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3Centro de Física Fundamental, Universidad de Los Andes, Mérida 5101, Venezuela
4Illinois Center for Advanced Studies of the Universe Department of Physics,
University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

(Received 21 November 2021; accepted 3 February 2022; published 14 February 2022)

We investigate several hydrodynamization times for an ensemble of different far-from-equilibrium
solutions of the strongly coupledN ¼ 4 supersymmetric Yang-Mills plasma undergoing Bjorken flow. For
the ensemble of initial data analyzed in the present work, we find that, with typical tolerances between 3%
to 5%, the average hydrodynamization time associated with the late time convergence of the pressure
anisotropy to the corresponding Borel resummed hydrodynamic attractor is approximately equal to the
average hydrodynamization time associated with the Navier-Stokes result, while both are shorter than the
average hydrodynamization time associated with second-order hydrodynamics. On the other hand, we find
that the entropy density of the different solutions coalesces to second-order hydrodynamics long before
entering in the Navier-Stokes regime. A clear hierarchy between the different average hydrodynamization
times of the Bjorken expanding fluid is established for the set of analyzed initial data, comprising also some
solutions which, whilst satisfying the dominant and the weak energy conditions at the initial time, evolve
such as to transiently violate one or both conditions when the fluid is still far from equilibrium. In
particular, solutions violating the weak energy condition are generally found to take a longer time to enter
in the hydrodynamic regime than the other solutions.
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I. INTRODUCTION

The holographic gauge/gravity correspondence [1–4]
provides a unique way to perform a first-principles
analysis of the real time dynamics of far-from-equilibrium
strongly coupled quantum fluids. Since the pioneering
work by Chesler and Yaffe on the numerical analysis of
the homogeneous isotropization dynamics of the strongly
coupled N ¼ 4 supersymmetric Yang-Mills (SYM)
plasma in Ref. [5], many other works have been developed
addressing different aspects concerning the far-from-
equilibrium dynamics of holographic models, see e.g.,
Refs. [6–30].
The first numerical analysis of Bjorken flow [31] in a

holographic SYM plasma was performed in Ref. [6], with
further developments regarding the numerical formalism
being presented in Refs. [8,9,12,13]. Additionally, a high
statistics analysis of the holographic Bjorken flow of the
SYM plasma was presented in Ref. [14]. It was observed in
those early works that the onset of hydrodynamic behavior,

in the sense of the effective applicability of late time
constitutive relations such as those defined by Navier-
Stokes (NS) or the second-order gradient expansion
[32,33],1 generically happens in the SYM plasma when
the system is still far from equilibrium, as inferred from a
sizable pressure anisotropy at the hydrodynamization time.
Such a result was initially surprising because it seems to
contradict the usual notion that hydrodynamic behavior
only emerges when there small deviations from local
equilibrium. However, a broader notion of hydrodynamics
was proposed in Ref. [37] as the late time emergence of
universal behavior for observables such as the pressure
anisotropy, which is dictated by the decay of the non-
hydrodynamic quasinormal modes (QNM) of the system
[21,22,37,38].
It was proposed in [37] that the Borel resummation of

the divergent asymptotic gradient series [39–42] defines
a hydrodynamic attractor, to which different far-from-
equilibrium solutions would coalesce before converging
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1In this context, note that we distinguish the asymptotic results
obtained using the gradient expansion from different dynamical
approaches to hydrodynamics pursued by Müller-Israel-Stewart
[34–36], which include an extended set of dynamical variables.
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to the corresponding limits associated with finite order
truncations of the hydrodynamic gradient expansion, such
as Navier-Stokes theory or the second or higher order
hydrodynamic constitutive relations. More recently, it was
shown in Refs. [24,28] that this is not a generic feature
because, even though one may find solutions that do
coalesce earlier to the Borel resummed attractor, when
considering more generic initial conditions the Borel
attractor does not provide a significantly earlier effective
description of hydrodynamics when compared to the
Navier-Stokes result, at least in the case of a holographic
SYM plasma undergoing Bjorken flow.
Concerning the entropy of the SYM plasma out of

equilibrium, it was argued in Ref. [43] that this quantity
should be associated with the area of the apparent horizon
of a black hole within the higher dimensional bulk (instead
of the event horizon, to which the apparent horizon
converges only at asymptotic times, close to local equilib-
rium). In this context, Refs. [8,14] analyzed the difference
between the final and initial entropies as a function of the
initial entropy for the different initial conditions consid-
ered. However, in those works it was not explicitly
presented the calculation of the nonequilibrium entropy
density as function of time.
In the present work we focus on the analysis of the

hydrodynamization properties of a SYM plasma under-
going Bjorken flow [31]. More specifically, we investigate
how the pressure anisotropy and the nonequilibrium
entropy density of the fluid converge to the hydrodynamic
regime at late times for an ensemble of initial data
originally studied in Ref. [44].
For the analyzed ensemble of initial conditions we find

that on average, under typical relative tolerances between
3% to 5%,2 the Borel resummed attractor for the pressure
anisotropy does not provide a significantly earlier descrip-
tion of the putative far-from-equilibrium hydrodynamic
universal behavior than the corresponding Navier-Stokes
result. More specifically, by analyzing how each of the
different initial conditions approach the Navier-Stokes
regime, second-order hydrodynamics, and the Borel
resummed attractors within the aforementioned tolerances,
we notice that different initial conditions can converge first
to different attractors. By averaging over all the initial data
considered, we find that the average hydrodynamization
time associated with the Borel attractor is approximately
equal to the average hydrodynamization time associated
with convergence to the NS regime, with both being shorter
than the average hydrodynamization time associated with
the second-order hydrodynamic truncation of the pressure
anisotropy. The Borel resummed attractor only provides a
clearly better description of the hydrodynamization process

than the NS result if one considers just very small relative
tolerances in the long time regime.
On the other hand, we find that the nonequilibrium

entropy density of the different solutions always coalesces
to the second-order hydrodynamic truncation long before it
converges to the corresponding NS regime. Moreover,
the average hydrodynamization time for the entropy
density associated with second-order hydrodynamics is
also considerably smaller than the different average hydro-
dynamization times related to the pressure anisotropy.
Consequently, the time scales at which the fluid approaches
local equilibrium may be rather different depending on
which physical observable one considers to probe the
evolution of the medium, and we clearly identify a
hierarchy between the different average hydrodynamization
times of the Bjorken expanding fluid.
The ensemble of initial data studied in the present work

was first considered in [44], where a class of numerical
solutions was found in Bjorken flow that transiently
violates the dominant energy condition or even the weak
energy condition at early times when the system is still far
from equilibrium. Such violations are not present in the
initial state and, thus, they are indeed generated by the
subsequent evolution of the plasma.
This work is organized as follows. In Sec. II we review in

detail the main steps required for the holographic
calculation of dynamics of the SYM plasma undergoing
Bjorken flow using the characteristic formulation of gen-
eral relativity—although these results are not new, we are
not aware of any previous work in the literature that
provides such a detailed account of the step-by-step
procedure, which can be very useful when trying to
reproduce the results discussed here and in some other
works in the literature. In Sec. III we present our main
results, consisting in the analysis of the pressure anisotropy,
the nonequilibrium entropy density and their associated
hydrodynamization times for the ensemble of initial data
originally investigated in [44]. Our main conclusions are
summarized in Sec. IV. In Appendix A we present further
details regarding the numerics of our work and in
Appendix B we present a brief discussion on the perfor-
mance of our numerical code.
We use in this work a mostly plus metric signature and

natural units ℏ ¼ c ¼ kB ¼ 1.

II. HOLOGRAPHIC SYM PLASMA UNDERGOING
BJORKEN FLOW

Bjorken flow [31] corresponds to a rapidly expanding
inhomogeneous relativistic fluid that possesses the follow-
ing set of symmetries: there is boost invariance in the single
spatial direction z along which the fluid expands at the
speed of light, plus translation andOð2Þ rotation invariance
in the transverse xy plane (also, Z2 invariance is imposed
along the spatial rapidity direction [45]). This setting is
usually taken as a first (and crude) approximation to the

2We choose some different values for the tolerance in order to
illustrate how the hydrodynamization times of the system can
vary depending on such a choice.
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expanding quark-gluon plasma formed in high-energy
heavy-ion collisions [46–50] near mid-rapidity, i.e., close
to the collision axis (the transverse expansion to the
collision axis is completely neglected in this simple model).
Bjorken symmetry is more easily handled by changing

from Cartesian coordinates ðt; x; y; zÞ to the so-called Milne
coordinates ðτ; ξ; x; yÞ, where τ and ξ are the proper-time
and the spacetime rapidity, respectively, defined as follows:

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
; ξ ¼ ln

�
tþ z
t − z

�
; ð1Þ

in terms of which the metric of the 4D Minkowski
spacetime where the fluid is defined reads,

ds2ð4DÞ ¼ −dτ2 þ τ2dξ2 þ dx2 þ dy2: ð2Þ

The holographic gauge/gravity modeling of the Bjorken
flow of a relativistic and strongly coupled quantum fluid
can be implemented by considering that the 4D flat
spacetime (2), where the fluid is defined, is (up to a global
conformal factor) the boundary of a 5D curved spacetime
that is asymptotically anti–de Sitter (AdS5) by the standards
of the holographic dictionary [1–4], which in turn requires
that the classical gravity action for the higher dimensional
bulk has a negative cosmological constant. The extra
holographic direction is related to a geometrization of
the renormalization group flow [51] of the quantum field
theory describing the fluid living at the boundary of the
higher dimensional bulk spacetime.
There are infinitely many different holographic models

that can be constructed under such assumptions, each one
of them supposedly describing a different kind of strongly
coupled quantum field theory at the boundary. The simplest
and better-known top-down holographic construction that
can be considered in this regard corresponds to the
conformal and strongly coupled SYM plasma, whose dual
bulk action is given simply by the 5D Einstein-Hilbert
action with a negative cosmological constant,

S ¼ 1

2κ25

Z
M5

d5x
ffiffiffiffiffiffi
−g

p ½R − 2ΛL�; ð3Þ

where κ25 ≡ 8πG5 is the 5D gravitational Newton’s con-
stant, which is holographically related to the number of
colors Nc of the SYM theory as κ25 ¼ 4π2=N2

c, ΛL ¼
−6=L2 is the negative cosmological constant associated
with the asymptotically AdS5 spacetime, and L is the
asymptotic AdS5 radius (which we set to unity here). The
bulk action (3) is supplemented by boundary terms which
do not contribute to the bulk equations of motion but are
necessary for the holographic computation of some observ-
ables, such as the Green’s functions of the dual boundary
quantum field theory. They comprise the Gibbons-
Hawking-York action [52,53], needed for the well

posedness of the boundary value problem, and the counter-
term action associated with holographic renormalization
[54–58] of the bulk action.
The ansatz for the 5D bulk metric field compatible with

diffeomorphism invariance and Bjorken symmetry can be
written using infalling Eddington-Finkelstein (EF) coor-
dinates as follows [6,12],

ds2 ¼ 2dτ½dr − Aðτ; rÞdτ� þ Σðτ; rÞ2½e−2Bðτ;rÞdξ2
þ eBðτ;rÞðdx2 þ dy2Þ�; ð4Þ

where r is the radial holographic direction, in terms of
which the boundary lies at r → ∞ (the EF time τ reduces to
the propertime of the gauge theory fluid at the boundary).
In the EF coordinates infalling radial null geodesics satisfy
τ ¼ constant, while outgoing radial null geodesics satisfy
dr ¼ Aðτ; rÞdτ. By foliating the bulk spacetime in slices of
constant τ, which in the EF coordinates correspond to null
hypersurfaces, and then evolving the equations of motion in
the EF time, one implements a time evolution of the system
according to the so-called characteristic formulation of
general relativity, which for asymptotically AdS space-
times in the context of holography is reviewed in detail in
Ref. [12] (for the original formulation involving asymp-
totically flat spacetimes see Refs. [59,60]).
The holographic Bjorken flow for the SYM plasma is

therefore formulated on the gravity side of the correspon-
dence in terms of the three bulk metric coefficients Aðτ; rÞ,
Bðτ; rÞ, and Σðτ; rÞ, which are functions of two variables;
the holographic direction r and the EF time τ. The line
element (4) still has a residual diffeomorphism invariance
under radial shifts of the form r ↦ rþ λðτÞ, with λðτÞ
being an arbitrary function of time. One major technical
difficult of the characteristic formulation of general rela-
tivity concerns the possible breakdown of the numerical
evolution of the system in regions with strong curvatures
due to the formation of caustics [12]. In order to integrate
the equations of motion of the system in the radial direction
one must consider the entire portion of the bulk geometry
causally connected to the boundary. When there is an
apparent horizon within the bulk,3 this condition is met if
one performs the radial integration from the horizon to the
boundary. However, in general, the radial position of the
apparent horizon (when it exists) can widely fluctuate
between the different time slices. If one adopts a fixed
infrared (IR) radial cutoff in the interior of the bulk to start
the integration of the equations of motion in the radial
direction on every time slice, then some different possibil-
ities may happen. One of them is the following; in some
time slices this fixed IR radial position in the interior of the
bulk may be behind the apparent horizon, and in this case
we are sure that we are covering the region of the bulk

3We are going to discuss this in more detail in Sec. II B.
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causally connected to the boundary. However, it may be
that in some of these time slices the chosen fixed IR radial
cutoff penetrates too deep into the horizon and eventually
reaches a caustic, and in this case the numerical simulation
breaks down.
On the other hand, if one chooses some fixed IR radial

position which does not penetrate too far within the bulk,
the numerical simulations will probably never find a caustic
and proceed without breaking down, but it may be that at
some time slices this fixed IR radial cutoff lies beyond the
apparent horizon, and in this case we may lose information
of part of the bulk geometry causally connected to the
boundary, which may lead to physically inaccurate results.
A possible way, discussed in detail in Ref. [12] to deal with
this issue, is to use the aforementioned residual diffeo-
morphism invariance and fix different values for the
function λðτÞ on the different time slices by requiring that
the radial position of the apparent horizon remains fixed for
all time slices. We will discuss an implementation of this
scheme in Sec. II B.
At the boundary of the bulk spacetime the metric

coefficients must satisfy boundary conditions such that
for r → ∞ one recovers from the 5D line element (4) the
4D metric (2), up to the global conformal factor r2 of AdS5.
This is accomplished by imposing the following boundary
conditions associated with holographic Bjorken flow,

Aðr → ∞; τÞ ∼ r2

2
; Bðr → ∞; τÞ ∼ −

2 lnðτÞ
3

;

Σðr → ∞; τÞ ∼ τ1=3r: ð5Þ

In fact, by substituting (5) into Eq. (4) one recovers the
AdS5 metric near the boundary in the EF coordinates,

ds2jr→∞ → ds2ðAdS5Þ ¼ 2dτdrþ r2ds2ð4DÞ: ð6Þ

Einstein’s equations for the metric field can be worked
out to give the following set of coupled (1þ 1)-partial
differential equations (PDEs) for the metric coefficients
Aðr; τÞ, Bðr; τÞ, and Σðr; τÞ4

Σ00 þ ΣB02

2
¼ 0; ð7aÞ

ðdþΣÞ0 þ
2Σ0dþΣ

Σ
− 2Σ ¼ 0; ð7bÞ

ΣðdþBÞ0 þ
3ðB0dþΣþ Σ0dþBÞ

2
¼ 0; ð7cÞ

A00 þ 4þ 3B0dþB − 12ðΣ0dþΣÞ=Σ2

2
¼ 0; ð7dÞ

dþðdþΣÞ þ
ΣðdþBÞ2

2
− A0dþΣ ¼ 0; ð7eÞ

where 0≡ ∂r is the directional derivative along infalling
radial null geodesics (with τ ¼ constant) and dþ ≡ ∂τ þ
Aðr; τÞ∂r is the directional derivative along outgoing radial
null geodesics (with dr=dτ ¼ Aðr; τÞ). Equation (7) is the
so-called Hamiltonian constraint. Equation (7e) is a con-
straint that can be used in order to check the accuracy of the
numerical solutions obtained by solving the nested
Eqs. (7a)–(7d).
In fact, the nested or hierarchical structure observed in

Eqs. (7a)–(7d) is a common feature of the characteristic
formulation of general relativity. In view of this structure,
one can devise the following general ordered steps in
order to solve Einstein’s equations in the characteristic
formulation:

(i) One must choose some initial profile for the metric
anisotropy Bðr; τ0Þ specified over the null hyper-
surface corresponding to the initial time τ0

5;
(ii) Next, one radially solves the Hamiltonian constraint

(7a) to obtain Σðr; τ0Þ;
(iii) Then, one radially solves Eq. (7b) to ob-

tain dþΣðr; τ0Þ;
(iv) Next, one radially solves Eq. (7c) to ob-

tain dþBðr; τ0Þ;
(v) Then, one radially solves Eq. (7d) to obtain Aðr; τ0Þ;
(vi) At this point, we already know Bðr; τ0Þ, Aðr; τ0Þ, and

dþBðr; τ0Þ and, thus, we can determine the time
derivative of the metric anisotropy function evalu-
ated on the initial time slice, ∂τBðr; τ0Þ, by using that
dþBðr; τ0Þ ¼ ∂τBðr; τ0Þ þ Aðr; τ0Þ∂rBðr; τ0Þ. With
fBðr; τ0Þ; ∂τBðr; τ0Þg at hand, one can evolve the
metric anisotropy to the next time slice τ0 þ Δτ
(notice that in the characteristic formulation the
relevant PDEs to be solved are always first-order
in the time derivatives);

(vii) Steps i–vi are then repeated until reaching the final
time of the numerical simulation.

A. UV expansions and renormalized
one-point functions

Before going through some details of the numerics
involved in the actual implementation of the aforemen-
tioned algorithm, let us first review some important
results regarding the ultraviolet (UV) near-boundary expan-
sions of the metric coefficients and their relation to the

4We remark that the metric coefficient Aðr; τÞ defined in
Eq. (4) and also in Ref. [12] corresponds to half of the
corresponding function as defined in Ref. [6].

5Alternatively, one could also choose to specify Σðr; τ0Þ as an
initial data and then solve Eq. (7a) for Bðr; τ0Þ; however, in such
case one would need to solve a nonlinear equation instead of a
linear one.
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holographically renormalized one-point Green’s function of
the energy-momentum tensor of the boundary SYM gauge
theory, fromwhichwe are going to extract the energy density
and the longitudinal and transverse pressures of the strongly
coupled quantum fluid under consideration.
Given the boundary conditions (5) of holographic

Bjorken flow, the UV near-boundary expansions of the
bulk metric coefficients assume the following form [6,25]

Aðr; τÞ ¼ ðrþ λðτÞÞ2
2

− ∂τλðτÞ þ
X∞
n¼1

anðτÞ
rn

; ð8aÞ

Bðr; τÞ ¼ −
2 lnðτÞ

3
þ
X∞
n¼1

bnðτÞ
rn

; ð8bÞ

Σðr; τÞ ¼ τ1=3rþ
X∞
n¼0

snðτÞ
rn

: ð8cÞ

By substituting the above UV expansions (truncated
e.g., at eighth order) back into the equations of motion
and solving the resulting algebraic equations order by order
in r, one can fix the values of the UV coefficients
fanðτÞ; bnðτÞ; snðτÞg as functions of τ, λðτÞ, and the single
dynamical UV coefficient which remains undetermined in
such UV analysis, a2ðτÞ, and its derivatives. In fact, as we
are going to discuss, the value of the UV coefficient a2ðτ0Þ
at the initial time τ0, together with the initial profile for the
metric anisotropy, Bðr; τ0Þ, are the initial data that must be
chosen on the gravity side of the gauge/gravity duality to
generate different solutions of Einstein’s equations corre-
sponding to different evolutions of the far-from-equilibrium
SYM plasma.6 Explicitly, the first few UV coefficients so
obtained are shown below

Aðr; τÞ ¼ ðrþ λðτÞÞ2
2

− ∂τλðτÞ þ
a2ðτÞ
r2

þOðr−3Þ; ð9aÞ

Bðr; τÞ ¼ −
2 lnðτÞ

3
−

2

3rτ
þ 1þ 2τλðτÞ

3r2τ2

−
2þ 6τλðτÞ þ 6τ2λ2ðτÞ

9r3τ3

þ 6þ 24τλðτÞ þ 36τ2λ2ðτÞ þ 24τ3λ3ðτÞ
36r4τ4

−
36τ4a2ðτÞ þ 27τ5∂τa2ðτÞ

36r4τ4
þOðr−5Þ; ð9bÞ

Σðr;τÞ¼ τ1=3rþ1þ3τλðτÞ
3τ2=3

−
1

9rτ5=3

þ5þ9τλðτÞ
81r2τ8=3

−
10þ30τλðτÞþ27τ2λ2ðτÞ

243r3τ11=3
þOðr−4Þ;

ð9cÞ

dþΣðr; τÞ ¼
τ1=3r2

2
þ ð1þ 3τλðτÞÞr

3τ2=3

−
1 − 2τλðτÞ − 3τ2λ2ðτÞ

6τ5=3
þ 10

81rτ8=3

þ −25 − 30τλðτÞ þ 243τ4a2ðτÞ
243r2τ11=3

þOðr−3Þ;
ð9dÞ

dþBðr; τÞ ¼ −
1

3τ
þ 1

3rτ2
−
1þ τλðτÞ
3r2τ3

þ 2þ 4τλðτÞ þ 2τ2λ2ðτÞ þ 12τ4a2ðτÞ þ 9τ5∂τa2ðτÞ
6r3τ4

þOðr−4Þ: ð9eÞ

As discussed in detail e.g., in Ref. [23], the holographic
renormalization of the model provides formulas relating the
one-point function of the boundary energy-momentum
tensor with the UV coefficients of the bulk fields, generally
written in Fefferman-Graham (FG) coordinates. Then, in
order to use these formulas one must first find a relation
between the holographic radial direction r in EF coordi-
nates and the holographic radial direction ρ in FG coor-
dinates. This relation reads,Z

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aðr; τÞp ¼ lnðρ−1=2Þ; ð10Þ

which may be perturbatively solved close to the boundary
using the UV expansion of the metric coefficient Aðr; τÞ,
which gives

rðρÞ ¼ 1ffiffiffi
ρ

p −
a2ðτÞρ3=2

4
−
∂τa2ðτÞρ2

10
þOðρ5=2Þ: ð11Þ

By substituting the result above into the UV expansions
of the bulk fields (9a)–(9e), one identifies the relevant
UV coefficients in FG coordinates entering the holo-
graphic renormalization formula for the one-point
function of the energy-momentum tensor of the
boundary quantum gauge theory [23]. The final results
are given by [25]7

ε̂ðτÞ≡ κ25hTττi ¼ −3a2ðτÞ; ð12aÞ

p̂TðτÞ≡ κ25hTx
xi ¼ −3a2ðτÞ −

3

2
τ∂τa2ðτÞ; ð12bÞ

p̂LðτÞ≡ κ25hTξ
ξi ¼ 3a2ðτÞ þ 3τ∂τa2ðτÞ; ð12cÞ

6Actually, since we are going to consider λðτÞ ≠ 0, also λðτ0Þ
needs to be specified as an initial data.

7We remark that our definition of the normalized
one-point function of the boundary energy-momentum tensor,
hT̂μνi≡ κ25hTμνi ¼ ð4π2=N2

cÞhTμνi, corresponds to twice the
value of the definition used in Ref. [6].
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where ε̂ðτÞ, p̂TðτÞ, and p̂LðτÞ are, respectively, the
(normalized) energy density, the transverse pressure, and
the longitudinal pressure of the SYM plasma.8 From
Eqs. (12a)–(12c) we see that once we determine the time
evolution of the dynamical UV coefficient a2ðτÞ, we have
also the dynamical evolution of these physical observables
at the boundary. We also see from Eq. (9a) that a2ðτÞ is a
subleading UV coefficient of the metric coefficient Aðr; τÞ
close to the boundary r → ∞. In order to better extract it
from the numerical solution for Aðr; τÞ, we may define
subtracted fields to get rid of the leading terms in the UV
expansions of the metric coefficients, which are associated
with the boundary conditions (5), and also get rid of the
factor of r−2 multiplying a2ðτÞ in Eq. (9a).
In order to do so, and also with a view on the numerics to

discussed next, we first define a new holographic radial
variable (which, as discussed before, goes from some fixed
IR radial cutoff, which should lie behind the apparent
horizon, to the boundary located at r → ∞),

u≡ 1

r
: ð13Þ

Now we define subtracted fields as follows, upXsðu; τÞ≡
Xðu; τÞ − XUVðu; τÞ, where X generically denotes any of
the metric coefficients, p is an integer, and XUV is some UV
truncation of X. Using this reasoning and looking at
Eqs. (9a)–(9e), we define

u2Asðu; τÞ≡ Aðu; τÞ − 1

2

�
1

u
þ λðτÞ

�
2

þ ∂τλðτÞ; ð14aÞ

u4Bsðu; τÞ≡ Bðu; τÞ þ 2 lnðτÞ
3

þ 2u
3τ

−
ð1þ 2τλðτÞÞu2

3τ2
þ ð2þ 6τλðτÞ þ 6τ2λ2ðτÞÞu3

9τ3
; ð14bÞ

u3Σsðu; τÞ≡ Σðu; τÞ − τ1=3

u
−
1þ 3τλðτÞ

3τ2=3
þ u

9τ5=3

−
ð5þ 9τλðτÞÞu2

81τ8=3
; ð14cÞ

u2ðdþΣÞsðu;τÞ≡dþΣðu;τÞ−
τ1=3

2u2
−
1þ3τλðτÞ
3uτ2=3

þ1−2τλðτÞ−3τ2λ2ðτÞ
6τ5=3

−
10u

81τ8=3
; ð14dÞ

u3ðdþBÞsðu; τÞ≡ dþBðu; τÞ þ
1

3τ
−

u
3τ2

þ ð1þ τλðτÞÞu2
3τ3

:

ð14eÞ

Then, the boundary values of the subtracted fields are
simply given by

Asðu ¼ 0; τÞ ¼ a2ðτÞ; ð15aÞ

Bsðu ¼ 0; τÞ ¼ −a2ðτÞ −
3τ∂τa2ðτÞ

4
þ 1

6τ4

þ 2λðτÞ
3τ3

þ λ2ðτÞ
τ2

þ 2λ3ðτÞ
3τ

; ð15bÞ

Σsðu ¼ 0; τÞ ¼ −
10þ 30τλðτÞ þ 27τ2λ2ðτÞ

243τ11=3
; ð15cÞ

ðdþΣÞsðu¼ 0;τÞ¼ τ1=3a2ðτÞ−
25þ30τλðτÞ
243τ11=3

; ð15dÞ

ðdþBÞsðu ¼ 0; τÞ ¼ 2a2ðτÞ þ
3τ∂τa2ðτÞ

2
þ 1

3τ4

þ 2λðτÞ
3τ3

þ λ2ðτÞ
3τ2

: ð15eÞ

Therefore, in terms of the subtracted fields, the dynamical
UV coefficient a2ðτÞ entering in the holographic formulas
(12a)–(12c) can be simply obtained as the boundary value
of the subtracted field Asðu; τÞ. In order to solve the
equations of motions for the subtracted fields, one must
rewrite Eqs. (7a)–(7d) in terms of the new radial direction u
and also use Eqs. (14a)–(14e) to express the original fields
in terms of the subtracted ones.

B. The apparent horizon

As mentioned before, for the radial integration of
Einstein’s equations of motion one needs to consider the
entire region of the bulk geometry causally connected to
the boundary. For this sake, we need first to briefly discuss
the event and apparent horizons of a black hole within the
bulk geometry.
The event horizon of a black hole within the asymptoti-

cally AdS5 bulk is the surface where the congruence of null
geodesics bifurcates, with some geodesics escaping up to
the boundary and some plunging deep into the bulk.
Consequently, light rays inside the event horizon can never
leave the interior of the black hole, and the portion of the
bulk geometry within the black hole event horizon is,
therefore, causally disconnected from observers at the
boundary. Thus, when there is an event horizon within
the bulk, in order to integrate the radial part of the equations
of motion without losing physical information about the
bulk geometry, one should integrate from the event horizon
(or from some radial position inside it, which adds no extra
physical information) to the boundary. The radial location
of the event horizon is determined by the solution of the
outgoing radial null geodesics equation subjected to the
condition that at asymptotically large times it is given by a
zero of the metric coefficient Aðr; tÞ,

8Note that from Eqs. (12a)–(12c) the trace anomaly Î ≡
gμνð4DÞhT̂μνi ¼ −ε̂þ p̂L þ 2p̂T vanishes for the SYM plasma, as
expected from conformal invariance.
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drHðτÞ
dτ

¼ AðrHðτÞ; τÞjrHðτ → ∞Þ ¼ rðeqÞH ; ð16Þ

where rðeqÞH is the largest simple root of equation
Aðr; τ → ∞Þ ¼ 0, corresponding to the radial position of
the event horizon in equilibrium. It is clear from Eq. (16)
that the event horizon in a far-from-equilibrium setup is a
global feature of the bulk geometry which can be only
determined by determining first the entire time evolution of
the metric coefficient Aðr; τÞ.
The aforementioned fact makes it technically inconven-

ient to use the event horizon as the infrared cutoff of the
radial domain of integration, since we do not know its
position at the beginning of the numerical simulations. One
possibility to deal with this issue is to adopt a fixed IR
radial cutoff for all time slices, and then check afterwards
whether the event horizon was in fact beyond the chosen
value radial cutoff on top of each time slice considered. If
this was not the case, then the simulations should be run
again with a new tentative value for the fixed IR radial
cutoff. There is, however, a much easier and convenient
way to handle this question, which involves the consid-
eration of the radial position of the apparent horizon on
each time slice, instead of the event horizon.
The apparent horizon corresponds to the outermost

trapped null surface within the event horizon, which
separates a region of the spacetime where the geodesics
are directed outward with light rays moving outward and a
region where the light rays along the same geodesics move
inward. Therefore, within an apparent horizon all light rays
move inward. Avery nice and clear illustration of such state
of affairs is depicted in Fig. 2 of Ref. [6]. The apparent
horizon converges to the event horizon at late times,
therefore, they coincide in equilibrium. Notice that, since
in a far-from-equilibrium setting the apparent horizon lies
within the event horizon, by taking the fixed IR radial
cutoff to lie at or within the apparent horizon, one
automatically guarantees that the radial domain of the bulk
geometry causally connected to the boundary is being
properly taken into account and no physical information is
being lost.
The main technical advantage of considering the appar-

ent horizon instead of the event horizon is that the former is
local in time and its radial position can be fully determined
at each individual time slice without requiring knowledge
about the entire time evolution of the system. In the
holographic Bjorken flow of the SYM plasma the radial
position of the apparent horizon significantly varies
between the different time slices, which could make it
unfeasible to be used as a fixed IR radial cutoff to start the
integration of the equations of motion. However, one can
use the residual diffeomorphism invariance discussed
before to conveniently choose the value of the function
λðτÞ on top of each time slice so that the radial position of
the apparent horizon is held fixed at all times.

For any metric satisfying an ansatz of the form given in
Eq. (4), the radial position of the apparent horizon, when
taken as a constant in time, rAH, may be determined by
finding the value of the radial coordinate which solves the
following equation [12],

dþΣðrAH; τÞ ¼ 0: ð17Þ

The requirements that ∂τrAHðτÞ ¼ 0 and that Eq. (17) holds
at all times imply that ∂τdþΣðrAH; τÞ ¼ 0, which in turn
implies that dþðdþΣÞðrAH; τÞ ¼ A∂rdþΣðrAH; τÞ. Using
this condition into the constraint Eq. (7e), and then
combining the obtained result with the other components
of Einstein’s equations, one can show that the aforemen-
tioned requirements are realized by the following condition
(already written in the radial coordinate u ¼ 1=r),

AðuAH; τÞ ¼ −2ΣðuAH; τÞ½3ðdþBðuAH; τÞÞ2ΣðuAH; τÞ
þ 6u2AHA

0ðuAH; τÞdþΣðuAH; τÞ�=
½24ðu2AHΣ0ðuAH; τÞdþΣðuAH; τÞ þ Σ2ðuAH; τÞÞ�
¼ −ðdþBðuAH; τÞÞ2=4; ð18Þ

where above 0≡ ∂u and we used Eq. (17) in the last step,
dþΣðuAH; τÞ ¼ 0. Then, one can use Eq. (14a) to obtain,

∂τλðτÞ ¼ u2AHAsðuAH; τÞ þ
1

2u2AH
þ λðτÞ

uAH
þ λ2ðτÞ

2

− AðuAH; τÞ; ð19Þ

where AsðuAH; τÞ is the numerical solution for the sub-
tracted metric coefficient Asðu; τÞ evaluated at the apparent
horizon and AðuAH; τÞ is given by Eq. (18). Then, once it is
chosen a value for λðτ0Þ on the initial time slice τ0, λðτÞ can
be evolved to the next time slice using Eq. (19) such that the
radial position of the apparent horizon remains fixed during
this time evolution. For this purpose, we set the initial
condition λðτ0Þ ¼ 0 and solve Eq. (17) using Eq. (14d) and
the Newton-Raphson algorithm. In general, the value of
uAH does not coincide with any of the collocation points (to
be discussed in Sec. II C), and we find such a value with
good precision, given by the tolerance (or the number of
iterations) of the method. For the initial data considered in
the present work, we typically find that the radial position
of the event horizon is held fixed within ∼10−5%.
Alternatively, we also considered an approximation to

calculate the radial position of the apparent horizon con-
sisting in the following procedure: first we set the function
λðτÞ≡ 0 and integrate the equations of motion for a short
period of time and then evaluate the radial position of the
apparent horizon at the initial time slice on top of numeri-
cally interpolated results. Next, we search for the point u⋆
within the radial grid (to be discussed in Sec. II C) which is
closest to the radial position of the apparent horizon uAH
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at the initial time τ0 and take u⋆ (instead of uAH) to
determine an approximation for Eq. (19). In this case, we
take λðτ0Þ ¼ 0 as the initial condition for evolving λðτÞ in
time. Within the aforementioned approximation, the radial
position of the apparent horizon for the different initial
conditions considered was held fixed within ∼10−2%.
For all the initial data considered in the present work the

apparent horizon calculated using both approaches dis-
cussed above was always found within the chosen radial
domain of integration, u ∈ ½0; uIR�, where we took uIR ¼ 1
as the fixed IR radial cutoff (for the different initial
conditions considered in this work, we obtained apparent
horizons between u ∼ 0.7–0.99). Although the precision in
the calculation of the radial position of the apparent horizon
for the two approaches discussed above is different, the
results for the physical observables analyzed in the present
work (namely, the pressure anisotropy, and the nonequili-
brium entropy density) are indistinguishable by eye.
In fact, we also considered a third way of evolving the

system, where we simply set the function λðτÞ≡ 0 and let
the radial position of the apparent horizon to freely
fluctuate between the time slices. This approach is more
difficult to handle in practice because we had to choose
different values of the fixed IR radial cutoff uIR for different
initial conditions. Moreover, it is also more limited in the
sense that in order to avoid the breakdown of the numerical
simulations due to the caustics in the deep interior of the
bulk, the chosen values of uIR, contrary to what happens in
the method with fixed apparent horizon, are not guaranteed
to cover the radial domain where the apparent horizon uAH
lies within for every time slice—in fact, at large enough
times, depending on the chosen initial conditions, we could
not find the apparent horizon within the radial domain of
integration ½0; uIR� in this method with fluctuating apparent
horizon without resorting to numerical extrapolations,
which may be physically unreliable. However, for the time
intervals where it was possible to run the numerical code
using λðτÞ ¼ 0, the results obtained for the pressure
anisotropy and the nonequilibrium entropy density
coincide with the ones obtained with fixed apparent horizon
and nontrivial λðτÞ. Such an observation is consistent with
the fact that λðτÞ may be freely chosen since it is associated
with a residual diffeomorphism invariance of the system, as
discussed before.

C. Numerics and initial data

In order to ensure the reproducibility of our results, in
this section we give the details behind our numerical work.
We numerically integrate the equations of motion using a

discretization of both the radial and time directions. Let us
first briefly discuss the discretization of the radial domain
of integration of the PDEs. This is implemented here using
the pseudospectral or collocation method [61], where the
discrete radial points are described by the Chebyshev-
Gauss-Lobatto grid,

uk ¼
uIR
2

�
1þ cos

�
kπ

N − 1

��
; k ¼ 0;…; N − 1; ð20Þ

where N is the number of grid points (also known as
collocation points) and uIR is the fixed infrared radial cutoff
in the interior of the bulk, from which one must radially
integrate the equations of motion up to the boundary at
u ¼ 0. As discussed previously, for the present work we
take uIR ¼ 1.
The main reasoning involved in the use of the pseudo-

spectral method consists in radially expanding the bulk
fields in the basis of Chebyshev polynomials of the first
kind on each point of the Chebyshev-Gauss-Lobato radial
grid (20). The expansion coefficients so obtained are called
the spectral coefficients of the Chebyshev expansion. The
expansion is truncated at the same order of the number of
collocation points used in the discrete radial grid, therefore,
in principle, the larger the number of collocation points the
more accurate the numerical results should be. One major
numerical advantage of the pseudospectral method over
alternative methods, such as finite differences, is that the
convergence of the Chebyshev expansion is expected to be
exponential (rather than polynomial) in the number of
collocation points.
As discussed in detail e.g., in section V. 4 of Ref. [23], by

discretizing the radial part of the continuum differential
equations of motion using the pseudospectral method, one
is left with a linear algebra eigenvalue problem essentially
consisting in the inversion of a diagonal ðN − 1Þ × ðN − 1Þ
matrix for each of the bulk fields. These matrices are given
by the homogeneous part9 of the discretized differential
equations of motion evaluated at each radial grid
point, excluding the point corresponding to the boundary.
Indeed, at the boundary grid point one must impose the
boundary conditions (15a)–(15e) for the (subtracted) bulk
fields. Then, in practice, one simply joins to the (N − 1)-
dimensional eigenvectors obtained as solutions of the
aforementioned eigenvalue problem the values of the
respective bulk fields determined at the boundary grid
point by the corresponding boundary conditions. With this,
one constructs the complete N-dimensional eigenvectors
corresponding to the numerical solutions of the radial part
of the Einstein’s equations of motion (the components of
the N-dimensional eigenvectors are the values of the bulk
fields on each of the N collocation points of the discrete
radial grid).
At the initial time slice τ0, the value of a2ðτ0Þ¼Asðu¼0;

τ0Þ must be specified. Therefore, as mentioned before, the
initial value of the dynamical UV coefficient a2ðτ0Þ is one
of the initial conditions which must be specified on the
gravity side of the gauge/gravity duality (the other initial

9The multiplication of these inverse matrices by the column
vectors corresponding to the inhomogeneous part of the equa-
tions of motion gives the numerical solutions for the bulk fields.
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condition being the initial profile of the bulk metric
anisotropy, Bsðu; τ0Þ).10
In order to evolve in time the set of initial data

fa2ðτÞ; Bsðu; τÞ; λðτÞg, one also needs to determine the
values of the time derivatives ∂τa2ðτÞ, ∂τBsðu; τÞ, and
∂τλðτÞ. The latter is calculated by using Eq. (19). Moreover,
having knowledge of the values of a2ðτ0Þ, Bsðu ¼ 0; τ0Þ,
and λðτ0Þ, which on the initial time slice are simply the

freely chosen initial conditions, one can determine the
value of ∂τa2ðτÞ at the initial time τ0 using Eq. (15b).
Finally, we also need to determine ∂τBsðu; τÞ. This can

be done by using Eq. (14e) to relate the numerical field
ðdþBÞsðu; τÞ to dþBðu;τÞ¼∂τBðu;τÞ−u2Aðu;τÞ∂uBðu;τÞ,
and then expressing in this relation Aðu; τÞ and Bðu; τÞ in
terms of the corresponding subtracted fields as given by
Eqs. (14a) and (14b). The resulting equation is solved for
∂τBsðu; τÞ giving

∂τBsðu; τÞ ¼
ðdþBÞsðu; τÞ

u
−

2

3τ4u
−
2Asðu; τÞ

3τ
þ 2uAsðu; τÞ

3τ2
−
2u2Asðu; τÞ

3τ3

þ 4u3Asðu; τÞBsðu; τÞ þ
2Bsðu; τÞ

u
þ B0

sðu; τÞ
2

þ u4Asðu; τÞB0
sðu; τÞ

þ
�
4Bsðu; τÞ −

2

uτ3
þ 4uAsðu; τÞ

3τ
−
2u2Asðu; τÞ

τ2
þ uB0

sðu; τÞ
�
λðτÞ

þ
�
−

1

3τ3
−

7

3τ2u
þ 2uBsðu; τÞ −

2u2Asðu; τÞ
τ

þ u2B0
sðu; τÞ
2

�
λ2ðτÞ −

�
1

τ2
þ 4

3τu

�
λ3ðτÞ

−
λ4ðτÞ
τ

þ
�

2

3τ3
− 4uBsðuτÞ − u2B0

sðu; τÞþ
2λðτÞ
τ2

þ 2λ2ðτÞ
τ

�
∂τλðτÞ; ð21Þ

where B0
sðu; τÞ≡ ∂uBsðu; τÞ can be obtained at any con-

stant time slice by simply applying the pseudospectral finite
differentiation matrix [23,61] to the numerical solution
Bsðu; τÞ (which is expressed as a vector field with N
components, as discussed before).
For the time evolution of the gravitational system we

employ here the fourth-order Adams-Bashforth (AB)
integration method. This method requires earlier initializa-
tion by other methods, so in order to evolve the system from
the initial time slice to the next one we use the Euler method
(also known as first-order AB),

Xðτ þ ΔτÞ ¼ XðτÞ þ Δτ∂τXðτÞ; ð22Þ

the next time evolution is done with second-order AB,

Xðτ þ ΔτÞ ¼ XðτÞ þ Δτ
2
½3∂τXðτÞ − ∂τXðτ − ΔτÞ�; ð23Þ

the subsequent time evolution is done with third-order AB,

Xðτ þ ΔτÞ ¼ XðτÞ þ Δτ
12

½23∂τXðτÞ − 16∂τXðτ − ΔτÞ
þ 5∂τXðτ − 2ΔτÞ�; ð24Þ

and then, finally, all the next steps corresponding to the
subsequent time slices are done using fourth-order AB,

Xðτ þ ΔτÞ ¼ XðτÞ þ Δτ
24

½55∂τXðτÞ − 59∂τXðτ − ΔτÞ
þ 37∂τXðτ − 2ΔτÞ − 9∂τXðτ − 3ΔτÞ�; ð25Þ

where Δτ is the time step size and XðτÞ denotes either
a2ðτÞ, Bsðu; τÞ, or λðτÞ. In the present work we used N ¼
33 collocation points and Δτ ¼ 12 × 10−5. Further numeri-
cal details and an error analysis can be found in
Appendix A.
The form of the initial conditions used in the present

work are similar to the ones chosen in Refs. [25,62],

Bsðu;τ0Þ¼Ω1cosðγ1uÞþΩ2 tanðγ2uÞþΩ3sinðγ3uÞ

þ
X5
i¼0

βiuiþ
α

u4

�
−
2

3
ln

�
1þ u

τ0

�
þ2u3

9τ30
−
u2

3τ20
þ 2u
3τ0

�
;

ð26aÞ

λðτ0Þ ¼ 0; ð26bÞ

with the chosen values for a2ðτ0Þ, which determine the
initial energy density of the fluid through Eq. (12a),
displayed in Table I. We choose τ0 ¼ 0.2 as the initial
time of our numerical simulations. By choosing different
values for the set of parameters fΩi; γi; βi; αg in the initial
metric anisotropy (26a), as depicted in Table I, one
generates very different solutions for the physical observ-
ables of the SYM plasma.

10We remark that by using λðτÞ ≠ 0 the initial value λðτ0Þmust
also be specified.
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D. Energy conditions

Energy conditions [63,64] are usually postulated in
general relativity to constrain the form of the energy-
momentum tensor of matter used in Einstein’s equations
based on classical expectations related to the positiveness
of energy, even though some quantum effects are known to
violate such energy conditions [65].
Theweak energy condition (WEC) states that hT̂μνitμtν ≥

0 for any timelike vector tμ. It was shown in [66] that this
implies the following set of inequalities for the Bjorken
flow of a conformal field theory (as e.g., the SYM plasma),

ε̂ðτÞ ≥ 0; ∂τε̂ðτÞ ≤ 0; τ∂τ lnðε̂ðτÞÞ ≥ −4: ð27Þ

In face of Eq. (38), the two last inequalities above imply
that −4 ≤ Δp̂=ε̂ ≤ 2. Therefore, one can see that the WEC
leads to direct constraints on the magnitude of the pressure
anisotropy. Also, its violation does not necessarily imply
that the local energy density is negative—that is just one of
the conditions in (27).
We also remark that the strong energy condition

(SEC), which states that hT̂μνitμtν ≥ −hT̂μ
μi=2, is trivially

equivalent to the WEC for a conformal fluid, since in this
case hT̂μ

μi ¼ 0.

The dominant energy condition (DEC) states that for any
future directed timelike vector tμ (i.e., tτ > 0), the vector
Xμ ≡ −hT̂μνitνmust also be a future directed timelike or null
vector. This condition is important to establish causal
propagation of matter [64]. Let us now work in detail the
DEC for Bjorken expanding SYM fluid closely following
the reasoning discussed in Ref. [66], originally used to
derive the WEC. The energy-momentum tensor for a
conformal fluid undergoing Bjorken flow may be written
as follows:

T̂μν ¼ diagðε̂; p̂T; p̂T;τ2p̂LÞ
¼ diagðε̂; ε̂þ τ∂τε̂=2; ε̂þ τ∂τε̂=2;−τ2ε̂− τ3∂τε̂Þ; ð28Þ

where in the last line we made use of Eqs. (12a)–(12c). On
the other hand, taking s; v; w ∈ R, the most general timelike
or null 4-vector at the flat boundary is given by

tμ ¼ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2þ2w2þ τ2v2

p
;w;w;vÞ⇒ tμtμ ¼−s2 ≤ 0: ð29Þ

The condition that Xτ > 0 then implies that ε̂ > 0, while
XμXμ ≤ 0 leads to a more restricted condition forΔp=ε than
in the WEC, namely, −1 ≤ Δp̂=ε̂ ≤ 2. Therefore, the

TABLE I. Initial conditions (ICs) used in the present work, which were originally considered in [44]. ICs no. 16, no. 21, and no. 22
(the magenta, red, and salmon curves in Figs. 1 and 2, respectively) generate solutions for the pressure anisotropy transiently violating
the dominant energy condition at early times, while ICs no. 23 (which was originally proposed in [62]), no. 24, and no. 25 (the blue,
orange, and purple curves, respectively) also transiently violate the weak energy condition when the fluid is far from equilibrium.

IC no. Ω1 γ1 Ω2 γ2 Ω3 γ3 β0 β1 β2 β3 β4 β5 α a2ðτ0Þ
1 0 0 0 0 0 0 0.5 −0.5 0.4 0.2 −0.3 0.1 1 −20=3
2 0 0 0 0 0 0 0.2 0.1 −0.1 0.1 0.2 0.5 1.02 −20=3
3 0 0 0 0 0 0 0.1 −0.5 0.5 0 0 0 1 −20=3
4 0 0 0 0 0 0 0.1 0.2 −0.5 0 0 0 1 −20=3
5 0 0 0 0 0 0 −0.1 −0.4 0 0 0 0 1 −20=3
6 0 0 0 0 0 0 −0.2 −0.5 0.3 0.1 −0.2 0.4 1 −20=3
7 0 0 0 0 0 0 0.1 −0.4 0.3 0 −0.1 0 1 −20=3
8 0 0 0 0 0 0 0 0.2 0 0.4 0 0.1 1 −20=3
9 0 0 0 0 0 0 0.1 −0.2 0.3 0 −0.4 0.2 1.03 −20=3
10 0 0 0 0 0 0 0.1 −0.4 0.3 0 −0.1 0 1.01 −20=3
11 1 1 0 0 0 0 0 0 0 0 0 0 1 −20=3
12 0 0 1 1 0 0 0 0 0 0 0 0 1 −20=3
13 0 0 0 0 0 0 0.1 −0.4 0.4 0 −0.1 0 1 −20=3
14 0 0 0 0 0 0 −0.2 −0.5 0.3 0.1 −0.2 0.3 1.01 −20=3
15 0 0 0 0 0 0 −0.2 −0.3 0 0 0 0 1 −20=3
16 0 0 0 0 0 0 −0.2 −0.5 0 0 0 0 1 −20=3
17 0 0 0 0 0 0 −0.1 −0.3 0 0 0 0 1 −20=3
18 0 0 0 0 0 0 −0.1 −0.2 0 0 0 0 1 −20=3
19 0 0 0 0 0 0 −0.5 0.2 0 0 0 0 1 −20=3
20 0 0 0 0 0 0 −0.2 −0.4 0 0 0 0 1 −20=3
21 0 0 0 0 0 0 −0.2 −0.6 0 0 0 0 1 −20=3
22 0 0 0 0 0 0 −0.3 −0.5 0 0 0 0 1 −20=3
23 0 0 0 0 1 8 0 0 0 0 0 0 1 −20=3
24 1 8 0 0 0 0 −0.2 −0.5 0 0 0 0 1 −7.75
25 0.5 8 0 0 0 0 −0.2 −0.5 0 0 0 0 1 −7.1
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dominant energy condition leads to more stringent con-
straints on the pressure anisotropy of the fluid. Given that the
pressure anisotropy (or, equivalently, the shear-stress tensor)
is only nonzero out of equilibrium, the discussion concern-
ing the investigation of energy conditions, and their possible
violations, can be useful to systematically characterize the
far-from-equilibrium dynamics of rapidly expanding
systems.
We remark that it is known that in SYM theory the

weak energy condition can be violated in holographic
shockwave collisions, as shown in [67]. Our results
displayed in Fig. 1(a) show that the DEC and also the
WEC can be violated even in the much simpler holographic
Bjorken flow for the SYM plasma, as originally discussed
in [44]. Therefore, this suggests that the violation of energy
conditions in strongly coupled holographic fluids far from
equilibrium is a common feature of such systems. This
should be contrasted with other approaches commonly used
to investigate the quark-gluon plasma in heavy-ion colli-
sions, such as relativistic kinetic theory [68], where the

positiveness of the distribution function ensures that these
energy conditions cannot be violated [67].

E. Holographic nonequilibrium entropy

Now we discuss the calculation of the holographic
nonequilibrium entropy density. The Bekenstein-Hawking
relation [69,70] associates the thermodynamical entropy of
a black hole in equilibrium with the area of its event
horizon. However, in out-of-equilibrium settings, it was
argued in Ref. [43] that the holographic nonequilibrium
entropy should be associated with the area of the apparent
horizon instead of the area of the event horizon.11 In fact,

(c) (d)

(a) (b)

FIG. 1. (a) Pressure anisotropy for the ensemble of far-from-equilibrium solutions and the corresponding late time hydrodynamic
attractors (the six full colored thick curves are used to highlight the solutions transiently violating the energy conditions). (b) Zoom of
the late-time region for the pressure anisotropy. (c) Individual hydrodynamization times for the pressure anisotropy of the different
solutions and the corresponding average times (taking into account all the solutions) with 5% tolerance and (d) with 3% tolerance.

11Reference [43] provided a clear example to justify this
argument: in the case of conformal soliton flow [71], which
corresponds to an ideal fluid, entropy production must be
identically zero at all times. While the entropy calculated through
the area of the apparent horizon in this case is in fact constant, the
area of the event horizon diverges showing that it is an inadequate
measure of the nonequilibrium entropy.
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the holographic nonequilibrium entropy has been consid-
ered in many other works [6,8,9,13,14,19,40,72,73] as
being related to the area of the apparent horizon. As
mentioned before, the apparent horizon lies behind the
event horizon and converges to the latter at late times and,
thus, for sufficiently long times the areas of both horizons
coincide giving the same result for the entropy in
equilibrium.
In order to obtain the radial position of the apparent

horizon, uAHðτÞ, at each time slice of the numerically
generated background geometries, we look for the largest
root of the transcendental equation (17), which in terms of
the numerically known subtracted field ðdþΣÞsðu; τÞ reads,

ðdþΣÞsðuAH; τÞ ¼ −
10

81uAHτ8=3
−

τ1=3

2u4AH
−
1þ 3τλðτÞ
3u3AHτ

2=3

þ 1 − 2τλðτÞ − 3τ2λ2ðτÞ
6u2AHτ

5=3 : ð30Þ

The area of the apparent horizon in holographic Bjorken
flow is given by

AAHðτÞ ¼
Z

d3x
ffiffiffiffiffiffi
−g

p ju¼uAH ¼
Z

dxdydξ
ffiffiffiffiffiffi
−g

p ju¼uAH

¼ ffiffiffiffiffiffi
−g

p ju¼uAHA

¼ jΣðuAH; τÞj3A; ð31Þ

where VðτÞ ¼ τA ¼ τ
R
dxdydξ is the expanding spatial

volume of the fluid in Milne coordinates (note that the
spacetime rapidity ξ is dimensionless).
The Bekenstein-Hawking relation for the nonequili-

brium holographic entropy reads

SðτÞ ¼ AAHðτÞ
4G5

¼ 2πjΣðuAH; τÞj3A
κ25

; ð32Þ

while the (normalized) entropy density is given by

ŝðτÞ≡ κ25sðτÞ ¼ κ25
SðτÞ
VðτÞ ¼

2πjΣðuAH; τÞj3
τ

; ð33Þ

where ΣðuAH; τÞ can be found in terms of the numerically
known subtracted field Σsðu; τÞ using (14c),

ΣðuAH; τÞ ¼ u3AHΣsðuAH; τÞ þ
τ1=3

uAH
−

uAH
9τ5=3

þ 1þ 3τλðτÞ
3τ2=3

þ ð5þ 9τλðτÞÞu2AH
81τ8=3

: ð34Þ

In the rest frame of fluid, the flow velocity 4-vector is
uμ ¼ ð1; 0; 0; 0Þ, while the (normalized) entropy 4-current
density ŝμðτÞ is simply given by

ŝμðτÞ ¼ ŝðτÞuμ ¼ ðŝðτÞ; 0; 0; 0Þ: ð35Þ

The entropy production is given by the 4-divergence of the
entropy 4-current density,

∇μŝμðτÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi−gð4DÞ

p ∂μ½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gð4DÞ

p
ŝðτÞδμτ�

¼ ŝðτÞ
τ

þ dŝðτÞ
dτ

¼ 2π

τA
dAAHðτÞ

dτ
: ð36Þ

The covariant form of the second law of thermodynamics
is expressed as the requirement that the entropy production
(36) is non-negative or, equivalently, that the area of the
apparent horizon is nondecreasing,

∇μŝμðτÞ ≥ 0 ⇒
dAAHðτÞ

dτ
≥ 0; ð37Þ

where, in Bjorken flow, the equality should be saturated
when τ → ∞.

III. HOLOGRAPHIC RESULTS AND
HYDRODYNAMIZATION

In the present work we are interested in calculating the
holographic results for the propertime evolution of the
pressure anisotropy and the nonequilibrium entropy density
of the strongly coupled quantum SYM plasma undergoing
Bjorken flow. In a conformal setup, the ratio of the pressure
anisotropy over the energy density is simply given by

Δp̂
ε̂

≡ p̂T − p̂L

ε̂
¼ 2þ 3

2
τ∂τ lnðε̂Þ: ð38Þ

For the pressure anisotropy of the SYM plasma, the
corresponding analytical hydrodynamic expressions for the
NS regime, the second-order gradient expansion [21,32],
and the Borel resummation [22,38] of the divergent
gradient expansion [39] are given by, respectively,

�
Δp̂
ε̂

�
NS

¼ 2

3πωΛ
; ð39aÞ

�
Δp̂
ε̂

�
2nd order

¼ 2

3πωΛ
þ 2ð1 − lnð2ÞÞ

9π2ω2
Λ

; ð39bÞ

�
Δp̂
ε̂

�
Borel

¼ −276þ 2530ωΛ

3ð120 − 570ωΛ þ 3975ω2
ΛÞ

; ð39cÞ

where ωΛðτÞ≡ τTeffðτÞ is an effective dimensionless time
measure, with TeffðτÞ being an effective temperature
defined out of equilibrium.
We recall that temperature is actually a thermodynamical

concept which, strictly speaking, is only unambiguously
defined in equilibrium. However, one usually defines in
holographic calculations an out of equilibrium effective
temperature as follows. For the SYM plasma in
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equilibrium, conformal invariance dictates that the relation
between the energy density and the temperature of the fluid
is given by [32],

εeq ¼
3π2N2

c

8
T4 ¼ 3π4

2κ25
T4: ð40Þ

Therefore, in equilibrium, the temperature can be written in
terms of the normalized energy density, ε̂≡ κ25ε, as follows,

T ¼ ð2=3Þ1=4
π

ε̂1=4eq : ð41Þ

Notice that Eq. (41) only holds in equilibrium. However,
nothing prevents one to simply define an object, which we
shall call the “out of equilibrium effective temperature,” in
analogy with Eq. (41),

TeffðτÞ≡ ð2=3Þ1=4
π

ε̂1=4ðτÞ; ð42Þ

which is nothing more than a constant multiplied by the
fourth root of the time-dependent (normalized) energy
density of the medium. More precisely, in holographic
calculations one usually considers in Eq. (42) not the full
numerical result for the energy density, but takes instead
some finite order hydrodynamic truncation of the energy
density.12 Here we use the third-order hydrodynamic
truncation for the energy density of the SYM plasma
[74] to define the effective temperature as in Ref. [38],

T3rd orderðτÞ ¼
Λ

ðΛτÞ1=3
�
1 −

1

6πðΛτÞ2=3 þ
−1þ lnð2Þ
36π2ðΛτÞ4=3

þ −21þ 2π2 þ 51 lnð2Þ − 24ln2ð2Þ
1944π3ðΛτÞ2

�
; ð43Þ

where Λ is an energy scale which depends on the chosen
initial conditions. From Eq. (43) we also see that the ideal
hydrodynamic effective temperature achieved at late times
is given by [6]

T idealðτÞ ¼
Λ

ðΛτÞ1=3 : ð44Þ

In order to fix the value of the energy scaleΛ for each initial
condition, as done in Ref. [25], we consider here the late
time NS result for the energy density [6,25,66]13

ε̂NSðτÞ ¼
3π4Λ4

2ðΛτÞ4=3
�
1 −

2

3πðΛτÞ2=3
�
: ð45Þ

Here we fit to the above analytical expression the late time
result for the full numerical energy density in order to
extract the value of Λ for each initial condition considered.
The late time expansions for the area of the apparent

horizon of the gravity dual of the Bjorken expanding SYM
plasma [6,43,75,76], give the following results for the NS
and second-order hydrodynamic truncation of the holo-
graphic entropy density (33) divided by the cube of the
asymptotic ideal effective temperature (44)

ŝNSðτÞ
T3
idealðτÞ

¼ 2π4
�
1 −

1

2πðΛτÞ2=3
�
; ð46aÞ

ŝ2nd orderðτÞ
T3
idealðτÞ

¼ 2π4
�
1−

1

2πðΛτÞ2=3þ
2þπþ lnð2Þ
24π2ðΛτÞ4=3

�
; ð46bÞ

from which we also see that the asymptotic ideal hydro-
dynamic limit obtained when τ → ∞ for this dimensionless
ratio is given by 2π4, which is just the thermodynamic
equilibrium value for the normalized entropy density of the
SYM plasma (see e.g., [77]).
The numerical results for the nonequilibrium entropy

density of the fluid will be presented in terms of the
following dimensionless ratio (which becomes unity in
equilibrium),

ŝðτÞ
2π4T3

idealðτÞ
¼ AAHðτÞ

π3Λ2A
¼ jΣðuAH; τÞj3

π3Λ2
: ð47Þ

It is important to remark that in the hydrodynamic regime
of Bjorken flow the entropy density falls as sðτÞ ∼ τ−1,
while for the second law of thermodynamics given by
Eq. (37) to be satisfied, the requirement is that the entropy
itself, SðτÞ, or equivalently, the area of the apparent horizon
AAHðτÞ is nondecreasing in time. Consequently, the dimen-
sionless ratio in Eq. (47) must be nondecreasing for
solutions satisfying the second law of thermodynamics.
This is the case for all the numerical solutions analyzed in
the present work.
Now that we collected the relevant analytical hydro-

dynamic results for the holographic SYM plasma in
Eqs. (39a), (39b), (39c), (46a), and (46b), we need to
organize our conventions for the dimensionless time
measure in order to properly compare these results with
the outcomes of our numerical gauge/gravity simulations.
We note that Eqs. (39a), (39b), and (39c) are written as a

function of the dimensionless time measure, which we take
here to be given by ωΛ ≡ τT3rd orderðτÞ. Then, we interpolate
our numerical results for all the physical observables in
terms of this dimensionless time measure. The comparison
between the full evolution of the pressure anisotropy for the
initial conditions listed in Table I and the analytical
hydrodynamics results of Eqs. (39a), (39b), and (39c) is
shown in Fig. 1. We see that the full numerical pressure
anisotropy of the gauge/gravity solutions, although highly

12At late times the full numerical energy density is expected to
converge to its analytical hydrodynamic expansion.

13We recall again that our definition of the normalized energy
density, ε̂≡ κ25ε ¼ ð4π2=N2

cÞε, corresponds to twice the value of
the definition used in Ref. [6].
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dependent on the chosen initial condition at early times,
indeed converges at late times to the corresponding hydro-
dynamic results for all the initial conditions. And, as it is
also well known from previous results in the literature
[6,8,9,14,21,22,24,28,38], we see from Fig. 1 that the
holographic SYM plasma hydrodynamizes, i.e., it acquires
an effective hydrodynamic description while still having a
sizable pressure anisotropy being, thus, far from thermo-
dynamic equilibrium.
In order to investigate in a more quantitative way the

onset of hydrodynamic behavior in the far-from-
equilibrium numerical solutions, for each initial condition
we define the corresponding dimensionless hydrodynam-
ization time measure associated with some specific hydro-
dynamic attractor as the first value of ωΛ for which the
condition bellow is satisfied and such that it keeps being
valid until the final time of the simulations,

jXðωΛÞ − XattractorðωΛÞj ≤ toljXattractorðωΛÞj; ð48Þ

where XðωΛÞ denotes any physical observable of the SYM
plasma at the boundary, XattractorðωΛÞ denotes some corre-
sponding hydrodynamic expression (which, for simplicity,
we call as an “attractor”), and ‘tol’ denotes some specified
relative tolerance. In Fig. 1 one can see the different
hydrodynamization times for the pressure anisotropy of
each initial condition in Table I with 5% and 3% relative
tolerances, and also the corresponding average hydro-
dynamization times taking into account all the initial
conditions. One concludes that within the specified relative
tolerances, the pressure anisotropy for different initial data
can converge first either to the hydrodynamic attractor
corresponding to the NS regime (39a), or to the second-
order hydrodynamic truncation (39b), or to the Borel
resummed result (39c), depending on the chosen initial

data. For the ensemble of initial conditions considered here,
the average hydrodynamization time associated with the
Borel resummed attractor is approximately equal to the
corresponding NS result, while both are clearly smaller
than the average hydrodynamization time of the second-
order hydrodynamic truncation for the pressure anisotropy.
One can also notice from Fig. 1(b) that the Borel resummed
attractor only provides a clearly better description of
hydrodynamization than the NS result if one considers
just very small relative tolerances in the long-time regime of
the system.
Concerning the holographic nonequilibrium entropy

density, we notice that the hydrodynamic results given in
Eqs. (46a) and (46b) are expressed in terms of
ω0 ≡ τT idealðτÞ ¼ ðΛτÞ2=3, while our interpolations for
the full numerical results were done in terms of
ωΛ ¼ τT3rd orderðτÞ, as discussed before. In order to obtain
ω0ðωΛÞ, one just needs to invert the relation ωΛðω0Þ
obtained from Eq. (43). This involves considering a third
order algebraic equation, whose roots can be analytically
obtained. Only one of the three roots is real, and this simple
real root gives the desired relation ω0ðωΛÞ, which can be
plugged into Eqs. (46a) and (46b) to express them as
functions of ωΛ. By doing so, we compared in Fig. 2 the
full numerical results for the entropy density of the different
initial conditions and the corresponding analytical hydro-
dynamic expansions.14

One can see that hydrodynamization process, as seen by
the holographic nonequilibrium entropy density, is rather

(a) (b)

FIG. 2. (a) Holographic nonequilibrium entropy density for the ensemble of far-from-equilibrium solutions and the corresponding late
time hydrodynamic attractors (the six full colored thick curves are used to highlight the solutions transiently violating the energy
conditions). (b) Individual hydrodynamization times for the nonequilibrium entropy density of the different solutions and the
corresponding average times (taking into account all the solutions) with 3% tolerance.

14As far as we know, a Borel resummed attractor for the area of
the apparent horizon/nonequilibrium entropy density has not
been derived for the SYM plasma undergoing Bjorken flow. This
is the reason why in Fig. 2 we only plot the corresponding results
for NS and second-order hydrodynamics.
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different than that seen by the pressure anisotropy. In fact,
although the values of the entropy density of the different
initial conditions are widely spread at early times, they all
coalesce to the second-order hydrodynamics long before
they converge to the corresponding NS regime, in striking
contrast to what happens with the pressure anisotropy.
Moreover, at the level of 3% relative tolerance, the average
second-order hydrodynamization time of the entropy den-
sity is considerably shorter than the different average
hydrodinamization times of the pressure anisotropy.
We recall that the set of initial data analyzed here, as

originally discussed in [44], leads to the solutions shown in
Fig. 1(a) for the pressure anisotropy. This demonstrates that
in spite of satisfying all the energy conditions at the initial
time, some solutions evolve in such a way that the DEC and
even the WEC can be transiently violated in Bjorken
flow at early times when the system is still far from
equilibrium. Moreover, as also discussed in [44], by
comparing Figs. 1(a) and 2(a), one notices that

(i) When there is (multiple or single) transient plateau
formation for ŝ=2π4T3

ideal far-from-equilibrium, the
normalized entropy density only trespass its last (or
single) plateau around the second-order hydrody-
namization time, which happens if and only if a local
minimum is observed for the normalized pressure
anisotropy with Δp=ϵ ≤ −1 after such a plateau has
been formed; in such cases, a single plateau for the
normalized entropy density (see the magenta, or-
ange, and purple curves) later implies a local
minimum with Δp=ϵ ¼ −1 (boundary to DEC
violation), while the presence of multiple plateaus
(see the red and salmon curves) later implies a local
minimum with Δp=ϵ < −1 (DEC violation);

(ii) On the other hand, there are solutions (see the blue
curves) violating DEC and also WEC which display

no transient plateau for ŝ=2π4T3
ideal, and therefore

such solutions always have nonvanishing entropy
production when the medium is far-from-equilib-
rium—in particular, we found no special features for
the normalized entropy density associated with the
region violating WEC and DEC with Δp=ϵ > 2.

In particular, from Figs. 1 and 2 it is clear that the WEC
violating solutions (namely, IC’s no. 23, no. 24, and no. 25,
which correspond, respectively, to the blue, orange, and
purple curves) generally take a longer time to enter in the
hydrodynamic regime than the other solutions.
It is also interesting to notice that, e.g., for IC no. 16

(corresponding to themagenta curves in Figs. 1 and 2), at and
around the initial time thepressure anisotropy is close to zero,
and also the entropy production is close to zero, since the
normalized entropy density (47) remains almost constant
during a certain period of time at early times. These two
points together may give the false impression that the system
is close to equilibrium.However, this is certainly not the case.
Indeed, because the approximately constant value of the
normalized entropy density during this early period of time is
far from its equilibrium value, the system is out of equilib-
rium, since the entropy needs to converge to its equilibrium
value as τ → ∞. In order to pursue such a convergence,
the system is driven out of an apparent and false “near-
equilibrium state” at the initial time, and the pressure
anisotropy becomes larger before going to the corresponding
hydrodynamic regime, while the entropy production and the
normalized entropy density increase with time.
We close this section by considering the behavior of

another interesting physical observable, namely, the aver-
age pressure,

hp̂i≡ p̂L þ 2p̂T

3
; ð49Þ

(a) (b)

FIG. 3. (a) Average pressure for the ensemble of far-from-equilibrium solutions and the corresponding late time hydrodynamic
attractors (the six full colored thick curves are used to highlight the solutions transiently violating the energy conditions). (b) Individual
hydrodynamization times for the non-equilibrium entropy density of the different solutions and the corresponding average times (taking
into account all the solutions) with 3% tolerance.
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which tends to π4T4
ideal=2 for asymptotically large times in

the SYM plasma. Indeed, its hydrodynamic gradient
expansion up to second order reads [6],15

2hp̂i2nd order
π4T4

ideal

¼ 1 −
2

3πω0

þ 1þ 2 lnð2Þ
18π2ω2

0

; ð50Þ

where, as before, ω0 ≡ τT idealðτÞ ¼ ðΛτÞ2=3, and one must
invert ωΛðω0Þ to obtain ω0ðωΛÞ in order to plot all the
observables in terms of the effective dimensionless
time ωΛ.
Since the SYM plasma is a CFT, it follows immediately

that, 2hp̂i=π4T4
ideal ¼ 2ϵ̂=3π4T4

ideal, so we are equivalently
considering here the behavior of the normalized energy
density of the fluid. The results for the average pressure of
the ensemble of solutions considered in the present work
and their associated hydrodynamization times are shown
in Fig. 3.

IV. CONCLUSIONS

In the present work we analyzed in a quantitative way the
different hydrodynamization times of the pressure
anisotropy and of the nonequilibrium entropy density for
a given ensemble of far-from-equilibrium solutions describ-
ing the dynamics of the strongly coupled SYM plasma
undergoing Bjorken flow. Some of these solutions evolve in
time such that a transient violation of energy conditions is

developed at early times when the system is still far from
equilibrium, even though there is no violation in the
initial data.
The main new observation done in the present work

concerns the differences on how the pressure anisotropy
and the holographic nonequilibrium entropy density con-
verge to their respective hydrodynamic regimes. While the
pressure anisotropy can converge first to different hydro-
dynamic attractors (namely, NS, second order hydrody-
namics or Borel resummation) depending on the chosen
initial data (for the considered relative tolerances of 3% to
5%), the average hydrodynamization times found for the
ensemble of initial data analyzed here gives,

ω̄ðNSÞ
ΛðpressureÞ ∼ ω̄ðBorelÞ

ΛðpressureÞ < ω̄ð2nd orderÞ
ΛðpressureÞ:

The Borel resummed attractor can only provide a clearly
better description of hydrodynamization than the NS
constitutive relation if one restricts the analysis to very
small relative tolerances in the long time regime of
the fluid.
On the other hand, concerning the nonequilibrium

entropy density (determined by the apparent horizon), all
the individual solutions converge much earlier to the
second-order hydrodynamics regime than to the NS result.
Moreover, such a convergence is attained much earlier than
any of the characteristic hydrodynamization time scales of
the pressure anisotropy.
By considering also the average hydrodynamization time

scales of the average pressure (or, equivalently, the energy
density) of the medium, we found for the ensemble of
solutions considered in the present paper the hierarchy of
time scales indicated in Table II. It is interesting to notice
that different hydrodynamic attractors may earlier apply to
some observables, while only becoming valid much later
for other ones. In fact, second-order hydrodynamics
describes the behavior of the entropy and energy densities
earlier than the corresponding NS results, while the
opposite happens for the pressure anisotropy.

TABLE II. Average hydrodynamization time scales of the SYM plasma undergoing Bjorken flow for the ensemble
of initial data considered in the present work with 3% relative tolerances, taking into account different physical
observables and hydrodynamic attractors.

Ordering Observable/Attractor ω̄Λ ¼ τTeffðτÞ
1 Entropy/Second-order hydrodynamics 0.3004
2 Energy/Second-order hydrodynamics 0.5060
3 Energy/Navier-Stokes 0.6568
4 Pressure anisotropy/Navier-Stokes 0.8008
5 Pressure anisotropy/Borel resummation 0.8036
6 Pressure anisotropy/Second-order hydrodynamics 0.9568
7 Entropy/Navier-Stokes 0.9728

15We recall once again that our definition of the normalized
energy-momentum tensor of the boundary theory corresponds to
twice the value of the definition used in [6]. Moreover, we point
out that there are two kinds of typos in Eqs. (24) and (25) of [6];
first, the correct numerator in the coefficient C2 is 1þ 2 lnð2Þ,
which can be checked by comparing the energy density in
Eq. (24a) with the result in Eq. (4.21) of [32] (doing the
identification Λ ¼ 43=8=33=8π3=2); second, there are missing
factors of 3 which should multiply the coefficients C1 and C2

in Eqs. (24b) and (24c), as noticed in [62]—in fact, it is
immediate to check that without considering these multiplicative
factors of 3 the trace anomaly of the hydrodynamic expansion in
Eqs. (24a–c) of [6] does not vanish, while the SYM plasma is a
CFT and, as such, has zero trace anomaly.
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Moreover, we also found that the solutions violating the
weak energy condition generally take a longer time to enter
in the hydrodynamic regime than the other solutions.
It would be interesting to work out the same quantitative

analysis of the different hydrodynamization times of the
fluid in other holographic models, especially in phenom-
enologically realistic constructions for the quark-gluon
plasma such as e.g., [78–80], and check whether the above
hierarchy of average time scales is a general feature of
strongly coupled holographic fluids.
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APPENDIX A: NUMERICAL
ERROR ANALYSIS

In this appendix we present further details on the
numerical procedure developed in the present work, with
a focus on error analysis.
In Fig. 4 we show the results for the pressure anisotropy

and for the entropy density regarding a selected initial
data (namely, IC no. 20 in Table I), as evolved in time
by considering two different time steps Δτ. For most
of the evolution both results closely agree graphically,
however, one notices a slight reduction on the negative
peak of the pressure anisotropy associated with a

reduction of the time step from Δτ¼ 12×10−4 to
Δτ ¼ 12 × 10−5. Furthermore, and more importantly,
one notices a spurious violation of the second law
of thermodynamics at early times for this initial data
when considering Δτ ¼ 12 × 10−4 (which is manifest in
the early decrease of the area of the apparent horizon)—
such a violation is actually a numerical artifact
which is eliminated by considering a smaller time step
of Δτ ¼ 12 × 10−5, as shown in the figure. The same issue
related to spurious numerical violations of the second law
of thermodynamics due to an inadequate large time step of
Δτ ¼ 12 × 10−4 is also observed for ICs no. 15, no. 16,
no. 21, no. 22, no. 23, no. 24, and no. 25 in Table I, with
this spurious numerical artifact being removed by con-
sidering a smaller time step of Δτ ¼ 12 × 10−5 (or lower).
We also define an error measure by means of a root mean

square (rms) norm L2,

L2 ¼
�
1

2

Z
uIR

0

j…j2du
�

1=2
; ðA1Þ

where j…j is an expected computational zero.
We apply the error measure (A1) to analyze the

time evolution of the error in the constraint Eq. (7e)
for the chosen truncation scheme. In this case j…j ¼ jlhs
of Eq. (7e)j. Figure 5 shows the result for the initial
condition no. 23. This result is quite representative when it
comes to the whole set of initial data considered in
this work.

APPENDIX B: TIMING AND PERFORMANCE

We developed a prototype code with Wolfram’s
Mathematica (version 12) and also a serial Fortran code
(from scratch, which uses open source libraries and
compiler) calibrated with the Mathematica’s prototype.

(a) (b)

FIG. 4. Results obtained with different values of the time step Δτ for (a) the pressure anisotropy and (b) the nonequilibrium entropy
density regarding IC no. 20 in Table I.
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For IC no. 20 in Table I with N ¼ 33 and Δτ ¼ 12 × 10−5

running from τ0 ¼ 0.2 up to τmax ¼ 7.5, and without
considering the postprocessing, the performance is dis-
played in Figs. 6 and 7. We ran both codes on an Intel core
i7-9700k@8x4.9 GHz with 64 Gb of memory, under
Ubuntu 18.04 bionic. The timing T for the Mathematica
code goes as ∼τ2max using the full processor (800% CPU)
and between 0.7% and 1.6% of the total available memory.
We remark that in the simulations performed to evolve the
set of initial data considered in the present work, we used
τmax ¼ 7.5. The evolution of the system for a single initial
data takes T ¼ 4h20m32s with the Mathematica code.
On the other hand, the timing T for the Fortran code goes

as ∼τmax. For τmax ¼ 7.5 it takes T ¼ 11.7s (100% CPU
and a negligible use of memory). For this particular setting
the Fortran code largely outperforms the Mathematica code
by reducing the computation time by a factor of ∼1, 336.
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