The other way to get rid of this term is by taking v" to be
a null vector and imposing the Weyl projection

Cyer =0 (A9)
and again this commutator term will vanish. The advantage

of the null reduction is clearly that we can keep the full
tensor multiplet structure with the five scalar fields intact.

APPENDIX B: THE EUCLIDEAN M5 BRANE

So far we have discussed only the Lorentzian M5 brane.
But if we eventually would like to study the M5 brane on
say S, then we will need to understand what the Euclidean
MS brane really means in terms of its tensor multiplet
structure and its supersymmetry. So here we will clarify this
point. First we begin with what is familiar to us though,
namely the Lorentzian tensor multiplet, and then we seek a
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way to modify this so that we can allow a Euclidean
signature.

1. The Lorentzian (2,0) and (0,2) tensor multiplets

We begin with Lorentzian SO(1,5)xS0(5)cSO(1,10)
where we have the Dirac conjugate & = ¢'T” and the
Majorana condition € = £’ C that in terms of Weyl com-
ponents reads e7'T" = 77 C and hence is compatible with
Weyl projection e = 0. We then have the chiral (2,0)
tensor mutliplet

¢+A l8FA
6Byy = iElynyt,

1
—TMNPeH | v p + TMT4eDy ™

Syt =
LD

— 4 pptA.
We may also consider the antichiral (0,2) tensor multiplet
S = ey,
6Byy = ielyny,

1
Sy~ = —TMNPeH  p + TMTMeDyp~4

— AT A=A,
2 no

and if we put them together we can write a Lagrangian,

1

L20)+02) = 51 —Hynp + L+ L7,
1 1
[ — _E (D)2 - EﬂAB¢iA¢iB

_|_ 2WiFMDMW + 8 WirMNPFAWiT:F?VP’

that is invariant under both the (2,0) and the (0,2) super-
conformal symmetries where the corresponding supersym-
metry parameters satisfy
1
Dyet =Tyn* - grArRSTrMﬁT,fg‘T.
These Killing spinor equations are compatible with the
Majorana conditions e¥TT? = £¥7C only if we require that
()"0 =

()C (TRsr)" = Thsp-

To see that we use (I')" = M0,

2. The Euclidean (2,2) tensor multiplet

We change to Euclidean signature SO(6) x SO(5) C
S0(6,5) by defining the Dirac conjugate as & = £'T". We
impose the 11d Majorana condition € = &’ C with that new
Dirac conjugate. In terms of Weyl components, this reads
(65)'T = (¢7)TC and we cannot impose the 6d Weyl
condition. We have the Euclidean nonchiral (2,2) multiplet

5¢:I:A lgj:lr*l—*A :i:’

SByn =€ TTyyy,

Syt = ]_’2FMNP e Hyyyp + TMTAT Dy, A — ATA g4,

where we have removed a factor of i from the variation
8Biy to make the variation Hermitian by using the
Majorana condition. We also multiplied Hy;yp by a factor
of i in Sy to make the variation compatible with the
Majorana condition with H,,yp real. Because of this i,
there is a change of sign in the kinetic term for the tensor
field and the Lagrangian is

1
[,(2,2) o HMNP + LY+ L

where the matter part looks identical with that of the
Lorentzian (2,0) + (0,2) theory if we write the Dirac
conjugates as w!C. But if we use the new Majorana
condition then it will look like

1 1
ﬁ:k: E (DM¢:EA) ZﬂAB¢iA¢iB
l 1
2 l//:Fq FFMD l// 8 WJZTFFMNPFA i_TMNP

where we also multiplied T4y, with a factor of i, which is
in line with having the same factor of i multiplying H y;yp.
We may notice that the chiral parts Hs;yp will be complex
fields, but the sum, Hyyp = Hi;yp + Hyyp Will be real.
This observation may be used for holomorphic factoriza-
tion of the partition function in Euclidean signature. We get
back to the (2,0) tensor multiplet by replacing y~'T" with
wTC. Once we have done that replacement, we drop the
11d Majorana condition and impose the Weyl projection
w~ =0. Then L% will become identical with L,
[although we are now in signature SO(6,5)]. We can do
the corresponding replacements for the (0,2) theory. These
two supersymmetries do not mix once we formulate the
theory in terms of w’C. The supersymmetry parameters
satisfy

Dye™ = Ty = STy e Ty

where consistency with the Majorana condition implies
that

T =—nTC. (Tifyp)" = Tiive-
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APPENDIX C: THE MAJORANA CONDITION
IN VARIOUS DIMENSIONS

The 11d Majorana condition is

w=y'C

where we define = yT". We will represent the 11d
gamma matrices as

= i(az)Agégég,
" = (o) 5(r") 5,
I = (67)85(z4)%;.
The charge conjugation matrix is
C = eapCopCy-
Hence the 11d Majorana condition is

(WA(I&)*i(GZ)AB = l//B/}/}‘C"BA C/}aC/}d'

The 6d chirality matrix is
T = (o%)" 055
So if we define e, _ = 1, then we find
<W+ad>* = Caﬁc&[}w+ﬂﬂ’ (E_ad)* = Caﬂcdﬁg_ﬁﬁ‘
If we reduce to 5d then we have the spinor zero modes that
satisfy the above Majorana condition, but the chirality has
lost its significance so we choose to not display it when we
work in 5d language, so instead of writing %, we will

just write w** when this is a 5d spinor.
From

DMS = FM”
we get
DME'TFI = —ﬂ%FIFM, DM€TC = —l’]TCFM

Applying the Majorana condition on the left-hand side of
the first equation, we get

DMgTC = —V]TFIFM

and by identifying this with the right-hand side of the
second equation, we conclude that

;,Ifr*t — 17TC.

APPENDIX D: METRIC AND KAHLER
FORM ON CP?

Here we follow [7,14] and obtain the explicit form of the
metric and of the Kahler form on CP?. We begin by
defining S$° as a sphere that is embedded in C3

r2 — |Z0|2 + |Zl|2 + |ZZ|2
with the ambient flat space metric
ds? = |dZ°]2 + |dZ']? + |dZ2]2.

We define inhomogeneous coordinates

0-2. e-%
AN AN
and put
ZO = /)giy
where
2 r
= 2
L+ 100¢7
and
y~y+2m.

We then get the metric on $° as

a jra arb j7a j7b
dS2 — r2 ((dy+ v)2 + dé’ dé’ C g dé’ dé’ )

L3107 (1+ 2,0

where

14 (gedZe — Zedge).

21+ 3, I5P)

If we parametrize

Cl = f()v/’ l//) Cosge% 4*2 — f(}l/, l//) Sing e_,'g’

where
fOry) = tange?
then we get
ds* = r*(dy + V)* + dsgp.
where
V= %Sin2 103,

1.
dst,, =1 <d;{2 + sin? y(6? + 63 + cos2;(o'§)> ,
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and

o1 = sinf cosydp — sinydo,
0, = sin@sinyde + cosydo,
03 = dy + cos Od,

for which we find that
d0'3 = 61 AN (72

and cyclically related relations. We define tan y > 0 so that
x €0, 7/2] and we make the identification

W~y 4.

We define the vielbein

ro.
e* = rdy, el = S singor,
2 T 3 _ I
e :ECOS)(UQ, e :ESIH)(COSZG::,.

We then find that

where
J=e*rneP+el A e?

is the Kahler form.

APPENDIX E: THE VIELBEIN COMPONENTS
IN LIGHT-CONE COORDINATES

In light-cone coordinates on R x S°, the vielbein has the
components

T + + 1 L=k;
e, e _ e 0 vaki
ol i el r

e, e _ ;| =01 ki
e, ¢ e'; 0 0 E',

+ . + + 1 — e
ety et e™ 0 -7k
- - - _ T e
ey e e; | =(01 Bk
i, i i, :
e (A €5 0 0 El;
The metric is
ds? = —2ete™ + éle!

and E' denotes the vielbein on CP2. Since «; is a Killing
vector, we have the important identity

K'iWij =0

where w;; is the Kahler form. Here x was denoted as V and
w = dk was denoted as J in Appendix D.
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