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We compute correlation functions, specifically 1-point and 2-point functions, in holographic boundary
conformal field theory (BCFT) using geodesic approximation. The holographic model consists of a
massive scalar field coupled to a Karch-Randall brane—a rigid boundary in the bulk AdS space. Geodesic
approximation requires the inclusion of paths reflecting off of this brane, which we show in detail. For the
1-point function, we find agreement between geodesic approximation and the harder Δ-exact calculation,
and we give a novel derivation of boundary entropy using the result. For the 2-point function, we find a
factorization phase transition and a mysterious set of anomalous boundary-localized BCFT operators. We
also discuss some puzzles concerning these operators.
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I. INTRODUCTION

Recent work has highlighted the importance of Karch-
Randall (KR) braneworlds [1,2] to understanding gravita-
tional phenomena. Such models are doubly-holographic—
there exist three equivalent pictures [3–5]:

(I) a d-dimensional boundary CFT (BCFT) [6,7],
(II) a CFTþ gravity on an asymptotically AdSd space,

connected by transparent boundary conditions to a
nongravitating d-dimensional BCFT bath,

(III) Einstein gravity on an asymptotically AdSdþ1 space
containing an end-of-the-world brane.

Much work in these systems has used duality between (II)
and (III) to compute the fine-grained entanglement entropy
of black hole information in (II) via the island rule [8–12] to
get the semiclassical Page curve in (II) from the classical
geometry of (III). In this spirit, we examine geodesic
approximation [13,14] for correlators of “heavy”
(Δ ≫ d) CFT operators by summing exponentiated geo-
desic lengths between boundary insertions. Note that geo-
desics also compute entanglement entropy in d ¼ 2—a
point emphasized in AdS=BCFT by [15].
Specifically, we take inspiration from the island rule in the

context of duality between (I) and (III)—the AdS=BCFT
correspondence [16,17]. The island rule is the AdS=BCFT

version of the Ryu-Takayanagi (RT) [18] and Hubeny-
Rangamani-Takayanagi (HRT) [19] prescriptions for holo-
graphic entanglement entropy of CFT subsystems. These
involve minimizing some bulk surface, but in (III) we must
include surfaces ending on the brane.
It is natural to ask about other analogs to known entries

of the AdS=CFT dictionary, e.g., geodesic approximation
for propagators,

hOðX1ÞOðX2Þi ¼
Z

DP e−ΔLðPÞ; ð1Þ

whereP is an arbitrary bulk path from X1 to X2 and LðPÞ is
the renormalized length functional. By a saddle-point
approximation, we have that around Δ → ∞,

hOðX1ÞOðX2Þi ∼
X

geodesics

e−ΔL: ð2Þ

The main result of this paper is to extend the geodesic
approximation (2) to holographic models with boundaries
such as KR braneworlds. This requires taking into account
geodesics that reflect off of the boundary, as described
originally in [20–22] in a nonholographic context.
We compute both the heavy 1-point and 2-point func-

tions of a scalar BCFToperator at nonzero brane tension for
the first time using geodesic approximation. While [17]
also computes the 1-point function, a more general expres-
sion is needed for consistency with geodesic approxima-
tion.1 We compute it explicitly—a much more difficult
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1The difference from [17] arises from a different AdS=BCFT
dictionary for which we give a careful treatment in Sec. II B.
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calculation than simply computing geodesic lengths—and
confirm that it matches the approximation. In d ¼ 2, we are
able to extract boundary entropy from the 1-point function,
ultimately matching the standard result found from the RT
formula [16].
The 2-point function with a tensionless brane [23,24] can

also be found using a method of images valid for finite Δ
(Appendix A), but this fails for nonzero tension. Geodesic
approximation provides an approach which can be applied
even at nonzero tension, which we confirm reproduces the
method of images result at zero tension.
Our connected 2-point function includes a (generically)

subleading image term as discussed by [24]. However, we
find a “factorization” phase transition for any negative
tension brane beyond which connected geodesic saddles
are lost. This recalls similar behavior in holographic large-
N gauge theories [25,26], specifically chiral symmetry
breaking [27,28]. We also use the boundary operator
product expansion (BOPE) [6,29] of the 2-point function
to get the spectrum of BCFT boundary scalar operators.
Nonzero tension yields a mysterious extra set of “anoma-
lous” operators [29].

II. GEODESIC APPROXIMATION IN THE
AdS=BCFT CORRESPONDENCE

We present the necessary ingredients to compute heavy
BCFT correlation functions by geodesic approximation.

A. Review of AdS=BCFT

We start by reviewing AdSdþ1=BCFTd [16,17]. In the
(dþ 1)-dimensional bulk, take the gravitational action,

IG ¼ 1

16πGN

Z
M

ddþ1X
ffiffiffi
g

p �
Rþ dðd − 1Þ

l2

�

þ 1

8πGN

Z
Q
ddx̂

ffiffiffi
h

p
ðK − TÞ ð3Þ

where l is the AdS radius (set to 1) andQ is an end-of-the-
world Randall-Sundrum (RS) brane [1] with tension T and
extrinsic curvature Kμν.

2 We impose Neumann boundary
conditions on the bulk metric at the brane,3

Kμν ¼ ðK − TÞhμν: ð4Þ

We are interested in the Karch-Randall (KR) branes, for
which the tension is subcritical—jTj < d − 1—and the
induced geometry is (asymptotically) AdSd [2,3].

In the Euclidean sector, one bulk solution is AdSdþ1,

ds2 ¼ 1

z2
ðdz2 þ dy2 þ dx⃗2Þ; ð5Þ

where z > 0, y ∈ R, and x⃗ ∈ Rd−1. There then exists a
particularly simple class of planar KR branes parametrized
by a brane angle θ,

y ¼ z cot θ: ð6Þ

The bulk geometry is shown in Fig. 1. The dual Euclidean
BCFTd lives on a half-space (z ¼ 0, y > 0).
The tension T and induced length scale l̄ of (6) are

given by,

T ¼ −ðd − 1Þ cos θ; l̄2 ¼ csc2 θ: ð7Þ

T counts the dual BCFTd state’s boundary degrees of
freedom, represented by either a g-function describing the
overlap between the vacuum state and the boundary state
h0jbi or a boundary entropy Sbdy ¼ log h0jbi [30,31]. For
example for d ¼ 2 [16],

Sbdy ¼
tanh−1ðTÞ

4GN
¼ −

1

4GN
log cot

θ

2
: ð8Þ

Negative tensions are a priori possible in this construction,
but they only make physical sense if KR branes are treated
as nonfluctuating, with a nondynamical radion in the
effective action. See [32] for a discussion and an example
of negative tension in an explicit BCFT dual.
As we are interested in scalar operators in BCFTd, we

also include a Euclidean bulk scalar field action,

IS½Φ� ¼ 1

2

Z
M

ddþ1X
ffiffiffi
g

p ð∇aΦ∇aΦþm2Φ2Þ

−
Z
Q
ddx̂

ffiffiffi
h

p
VðΦÞ: ð9Þ

FIG. 1. A fixed x⃗ slice of AdSdþ1 with a planar KR brane (6). θ
is the angle of the brane with the y-axis on which the BCFT lives.
The bulk region to the left of the brane (y < z cot θ) is excised in
the KR braneworld.

2We use Xa with Latin indices to denote coordinates ofM and
x̂μ with Greek indices to denote worldvolume coordinates of Q.

3These are for when Q is approached from the interior of M.
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VðΦÞ is a (usually polynomial) coupling ofΦ to the brane.4

Varying Φ yields the Klein-Gordon equation,5

ð□þm2ÞΦ ¼ 0; □Φ ¼ −∇a∇aΦ; ð10Þ

with Dirichlet or general boundary conditions for Φ,

Dirichlet∶ δΦjQ ¼ 0; ð11Þ

General∶ ½na∂aΦþ V 0ðΦÞ�jQ ¼ 0; ð12Þ

where ðnz; nyÞ ¼ ð−z cos θ; z sin θÞ is the inward-directed
unit normal of Q. The general boundary condition reduces
to a Neumann boundary condition if V is a constant in Φ—
i.e., if Φ is not directly coupled to the brane. It becomes a
Robin boundary condition if V is quadratic.
The AdS=CFT dictionary [33,34] relates m to the

conformal dimension Δ of a dual scalar operator O by,

m2 ¼ ΔðΔ − dÞ; ð13Þ

so “heavy” scalar operators are dual to heavy (large-m)
scalar fields. We have the same duality in AdS=BCFT.
Throughout the paper, we work in standard quantization
and assume that Δ > d=2 [35].
Our goal is a geometric computation of the 1-point and

2-point functions, so we briefly discuss their structure from
conformal symmetry induced by the SOðd − 1; 2Þ isome-
tries of the AdSd brane.
Starting with 1-point functions, for a single insertion

point ðy; x⃗Þ and BCFT boundary y ¼ 0 [36,37],

hOðy; x⃗Þi ¼ aO
ð2yÞΔ : ð14Þ

As well as being a Δ, θ-dependent normalization, aO also
depends on the coupling of the scalar field to the brane,
which acts like a “source.” aO ¼ 0 if V is constant.
For 2-point functions, we define a cross-ratio of insertion

points ðy1; x⃗1Þ and ðy2; x⃗2Þ,

ξ ¼ ðy2 − y1Þ2 þ jx⃗2 − x⃗1j2
4y1y2

∈ ½0;∞Þ: ð15Þ

Then, by symmetry we have [38,39],

hOðy1; x⃗1ÞOðy2; x⃗2Þi ¼
1

ð4y1y2ÞΔ
F ðξÞ; ð16Þ

where F ðξÞ is an arbitrary function of the cross-ratio.

Unlike (14), 2-point functions do not require a nontrivial
coupling of Φ to the brane to be nonzero.
In our holographic analysis, we obtain the forms (14) and

(16), including tension dependence, simply by computing
geodesic lengths—a much more straightforward procedure
than doing field theory on curved backgrounds.

B. Boundary correlators from bulk fields

We now relate the BCFT operator correlators to bulk
field propagators, being particularly careful about normali-
zation. With X ¼ ðz; y; x⃗Þ, define,

ZS½J� ¼
Z

DΦe−IS½Φ�; ð17Þ

Jðy; x⃗Þ ¼ lim
z→0

zΔ−dΦðXÞ; ð18Þ

as respectively the bulk scalar partition function with the
fieldsΦ satisfying (12) (Dirichlet also works) and the source
at z ¼ 0.6 Denoting boundary insertions by ζ ¼ ðy; x⃗Þ,
BCFT correlators are functional derivatives,

hOðζ1Þ � � �OðζnÞi ¼
δn logZS½J�

δJðζ1Þ � � � δJðζnÞ
����
J¼0

: ð19Þ

To compute the partition function, we use the background
field technique [22]; writing,

ΦðXÞ¼ϕBðXÞþϕðXÞ; IS½Φ� ¼ IS½Φ�− IS½ϕB�; ð20Þ

this “shifted” action can be expanded in ϕ,

IS½Φ� ¼ 1

2

Z
M

ddþ1X
ffiffiffi
g

p ð∇aϕ∇aϕþm2ϕ2Þ

−
Z
Q
ddx̂

ffiffiffi
h

p �
V 00ðϕBÞ

2
ϕ2 þOðϕ3Þ

�

þ
Z
M

ddþ1X
ffiffiffi
g

p
ϕð□þm2ÞϕB

−
Z
Q
ddx̂

ffiffiffi
h

p
ϕ½na∂aϕB þ V 0ðϕBÞ�

−
Z
z→0

ddζ
1

zd−1
ϕ∂zϕB; ð21Þ

where ζ-integrations are over half-space y > 0, and we have
integrated the ∇aϕ∇aϕB term by parts.
Our goal is to use a saddle-point approximation on (17),

so we need the on-shell value of the action. To get this,
assume ϕB classically solves the Klein-Gordon equation,
obeys (12), and is normalizable. Around z ¼ 0,

4We use a − sign in the action so that our scalar equations of
motion match those of [16,17]. Their convention is different
because they excise the y > z cot θ part of the bulk.

5We neglect backreaction of the field on the metric for
simplicity by working in the regime md−1GN → 0. 6We also impose regularity at the Poincaré horizon z ¼ ∞.
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ϕBðXÞ ¼ zΔfBðζÞ þ � � � : ð22Þ

If Φ is also taken to be on-shell, ϕ further solves the Klein-
Gordon equation with the following boundary conditions,�
na∂aϕþ V 00ðϕBÞϕþ V 000ðϕBÞ

2
ϕ2 þOðϕ3Þ

�����
Q
¼ 0; ð23Þ

and has the non-normalizable mode. We thus write,

ϕðXÞ ¼ zd−Δ½JðζÞ þ � � �� þ zΔ½AðζÞ þ � � ��; ð24Þ

AðζÞ ¼
Z
y>0

ddζ0Jðζ0ÞHðζ; ζ0Þ; ð25Þ

where H is a linear response function; it is the z → 0 limit
of the bulk-to-boundary propagator that obeys required
boundary conditions at the brane.
We now assume a quadratic brane coupling (λ1;2 ∈ R),

VðΦÞ ¼ λ1Φþ 1

2
λ2Φ2; ð26Þ

The cubic terms in (21) and quadratic terms in (23) vanish.
Equation (23) becomes a Robin condition [22], and the on-
shell shifted action is entirely boundary terms,

IScl ¼ −
Z
z→0

ddζ
1

zd−1

�
ϕ∂zϕB þ 1

2
ϕ∂zϕ

�
: ð27Þ

The first term is finite, but the second term diverges for
Δ > d=2 as in standard AdS=CFT with no brane [35]. To
cancel the divergence, we use the covariant counterterm,

d − Δ
2

Z
z→0

ddζ
ffiffiffi
γ

p
ϕðz; ζÞ2; ffiffiffi

γ
p ¼ 1

zd
; ð28Þ

where γ is the induced metric of a fixed-z slice. This
counterterm contributes an extra finite piece, so the
renormalized on-shell shifted action is,

−IScl;r ¼ Δ
Z

ddζ JðζÞfBðζÞ

þ 2Δ − d
2

Z
ddζ

Z
ddζ0 JðζÞJðζ0ÞHðζ; ζ0Þ; ð29Þ

with the coefficient of the first term agreeing with [24] and
that of the second term with [35]. Notice that if the
counterterm (28) was built from Φ instead of ϕ, the first
term in (29) would be canceled as well, corresponding to a
change in the renormalization scheme.
The corresponding 1-point and connected 2-point func-

tions are,

hOðζÞi¼ΔfBðζÞ; hOðζÞOðζ0Þi¼ð2Δ−dÞHðζ;ζ0Þ: ð30Þ

We conclude by noting that fBðζÞ and, thus, the 1-point
function can be written as integrals over the scalar
propagator. The boundary value problem,7

ð□þm2ÞϕB ¼ 0; ðna∂a þ λ2ÞϕBjQ ¼ −λ1; ð31Þ

has the solution [40,41],8

ϕBðXÞ ¼ λ1

Z
Q
ddx̂

ffiffiffi
h

p
GðX; Yðx̂ÞÞ; ð32Þ

where GðX;X0Þ is the bulk-to-bulk propagator satisfying
Robin boundary conditions at the brane,

ðna∂a þ λ2ÞGðX;X0ÞjX∈Q ¼ 0; ð33Þ

and Yðx̂Þ is the embedding Q → M. Then by using (22)
and (30), we get the 1-point function,

hOðζÞi ¼ λ1Δlim
z→0

Z
Q
ddx̂

ffiffiffi
h

p
z−ΔGðX; Yðx̂ÞÞ: ð34Þ

We see that the 1-point function vanishes if λ1 ¼ 0.
The bulk-to-boundary propagator is obtained from the

bulk-to-bulk propagator via,

KðX; ζ0Þ ¼ ð2Δ − dÞ lim
z0→0

ðz0Þ−ΔGðX;X0Þ; ð35Þ

where we assume that the relative normalization is the same
as in standard AdS=CFT without a brane [35,42].9 For the
1-point function, we get,

hOðζÞi ¼ λ1Δ
2Δ − d

Z
Q
ddx̂

ffiffiffi
h

p
KðYðx̂Þ; ζÞ: ð36Þ

and for the 2-point function,

hOðζÞOðζ0Þi ¼ ð2Δ − dÞ2 lim
z;z0→0

ðzz0Þ−ΔGðX;X0Þ; ð37Þ

with normalization as in [43]. In the large-Δ limit, the
overall normalizations will not play any role.
We have shown that the 1-point and 2-point functions

can be computed in terms of bulk field theoretic quantities.
Indeed, we can compute the 1-point function by solving for
ϕB directly (Appendix B) or by integrating against the
brane (at zero tension). However computing the 2-point
function is more difficult. This motivates the use of
geodesic approximation for the propagators.

7We impose vanishing conditions at z ¼ 0;∞.
8The formula (32) can be proven using Green’s theorem. In

[40,41], only the Neumann problem is considered with λ2 ¼ 0,
but (32) holds also for Robin boundary conditions.

9This should be the case because the Robin propagator
GðX;X0Þ behaves like the empty AdS propagator when X ∼ X0.
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C. Geodesic approximation with boundaries

We now realize geodesic approximation of propagators
in the presence of a bulk boundary Q with Dirichlet or
Robin boundary conditions corresponding to the quadratic
potential (26). The starting point is to compute the
Euclidean bulk-to-bulk propagator GðX;X0Þ,10

ð□þm2ÞGðX;X0Þ ¼ δMðX;X0Þ; ð38Þ

with boundary conditions,

Dirichlet∶ GðX;X0ÞjX∈Q ¼ 0; ð39Þ

Robin∶ ðna∂a þ λ2ÞGðX;X0ÞjX∈Q ¼ 0: ð40Þ

The derivative operators here act on X. To solve for the
propagator, we consider the auxiliary heat equation,

ð∂τ þ□ÞGðX;X0; τÞ ¼ 0;

GðX;X0; 0Þ ¼ δMðX;X0Þ: ð41Þ

whose solution GðX;X0; τÞ, the heat kernel, is also required
to obey an appropriate boundary condition for all τ ≥ 0.
The propagator is then a Laplace transform,

GðX;X0Þ ¼
Z

∞

0

dτ e−m
2τGðX;X0; τÞ; ð42Þ

with respect to the “auxiliary time” variable τ.
In [20–22], a generalization of the DeWitt ansatz for the

heat kernel on a D-dimensional11 manifold M with boun-
daryQwasproposed. It takes into account thepresence of the
boundary by formally summing over geodesics γn that reflect
off the boundary n times. This ansatz is,

GðX;X0; τÞ ¼ 1

ð4πτÞD=2

X∞
n¼0

e−σn=ð2τÞΩnðX;X0; τÞ; ð43Þ

whereΩnðX;X; 0Þ ¼ 1. σnðX;X0Þ is Synge’s world function
[44] for a reflecting geodesic γnðsÞ (s ∈ ½0; 1�) with end-
points γnð0Þ ¼ X and γnð1Þ ¼ X0,

σnðX;X0Þ ¼ 1

2

Z
1

0

ds gabðγnðsÞÞ_γanðsÞ_γbnðsÞ: ð44Þ

For n reflections, this depends on additional reflection data
fx̂k; pkgk¼1;…;n defined as follows.
Denote the kth reflection point (k ¼ 1;…; n) of the

geodesic by γnðpkÞ ¼ Xkðx̂kÞ ∈ Q, where Xk is the reflec-
tion point in the coordinates ofM and x̂k is the point in the
worldvolume coordinates of Q. Also,

pk < pkþ1; p0 ¼ 0; pnþ1 ¼ 1: ð45Þ

The worldline endpoints are X0 ¼ X and Xnþ1 ¼ X0.
Define γn;kðskÞwith sk ∈ ½pk; pkþ1� as the segment of the

worldline between two adjacent reflections. Then,

σnðX;X0Þ ¼
Xn
k¼0

σðXk; Xkþ1Þ
pkþ1 − pk

; ð46Þ

where we write Synge’s world function for each segment,

σðXk; Xkþ1Þ ¼
1

2

Z
1

0

ds gabðγn;kðsÞÞ_γan;kðsÞ_γbn;kðsÞ: ð47Þ

The reflection data fx̂k; pkgk¼1;…;n is then determined by
the extremization conditions,

∂σn
∂pk

¼ 0;
∂σn
∂x̂k ¼ 0 ðk ¼ 1;…; nÞ: ð48Þ

We more thoroughly analyze these conditions in
Appendix C. For now, note the first condition implies that,

ffiffiffiffiffiffiffi
2σn

p
¼ LnðX;X0Þ ¼

Xn
k¼0

LðXk; Xkþ1Þ; ð49Þ

where Ln is the full reflecting geodesic length and
LðXk; Xkþ1Þ is the length of the segment γn;k.
After imposing the first condition, the second condition

in (48) becomes the law of reflection which states that the
angles of the incoming and outgoing portions of the
geodesic with respect to the normal must match, as depicted
in Fig. 2 (see Appendix C for details).
Now, given the ansatz (43), the heat equation can be

solved by expanding each Ωn as a Taylor series in τ,

ΩnðX;X0; τÞ ¼
X∞
k¼0

aðkÞn ðX;X0Þτk; ð50Þ

where að0Þn ðX;XÞ ¼ 1. This is the short-time expansion

(τ → 0). The Seeley-DeWitt coefficients aðkÞn are found
recursively, as on a manifold without boundary [20].

FIG. 2. A cartoon depiction of the law of reflection for an
arbitrary boundaryQ. The reflecting geodesic in black may hitQ
in red any number at times. At each dot, the incident and reflected
angles are equal.

10We use the notation δMðX; X0Þ≡ δðdþ1ÞðX − X0Þ= ffiffiffi
g

p
.

11In this section, we define D ¼ dþ 1 for convenience.
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Each boundary condition (39)–(40) imposes extra con-
ditions on Ωn. When one endpoint is taken to the boundary
ðX → QÞ, the geodesic lengths satisfy “pairing” [20],

σn → σnþ1; na∂aσn → −na∂aσnþ1 ð51Þ

for even n. The boundary conditions then imply,

ðΩn þ Ωnþ1ÞjQ ¼ 0; ð52Þ

for Dirichlet and,

�
ðna∂a þ λ2ÞðΩn þ Ωnþ1Þ −

na∂aσn
2τ

ðΩn −Ωnþ1Þ
�����

Q
¼ 0;

ð53Þ

for Robin [20]. These translate to boundary conditions on

the coefficients aðkÞn . At leading order in (50), the boundary
conditions are satisfied when,

að0Þnþ1 ¼ ð−1Þκað0Þn ; X ∈ Q ð54Þ

where κ ¼ 0 for Robin and κ ¼ 1 for Dirichlet boundary
conditions. Notice that λ2 does not appear in the leading-

order coefficients; it only affects aðkÞn with k ≥ 1.
The leading order k ¼ 0 coefficients are explicitly [20],

að0Þn ¼ ð−1Þκn
ffiffiffiffiffiffi
△n

p
; ð55Þ

where the van Vleck determinant△n [44,45] of a reflecting
geodesic is given by,

△nðX;X0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðXÞgðX0Þp det

�
−
∂2σnðX;X0Þ
∂Xa∂X0b

�
; ð56Þ

and the boundary conditions (54) are satisfied due to
geodesic pairing (51).
Now that we have the heat kernel, the propagator is

obtained by computing the Laplace transform (42).
Performing the integral order by order and using (49),

GðX;X0Þ ¼ 2
X∞
n;k¼0

AðkÞ
n KαkðmLnÞ: ð57Þ

Kαk is the modified Bessel function of the second kind with
αk ¼ kþ 1 −D=2. The coefficients are,

AðkÞ
n ¼ aðkÞn

ð4πÞD=2

�
Ln

2m

�
αk
: ð58Þ

Consider the regime mLn ≫ 1. We can approximate,

2KαkðmLnÞ ∼ e−mLn

ffiffiffiffiffiffiffiffiffi
2π

mLn

s
; ð59Þ

The aðkÞn , being coefficients of the Laplace operator, are
independent of m and depend only on σn and possibly its
covariant derivatives. Hence,

AðkÞ
n =Að0Þ

n ¼ Oðm−kÞ; ð60Þ

and k ≥ 1 terms are suppressed relative to the k ¼ 0 term
when m ≫ 1 (in units of AdS radius l). Thus to leading-
order in the heavy limit, only the short-time terms matter—
Robin produces the same leading-order result as Neumann
—and we get,

GðX;X0Þ ∼
X∞
n¼0

ð−1Þκnπ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mD−3△n

ð2πÞDþ1LD−1
n

s
e−mLn: ð61Þ

This expression is valid as long as m ≫ 1 and mLn ≫ 1. If
we also take Ln ≫ 1 (in units of l), the expression
simplifies further as,12

GðX;X0Þ ∼
X∞
n¼0

ð−1Þκne−mLn: ð62Þ

This is simply a geodesic approximation for the bulk-to-
bulk propagator in the presence of the boundary. To
reiterate, it is valid for large m and Ln. Note Ln=l ≫ 1
is automatically guaranteed when at least one insertion
point is near the conformal boundary.
We briefly mention that the approximation (62) with

reflecting terms can also be derived as the saddle-point
approximation of a path integral formula proven in [46]. In
this approach, the reflection data fx̂k; pkg should be
integrated over and the extremization conditions (48) result
from the saddle point. The appearance of van Vleck
determinants is also naturally explained [47]. Note that
the formula in [46] is very rigorous and does not apply to
Robin boundary conditions for some subtle reason. It
would be interesting to try to understand the relationship
between the rigorous path integral and the DeWitt ansatz
used in this paper.
When X, X0 are sufficiently close to each other and to the

boundary Q, one expects only a single reflection γ1 ≡ γ to
exist in addition to the nonreflecting geodesic γ0 ≡ γ. Then
the ansatz (43) consists of only two terms,

GðX;X0; τÞ ¼ 1

ð4πτÞD=2 ½e−σ=ð2τÞΩþ e−σ̄=ð2τÞΩ̄�; ð63Þ

12One can prove that△n ¼ e−dLnþOðlogLnÞ when Ln → ∞. This
is subleading in (61) when m ≫ d=2.

JANI KASTIKAINEN and SANJIT SHASHI PHYS. REV. D 105, 046007 (2022)

046007-6



and the geodesic approximation yields,

GðX;X0Þ ∼ e−mL � e−mL̄: ð64Þ

Based on (51), Dirichlet or Robin boundary conditions are
met depending on the relative sign. In AdS with a planar
brane, (64) is true more generally and not just near the
brane—when taking one of the insertion points to the
conformal boundary, there are no geodesics which reflect
more than once (Appendix D).
We are finally ready to give formulas for 1-point and

2-point functions at large Δ. Starting with the 2-point
function (37) and defining the renormalized geodesic
length between boundary points ζ and ζ0,

L�ðζ; ζ0Þ ¼ lim
z;z0→0

½LðX;X0Þ − log ðzz0Þ�; ð65Þ

the BCFT 2-point function is given by,

hOðζÞOðζ0Þi ∼ e−ΔL
� � e−ΔL̄

�
; Δ → ∞: ð66Þ

For the 1-point function, we focus on Robin boundary
conditions. In the expression (34), the propagator between
X and the embedded brane point Yðx̂Þ is,

GðX; Yðx̂ÞÞ ∼ 2e−ΔLðX;Yðx̂ÞÞ; Δ → ∞; ð67Þ

where we use the fact that the reflecting geodesic coincides
with the nonreflecting one when Yðx̂Þ ∈ Q (51). There are
no higher reflecting contributions due to the no-go theorem
proven in Appendix D.
The integral (34) is approximated by the geodesic with

minimal length that corresponds to the point Yb ∈ Q for
which the geodesic hits the brane orthogonally; this length
is computed explicitly in Sec. III A. Thus at large Δ, (34) is
given by,

hOðζÞi ¼ λ1e−ΔL
�ðζ;YbÞ: ð68Þ

where,

L�ðζ; YbÞ≡ lim
z→0

½LðX; YbÞ − log z�; ð69Þ

is renormalized only in one insertion.

III. 1-POINT FUNCTION

We start with the 1-point function. As it is an integral
over propagators (34), we sum over geodesics connecting
the insertion point to the brane, termed boundary-to-brane
geodesics. We find that the minimal such geodesic gives the
leading-order behavior of the full 1-point function (com-
puted in Appendix B) in the large-Δ limit.
Furthermore, the minimal geodesic only sees the linear

coupling λ1Φ on the brane—not the quadratic coupling

λ2Φ2=2. In accordancewith the law of reflection (Sec. II C),
the relevant geodesic hits the brane at a right angle.
Throughout this section, we assume the non-Dirichlet

boundary condition. The Dirichlet answer is exactly 0.

A. Geodesic approximation at large Δ
Denote the insertion point ζ as ðy; x⃗Þ and the brane

intersection point Yb as ðzb; yb; x⃗bÞ, noting yb ¼ zb cot θ.
The 1-point function is an integral on Q (34), but, as the
length is,

L ¼
Z

1

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dz2 þ dy2 þ dx⃗2

q
; ð70Þ

the boundary-to-brane geodesics with x⃗b ¼ x⃗ are local
minima of L with respect to x⃗b. In the full parameter
space, these particular geodesics comprise a “valley” of the
length function dominating the path integral of e−ΔL.
Such geodesics are uniquely determined by zb, but there

are two cases (Fig. 3). For T ≥ 0, we have only counter-
clockwise trajectories from the insertion, with each one
corresponding to some zb > 0. For T < 0 however, we
have both counterclockwise and clockwise trajectories,
with only a finite range of zb,

zl ¼ y
cos θ

csc θ þ 1
≤ zb ≤ y

cos θ
csc θ − 1

¼ zu: ð71Þ

For all of these geodesics, we can use (5) to integrate up to
some cutoff surface z ¼ ϵ → 0 and compute the length in
terms of a dimensionless ratio χb ¼ zb=y,

L0ðχbÞ ¼ log y − log χb

þ log ½ð1 − χb cot θÞ2 þ χ2b� − log ϵ: ð72Þ

Adding the counterterm þ log ϵ to renormalize, the mini-
mum length L�

0 found at χ�b ¼ sin θ is,

L�
0 ¼ log

�
2y tan

θ

2

�
; ð73Þ

which we plug into (68). Thus to leading order in the
Δ → ∞ expansion, the 1-point function has a θ-dependence
of the expected form (14),

(a) (b)

FIG. 3. The boundary-to-brane geodesics confined to a slice of
AdSdþ1. Each is labeled by its intersection depth zb, but negative
T imposes a finite range on zb. (a) T ≥ 0. (b) T < 0.
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hOðy; x⃗Þi ∼ λ1e−ΔL
�
0 ¼ λ1

ð2yÞΔ cotΔ
θ

2
: ð74Þ

As an aside, this minimal geodesic hits the brane orthogo-
nally, so as expected it satisfies the law of reflection.

B. Asymptotics of the finite-Δ function

We now compare (74) against the Δ → ∞ limit of the
1-point function found for,

VðΦÞ ¼ λ1Φþ 1

2
λ2Φ2: ð75Þ

All of the details including the definitions of the coef-
ficients, the discrepancy with [17], and the asymptotic
analysis are explored in greater depth in Appendix B.
The 1-point function is,

hOðy; x⃗Þi ¼ −
C1ðθÞ
ð2yÞΔ

�
2ΔΓðΔþ2

2
ÞΓðΔ−dþ1

2
Þffiffiffi

π
p

Γð2Δ−dþ2
2

Þ
�
; ð76Þ

and the coefficient is,

C1ðθÞ ¼
−λ1

F1ðθÞ − RF2ðθÞ þ λ2½G1ðθÞ − RG2ðθÞ�
; ð77Þ

where R depends on Δ and F1;2ðθÞ and G1;2ðθÞ depend on
Δ and θ. Observe (76) for λ2 ¼ 0 differs from the 1-point
function in [17]. In fact, the latter fails to reproduce (74) as
Δ → ∞ (see Appendix B).
In computing the large-Δ asymptotics of our expression,

as there are a lot of pieces, we individually write the large-Δ
expressions of the quantities comprising (77):

F1ðθÞ ∼ G2ðθÞ ∼
1

2

�
cotΔ

θ

2
þ tanΔ

θ

2

�
; ð78Þ

F2ðθÞ ∼
Δ
2

�
cotΔ

θ

2
− tanΔ

θ

2

�
; ð79Þ

G1ðθÞ ∼
1

2Δ

�
cotΔ

θ

2
− tanΔ

θ

2

�
; ð80Þ

R ∼
1

Δ
: ð81Þ

We thus write the leading-order term in the heavy regime of
the C1ðθÞ coefficient as,

C1ðθÞ ∼ λ1 cotΔ
θ

2
; ð82Þ

In conjunction with the other prefactors and the approxi-
mation Δ − d ≈ Δ, we ultimately find that,

hOðy; x⃗Þi ∼ λ1
ð2yÞΔ cotΔ

θ

2
: ð83Þ

The overall dependence on θ matches (74). However, the
only coupling which matters in the leading-order term is λ1.
The quadratic coupling λ2 only appears in subleading terms
—it weights the finite-Δ corrections.
To summarize, the asymptotic heavy 1-point function is

encoded by a classical trajectory in the bulk and only “sees”
the term dependent on the linear coupling, while the finite-
Δ corrections are computed by “quantum” trajectories
which are controlled by higher-order couplings.

C. Computing the boundary entropy

In d ¼ 2, the 1-point function of a heavy scalar operator
can be related to the partition function of a conical defect.
This allows us to compute the boundary entropy.
Consider an insertion of a scalar operator ðΔ=2;Δ=2Þ

with dimension Δ ∼ c → ∞ such that Δ=c is fixed. For
Δ=c ∈ ½0; 1�, the insertion creates a conical singularity with
an angular deficit 2πð1 − αÞ where [48,49],

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

12Δ
c

r
: ð84Þ

This was proven at the level of Virasoro blocks with no
boundary, but we assume that it holds more generally. The
1-point function of the heavy operator is then,

hOðy; xÞi ∼ Zn

ðZ1Þn
����
n→1=α

; ð85Þ

where Zn for n ∈ N is the partition function of a replicated
orbifold theory BCFTn=Zn with a twist operator insertion.
This approach of computing partition functions of CFTs on
n-fold branched covers is familiar from the definitions of
twist operators.
The singularity has to be regulated by cutting out a disk

of radius ϵ0 around the insertion point (Fig. 4). On the
boundary of this disk, we impose the boundary state jai.
The resulting partition function is then [50,51],

FIG. 4. The regulated orbifolded BCFTn=Zn state with an
operator insertion at ðy; xÞ. We excise a disk of radius ϵ0, on
whose boundary we impose the state jai.
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Zn

ðZ1Þn
¼ ðhaj0ih0jbiÞ1−n

�
ϵ0
2y

�
dn
;

dn ¼
c
12

�
n −

1

n

�
: ð86Þ

where dn is the scaling dimension of the twist operator and
jbi is the boundary state on the physical boundary y ¼ 0.
The first overlap haj0i is not physical and can be absorbed
into the regulator [51],

haj0i1−nϵdn0 ≡ ϵdn : ð87Þ

The second overlap h0jbi is physical and gives the
boundary entropy by Sbdy ¼ log h0jbi.
The formula (85) agrees with the 1-point function

obtained from geodesics. In our case, we neglect the
backreaction of the scalar field to the bulk AdS back-
ground: mGN → 0. On the field theory side, this corre-
sponds to the limit Δ=c → 0 (α → 1) where the conical
singularity disappears. In this limit,

1−
1

α
¼ −

6Δ
c

þO
�
Δ
c

�
2

; d1=α ¼ ΔþO
�
Δ
c

�
2

; ð88Þ

so as Δ=c → 0,

Zn

ðZ1Þn
����
n→1=α

∼ ϵΔ
½e−ð6=cÞSbdy �Δ

ð2yÞΔ : ð89Þ

The regulator ϵ defined in (87) can be identified with the
bulk IR cutoff z ¼ ϵ in Poincaré coordinates [51].
Absorbing the regulator into the operator and equating
this with our 1-point function (83), we find,

Sbdy ∼ −
c
6
log cot

θ

2
; Δ → ∞: ð90Þ

So the 1-point function obtained from geodesic approxi-
mation indeed reproduces the boundary entropy (8) in the
large-Δ regime after identifying c ¼ 3=ð2GNÞ.

IV. 2-POINT FUNCTION

We now study the 2-point function, starting by comput-
ing the connected geodesic lengths between insertion
points ðy1; x⃗Þ and ðy2; x⃗Þ on the same transverse slices.
The cross-ratio (15) becomes,

ξ ¼ ðy2 − y1Þ2
4y1y2

; ð91Þ

and the sum over geodesics yields an expression (16) which
is the large-Δ connected 2-point function. We only find two
connected saddles—a nonreflecting geodesic and a (once)
reflecting geodesic (Fig. 5)—see Appendix D.
Upon writing our expressions in terms of ξ, we can then

use them for more general insertion points on different
transverse slices—this only changes implicit coordinate
dependence but not explicit functional dependence on ξ.
The resulting 2-point function has two interesting

features. The first, a phase transition, is seen from the
existence (or lack thereof) of the connected saddles; starting
from zero tension θ ¼ π=2 and keeping the insertions fixed,
as we tune the brane angle down to,

tan θ ¼
ffiffiffi
ξ

p
; ð92Þ

the nonreflecting and reflecting saddles coincide with one
another (Fig. 6). Tuning it down even further results in the
loss of these saddles entirely, so the connected 2-point
function becomes 0 and the full 2-point function becomes
factorizable—a product of the 1-point functions.13

The second feature comes from the boundary operator
product expansion (BOPE) [6,29]. By performing the
expansion, we find an extra tower of terms labeled by
half-integer powers of ξ. These correspond to anomalous
BCFT boundary operators which emerge only away from
the probe limit, i.e., only for nonzero tension. Indeed, such
terms cannot arise for zero tension even in the Δ-exact
answer from the method of images (Appendix A).
However, there is still a problem; the resulting anoma-

lous dimensions themselves are independent of θ. The
boundary operator spectrum can also be computed holo-
graphically by generalizing [52] to nonzero tension, but this

(a) (b)

FIG. 5. The reflecting (yellow) and nonreflecting (green)
connected geodesics with insertion points ðy1; x⃗Þ and ðy2; x⃗Þ.
As the brane angle decreases, the reflecting trajectory gets
“closer” to the nonreflecting trajectory. (a) T ≥ 0. (b) T < 0.

FIG. 6. The KR braneworld with θ at the factorization angle θf.
We only have one connected geodesic, with features of both the
reflecting and nonreflecting geodesics. Also shown are the
disconnected geodesics.

13This is certainly only a large-Δ effect. The suppressed
contributions coming from other connected, nongeodesic trajec-
tories would prevent factorization.
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is expected to yield a θ-dependent spectrum. We discuss
this inconsistency, but further work is required.
Throughout this section, we again assume the Robin

boundary condition, but the connected 2-point function in
the heavy limit reduces to that of Neumann condition.

A. Reflecting and nonreflecting trajectories

We start with insertions ðy1; x⃗Þ and ðy2; x⃗Þ (y2 > y1); just
as for the 1-point function, the geodesic trajectories
connecting these points to the brane or to one another
are on a fixed-x⃗ slice. As there are only two connected
saddles—one nonreflecting and another once-reflecting
(Appendix D)—we restrict our attention to computing
these lengths. We depict both geodesics in Fig. 5.
Observe however that, with the insertion points fixed,

there exists a brane angle θ ¼ θf that we call the factori-
zation angle below which both of these trajectories no
longer “fit” in the braneworld—either connected geodesic
is excised by the brane. A geometric calculation (using (91)
and generalizing by conformal symmetry) yields,

tan θf ¼
ffiffiffi
ξ

p
: ð93Þ

At θ ¼ θf, the nonreflecting and reflecting geodesics
consolidate and become the same path, giving us just
one saddle shown in Fig. 6. We for now set θ > θf and
discuss the details of the phase transition in Sec. IV B.
The nonreflecting trajectory is simply a circle centered at

ðy2 þ y1Þ=2 with radius ðy2 − y1Þ=2 up to a cutoff z ¼ ϵ.
Renormalizing with the counterterm þ2 log ϵ, we find,

L12N ¼ 2 logðy2 − y1Þ: ð94Þ

The corresponding contribution of this geodesic to the
2-point function in the Δ → ∞ limit is (in terms of ξ),

e−ΔL12N ¼ 1

ðy2 − y1Þ2Δ
¼ 1

ð4y1y2ÞΔ
ξ−Δ; ð95Þ

where we have written the exponential in the form (16).
As for the reflecting trajectory, we follow a similar

analysis to Sec. III A. We compute a more generic function
for the length of a piecewise concatenation of geodesic arcs
which hits the brane at a depth zb.

14

L12RðzbÞ ¼ −2 log zb þ log½ðy1 − zb cot θÞ2 þ z2b�
þ log ½ðy2 − zb cot θÞ2 þ z2b� − 2 log ϵ: ð96Þ

There are four saddles, but above the factorization angle
only one is “physical” (i.e., at positive depth),

z�b ¼
ffiffiffiffiffiffiffiffiffi
y1y2

p
sin θ: ð97Þ

Thus the minimal length is,

L�
12R ¼ logð4y1y2Þ − 2 log

�
sin θ

ð y1þy2
2
ffiffiffiffiffiffiffi
y1y2

p Þ − cos θ

�
: ð98Þ

This calculation does not use the law of reflection to get
(98). However an explicit calculation of the angles for the
trajectory corresponding to (97) confirms the law holds.
Now from (91),

1þ ξ ¼ ðy1 þ y2Þ2
4y1y2

: ð99Þ

We use this to write the contribution of L�
12R to the 2-point

function in the form (16),

e−ΔL
�
12R ¼ 1

ð4y1y2ÞΔ
�

sin θffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p
− cos θ

�
2Δ
: ð100Þ

We are at last ready to write the 2-point function to leading
order in Δ → ∞ by combining (95) and (100),

hOðy1; x⃗1ÞOðy2; x⃗2Þi ∼
1

ð4y1y2ÞΔ
FGðξÞ; ð101Þ

FGðξÞ ¼ ξ−Δ �
�

sin θffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p
− cos θ

�
2Δ
: ð102Þ

Theþ sign corresponds to Robin boundary conditions
while the − sign is for Dirichlet.
We may now switch to arbitrary insertion points ðy1; x⃗1Þ

and ðy2; x⃗2Þ because we have dropped all explicit depend-
ence on the transverse coordinate x⃗ in (95) and (100).
Specifically, because the 2-point function must be of the
form (16) with FG being entirely fixed up to the cross-ratio
by symmetry [38,39], we simply use (102).
Furthermore, for the tensionless case θ ¼ π=2 we get,

FGðξÞ ¼ ξ−Δ � ð1þ ξÞ−Δ; ð103Þ

in agreement with the Δ-exact result from the method of
images computed in Appendix A.
However, because the expression is simply part of an

expansion around Δ → ∞ for θ ≠ π=2, we must note the
relative order of the terms. Indeed, at θ > θf,

1

ξ
>

�
sin θffiffiffiffiffiffiffiffiffiffiffi

1þ ξ
p

− cos θ

�
2

; ð104Þ

so the reflecting term is subleading to the nonreflecting
term.
As this work was being written, [53] presented a

Lorentzian analog to our calculation using a null geodesic

14For θ < π=2, the existence of such trajectories is not trivial
because of the finite range of depths (71) for each piece.
However, one can prove existence precisely above the factori-
zation angle.
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reflecting off of the brane. They observe a singularity in the
2-point function, which our expression reproduces upon
analytic continuation of the cross-ratio. To see how this
works, first define the radial coordinate ρ by [54,55],

ξ ¼ ð1 − ρÞ2
4ρ

; 1þ ξ ¼ ð1þ ρÞ2
4ρ

: ð105Þ

Our reflecting term in (102) exhibits a singularity when
1þ ξ ¼ cos2 θ, which in terms of ρ is equivalent to,

ρ ¼ e�2iθ: ð106Þ

B. Factorization phase transition

First, note that the previous discussion is entirely about
the connected part of the 2-point function. We may also
consider the disconnected part,

hOðy1; x⃗1ÞOðy2; x⃗2Þidc ¼ hOðy1; x⃗1ÞihOðy2; x⃗2Þi

∼
λ21

ð4y1y2ÞΔ
cot2Δ

θ

2
; ð107Þ

where we use the geodesic result (74) to write this term to
leading order in large Δ. It is constant in ξ and vanishes
when there is no scalar coupling to the brane.
A quick calculation shows that, in the large-Δ expansion,

this disconnected part is leading over the reflecting geo-
desic contribution, but whether or not it is leading or
subleading with respect to the nonreflecting contribution
depends on ξ and θ.
As touched upon in the previous section however, there

exists a brane angle (93) below which the connected
geodesics undergo a phase transition. Below this factori-
zation angle, only the disconnected part of the 2-point
function remains; in other words, the large-Δ 2-point
function factorizes into a product of 1-point functions.
Another way to think about this is by keeping the brane

angle θ fixed. If the brane tension is non-negative, then the
phase transition simply never happens. If the tension is
negative, then there exists a cross-ratio,

ξf ¼ tan2 θ; ð108Þ

such that 2-point functions whose insertion points have a
cross-ratio ξ > ξf factorize in the large-Δ regime.
This phase transition is reminiscent of others in large-N

limits of holographic gauge theories. A particularly well-
known example is the confinement-deconfinement transi-
tion [25,26]—one finds a qualitative change in the Wilson
lines when tuning temperature, reflecting a phase transition
from Coulombic to free behavior of quarks.
In our case, the inserted heavy operators are “decorre-

lated” in the phase transition. Qualitatively, this is akin to

chiral symmetry breaking; a similar story was discussed by
[28] but in terms of flavor branes [56] ending on horizons,
as opposed to geodesics ending on branes. Roughly speak-
ing, we assign global symmetry groups to the two insertion
points. If the points are correlated, then the symmetry is
spontaneously broken. Once the points are decorrelated, the
symmetry is restored.

C. Consistency of the BOPE and
anomalous defect operators

Within the context of the BCFT, we will now study the
2-point function obtained from doing geodesic approxi-
mation in the ambient channel ξ → 0 and the defect
channel ξ → ∞.15 These limits are determined by operator
product expansions which depend on BCFT data. While the
ambient channel corresponds to taking operator insertions
very far from the BCFT boundary or close to one another,
the defect channel corresponds to taking operator insertions
very close to the BCFT boundary or far from each other.
The ambient channel ξ → 0 expansion of (102) is

obtained by rewriting,

FGðξÞ ¼ ξ−Δ �
�
cot

θ

2

�
2Δ
�
1þ

ffiffiffiffiffiffiffiffiffiffiffi
ξþ 1

p
− 1

1 − cos θ

�−2Δ
; ð109Þ

which expands in integer powers of ξ,

FGðξÞ ¼ ξ−Δ �
�
cot

θ

2

�
2Δ X∞

n¼0

Anξ
n: ð110Þ

The first three coefficients are

A0 ¼ 1; A1 ¼
Δ

cosθ− 1
; A2 ¼

Δð2Δþ 2− cosθÞ
4ðcosθ− 1Þ2 :

ð111Þ

The series (110) can be organized to be an infinite series
over conformal blocks of primary operators with dimen-
sionsΔn ¼ 2Δþ 2n with n ∈ N; these are the double-trace
primaries ∶O□n

ζO∶.
We denote the n ¼ 0 primary by O2, and from the

2-point function we find that,16

hO2ðy; x⃗Þi ¼ �1

ð2yÞ2Δ cot2Δ
θ

2
; ð112Þ

which has the form required by defect conformal symmetry
and a coefficient in agreement with a geodesic terminating

15The BCFT literature [38,39] often refers to the “bulk” and
“boundary” channels of the field theory. To avoid confusion with
the holographic terminology, in this section we refer to the former
by “ambient” and the latter by “defect” [29,52].

16Normal ordering subtracts the ξ−Δ divergence.
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on the brane. However, in contrast to the 1-point function of
O (83), no λ1-prefactor appears.
The coefficients of the conformal blocks can be in

principle computed using the methods of [57,58], but we
have not managed to do this analytically. Nonetheless, from
the expansion we see that the OPE coefficients of these
operators are modified at nonzero tension θ ≠ π=2, but
scaling dimensions remain independent as one would
expect for a free theory.
To expand in the defect channel ξ → ∞, we write,

FGðξÞ ¼ ξ−Δ � ðsin θÞ2Δ
� ffiffiffiffiffiffiffiffiffiffiffi

ξþ 1
p

− cos θ
	
−2Δ

; ð113Þ

which expands as,

FGðξÞ ¼ ξ−Δ � ðsin θÞ2Δ
X∞
n¼0

Bn=2ξ
−Δ−n=2: ð114Þ

The first three coefficients are,

B0¼ 1; B1=2¼ 2Δcosθ; B1¼Δ½ð2Δþ1Þcos2 θ−1�:
ð115Þ

At zero tension, all of the half-integer coefficients vanish.
In this case, the expansion can be reorganized in defect
conformal blocks of single-trace defect primaries [59],

Dirichlet∶ Δ̂n ¼ Δþ 2nþ 1; ð116Þ

Neumann∶ Δ̂n ¼ Δþ 2n: ð117Þ

At nonzero tension however, the appearance of half-
integer powers is unusual and requires a new tower of
operators to appear in the defect operator spectrum. Since
an operator of dimension Δ̂n appears as a term of order ξ−Δ̂n

in the expansion of F ðξÞ [52], (114) requires the existence
of a primary of dimension Δþ 1=2. Such a dimension has
to be anomalous since engineering dimensions of local
operators constructed from O cannot produce a frac-
tional power.
There is another problem however. The fact that dimen-

sions of boundary operators extracted from (114) are
independent of θ appears to be inconsistent. The defect
operator spectrum can be computed holographically by
generalizing the calculations of [52] and the bulk calcu-
lations of [39] to nonzero tension. The idea is to solve the
Klein-Gordon equation using the ansatz,

ΦðXÞ ¼
X
n

ψnðrÞΦ̂nðr; x⃗Þ; ð118Þ

where these coordinates are defined in (B3). The nth mode
Φ̂n solves the Klein-Gordon equation in AdSd with mass
Δ̂nðΔ̂n − d − 1Þ, where Δ̂n is the dimension of a boundary

operator. This leads to an equation for ψn that can be solved
in terms of hypergeometric functions.
Requiring normalizability and imposing boundary

conditions at the brane Q gives the equation [akin to
(B10)],

Rn ¼
ΓðΔ−Δ̂n

2
ÞΓðΔþΔ̂n−dþ1

2
Þ

2ΓðΔ−Δ̂nþ1
2

ÞΓðΔþΔ̂n−dþ2
2

Þ
ð119Þ

where Rn ¼ RnðΔ; Δ̂n; θÞ is a known function given in
terms of the solutions ψn. From this equation, the boundary
operator spectrum Δ̂n can be solved for in principle. They
depend on not just Δ but also tension through θ.
One possible cause for the disagreement could be a

mismatch between the boundary conditions of the bulk
scalar field ϕ and the dual BCFToperatorO. The mismatch
occurs at the z ¼ y ¼ 0 corner of the holographic bulk and
only arises when the brane has angle θ ≠ π=2, in which
case the brane’s normal vector in the bulk is not orthogonal
to the defect in the BCFT.
It would thus be interesting to examine if there is an

order-of-limits issue when taking z → 0 and y → 0. We
took the former limit first, but doing the latter (or more
correctly, taking y → z cot θ) first would physically mean
taking a bulk scalar insertion to the KR brane, then going to
the BCFT boundary. In this case, one would obtain a “brane
OPE” at finite-z from which the BOPE coefficients could
be obtained by taking z → 0. However, it is not clear if
taking the limits in this order is consistent.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We have studied d-dimensional BCFTs using a bottom-
up17 holographic model involving a massive free scalar
field with a Karch-Randall end-of-the-world brane. We
have computed 1-point and 2-point functions of the dual
scalar operator in the large-Δ limit when the brane has
nonzero tension. This requires a generalization of geodesic
approximation to manifolds with boundaries which we
have provided.
The 1-point function is cleanly replicated by our geo-

desic calculation, and we are also able to use it to reproduce
the known boundary entropy.
However, our analysis of the 2-point function manifests

unusual phenomena. We find a factorization phase tran-
sition for negative-tension branes, so such BCFT states
cannot have large-Δ correlations beyond a particular cross-
ratio. Furthermore, the ambient OPE appears to be com-
pletely consistent, but the BOPE gives rise to an anomalous
tower of boundary operators with tension-independent

17We briefly mention that much work on 1-point functions has
also been done in top-down models. See [60–62] for a sample of
this story.
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scaling dimensions. This appears to be inconsistent with
another holographic calculation of the boundary operator
spectrum. We propose that the problem is related to the
corner at z ¼ y ¼ 0 which is not orthogonal for θ ≠ π=2.
We leave the resolution of this issue and other possible
questions about the influence of corners in AdS=BCFT to
future work.
There are plenty of clear avenues along which to

continue this work. We list some below:
(i) We study a very simple class of KR branes and thus

only have a BCFT on half-space. It would be
interesting to study other configurations (such as a
configuration dual to a BCFT on a disk) or even a
two-brane “wedge” setup [63–65].

(ii) Our work is in Euclidean signature, so it would be
interesting to recast everything in real time, particu-
larly the 2-point function. As this work was being
written up, a real-time study of constraints on
holographic BCFT from a bulk causal structure
using reflecting null geodesics was performed
[53]. We found agreement in the singularity struc-
ture, but future work could involve consolidating
more of the results.

(iii) We only consider empty, nonbackreacting AdS. One
could ask how our methods apply to other solutions,
e.g., black holes or backreacting geometries.

(iv) One could interpret our results in terms of the
localized gravitational theory on the brane coupled
to the BCFT bath and use geodesic approximation to
study correlations between bath radiation and cor-
responding entanglement islands. Along these lines,
one could also study correlations in the context of
braneworld cosmologies [66].
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APPENDIX A: METHOD OF IMAGES AND
MEAN FIELD THEORY

We can explicitly construct a tensionless KR braneworld
with a scalar field as an orbifold theory. Specifically we
quotient empty AdSdþ1 with a scalar by some discrete
subgroup of isometries Γ [67–69]. Generically, if Γ has
fixed points QΓ, then these will comprise a defect in the

quotient space. Tensionless KR branes occur when QΓ is
codimension-one to the bulk.18

We can get propagators from a method of images. For
bulk-to-boundary propagators in AdSdþ1=Γ [68],19

KH=ΓðX; ζ0Þ ¼
1

jΓj
X
γ∈Γ

χðγÞΩγðζ0ÞΔKHðX; γζ0Þ: ðA1Þ

X ¼ ðz; y; x⃗Þ is a point in Euclidean AdSdþ1 (≅ Hdþ1), ζ0 ¼
ðy0; x⃗0Þ is a boundary point, χ is some 1-dimensional unitary
representation of Γ, Ωγ is the Jacobian of the boundary’s
conformal transformation induced by γ, and KH is the
empty AdSdþ1 bulk-to-boundary propagator, i.e., the
Poisson kernel [78,79],

KHðX; ζ0Þ ¼ CΔ

�
z

z2 þ ðy − y0Þ2 þ jx⃗ − x⃗0j2
�
Δ
; ðA2Þ

with normalization CΔ ¼ π−d=2ΓðΔÞ=ΓðΔ − d=2Þ.
In the quotient space, the scalar field will generically

have different sectors which are defined by how they
transform under Γ. These correspond to different repre-
sentations χ which weight the image terms so that the
propagator satisfies the appropriate boundary condition on
Q. The sum above using a 1-dimensional unitary repre-
sentation χ accommodates an untwisted sector (χ ¼ 1) and
twisted sectors (χ ≠ 1 but jχj ¼ 1).
To actualize this discussion, take an orbifold by parity,

P∶ðz; y; x⃗Þ → ðz;−y; x⃗Þ: ðA3Þ

The resulting brane is a planar KR probe brane of the sort
discussed in the main text (y ¼ 0). Such an isometry
generates a Z2 subgroup, so there exists an untwisted
sector corresponding to Neumann boundary conditions on
the scalar field and a Z2-twisted sector corresponding to
Dirichlet boundary conditions.
This story about propagators carries into the boundary

theory on half-space. We still have two sectors—an
untwisted (Neumann) sector and a Z2-twisted (Dirichlet)
sector—in which the respective propagators are [24],

hOðy1; x⃗1ÞOðy2; x⃗2Þi∼
1

½ðy2 − y1Þ2 þ jx⃗2 − x⃗1j2�Δ

þ 1

½ðy2 þ y1Þ2 þ jx⃗2 − x⃗1j2�Δ
; ðA4Þ

18It is unclear if one can construct all tensionless KR branes
this way. An argument in the affirmative would need to
demonstrate that, for any AdSd slice in AdSdþ1 with K ¼ 0,
there exists an isometry fixing each point of the slice.

19The method of images is a general technique. [70] uses it to
write the bulk-to-boundary propagator in the BTZ black hole
[71]. [72] does so in a nonsingular multiboundary AdS3 orbifold.
[73–77] studies Zn orbifolds with conical defects.
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hOðy1; x⃗1ÞOðy2; x⃗2Þi∼
1

½ðy2−y1Þ2þjx⃗2− x⃗1j2�Δ

−
1

½ðy2þy1Þ2þjx⃗2− x⃗1j2�Δ
: ðA5Þ

That being said, we also comment that the above boundary
propagators are those of a mean field theory [39]. This
becomes evident when we write (A4) and (A5) in terms of
the cross-ratio (15),

hOðy1; x⃗1ÞOðy2; x⃗2Þi ∼
1

ð4y1y2ÞΔ
½ξ−Δ � ðξþ 1Þ−Δ�; ðA6Þ

At this point, note that the method of images appears to be
rather robust. Not only do we not make any assumptions
about the order of Δ, but we may consider other quotients
which provide more nontrivial shapes for the boundary. For
instance, we may consider another Z2 isometry in the bulk:
parity composed with inversion,

PIa∶ ðz; y; x⃗Þ → a2

z2 þ y2 þ jx⃗j2 ðz; y; x⃗Þ: ðA7Þ

Rather than a plane, we have a brane which is a hemisphere.
The dual BCFT state thus has as its boundary a (d − 1)-
sphere of radius a.
However, digging deeper reveals the limitations to this

approach. In the bulk, the extrinsic curvature of even the
hemispherical brane is still 0—the brane is a tensionless
probe brane. Additionally, there exists a conformal trans-
formation between the disk and half-plane (Fig. 7), so
studying the BCFT state on one geometry is equivalent to
studying the related state on the other geometry.
This suggests the method of images is only good for

tensionless branes, which we argue more generally. Let M
be a smooth manifold with a Z2 isometry whose fixed
points form a codimension-1 submanifold Q. Near Q, we
write the metric of M in Gaussian normal coordinates,

gabdXadXb ¼ dρ2 þ gμνðρ; x̂Þdx̂μdx̂ν; ðA8Þ

where Xa ¼ ðρ; x̂μÞ are coordinates on M and x̂μ are
coordinates on Q. On the former coordinates, a general
Z2 action is written as (suppressing indices for convenience),

ðρ; x̂Þ ↦ Aðρ; x̂Þ; A2 ¼ 1: ðA9Þ

The surfaceQ is located at ρ ¼ 0with its inducedmetric and
extrinsic curvature given by,

hμνðx̂Þ ¼ gμνð0; x̂Þ; Kμν ¼
1

2
∂ρgμν

����
ρ¼0

: ðA10Þ

Taylor expanding gμν around ρ ¼ 0 gives,

gμνðρ; x̂Þ ¼ hμνðx̂Þ þ 2Kμνðx̂ÞρþOðρ2Þ; ðA11Þ

which generalizes to any coordinate system of Q.
The Z2 action (A9) has to keep each point ð0; x̂Þ fixed.

Thus near ρ ¼ 0, all such actions are reflections,

Aðρ; x̂Þ ¼ ð−ρþOðρ2Þ; x̂þOðρÞÞ; ðA12Þ

and higher-order corrections in ρ do not contribute at linear
order in (A11).
An action (A12) is an isometry if and only if the linear

term in (A11) vanishes, since we must have,

gμνðAðρ; x̂ÞÞ ¼ gμνðρ; x̂Þ: ðA13Þ

Thus for isometries, Kμν ¼ 0 at each point onQ. From (4),
Q thus has constant and vanishing tension T ¼ 0.
In summary, although the orbifolds of AdSdþ1 gravity

coupled to a scalar are a limited class of theories, we can
obtain a mean field theory in this way.

APPENDIX B: Δ-EXACT 1-POINT
FUNCTIONS IN AdS=BCFT

The starting point of computing the 1-point functions,
regardless of the scalar field’s coupling to the brane, is to
solve (10) for the background field ϕB to compute fB in
(22). Here we do so for a quadratic brane potential,

VðΦÞ ¼ λ1Φþ 1

2
λ2Φ2; ðB1Þ

and the corresponding boundary condition on ϕB,

ðz sin θ∂y − z cos θ∂z þ λ2ÞϕBjQ ¼ −λ1: ðB2Þ

We define the coordinates,

r ¼ y
z
; w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

q
; ðB3Þ

for which the metric (5) takes the form,

FIG. 7. A visual representation of the conformal transformation
mapping half-space to the unit disk (which can then be rescaled).
The boundary at yh ¼ 0 is mapped to the boundary
at jx⃗dj2 þ y2d ¼ 1.
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ds2 ¼ dr2

1þ r2
þ 1þ r2

w2
ðdw2 þ dx⃗2Þ: ðB4Þ

This is Euclidean AdSdþ1 in hyperbolic slicing; the slices
are written in lower-dimensional Poincaré coordinates.
Now the planar KR brane (6) is located at r ¼ cot θ and
the y > 0 half of the conformal boundary is at r → ∞.
In these coordinates, the equation of motion for the scalar

field Φ takes the form,

0 ¼ ð1þ r2Þ∂2
rΦþ ðdþ 1Þr∂rΦ

þ w2∂2
wΦ − ðd − 2Þw∂wΦþ w2∂2

x⃗Φ
1þ r2

− ΔðΔ − dÞΦ:

ðB5Þ

For the ansatz Φðz; y; x⃗Þ ¼ ϕBðrÞ, this simplifies to,

ð1þ r2Þϕ00
B þ ðdþ 1Þrϕ0

B − ΔðΔ − dÞϕB ¼ 0; ðB6Þ

which has the general solution,

ϕBðrÞ ¼ C1ϕ1ðrÞ þ C2ϕ2ðrÞ; ðB7Þ

where C1;2 are constants and,

ϕ1ðrÞ ¼ r2F1

�
Δþ 1

2
;
d − Δþ 1

2
;
3

2
;−r2

�
; ðB8Þ

ϕ2ðrÞ ¼ 2F1

�
Δ
2
;
d − Δ
2

;
1

2
;−r2

�
: ðB9Þ

Recall that the background field is normalizable (22), so
ϕBðrÞ ∼ r−Δ as r → ∞. This fixes the (negative) ratio of the
coefficients as,

R ¼ −
C2

C1

¼ ΓðΔ
2
ÞΓðΔ−dþ1

2
Þ

2ΓðΔþ1
2
ÞΓðΔ−dþ2

2
Þ : ðB10Þ

Additionally the modified Robin boundary condition at the
brane is now,

½csc θ∂r þ λ2�ϕBðrÞjr¼cot θ ¼ −λ1; ðB11Þ

which for (B7) becomes,

F1ðθÞ − RF2ðθÞ þ λ2½G1ðθÞ − RG2ðθÞ� ¼ −
λ1
C1

; ðB12Þ

where we have defined the functions,

F1ðθÞ¼ cscθ2F1

�
Δþ1

2
;
d−Δþ1

2
;
1

2
;−cot2 θ

�
; ðB13Þ

F2ðθÞ ¼ csc θ cot θΔðΔ − dÞ

× 2F1

�
Δþ 2

2
;
d − Δþ 2

2
;
3

2
;−cot2θ

�
; ðB14Þ

G1ðθÞ¼ cotθ2F1

�
Δþ1

2
;
d−Δþ1

2
;
3

2
;−cot2 θ

�
; ðB15Þ

G2ðθÞ ¼ 2F1

�
Δ
2
;
d − Δ
2

;
1

2
;− cot2 θ

�
: ðB16Þ

From the Robin boundary condition, we find that,

C1ðθÞ ¼
−λ1

F1ðθÞ − RF2ðθÞ þ λ2½G1ðθÞ − RG2ðθÞ�
: ðB17Þ

And in Poincaré coordinates, asymptotically we get,

ϕBðz; yÞ ¼ zΔfBðyÞ þ � � � ; z → 0; ðB18Þ

where using Euler’s reflection formula yields,

fBðyÞ ¼ −
ΓðΔ

2
ÞΓðΔ−dþ1

2
Þ

2
ffiffiffi
π

p
Γð2Δ−dþ2

2
Þ
C1ðθÞ
yΔ

: ðB19Þ

The 1-point function is,

hOðy; x⃗Þi ¼ ΔfBðyÞ ¼
aOðθÞ
ð2yÞΔ ; ðB20Þ

so the coefficient in (14) is,

aOðθÞ ¼ −C1ðθÞ
2ΔΓðΔþ2

2
ÞΓðΔ−dþ1

2
Þffiffiffi

π
p

Γð2Δ−dþ2
2

Þ : ðB21Þ

When taking λ2 ¼ 0, our result differs from the 1-point
function of [17]; their tension-dependent coefficient is,

a�OðθÞ ∼
1

F1ðθÞ
; ðB22Þ

i.e., no F2ðθÞ, which happens in our analysis if R ¼ 0. For
large Δ, we then have (omitting θ-independent factors),

hOi ∼ 1

tanΔðθ
2
Þ þ cotΔðθ

2
Þ : ðB23Þ

This behavior is inconsistent with geodesic approximation,
hence the need for a nonzero R.
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1. Tensionless brane

At zero tension θ ¼ π=2, our result matches the liter-
ature. Specifically, we have,

F1

�
π

2

�
¼G2

�
π

2

�
¼ 1; F2

�
π

2

�
¼G1

�
π

2

�
¼ 0; ðB24Þ

⇒ C1

�
π

2

�
¼ −

λ1
1 − λ2R

: ðB25Þ

The λ2 coupling allows us to interpolate between modified
Neumann (λ2 ¼ 0) and Dirichlet (λ2 ¼ ∞) boundary con-
ditions. For the tensionless case at these limits,

aO

�
π

2

�
¼

8<
: λ1

2ΔΓðΔþ2
2
ÞΓðΔ−dþ1

2
Þffiffi

π
p

Γð2Δ−dþ2
2

Þ ; modified N;

0 D:
ðB26Þ

The tensionless λ2 ¼ 0 expression can also be computed
from a method of images. Take the Neumann bulk-to-
boundary propagator,

Kðz; y1; x⃗1; y2; x⃗2Þ

¼ ΓðΔÞ
πd=2Γð2Δ−d

2
Þ
��

z
z2 þ ðy1 − y2Þ2 þ jx⃗1 − x⃗2j2

�
Δ

þ
�

z
z2 þ ðy1 þ y2Þ2 þ jx⃗1 − x⃗2j2

�
Δ
�
; ðB27Þ

and use (36),

hOðy; x⃗Þi ¼ λ1Δ
2Δ − d

Z
Rd−1

dd−1x⃗b

Z
∞

0

dzb
zdb

Kðzb; 0; x⃗b; y; x⃗Þ:

ðB28Þ

Using the integral [80],

Z
Rd−1

dd−1x⃗b

Z
∞

0

dzb
zdb

�
zb

z2b þ y2 þ jx⃗b − x⃗j2
�

Δ

¼ πðd−1Þ=2ΓðΔ
2
ÞΓðΔ−dþ1

2
Þ

2ΓðΔÞ
1

yΔ
; ðB29Þ

the Neumann result (B26) is reproduced.
In [37], the 1-point function was also computed using

(B28) for d ¼ 4, but without both the overall normalization
and the factor of two coming from the image term in the
Neumann propagator. These factors are important to match
with the alternative calculation (B26).

2. Large-Δ asymptotics

From the expansion presented in [81], as Δ → ∞,

2F1

�
aþ Δ

2
; b −

Δ
2
;
1

2
;
1 − z
2

�

∼
1

2
ðeΔζ=2 þ e−Δζ=2Þ; ðB30Þ

ffiffiffiffiffiffiffiffiffiffi
z − 1

2

r
2F1

�
aþ Δ

2
; b −

Δ
2
;
3

2
;
1 − z
2

�

∼
1

2Δ
ðeΔζ=2 − e−Δζ=2Þ; ðB31Þ

where ζ ¼ cosh−1 z. We set ðz − 1Þ=2 ¼ cot2 θ so that,

ζ ¼


2 log cot θ

2
; 0 < θ ≤ π

2
;

2 log tan θ
2
; π

2
< θ < π:

ðB32Þ

Hence for the hypergeometric functions appearing in the
1-point function, we get,

F1ðθÞ ∼ G2ðθÞ ∼
1

2

�
cotΔ

θ

2
þ tanΔ

θ

2

�
; ðB33Þ

F2ðθÞ ∼
Δ
2

�
cotΔ

θ

2
− tanΔ

θ

2

�
; ðB34Þ

G1ðθÞ ∼
1

2Δ

�
cotΔ

θ

2
− tanΔ

θ

2

�
: ðB35Þ

The ratio (B10) goes as R ∼ 1=Δ, so we get,

aOðθÞ ∼ λ1cotΔ
θ

2
; Δ → ∞; ðB36Þ

where the dependence on λ2 completely disappears at
leading order in Δ → ∞. This term is plotted against the

FIG. 8. Log plot comparing the exact coefficient aOðθÞ of the 1-
point function (B21) (computed numerically as dots) to the
asymptotic limit (B36) (plotted as lines) at various Δ, setting
d ¼ 3, λ1 ¼ 1, and λ2 ¼ 2. The asymptotic expression fails for
Δ ∼ d (particularly for θ > π=2), but the error rapidly decreases
as Δ increases.
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exact aOðθÞ in Fig. 8 with good agreement—the error is
high for Δ ∼ d but decreases as Δ increases.

APPENDIX C: PROOF OF THE LAW OF
REFLECTION

In this Appendix, we solve the extremization conditions
(48) imposed on Synge’s world function for a reflecting
geodesic. We find that the conditions impose a standard law
of reflection at each reflection point.

1. Extremization over pk
Recalling the notation of Sec. II C, Synge’s world

function for a reflecting geodesic is,

σnðX;X0Þ ¼
Xn
k¼0

σðXk; Xkþ1Þ
pkþ1 − pk

: ðC1Þ

σðXk; Xkþ1Þ is Synge’s world function for a segment.
The conditions,

∂σn
∂pk

¼ 0 ðk ¼ 1;…; nÞ; ðC2Þ

are equivalent to,

pkþ1 − pk

pk − pk−1
¼ LðXk; Xkþ1Þ

LðXk−1; XkÞ
ðk ¼ 1;…; nÞ; ðC3Þ

with the length of a geodesic segment defined as,20

LðXk; Xkþ1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σðXk; Xkþ1Þ

p
¼

Z
1

0

ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν _γ

μ
n;k _γ

ν
n;k

q
: ðC4Þ

One can check that (C3) are solved by,

pk ¼
P

k
i¼1 LðXi−1; XiÞP
n
i¼0 LðXi; Xiþ1Þ

ðk ¼ 1;…; nÞ: ðC5Þ

Substituting into (C1) yields,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σnðX;X0Þ

p
¼

Xn
k¼0

LðXk; Xkþ1Þ ¼ LnðX;X0Þ; ðC6Þ

where LnðX;X0Þ is the total length of the geodesic γn with n
reflections.

2. Extremization over x̂k
Extremizing over pk first, (C6) implies that,

∂σn
∂x̂μk ¼ 0 ⇔

∂Ln

∂x̂μk ¼ 0: ðC7Þ

Defining L½γn;k� as the length functional of γn;k, we have,

∂Ln

∂x̂μk ¼ ∂L½γn;k�
∂x̂μk þ ∂L½γn;k−1�

∂x̂μk : ðC8Þ

with the endpoints of γn;k being,

γn;kð0Þ ¼ Xk; γn;kð1Þ ¼ Xkþ1: ðC9Þ

By the geodesic equation for each geodesic segment γn;k,
the variation of L½γn;k� is a pure boundary term,

δL½γn;k� ¼ uakð1ÞδðXkþ1Þa − uakð0ÞδðXkÞa; ðC10Þ

where,

uakðsÞ ¼
_γan;kðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gab _γan;k _γ

b
n;k

q : ðC11Þ

is the unit tangent vector of γn;k.
The reflections points are Xk ¼ Xkðx̂kÞ ∈ Q, so that for

the incoming segment,

∂L½γn;k−1�
∂x̂μk ¼ uak−1ð1ÞMaμðx̂kÞ; ðC12Þ

where,

Ma
μðx̂kÞ ¼

∂Xa
k

∂x̂μk : ðC13Þ

Similarly for the outgoing segment:

∂L½γn;k�
∂x̂μk ¼ −uakð0ÞMaμðx̂kÞ: ðC14Þ

Using (C8), the extremization condition (C7) is thus
equivalent to,

½uak−1ð1Þ − uakð0Þ�Maμðx̂kÞ ¼ 0 ðC15Þ

where uak−1ð1Þ is the unit tangent vector of the incoming
geodesic segment and uakð0Þ is that of the outgoing seg-
ment, both at the reflection point.
Let ta and na be the unit tangent and normal vectors ofQ

respectively. By definition, the pullback of the normal
vector na to Q vanishes,

20Note that the square root can be moved under the integral in σ
because the integrand is a constant.
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Maμna ¼ 0: ðC16Þ

Thus by decomposing, (Fig. 9)

−uak−1ð1Þ ¼ − sinψk−1ta þ cosψk−1na; ðC17Þ

uakð0Þ ¼ sinψkta þ cosψkna; ðC18Þ

where ψk−1 is the angle between −uak−1ð1Þ and na while ψk

is the angle between uakð0Þ and na, (C15) becomes,

sinψk−1 − sinψk ¼ 0 ⇒ ψk−1 ¼ ψk; ðC19Þ

which is the law of reflection.

APPENDIX D: NO-GO FOR n > 1
REFLECTIONS IN ADS

In Sec. II C, we discuss an ansatz for the bulk-to-bulk
propagator between insertion points X and X0 and in the
presence of a boundary Q in which we sum over geodesics
obeying the law of reflection. However, this is a formal
ansatz—the sum as presented is over any even integer
number of reflections by geodesic segments regardless of
whether such trajectories exist.
Here, we demonstrate that for a planar KR brane in

AdSdþ1—the geometry used throughout this paper—taking
at least one of the insertion points to the conformal
boundary disallows more than one reflection. For simplic-
ity, we restrict our attention to a fixed-x⃗ slice. As our
analysis in the main paper also starts on a single x⃗ slice, the
arguments of this Appendix are sufficient to prevent geo-
desics with more than one reflection.
We first introduce brane-to-brane geodesics—semicircles

connecting two insertion points along the brane. Such arcs on
a particular x⃗ slice can be determined by fixing the depths of
their two endpoints: z1b for the point closer to the boundary
and z2b for the point further from the boundary. This, in
addition to a boundary-to-brane geodesic from a boundary
point yi to the brane at a depth zb, are shown in Fig. 10.

If we have n > 1 reflections, a brane-to-brane geodesic
must be involved. However, these trajectories cannot exist
if θ ≤ π=2—that is for zero and negative tensions—
because there is no way to draw a brane-to-brane semicircle
centered on the conformal boundary in such cases.
Immediately, this rules out n > 1 reflections for θ ≤ π=2.
The argument for positive tensions (θ > π=2) however

relies on the angles that these trajectories make with the
brane, also depicted in Fig. 10. Starting with the boundary-
to-brane geodesic, for a particular insertion point yi we can
parametrize the different possible trajectories by the angle
ψb made with the brane, instead of by the depth zb. This
angle monotonically increases with zb, ultimately falling
within a calculable range,

θ −
π

2
≤ ψb <

3π

2
− θ: ðD1Þ

A similar statement holds for the brane-to-brane geodesics
—we can parametrize them in terms of the pairs of angles
made between the brane and their endpoints. For the zib
endpoint (i ¼ 1, 2), this angle is denoted as ψ ib. However,
these angles can be instead written in terms of the
dimensionless parameter χb ¼ z2b=z1b > 1. Doing so
reveals the constraint,

FIG. 9. A cartoon of reflection at a point Xkðx̂kÞ. The oriented
tangent vectors uakð0Þ and −uak−1ð1Þ are decomposed into ta and
na components, upon which extremization yields ψk−1 ¼ ψk.

(a) (b)

FIG. 10. Boundary-to-brane and brane-to-brane geodesics
shown with their characteristic angles and endpoints. These
examples are on a particular x⃗ slice. (a) Boundary-to-Brane.
(b) Brane-to-Brane.

FIG. 11. A piecewise trajectory consisting of a boundary-to-
brane geodesic and a brane-to-brane geodesic connected at
zb ¼ z1b. Also shown are each piece’s angle with respect to
the normal. The above picture only makes sense if ψb > π=2,
while a piecewise trajectory with zb ¼ z2b only makes sense
if ψb < π=2.
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3π

2
− θ < ψ1b ¼ ψ2b < π: ðD2Þ

We now present an argument by contradiction. Suppose
that we do have a geodesic trajectory starting at a boundary
point and with n > 1 reflections. Then there must exist a
boundary-to-brane arc connected to a brane-to-brane arc
with the law of reflection satisfied—the former may
connect to the latter at either z1b (closer to the boundary)
or z2b (further from the boundary). As the arguments for
both of these cases are identical, we focus on the former
(depicted in Fig. 11).

By equating the incident and reflected angles, the law of
reflection gives us the constraint,

ψb ¼ ψ1b: ðD3Þ

However this contradicts (D1) and (D2); the possible values
of ψb and ψ1b do not overlap.
So, for planar KR branes in AdSdþ1, there is no way to

connect a boundary-to-brane geodesic to a brane-to-brane
geodesic while obeying the law of reflection. This rules out
any n > 1 reflecting geodesic trajectories.
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