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We use the numerical conformal bootstrap to study six-dimensional N ¼ ð1; 0Þ superconformal field
theorieswith flavor symmetryso4k.Wepresent evidence thatminimal ðDk;DkÞ conformalmatter saturates the
unitarity bounds for arbitrary k. Furthermore, using the extremal-functional method, we check that the chiral-
ring relations are correctly reproduced, extract the anomalous dimensions of low-lying long superconformal
multiplets, and find hints for novel operator product expansion selection rules involving type-B multiplets.
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I. INTRODUCTION

For the last three decades, string theory has been a potent
apparatus for the construction of quantum field theories
(QFTs). The power of this approach finds its source in the
way the parameters and properties of the quantum field
theory are governed by geometrical and topological fea-
tures of the compactification space. Conformal field the-
ories (CFTs) are an especially interesting class of QFTs;
they exist at the fixed points of the renormalization group
flows, and thus they can provide important insights into the
nature of quantum field theory.
In this work, our focus is on CFTs with additional

supersymmetry, known as superconformal field theories
(SCFTs). From a pure field theory perspective, it was long
unknown whether interacting superconformal field theories
exist in five or six dimensions, despite the existence of the
appropriate superconformal algebras [1]. In part, the
challenge in constructing such theories lies in the fact that
there are no supersymmetry-preserving marginal deforma-
tions in five or six dimensions [2], and thus the usual
techniques of perturbation theory cannot be applied. In the
1990s, it was discovered that compactifications of type IIB
string theory on noncompact K3 surfaces give rise to exotic
six-dimensional theories, with 16 supercharges, whose

constituent objects are tensionless strings [3], and it was
soon realized that they are in fact superconformal field
theories [4]. This is a prime example of geometric engi-
neering; each such 6D SCFT is associated to a finite
subgroup of SUð2Þ, Γ, as the K3 surfaces are all locally of
the orbifold form C2=Γ.
One of the recent successes of this technique of geometric

engineering of quantum field theories is the enumeration of a
vast landscape of six-dimensional superconformal field
theories with eight supercharges obtained via F-theory
[5,6]. The SCFTs realized by this construction have a
quiverlike structure; the “links” appearing in these quivers
are themselves nontrivial interacting SCFTs with a g ⊕ g0
flavor algebra—they are a generalization of an sun ⊕ sum
bifundamental hypermultiplet—known as minimal ðg; g0Þ
conformalmatter [7]. These conformalmatter theories have a
simple construction from the perspective of M-theory: for
each ADE algebra g0 ¼ g, the minimal conformal matter
theory lives on the world volume of a single M5-brane
probing a C2=Γ orbifold, where Γ is the finite subgroup of
SUð2Þ of the same ADE type as g.
Despite marking a significant milestone in our under-

standing of six-dimensional field theories, it remains
unknown to what extent the landscape of consistent 6D
SCFTs matches that obtained from geometric construc-
tions. There are six-dimensional SCFTs which are con-
structed with “frozen” 7-branes, and these are not captured
by the geometric constructions of [5,6]; however, such
SCFTs may still be obtainable from an F-theory origin
[8,9]. Similarly, there are putative 6D SCFTs that appear
nonanomalous from the bottom-up, field-theoretic perspec-
tive; however, there is no known way to engineer these
theories from F-theory; such theories are widely believed to
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be inconsistent for a variety of indirect reasons [10,11];
however, this has not been rigorously established. As a final
example, there is a seemingly consistent spectrum with su3

flavor symmetry, for which the Higgs branch is the one-
instanton moduli space of SUð3Þ [12]; this theory does not
have a known geometric construction. It is an open
question, which can be considered as part of the swampland
program, whether all consistent 6D SCFTs have an origin
in string theory.
The main drawback of the geometric engineering

approach is that, up to a small collection of protected
quantities such as the central charges, it is unknown how to
access the conformal data, namely, the conformal dimen-
sions and operator product expansion (OPE) coefficients,
from the geometry. This raises the question of whether
other techniques, when used in conjunction with geometry,
can be employed to learn about those conformal quantities.
Some work toward the determination of the conformal
dimensions for certain classes of unprotected operators in
6D (1,0) SCFTs was initiated in [13,14].
Concurrently, but transversely, to the development of the

geometric program, the conformal bootstrap [15,16] has
known renewed interest, sparked in [17], and provides a
technique for bounding the conformal data of a CFT. Using
the associativity of the OPE, the ethos of the bootstrap is to
harness the power of unitarity to impose strict bounds on the
values that the conformal data of a(n S)CFT can take, with
minimal assumptions on the spectrum of the theory. The
superconformal bootstrap has been applied to SCFTs with at
least eight supercharges. In three [18–23] and four [24–37]
dimensions there is a significant body of literature; however,
five- [38] and six-dimensional [39–41] analyses have been
carried out comparatively less. In general, the bounds that are
imposed by crossing symmetry and associativity of the OPE
appear to be saturated by SCFTs that have a construction via
string theory. While most of the literature has focused on
theories in lower dimensions, the geometric landscape of 6D
(1,0) SCFTs that has been charted in [5,6] is opportune for
exploitation via bootstrap techniques.
In this paper, we use the numerical conformal bootstrap

to study six-dimensional N ¼ ð1; 0Þ SCFTs with a non-
Abelian flavor symmetry. We focus on those with flavor
algebra so4k, for k > 4. We find that the lower bound
imposed by unitarity on the flavor central charge for a given
value of k converges to that of minimal ðDk;DkÞ conformal
matter. This suggests that such conformal matter is the
“smallest” SCFT with that flavor symmetry and rules out
any potential more exotic theory with a smaller flavor
central charge. Assuming that the bound is saturated, we
proceed to extract the conformal dimensions of the first few
scalar long multiplets. We observe that the half-BPS
multiplets that appear to be absent from the spectrum
are consistent with those known to be projected out by the
Higgs-branch chiral ring of minimal ðDk;DkÞ conformal
matter, providing further confirmation for the conjecture
that conformal matter saturates the bounds.

II. MINIMAL ðDk;DkÞ CONFORMAL MATTER

Before discussing how the conformal bootstrap can be
used to learn about the data of 6D SCFTs, we review how
they can be engineered in F-theory and, in particular, how
minimal ðDk;DkÞ conformal matter and some of its
properties arise from geometry.
Six-dimensional theories with superconformal symmetry

are obtained by compactification of F-theory on particular
noncompact elliptically fibered Calabi-Yau threefolds. The
internal space encodes many properties of the theory,
including the required cancellation of gauge anomalies.1

As mentioned in the introduction, an extra ingredient in six-
dimensional conformal theories is the presence of tension-
less strings in their spectrum—and the tensor multiplets
they magnetically couple to—which are absent in their
lower-dimensional cousins. These can be realized by
wrapping D3-branes on curves in the base of the elliptic
fibration, where the tension of the string is set by the
volume of the curve. To obtain an SCFT it is therefore
necessary that there are no curves of finite volume, as they
would otherwise introduce a scale induced by the tension.
In practice, one can begin by enumerating all noncompact

bases containing configurations of contractible curves such
that there exists a minimal elliptic fibration over them.
Compactification of F-theory on these geometries however
gives rise to 6D field theories containing tensionful strings.
This geometry corresponds to the tensor branch of a 6D
SCFTif it is possible to simultaneously shrink all rigid curves
to zero volume; this can be done if the intersection matrix of
the curves—corresponding to the Dirac pairing of the 6D
strings—is negative definite. This condition, in addition to
the requirement that the elliptic fibration has only minimal
singularities, makes it possible to enumerate all such tensor-
branch geometries leading to an SCFT [5,6].
In this top-down approach, minimal ðDk;DkÞ conformal

matter is realized through an elliptic fibration over C2. The
elliptic fiber over a generic point is a smooth torus, and over
two divisors, z1 and z2, inC2 there exist I�sk−4 singular fibers.

2

These singular fibers make manifest an so2k ⊕ so2k flavor
algebra. The tensor-branch geometry is obtained by blowing
up the intersection point inC2 between the divisors z1 and z2.
This procedure introduces a compact (−1)-curve over which
the singular fiber is Insk−4, corresponding to an spk−4 gauge
algebra.3 This tensor-branch geometry can be compactly
written in the shorthand notation

1For a recent review of the construction and properties of 6D
SCFTs that arise from F-theory, see [42].

2For the notation for the types of singular fibers in elliptically
fibered Calabi-Yau threefolds, we refer the reader to [43].

3The case k ¼ 4 corresponds to having no gauge algebra over
the (−1)-curve; this is the geometric configuration associated
to the E-string theory, and the flavor symmetry enhances:
so8 ⊕ so8 → e8. We will assume k > 4 in this article. The
superconformal bootstrap for the E string has been studied in [40].
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1
spk−4

: ð1Þ

On the tensor branch the theory has the following content:
one tensor multiplet; a vector multiplet in the adjoint
representation of spk−4; and 4k half-hypermultiplets in the
fundamental representation of spk−4. As the fundamental
representation of the gauge algebra is pseudo-real, the 4k
half-hypermultiplets are rotated by a classical so4k flavor
symmetry, and this indicates that the geometrically manifest
flavor algebra is enhanced:

so2k ⊕ so2k → so4k: ð2Þ

This so4k is the flavor symmetry of the gauge theory that
exists on the generic point of the tensor branch.We canverify
that so4k is also the flavor symmetry of the SCFTat the origin
of the tensor branch by studying, for example, the infinite-
coupling magnetic quiver [44].
Our knowledge of the conformal data, such as the scaling

dimensions and OPE coefficients, of the 6D SCFTs
constructed from geometry in the manner that we have
just described remains limited. While the SCFT may
possess a weakly coupled regime away from the fixed
point, one of the obstacles is that it is generally unknown
how to fully track data obtained using such a description,
e.g. the gauge-invariant operators on the tensor branch, to
the origin where the SCFT resides. From the geometry, we
are however able to compute a particular set of symmetry-
protected quantities on the tensor branch and follow them
through the geometric deformations that lead to the origin
in a controlled way.
One such quantity is the anomaly polynomial. Moving

onto the tensor branch, where the scalar fields inside the
tensor multiplets receive nontrivial vacuum expectation
values, conformal invariance is broken. However, since
these scalars are uncharged under the other symmetries,
conformality is the only symmetry which is broken. As
such, one can use a form of ’t Hooft anomaly matching to
determine the anomaly polynomial of the SCFT at the
conformal fixed point [45,46].
For a theory in d dimensions, the anomaly polynomial is

a formal (dþ 2)-form which captures the variation of the
partition function under the application of a symmetry
transformation via the Wess-Zumino descent procedure. In
6D, it is generally written in terms of the characteristic
classes of the bundles associated to the gravitational, flavor,
and SUð2ÞR symmetries; it measures an obstruction to the
gauging of these symmetries.4 The (1,0) supersymmetry
mandates that various coefficients appearing in the anomaly
polynomial can be related to the central charges of the
theory, and these can further be related to certain OPE

coefficients. The bounds derived on the OPE coefficients
from the conformal bootstrap then lead to bounds on
quantities which can be obtained geometrically from the
anomaly polynomial.
The anomaly polynomial for a 6D SCFT contains the

terms

I8 ¼
X
a

TrF2
aðκap1ðTÞ þ νac2ðRÞÞ þ � � � ; ð3Þ

where p1ðTÞ is the first Pontryagin class of the tangent
bundle to the six-dimensional spacetime, c2ðRÞ is the
second Chern class of the SUð2ÞR R-symmetry bundle,
and TrF2

a is the curvature of each flavor symmetry bundle.
The index a runs over all simple non-Abelian flavor
symmetries.
It has been shown in [40,48] that the flavor central

charges, which are defined through the two-point correla-
tion function of the flavor currents,5

hJaμðxÞJbνð0Þi ¼
ðCJÞa

volðS5Þ2 δ
ab x

2ημν − 2xμxν
x12

; ð4Þ

can be written in terms of the ’t Hooft coefficients of the
anomaly polynomial via

ðCJÞa ¼ 240ðκa − νaÞ: ð5Þ

In the F-theory construction, the anomaly polynomial can
be determined from the geometric data of the associated
noncompact elliptically fibered Calabi-Yau, together with
(mixed-)gauge anomaly cancellation. For ðDk;DkÞ con-
formal matter it was worked out in [45], using the tensor-
branch geometry as in Eq. (1), and the relevant coefficients
from the anomaly polynomial were found to be

ν ¼ −
1

4
ðk − 3Þ; κ ¼ 1

48
ðk − 1Þ: ð6Þ

As the theory has only a single simple flavor symmetry
factor, so4k, we have suppressed the index a. From the
relation (5) we can immediately see that the flavor central
charge is6

CJ ¼ 65ðk − 4Þ þ 75: ð7Þ

The flavor current associated to a flavor symmetry of a
6D N ¼ ð1; 0Þ SCFT belong to the half-BPS supercon-
formal multiplet known as a D½2�-multiplet [49]. The
highest-weight state of this multiplet is an adjoint-valued

4A recent summary on the determination of anomaly poly-
nomials of 6D SCFTs appears in [47]. We refer to that paper for
the conventions used herein.

5There is a slight difference in normalization with respect to
[48]: CJðusÞ ¼ volðS5Þ2CJðthemÞ.

6The normalization differs from that of [40] by a factor of 2.
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scalar field known as the moment map, ϕ.7 The OPE of two
of these moment maps contains a contribution from the
D½2� multiplet, with OPE coefficient λD½2� ¼ λϕϕD½2�. This
coefficient is related to the flavor central charge [40], via
the definition in Eq. (4):

CJ ¼
5h∨
λ2D½2�

; ð8Þ

where h∨ is the dual Coxeter number of the flavor algebra.
Upper bounds on λ2D½2�—and thus lower bounds on CJ—

can be determined from the superconformal bootstrap, to
which we turn in Sec. III.
Another interesting feature of a 6D SCFT, and one which

can be gainfully employed in a superconformal bootstrap
approach, is the associated Higgs branch. This is the hyper-
Kähler moduli space where the half-BPS states gain
vacuum expectation values and as such it is a more refined
property than the numerical value of CJ. It is not known
how to determine the Higgs branch in general. If the 6D
SCFT admits a type IIA description, however, then the
methods of magnetic quivers [50] can be used. Fortunately,
minimal ðDk;DkÞ conformal matter possesses such a type
IIA description, and their magnetic quivers were studied
in [44,51].
One must distinguish the Higgs branch of the tensor-

branch theory from that of the conformal fixed point. In
either case, the structure of the Higgs branch is preserved
by dimensional reduction and it can be studied using the
associated 3D magnetic quivers. In the former case, the
Higgs branch is the closure of the nilpotent orbit of so4k
associated to the partition ½22k−8; 116� of 4k, and the Higgs

branch chiral ring is finitely generated by the moment map
operator. Typically the chiral ring is not freely generated
and the presence of chiral-ring relations is determined from
the Hilbert series, which, in turn, can be computed from the
magnetic quiver. Due to the half-BPS states arising from
the tensionless strings, the dimension of the Higgs branch
jumps by 29 when one travels to the origin of the tensor
branch. A new generator of the chiral ring appears at the
SCFT point, and it transforms in one of the spinor
representations of so4k with R-charge 2JR ¼ k − 2.
The Hilbert series (HS) encodes which of the flavor

representations are allowed to appear in chiral-ring relations
involving a spin-JR representation of SUð2ÞR. Any flavor
symmetry representation that does not appear in the Hilbert
series at order t2JR implies that the theory does not contain a
D½2JR� superconformal multiplet transforming in that rep-
resentation. Denoting the irreducible representations of so4k
appearing in adj ⊗ adj by Ri (as in Fig. 1), one finds the
following universal contributions to the Hilbert series at the
conformal point:

HSðtÞ ¼
X
JR≥0

cJRt
2JR

¼ ðR1Þ þ ðR5Þt2 þ ðR1 þR3 þR4Þt4 þ � � � ; ð9Þ

withR1 ¼ 1 andR5 ¼ adj. The ellipses indicate termswith
JR > 2 or other representations that do not appear in the
adj ⊗ adj decomposition. For instance, the presence of the
second generator might lead to extra cubic or quadratic terms
in the Hilbert series, but these are not relevant for our
purposes.
An important consequence of this analysis is that the unit

operator and the moment map can only transform in the
singlet or adjoint representations, respectively, as expected,
and furthermore that half-BPS states with JR ¼ 2 are
forbidden to transform in the representations Ri, i ¼ 2,
5, 6. We will see in Sec. IV that this selection rule will

FIG. 1. Decomposition of adj ⊗ adj for son algebras and the group-theoretic data relevant for theN ¼ ð1; 0Þ sum rules with flavor.
The highest weights of the representations are R1 ¼ 1∶½00…�, R2∶½20…�, R3∶½020…�, R4∶½00010…�, R5 ¼ adj∶½010…�,
and R6∶½1010…�.

7The highest-weight state of a D½2JR�-multiplet transforms in
the SUð2ÞR representation with highest weight ð2JRÞ and has
conformal dimension Δ ¼ 4JR. Thus, the moment map trans-
forms in the adjoint representation of both SUð2ÞR and the flavor
symmetry.
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provide an additional cross-check to the claim that con-
formal matter saturates unitarity bounds.

III. THE CONFORMAL BOOTSTRAP

The conformal bootstrap relies on the associativity of the
OPE and the decomposition of four-point correlation
functions in terms of (super)conformal blocks to extract
constraints on the spectrum. The majority of bootstrap
studies focus on correlation functions of Lorentz scalars,
the structure of their OPE and the conformal blocks being
well understood in those cases [52–54]. As we are
interested in obtaining bounds on theories with flavor
symmetry so4k, we use that the moment map is a
Lorentz scalar, as seen in Sec. II. For 6D SCFTs with
eight supercharges, the sum rules used in the conformal
bootstrap were first derived in [38] and applied to theories
with f ¼ e8 flavor symmetry, which we now review with
minor modifications for the case where f ¼ so4k.
In order to avoid cluttering due to the proliferation of

R-symmetry indices, it is customary to introduce an
auxiliary variable YA, A ¼ 1, 2, and define degree-two
homogeneous functions, ϕaðx; YÞ ¼ ϕaðxÞABYAYB. The
correlation functions of four of these operators are then
constrained by symmetry to take the form [55]

hϕaðx1; Y1Þϕbðx2; Y2Þϕcðx3; Y3Þϕdðx4; Y4Þi

¼ ðY1 · Y2Þ2ðY3 · Y4Þ2
x812x

8
34

Gabcdðu; v;wÞ: ð10Þ

The three variables u, v, andw are called the cross-ratios and
are invariant under conformal and SUð2ÞR transformations:

u ¼ x212x
2
34

x213x
2
24

; v ¼ x214x
2
23

x213x
2
24

;

w ¼ ðY1 · Y2ÞðY3 · Y4Þ
ðY1 · Y4ÞðY2 · Y3Þ

;

x2pq ¼ jxp − xqj2; Yp · Yq ¼ ϵABYA
pYB

q : ð11Þ

The four-point function must also be a four-index invariant
tensor of the flavor symmetry. The conformal- and SUð2ÞR-
invariant part of the correlation function,Gabcdðu; v;wÞ, can
therefore further be decomposed into a sum over the
projectors onto irreducible representations Ri appearing in
adj ⊗ adj [56]:

Gabcdðu; v;wÞ ¼
X

Ri∈adj⊗adj

Pabcd
i Giðu; v;wÞ: ð12Þ

The tensors Pabcd
i are the projectors onto Ri and satisfy the

usual properties [57]:

Pabcd
i Pdcef

j ¼ δijP
abef
i ; Pabba

i ¼ dimðRiÞ: ð13Þ

Having broken down the four-point function into invariants
for each of the flavor symmetry channels Giðu; v;wÞ, we
further decompose it into contributions from each of the
superconformal multiplets, χ, appearing in the OPE of two
moment maps and transforming in a given irreducible
representation Ri of the flavor symmetry:

Giðu; v;wÞ ¼
X
χ∈ϕ×ϕ
χ inRi

λ2χ;Ri
Gχðu; v;wÞ: ð14Þ

For ease of notation, we write the OPE coefficients of χ ∈
ϕ × ϕ as λϕϕχ ¼ λχ . The superconformal blocks Gχðu; v;wÞ
can themselves be expanded as a linear combination over the
nonsupersymmetric conformal blocks associated to the
bosonic primaries in the superconformal multiplet, and they
satisfy both a Casimir differential equation [58] and a Ward
identity [55,59]. This allows one towrite each coefficient as a
rational function depending solely on the quantum numbers
of the superconformal primary. For theories with eight
supercharges and 2 < d ≤ 6, this analysis was performed
in detail for the moment map in [40,58] and generalized to
arbitrary D-type half-BPS multiplets in [60], to which we
refer for the exact expressions.
In addition to the form of the superconformal blocks, it

was also found that not all types of superconformal
multiplets are allowed to appear in the OPE. Let us denote
a superconformal multiplet by χ½2JR�Δ;l;R. For 6D SCFTs
with N ¼ ð1; 0Þ supersymmetry, the multiplets can be
long, χ ¼ L, or short, χ ¼ A;B; C;D [49,61]. In the
present case, the superconformal primary always trans-
forms in the l-traceless symmetric representation of the
Lorentz group and has integer R-charge JR.

8 It has
conformal dimension Δ, while R indicates the representa-
tion under the flavor symmetry. For short multiplets, the
superconformal primary is annihilated by a particular
subset of the supercharges, fixing some of its quantum
numbers. In those cases, we drop the associated subscript.
For instance, D½2JR�-type superconformal primaries are
half-BPS and must be scalars (l ¼ 0) of conformal
dimension Δ ¼ 4JR.
It turns out that A- and C-type multiplets cannot appear

in the decomposition in Eq. (14), while long multiplets
must be R-symmetry singlets. Generically, only the follow-
ing multiplets are allowed9:

L½0�Δ;l;R; B½0�0;R; B½2�l;R;
D½0�1; D½2�adj; D½4�R: ð15Þ

8Generically, the superconformal multiplets depend on all
three Dynkin indices of so6, but for OPEs of scalars, we are
restricted to ½0;l; 0� representations.

9Type B½0�l>0 multiplets are in principle also allowed in the
OPE, but they include higher-spin conserved currents. The
presence of these multiplets in the spectrum implies that (at
least a subsector of) the theory is free [49,61,62]. We exclude
them as we focus on interacting SCFTs.
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The unit operator D½0� and the moment-map superconfor-
mal multipletD½2�must transform in the singlet and adjoint
representations of the flavor symmetry, respectively, as we
also observed from the Hilbert series in Eq. (9). We denote
a generic superconformal multiplet transforming in a
representation R of the flavor symmetry as χR when the
other quantum numbers are not relevant.
Having a block decomposition of the four-point func-

tion, the important observation that led to the conformal
bootstrap is that performing an OPE in either of the s, t, or u
channels does not change its structure. Using the properties
of superconformal blocks under exchange of kinematic
variables,

ð1 ↔ 2Þ∶ Giðu; v;wÞ ¼ ð−1ÞjRijGi

�
u
v
;
1

v
;
−w

wþ 1

�
; ð16Þ

ð1 ↔ 3Þ∶ Giðu; v;wÞ ¼
�

u2

v2w

�
2

Giðv; u;w−1Þ; ð17Þ

one then obtains two sets of constraints from the crossing
symmetry of the four-point function [40].
In the specific case of the moment map, invariance under

exchange of ðx1; Y1; aÞ ↔ ðx2; Y2; bÞ leads to an additional
selection rule: a superconformal multiplet can only appear
in the conformal block decomposition if its quantum
numbers satisfy

lþ JR þ jRij ∈ 2Z; ð18Þ
where jRij is defined as the parity of the embedding of Ri
in adj ⊗ adj, specifically 0 or 1 if the representation is
embedded symmetrically or antisymmetrically, respec-
tively. In Fig. 1, we give the decomposition into irreducible
representations for so4k and the relevant group-theoretic
quantities.
On the other hand, invariance under the exchange

ðx1; Y1; aÞ ↔ ðx3; Y3; cÞ, in combination with Eqs. (12)
and (17), leads to the following constraint:

Fj
iGjðu; v;wÞ ¼

u4

v4w2
Giðv; u;w−1Þ: ð19Þ

The crossing matrix Fj
i captures how the flavor representa-

tions are reshuffled when going from the s channel to the t
channel. The indices i, j run over the irreducible representa-
tionsRi inside of adj ⊗ adj. The matrix is defined via the
following combination of the projectors [56]:

Fj
i ¼

1

dimðRiÞ
Pdabc
i Pabcd

j ; Fk
i F

j
k ¼ δji : ð20Þ

It is therefore a purely group-theoretic quantity, and for
f ¼ son, using “birdtrack” techniques [57], a lengthy but
straightforward computation leads to the results collated
in Fig. 1.

While the crossing matrix deals with the flavor sym-
metry, we still need to decompose the constraint in Eq. (19)
into each R-symmetry channel. Invariance under the
R-symmetry forces the function Giðu; v;wÞ to be a
degree-two polynomial in w−1 [55]:

Giðu; v;wÞ ¼
X2
k¼0

GðkÞ
i ðu; vÞw−k: ð21Þ

Using the relation in Eq. (17) one find constraints for each
power of w, but, as pointed out in [40], they are not
independent. Using the superconformal Ward identity, it is
then possible to find a single independent constraint for
each flavor-representation channel. These constraints are
referred to as the sum rules and are given by

X
χ∈ϕ×ϕ
χ inRj

λ2χ;Rj
ðFj

iKχðu; vÞ − δjiKχðv; uÞÞ ¼ 0; ð22Þ

where the sum is over each multiplet that transforms in the
representation Rj ∈ adj ⊗ adj, subject to the selection
rule in Eq. (18). Furthermore, we have defined the function

Kχðu; vÞ ¼ v4Gð2Þ
χ ðu; vÞ − u4Gð0Þ

χ ðv; uÞ ð23Þ

and used a polynomial expansion of the superconformal
blocks similar to that of Eq. (21)10:

Gχðu; v;wÞ ¼
X2
k¼0

GðkÞ
χ ðu; vÞw−k: ð24Þ

We refer to [40,58,60] for additional details on the
derivations of the sum rules and the form of the conformal
blocks.

IV. BOOTSTRAPPING CONFORMAL MATTER

To extract constraints on the spectrum of the SCFT from
the sum rules in Eq. (22), we use the now-standard linear-
functional method introduced in [17], which we briefly
summarize here. The interested reader will find additional
details in the reviews [63–67].

10In the notation using the auxiliary R-symmetry variable, a
possible decomposition for the superconformal blocks of a
multiplet, χ, is in terms of Legendre polynomials Pn:

Gχðu; v;wÞ ¼
X

ðΔ;l;JÞ∈χ
cΔ;l;JP2Jð1þ 2=wÞgΔ;l;

where gΔ;l are the bosonic conformal blocks and the sum is taken
over the bosonic (conformal but not necessarily superconformal)
primaries in χ. While convenient to derive the explicit expression
of Gχ , we stress that this basis is different from the one used in
Eq. (21).
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Consider the space of functions of the conformal cross-
ratios, fðu; vÞ. We may then define a functional αi for each
of the flavor channels. The space of such linear functionals
can be parametrized by linear combinations of derivatives
of the function evaluated at, for instance, the crossing-
symmetric point, u ¼ v:

αi½f� ¼
X
m;n

αim;n∂m
u ∂n

vfðu; vÞju¼v: ð25Þ

Applying this functional to the sum rules and summing
over all flavor channels, we obtain the single constraint

X
χRi

∈ϕ×ϕ
λ2χ;Ri

α½χRi
� ¼ 0;

α½χRj
� ¼ Fj

iα
i½Kχðu; vÞ� − δjiα

i½Kχðv; uÞ�; ð26Þ

where we abuse the notation and use α½χRi
� to denote the

linear combination of the functionals αi applied to the
function in Eq. (23) for a multiplet χ transforming in
the representation Ri.
By unitarity, the OPE coefficients satisfy λ2χ;Ri

≥ 0, and
the numerical conformal bootstrap involves searching for a
functional such that

α½D½2�adj� ¼ 1;

α½χRi
� ≥ 0; ∀ χRi

≠ D½0�1;D½2�adj;
α½D½0�1�maximized: ð27Þ

Plugging back into in Eq. (26) and using a convention in
which the OPE coefficients of the identity and moment map
are normalized such that λ2D½0�;1 ¼ dim f and λ2D½2�;adj ¼
λ2D½2�, we obtain an upper bound on λ

2
D½2� and by extension a

lower bound on the flavor central charge:

λ2D½2� ≤ −α½D½0�1� dim f;

CJ ≥
5h∨

−α½D½0�1� dim f
; ð28Þ

with h∨ ¼ ðn − 2Þ; dim f ¼ 1
2
nðn − 1Þ for f ¼ son. Similar

bounds can be obtained for any OPE coefficient by
demanding the functional be normalized with respect to
the relevant multiplet.
The system defined by Eq. (27) is called a semidefinite

program, and solving it is a well-defined optimization
problem. In practice, we restrict ourselves to a finite
number of derivatives, up to a cutoff 2mþ n ≤ Λ, which
captures only a portion of the space of functionals. As a
functional satisfying Eq. (27) for a given Λ is included in
the space of functionals with Λþ 1, we can only find
improved results as the cutoff is increased, and sending
Λ → ∞ will correspond to the strongest bound.

There are nowadays standard tools to solve semidefinite
programs; in particular, a numerical solver, SDPB, was
specifically created for applications to the numerical boot-
strap [68,69]. In the Appendix, we explain how we
implemented and solved the semidefinite program numeri-
cally, leading to the results found in the next sections.11

We stress that we obtain rigorous bounds: the conformal
bootstrap only relies on numerical algorithms to find the
optimal coefficients αim;n of the functionals defined in
Eq. (25) satisfying Eq. (27). While some standard approx-
imations are necessary, such as truncating the spin of the
operators appearing in the OPE, we verified that, up to the
number of significant digits presented in the next sections,
our results are stable against the increase of these
parameters.

A. Bounds on central charges

Having reviewed the sum rules for the moment map and
the associated semidefinite program defined in Eq. (27), we
have now gathered all the necessary tools to find bounds on
the flavor central charge of 6D N ¼ ð1; 0Þ SCFTs
with f ¼ so4k.
From the geometric point of view, the theory with the

smallest so4k flavor symmetry has k ¼ 5 and corresponds
to minimal ðD5; D5Þ conformal matter. Solving the semi-
definite program in Eq. (27), we obtain the results shown
in Fig. 2.
We can see that as the derivative cutoff Λ increases, the

lower bound on CJ improves; in particular, with Λ ¼ 51we
obtain the strict bound CJ > 115, ruling out any putative
spectrum with a lower value of the flavor central charge.

FIG. 2. Bootstrap lower bounds on CJ for theories with flavor
symmetry so20. The red lines correspond to quadratic interpo-
lations for points with either Λ ≥ 33 or Λ ≥ 35. The derivative
cutoffs are Λ ¼ 7; 9;…; 49, 51.

11The reader interested in raw data should feel free contact us.
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Using quadratic fits on the last few points, we can further
see that there is strong evidence that as Λ → ∞, we will

obtain the bound min CJ ≥ CðD5;D5Þ
J ¼ 140, indicating that

minimal ðD5; D5Þ conformal matter is the theory saturating
the unitarity bounds.
We find that analogous results also hold for higher values

of k. To aid comparison, Fig. 3 shows the ratio between the
bound on λ2D½2� and its value for minimal ðDk;DkÞ con-

formal matter. As more derivatives are taken into account,
this ratio approaches one, again appearing to rule out any
SCFTs with a smaller flavor central charge than conformal
matter. A quadratic fit further predicts that as Λ → ∞, we

approach min CJ ¼ CðDk;DkÞ
J within 10%. The interpolation

improves as larger values of Λ are taken into account, and
we conjecture that minimal ðDk;DkÞ conformal matter
saturates the unitarity bounds for so4k flavor symmetry.
We emphasize again that while conformal matter has the

lowest value of the flavor central charge from the geometric
point of view, it is a priori not obvious that, purely from
superconformal-field-theoretic arguments, there cannot
exist another theory with f ¼ so4k, lying outwith the

F-theory construction, satisfying CJ < CðDk;DkÞ
J . Our results

exclude a large part of those potential spectra. For instance,
with k ¼ 50, we rule out the existence of any theory

with CJ ≤ 1
2
CðD50;D50Þ
J , a bound that is even more stringent

for lower values of k. We have collated these bounds for
Λ ¼ 51 in Table I.

B. Low-lying spectrum of scalar long multiplets

In addition to bounding the OPE coefficient λ2D½2�, the
conformal bootstrap can also be used to extract
the conformal dimension of long multiplets appearing in

the superconformal block decomposition. This is referred
to as the extremal-functional method [70] and relies on the
fact that when the bound given in Eq. (28) is saturated, the
sum rules require the associated, extremized, functional αE
to satisfy

αE½χ� ¼ 0; ∀ χ ≠ D½0�1;D½2�adj: ð29Þ

Solving the constraint αE½L½0�Δ;l;R� ¼ 0 for a given long
multiplet, we can estimate the values of conformal dimen-
sions. As we are operating under the assumption that the
limit Λ → ∞ corresponds to the extremal functional
associated to conformal matter, for which evidence was
adduced in Sec. III, this enables us to learn more about its
spectrum.
Figures 4–7 show the functional applied to long multip-

lets in various flavor representations of f ¼ so4k with
k ¼ 5, 10, 50. For the representations R1, R2, and R3,
there is a gap of at least one between the dimension of
lowest-lying operator and the unitarity bound, Δ > 6, for
long scalar multiplets.12 While there are variations, the
position of the conformal dimensions does not appear to
deviate significantly as k increases.
On the other hand for R4, the four-antisymmetric

representation, the extremal-functional method indicates
that there is an operator lying close to threshold. In that
case, the functionals are close together around that point
and get closer to Δ ¼ 6 as k grows.
At threshold, long multiplets decompose (among others)

into type-A multiplets [49,61]. As we have reviewed in
Sec. III, these kinds of operators are forbidden to appear in
the OPE, and the anomalous dimension therefore cannot
vanish. If a multiplet with such a small anomalous
dimension is not an artifact of nonextremality, and there
is indeed a small deviation from Δ ¼ 6, it would seem to
indicate the presence of a large-k regime where perturba-
tion theory can in principle be used. This is somewhat
reminiscent of large R-charge limits, which have recently

FIG. 3. Ratios between the bootstrap lower bounds on λ2D½2�
with so4k flavor and the associated value for ðDk;DkÞ conformal
matter. The red lines correspond to quadratic interpolations for
points with Λ ≥ 33.

TABLE I. Bounds on CJ for various so4k flavor symmetries
and that of ðDk;DkÞ conformal matter. The values for min CJ are
those obtained when Λ ¼ 51.

k min CJ CðDk;DkÞ
J

5 115 140
6 144 205
7 175 270
8 208 335
9 241 400
10 275 465
50 1540 3065

12For k ¼ 5, the vanishing of αE½L½0; 0�1� close to Δ ¼ 6
appears to vanish for higher values of Λ.
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FIG. 4. α½L½0�Δ;0;1� for Λ ¼ 29; 31;…; 45, 47, from gold to
purple. Zeros of the functional indicate the presence of a long
multiplet at the associated Δ.

FIG. 5. α½L½0�Δ;0;R2
� for Λ ¼ 29; 31;…; 45, 47, from gold to

purple. Zeros of the functional indicate the presence of a long
multiplet at the associated Δ.
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FIG. 6. α½L½0�Δ;0;R3
� for Λ ¼ 29; 31;…; 45, 47, from gold to

purple. Zeros of the functional indicate the presence of a long
multiplet at the associated Δ.

FIG. 7. α½L½0�Δ;0;R4
� for Λ ¼ 29; 31;…; 45, 47, from gold to

purple. Zeros of the functional indicate the presence of a long
multiplet at the associated Δ.
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been shown to exhibit an integrable subsector [14]. It would
be interesting to study whether such a large-k limit can be
probed from the geometry and whether there is a con-
nection with integrability.

C. Chiral-ring relations

As reviewed in Sec. II, ðDk;DkÞ conformal matter chiral-
ring relations forbid some of the D-type superconformal
multiplets to appear in certain flavor representations. Even
without solving the semidefinite program in Eq. (27), the
selection rule in Eq. (18) imposed by crossing symmetry is
already powerful enough to prevent the presence of D½4�
multiplets in the antisymmetric representationsR5 andR6,
as required by the chiral-ring relations; see Eq. (9).
For symmetric representations, we expect, when we

approach the unitarity bound, to find that α½D½4�R� → 0
as Λ → ∞, if the representation is allowed. In Table II, we
show the numerical values of the functional for these
multiplets in each of the four symmetric representations.
We can see that forR1 ¼ 1 andR3∶½020…�, the functional
is several orders of magnitude smaller than the other two
representations. For comparison, in the case of the multiplet
containing the stress-energy tensor, which we know
appears in the OPE, we obtain values of the same order
of magnitude, α½B½0; 0�1� ∼ 10−12. This leads us to con-
clude that the D½4� multiplet in the two-symmetric repre-
sentation of the so4k flavor, D½4�R2

, being of order one, is
forbidden to appear.
As we are able to reproduce the chiral-ring condition that

D½4�multiplets should not appear in the representationsR2,
R5, or R6, of minimal ðDk;DkÞ conformal matter, this
gives even more credence to our claim that the unitarity
bounds are saturated by conformal matter.
The case ofR4, the four-antisymmetric representation, is

more subtle, as the functionals seem to depend on the value
of k. It appears that for low values of k this representation is
forbidden but allowed for higher values. It is very intriguing
that in the case of long multiplets, the anomalous dimen-
sion was also suppressed by k for that representation. It
would be interesting to further study whether R4 plays an
important rôle for conformal matter, a question that is, to
our knowledge, unexplored.

Emboldened by these results predicting the absence of
half-BPS multiplets, we can endeavor to go beyond the
chiral ring and use the conformal bootstrap to predict
whether there are additional constraints related to B½2;l�
operators, which must a priori only follow the selection
rule in Eq. (18) and can therefore appear in various Lorentz
and flavor representations. Figure 8 shows the value of the
functional for B½2;l� as a function of the Lorentz repre-
sentation l for f ¼ so200.
The value of the functional grows rapidly with l and it

becomes difficult to comment on the presence or absence of
the multiplets past the first few values. However, the value
of the functional for B½2; 0� in the adjoint representation is
significantly larger than that of R6. Similarly, R1 and R2,
the singlet and two-symmetric representations, respec-
tively, are also orders of magnitude above the other
symmetric representations when l ¼ 1, 3. It is therefore
tempting to conjecture that these multiplets are excluded
from the OPE of two moment maps. We have checked this
behavior in several cases, and there is no indication that this
potential selection rule depends on the value of k, and thus
it may be valid for any minimal ðDk;DkÞ conformal matter.
Assuming that conformal matter saturates the bounds, it
would be interesting to study whether this conjecture on the
vanishing of these particular OPE coefficients can be
proven directly using either field-theoretic or geometric
techniques.

V. CONCLUSIONS

We have explored applications of the superconformal
bootstrap to 6D SCFTs with eight supercharges, focusing
on the four-point function of moment maps associated to a
flavor symmetry algebra.
We extracted bounds on the flavor central charge of

theories with an so4k symmetry, leaving little room for

TABLE II. Values of α½D½4�R� for Λ ¼ 49.

f R1 ¼ 1 R2 R3 R4

so20 2.7 × 10−12 1.6 2.9 × 10−12 2.0 × 10−1

so24 2.0 × 10−12 1.6 2.5 × 10−12 4.8 × 10−2

so28 3.6 × 10−12 1.5 4.6 × 10−12 2.0 × 10−2

so32 6.3 × 10−12 1.5 8.3 × 10−12 1.0 × 10−2

so36 8.5 × 10−12 1.4 1.1 × 10−11 6.0 × 10−3

so40 8.2 × 10−12 1.4 1.1 × 10−11 3.8 × 10−3

so200 1.6 × 10−10 1.4 2.3 × 10−10 1.7 × 10−5

FIG. 8. Value of the functional with Λ ¼ 49 and f ¼ so200
applied to B½2;l�R multiplets. Representations not satisfying the
constraint in Eq. (18) do not appear in the OPE from the outset.
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exotic theories with smaller central charges than minimal
ðDk;DkÞ conformal matter. In particular, for all the explicit
values of k considered herein, we have managed to exclude
the existence of a consistent theory with a flavor central
charge smaller than half of that of conformal matter, a result
that significantly improves with smaller values of k. For
instance, when k ¼ 5, the smallest possible value for
ðDk;DkÞ conformal matter, there is only about a 10%
window for such theories to exist. Moreover, quadratic
interpolations reasonably show that conformal matter will
saturate the bounds imposed by unitarity as the whole space
of functionals is explored. Using the extremal-functional
method, we have checked that the value of the functional
applied to half-BPS operators reproduce the expected
chiral-ring relations.
We have therefore found substantial evidence that

minimal ðDk;DkÞ conformal matter saturates the bounds
imposed by unitarity and crossing symmetry. Thus, there
cannot exist any interacting 6D SCFT, with so4k flavor
symmetry, that has a lower value of the flavor central
charge; geometry determines the extremal theory.
Assuming this is indeed correct, we have extracted the

low-lying spectrum of long operators and also found new
hints pointing to previously unknown selection rules for
conformal matter involving B-type multiplets. For instance,
B½2; 0� should not appear in the OPE if it transforms in the
adjoint representation, and B½2;l�R1;2

should also be
forbidden when l ¼ 1, 3.
Our analysis exploited a peculiarity of minimal ðDk;DkÞ

conformal matter in that the naive flavor symmetry,
so2k ⊕ so2k, enhances to so4k, so that there is only one
D½2� superconformal multiplet. Most other types of ðg; g0Þ
conformal matter do not possess such an enhancement and
have two irreducible flavor currents. A natural extension of
our work is therefore to consider mixed-correlator constraints
involving multiple moment maps. Such bootstrap analyses
have shown to be extremely powerful and often give rise to
“islands” in parameter space. Considering our results, it is
natural to expect those islands to correspond tominimal ðg; gÞ
conformal matter and their higher-rank generalizations.
Furthermore, the sum rules for mixed D½2JR� correlators
have been found in [60].When JR > 1 there is more than one
independent sum rule, which should lead to more con-
straining results. While the moment map is forced to trans-
form in the adjoint representation of the flavor symmetry,
there are no such requirements for other half-BPS states. This
opens the way for flavor-independent analyses, as well as
bootstrap approaches to the whole chiral ring.
Our results have potential consequences beyond six

dimensions. Compactifying 6D (1,0) SCFTs on a T2 gives
rise to 4D SCFTs with eight supercharges. Starting with
conformal matter one can obtain a variety of 6D SCFTs by
performing deformations and renormalization-group flows
[71,72]. In [47], these Higgs-branch deformations, their
compactifications on T2, and their duality with the class-S

construction were studied; this results in a collection of 4D
N ¼ 2 SCFTs with diverse flavor symmetry algebras for
which the central charges were determined explicitly.
Compactifying minimal ðDk;DkÞ conformal matter on a
circle, together with holonomies along the S1, also leads to
a vast collection of 5D SCFTs, for which the flavor
symmetries were worked out in [73–75]. As with 6D
SCFTs, not much of the conformal data is known for these
theories, although it is reasonable to expect a dependence
on the 6D progenitors, and again a conformal bootstrap
approach may be useful.
Finally, we have found that the anomalous dimension of

long multiplets transforming in the four-antisymmetric
representation R4 of so4k appears to be suppressed by k.
It has recently been shown that in a large R-charge limit, the
anomalous dimensions in a particular subsector are con-
trolled by an integrable spin chain [14,76]. It would be
interesting to see if we can learn more about these long
multiplets using perturbation theory and whether there is an
equivalent sector in the large-k limit where integrability
techniques can be used.
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APPENDIX: NUMERICAL IMPLEMENTATION

As we have reviewed in Sec. III, the basic elements
of the numerical conformal bootstrap are the bosonic
conformal blocks, gΔ;lðu; vÞ, and their derivatives at the
point u ¼ v. To solve the semidefinite program in Eq. (27),
we made use of the rational approximation of the blocks,
∂m
u ∂n

vgΔ;lðu; vÞju¼v ∼ χlðΔÞPm;n
l ðΔÞ [77,78]. The prefactor

χðΔÞ is positive for any value of the conformal dimension
above the unitarity bound, and PðΔÞ is a polynomial in the
conformal dimension. The derivatives satisfy recursion
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relations found in [77,79,80] which can be efficiently
utilized to find the rational approximation at any derivative
order. We note that these relations are simpler in terms of
the standard pair of variables ða; bÞ; see e.g. [66]. In
practice, we have therefore rewritten the sum rules in
Eq. (22) in terms of these variables rather than the usual
cross-ratios, ðu; vÞ.
Moreover, when evaluated at the crossing-symmetric

point some of the derivatives of K are related by a
sign: ∂m

u ∂n
vKðu;vÞju¼v¼ð−1Þmþnþ1∂m

u ∂n
vKðv;uÞju¼v. This

introduces flat directions which can lead to numerical
instabilities. These can be made manifest by rewriting the
sum rule in terms of the eigenspaces of the flavor matrix, i.e.
the projectors P� ¼ 1

2
ð1 ∓ FÞ; see for instance [25,56].

The rational approximation of the bosonic blocks and
their recursion relations have been implemented in
SCALAR_BLOCKS [81], with the value of the cutoff being
related to the parameter nmax by Λ ¼ 2nmax − 1. We found
the following parameters adequate for nmax ≤ 24 in all the
cases discussed in this work:

poles ¼ 20
order ¼ 80
prec ¼ 1024

For nmax ¼ 25, 26, an increased precision of 1280 and
keptPoleOrder ¼ 40 are needed to ensure stable
results. One also needs to introduce a cutoff for the spins,
l < lmax, of the multiplets appearing in the sum rules. We
have tested various cases and found that at lmax ¼ 66, the
results are stable up to a sufficient number of significant
digits.
The bounds are then obtained from the semidefinite

program in Eq. (27) using the solver SDPB [68,69] (version
2.3.1) with parameters

dualityGapThreshold ¼ 1 × 10−10

maxComplementarity ¼ 1 × 1080

initialMatrixScalePrimal ¼ 1 × 1020

initialMatrixScaleDual ¼ 1 × 1020

The precision was the same as that used to create the
bosonic blocks. The other parameterswere set to their default
value. We refer to the original works and the documentation
of both SCALAR_BLOCKS and SDBP for additional details on
the numerics and the meaning of the parameters.
To test our implementation we have reproduced various

results in the literature, in particular those of six-dimensional
N ¼ ð1; 0Þ theories, where we have replicated the bounds
found in [38] for the E-string and a free hypermultiplet.
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