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We study a holographic renormalization group (RG) flow triggered by a classically marginal operator.
When a marginal operator deforms a conformal field theory, it does not yield a nontrivial RG flow at the
classical level. At the quantum level, however, quantum corrections modify a marginal operator into one of
the truly marginal, marginally relevant, and marginally irrelevant operators. This quantum correction may
generate a nontrivial RG flow. We investigate how we can describe such an RG flow holographically with
quantum corrections. Applying the holographic technique, we look into the change of physical quantities,
like a coupling constant and vacuum expectation value, along the RG flow. We also study the holographic
description of the trace anomaly caused by the gluon condensation.
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I. INTRODUCTION

For the last decade, much attention has been paid to
understanding strongly interacting systems of QCD and
condensed matter theory by applying the AdS=CFT cor-
respondence [1–4]. The AdS=CFT correspondence has
passed many nontrivial checks. When we take into account
a relevant deformation, the original conformal field theory
(CFT) changes along with an energy scale observing the
system and eventually flows to a new IR theory [5]. At a
low-energy scale, nuclear and condensed matter physics
usually have a strong coupling constant. Understanding
such nonperturbative physics governed by strong inter-
actions is one of the important issues to be resolved in
theoretical and experimental researches. To account for
nonperturbative phenomena, we need to figure out an exact
and nonperturbative renormalization group (RG) flow.
Although the perturbative RG flow was well established
in quantum field theory (QFT), it is not the case for the
nonperturbative RG flow. In this situation, the AdS=CFT
correspondence, or holography, can shed light on this issue
due to the relation between the nonperturbative RG flow of
QFT and the classical gravity theory [6–20]. In this work,
we investigate a holographic RG flow triggered by a
marginal deformation and compare the holographic result
with the gluon condensation of the lattice QCD [21,22].

After the AdS=CFT conjecture, there were many
attempts to understand the dual QFT of an asymptotic
anti–de Sitter (AdS) geometry. In the holographic setup, an
IR scale of gravity theory maps to a UV scale of dual field
theory and generally leads to various UV divergences of
a dual QFT [9–11,13]. In order to get rid of such UV
divergences, several distinct methods have been invented.
One of them is the ‘background subtraction’method, which
gets rid of the effect of the background reference spacetime.
This subtraction method is not applicable to certain cases
where an appropriate reference solution is ambiguous or
unknown, e.g., topological black holes [23–27], Taub-
NUT-AdS, and Taub-bolt-AdS [28–30]. Another way to
remove the UV divergence is called the holographic
renormalization in which UV divergences are removed
by adding appropriate counterterms. The holographic
renormalization method is similar to the renormalization
scheme of a QFT, and useful in that it does not require a
background reference spacetime [10]. Due to this similar-
ity, the holographic RG flow can be regarded as the
Wilsonian RG flow of the dual QFT [5]. There exists
another description called the RG flow of the entanglement
entropy where the RG scale is characterized by the
subsystem size. It has been shown that the thermodyna-
micslike law of the entanglement entropy can reproduce
the linearized Einstein equation of the dual AdS geometry
[31–33]. From the field theory point of view, the RG flow
of the entanglement entropy corresponds to the real space
RG flow [34–40]. For the entanglement entropy RG flow,
intriguingly, it was shown that a quantum entanglement
entropy in the UV region can flow to a thermal entropy in
the IR region [41].
When a CFT deforms by a marginal operator, the

deformed theory remains conformal at the classical or
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action level. However, this is not true at the quantum level
because quantum corrections may change the property of
the deformation operator. The AdS=CFT correspondence
claimed that a classical gravity theory is dual to a full
quantum field theory defined at the boundary. Therefore,
the holographic description allows us to figure out the
nonperturbative RG flow including all quantum correc-
tions. One of the important quantities affected by such
quantum corrections is a β-function. A β-function describes
how a coupling constant depends on the energy scale.
In general, physical phenomena crucially depend on the
strength of a coupling constant. At the classical level, a
β-function is classified by the conformal dimension of a
deformation operator. When a coupling constant λ couples
to an operator with a conformal dimension Δ in a
d-dimensional CFT, a classical β-function is given by [42]

βcl ¼ −ðd − ΔÞλ: ð1:1Þ

If we further take into account quantum corrections, the
β-function near the fixed point is generalized to

β ¼ βcl þ βq; ð1:2Þ

where βq indicates quantum corrections. If we concentrate
on a classically marginal operator with Δ ¼ d, the classical
β-function automatically vanishes. However, the quantum
effect leads to a nonvanishing β-function and generates a
nontrivial RG flow. As explained here, the quantum
correction plays a crucial role in determining the RG flow
triggered by a marginal operator. In this work, we inves-
tigate the holographic description of such quantum cor-
rections and discuss how a marginal deformation modifies
a UV CFT. This is a general feature of the RG flow of a
marginal operator.
The gluon condensation, hGi, in QCD is one of the

typical examples for a classically marginal deformation
which is important to characterize a nonperturbative ground
state. At a tree level, the gluon condensation is trivial
because it is marginal. However, its one-loop correction in
the UV region leads to the following relation

hTμ
μi ¼ −

Nc

8π

βλ
λ2

hGi; ð1:3Þ

where λ and βλ indicate the ’t Hooft coupling constant and
its β-function, respectively. This relation was called the
trace anomaly [21,22]. This relation indicates that the trace
anomaly is crucially associated with the RG flow caused by
the gluon condensation. In the present work, we investigate
how to describe the trace anomaly in terms of the holo-
graphic RG flow. According to the AdS=CFT correspon-
dence, the holographic description corresponds to the
nonperturbative description of the dual QFT. Therefore,
the correct description of the holographic RG flow can shed

light on understanding the nonperturbative RG flow of
QFTs, QCD and condensed matter theory.
The rest of this paper is organized as follows. In Sec. II

we discuss a β-function of a marginal operator and an RG
equation appearing of a traditional QFT. In Sec. III we
study a gravity theory involving a scalar field which is dual
to a marginal operator. Moreover, we investigate how to
construct the holographic RG flow triggered by such a
marginal operator. By applying this holographic RG flow,
we look into the trace anomaly caused by the gluon
condensation in Sec. IV. Lastly, we finish this work with
some concluding remarks in Sec. V.

II. RG FLOW IN QFT

At a low-energy scale, understanding new physics of
macroscopic systems is one of the important issues to be
resolved. To understand macroscopic theories, we need to
know how a microscopic UV theory flows to a new IR
theory along the RG flow. A relevant or marginally relevant
operator causes a nontrivial RG flow and its effect becomes
significant in the IR region. In this RG flow procedure,
nonperturbative quantum corrections play a crucial role.
Unfortunately, we do not have an analytic method account-
ing for such a nonperturbative RG flow in a traditional
QFT. In this situation, the AdS=CFT correspondence may
provide a new chance to figure out a nonperturbative
RG flow.
For later comparison with the holographic result, we first

discuss general aspects of the RG flow in a d-dimensional
QFT. Assuming that a Euclidean CFT deforms by an
operator of a conformal dimension Δ, the deformed theory
is described by

SQFT ¼ SCFT þ
Z

ddx
ffiffiffi
γ

p
μd−ΔλŌ; ð2:1Þ

where γμν corresponds to a background metric and Ō is a
dimensionful composite operator of fundamental fields.
Here, μ and λ denote an RG scale and dimensionless
coupling, respectively. Ignoring quantum effects, the
deformation can be characterized by the conformal dimen-
sion Δ. At the classical level, for example, the dimension-
less coupling constant and dimensionless operator,
O ¼ μ−ΔŌ, under the RG flow transform as [5,42]

λ → μ−ðd−ΔÞλ and O → μ−ΔO: ð2:2Þ

Under this RG transformation, a deformation operator is
classified into three different categories; relevant forΔ < d,
marginal for Δ ¼ d, and irrelevant for Δ > d. The defor-
mation effect of a relevant operator is negligible in the UV
regime, while it becomes important in the IR regime and
changes the UV theory into another IR theory. A marginal
operator at the classical level does not break the conformal
symmetry, so that the deformed theory remains conformal
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in the entire energy scale. The irrelevant operator gives rise
to a serious effect on the UV theory, so that the resulting
theory even in the UV limit differs from the original CFT.
This means that the deformed theory is UV incomplete.
These features become manifest when we take into account
a classical β-function [42]

βcl ≡ ∂λ
∂ log μ ¼ −ðd − ΔÞλ: ð2:3Þ

A solution of the classical β-function automatically satisfies
the scaling behavior in (2.2). For a marginal operator with
Δ ¼ d, the classical β-function automatically vanishes and
the coupling constant does not change along the RG flow.
The coupling constant of an irrelevant operator has a
positive β-function, so that the coupling constant becomes
large as μ increases. This implies that the effect of the
irrelevant deformation becomes more important in the UV
region. As a consequence, the deformed theory is not the
same as the undeformed one even in the UV limit. On the
other hand, a relevant operator has a negative β-function
and its coupling constant decreases as μ increases.
Therefore, the effect of a relevant operator is negligible
in the UV region. Note that this is the story at the classical
level. If we further take into account quantum effects, they
can modify the behavior of the classical β-function.
Quantum effects in the renormalization procedure usu-

ally cause various UV divergences. Since physical quan-
tities must be finite, we need to get rid of such UV
divergences by adding appropriate counterterms. After
renormalization, the renormalized partition function usu-
ally reduces to

Z ¼
Z

Dϕe−ðSQFTþSctÞ ¼ e−Γ½γμνðμÞ;λðμÞ;μ�; ð2:4Þ

where Γ is called a generating functional depending on
coupling constants. Although the background metric γμν in
a QFT does not vary, in the present work we take into
account the background metric as another coupling con-
stant as done in Ref. [43,44]. Since the renormalized
partition function must be independent of the RG scale,
the variation of the partition function gives rise to the
following RG equation

0 ¼ μffiffiffi
γ

p ∂Γ
∂μ þ γμνhTμνi þ βλhOi; ð2:5Þ

where

βλ ¼
dλ

d log μ
; ð2:6Þ

hTμνi ¼ −
2ffiffiffi
γ

p ∂Γ
∂γμν ; ð2:7Þ

hOi ¼ 1ffiffiffi
γ

p ∂Γ
∂λ : ð2:8Þ

It is worth noting that the generating functional is given by
a function of coupling constants at a given energy scale.
Therefore, the VEVs, hOi and hTμνi, must be determined as
functions of coupling constants whose strength crucially
relies on the RG scale.
If the background metric is independent of the RG scale,

the above RG equation reduces to

0 ¼ μ
∂Γ
∂μ þ βλhOi: ð2:9Þ

This is the typical RG equation of a QFT. However,
assuming that the metric scales under the RG transforma-
tion, the generalized RG equation (2.5) gives us more
information about the stress tensor of a system which plays
an important role in understanding the connection to the
dual gravity, as will be seen later. For the undeformed CFT
with βλ ¼ 0, the RG equation reduces to

hTμ
μi ¼ −

μffiffiffi
γ

p ∂Γ
∂μ : ð2:10Þ

The stress tensor of a CFT must be traceless up to a
conformal anomaly [45]. Therefore, we may associate the
right hand side with a conformal anomaly which depends
on the topology of the background spacetime. For a flat
spacetime there is no conformal anomaly. From now on, we
focus on a QFT defined in a flat spacetime.
Quantum corrections usually modify the classical

β-function. For a marginal and relevant deformation, the
β-function in the UV region is written as

βλ ¼ βcl þ βq ¼ −ðd − ΔÞλþ βq; ð2:11Þ

where βq means all quantum corrections. For a relevant
deformation, the quantum effect becomes subdominant in
the UV region. For a marginal deformation with Δ ¼ d, the
classical β-function vanishes and the action still preserves
the scale invariance. Therefore, the classical RG flow
becomes trivial and the trace of the stress tensor vanishes.
However, this is not the case at the quantum level. The
quantum effect can allow a nonvanishing β-function.
If βq ¼ 0, for example, the corresponding operator is called
a truly marginal operator. In this case, the conformal
symmetry of the UV theory preserves along the RG flow
even at the quantum level. Therefore, the deformed theory
remains as a CFT in the entire RG scale. For βq < 0 (or
βq > 0), a classically marginal operator changes into a
marginally relevant (or marginally irrelevant) operator. A
marginally relevant (or irrelevant) operator becomes
similar to a relevant (or irrelevant) operator. The quantum
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correction of a marginally relevant operator leads to a
nontrivial RG flow which can generate a nonvanishing
trace of the stress tensor, as previously mentioned in the
trace anomaly.

III. HOLOGRAPHIC DUAL OF A MARGINAL
DEFORMATION

According to the AdS=CFT correspondence, a
d-dimensional QFT is dual to a classical (dþ 1)-
dimensional gravity theory. In this case, an extra radial
direction of a bulk spacetime is identified with an energy
scale of a dual QFT. Therefore, we may expect that a
gravity theory realizes a RG flow of a dual QFT. If possible,
the AdS=CFT correspondence would be helpful to under-
stand a nonperturbative RG flow because the AdS=CFT
correspondence claims that a classical gravity theory maps
to a QFT involving all quantum effects. Now, we inves-
tigate how we can describe an RG flow including all
quantum effects on the dual gravity side.
We take into account a four-dimensional CFT deformed

by a scalar operator. According to the AdS=CFT corre-
spondence, its dual gravity theory with a Euclidean
signature can be described by

S¼−
1

2κ2

Z
d5X

ffiffiffi
g

p �
R−2Λ−

1

2
gMN∂Mϕ∂Nϕ−

1

2

m2

R2
ϕ2

�

þ 1

κ2

Z
∂M

d4x
ffiffiffi
γ

p
K; ð3:1Þ

where Λ ¼ −6=R2 is a cosmological constant with an AdS
radius R. Note that above the bulk field ϕ is dimensionless
and that gMN and γμν indicate bulk and boundary metrics,
respectively. The variation of the gravity action usually has
a radial derivative of the metric at the boundary, so that the
last Gibbons-Hawking term is required to get rid of such a
derivative term or to define a Dirichlet boundary condi-
tion well.
For ϕ ¼ 0, in particular, an AdS space appears as a

geometric solution

ds2 ¼ R2

z2
ðdz2 þ δijdxidxjÞ; ð3:2Þ

which is a dual of an undeformed CFT with ϕ ¼ 0. When
turning a bulk scalar field on, it corresponds to a deforma-
tion operator of the dual CFT. In this case, the mass of the
bulk field is related to the conformal dimension of the dual
operator

Δ ¼ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2

p
: ð3:3Þ

Near the asymptotic boundary (z → 0), the bulk scalar field
allows the following perturbative solution

ϕ ¼ c1z4−Δð1þ � � �Þ þ c2zΔð1þ � � �Þ; ð3:4Þ

where c1 and c2 are two integral constants.
In the holographic studies, c1 and c2 for Δ > 2 are

usually identified with the source (or coupling constant)
and VEVof a deformation operator, respectively [2–4]. For
later convenience, hereafter, we call this identification a UV
identification. Near a UV fixed point, the UV identification
reproduces the correct scaling dimension of a dual operator.
However, the UV identification becomes unclear in an IR
regime due to the mixing of two independent solutions.
To define a coupling constant well at the low-energy scale,
we exploit a different identification. After we relate the
radial position of the boundary to the RG scale of the dual
QFT, we identify the boundary value of the dual bulk field,
ϕ, with the dimensionless coupling constant. For the
comparison with the UV identification, from now on we
call this prescription a new identification. Under this new
identification, c1 again becomes a dimensionful coupling
constant in the UV limit, while the higher-order correction
in (3.4) can be regarded as quantum corrections. After the
renormalization, as will be seen later, c2 reduces to a VEV
of the deformation operator. The new identification in the
UV limit is perfectly consistent with the UV identification,
as it should do. In an intermediate energy scale, however,
the new identification is more useful to describe the change
of a coupling constant. For example, if we further consider
an additional scalar potential, the gravity theory can allow a
local minimum at ϕ ¼ ϕir where dϕ=dz ¼ 0 is automati-
cally satisfied. From the dual QFT viewpoint, this local
minimum corresponds to an IR fixed point where a
β-function must vanish. Under the new identification,
dϕ=dz ¼ 0 at the local minimum is naturally reinterpreted
as a vanishing β-function. From now on, we exploit the new
identification in order to define a coupling constant.
In QCD, the gluon condensation is a classically marginal

deformation with a conformal dimension Δ ¼ 4. A mar-
ginal deformation can be holographically described by the
following Euclidean Einstein-scalar gravity

S ¼ −
1

2κ2

Z
d5X

ffiffiffi
g

p �
R − 2Λ −

1

2
gMN∂Mϕ∂Nϕ

�

þ 1

κ2

Z
∂M

d4x
ffiffiffi
γ

p
K: ð3:5Þ

Assuming that the scalar field depends only on the radial
coordinate and that the boundary space is flat, the most
general metric ansatz preserving the boundary’s planar
symmetry is given by

ds2 ¼ e2AðyÞδμνdxμdxν þ dy2: ð3:6Þ

The detail of a geometric solution is governed by ϕ and A
satisfying the following equations of motion
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0 ¼ 24 _A2 − _ϕ2 þ 4Λ; ð3:7Þ

0 ¼ 12Äþ 24 _A2 þ _ϕ2 þ 4Λ; ð3:8Þ

0 ¼ ϕ̈þ 4 _A _ϕ; ð3:9Þ

where the dot means a derivative with respect to y. The first
equation corresponds to a constraint, while the others
describe dynamics of A and ϕ. Note that only two of them
are independent. These equations allow the following
analytic solution [46,47]

ϕ ¼ ϕ0 þ η

ffiffiffi
3

2

r
log

�
4

ffiffiffi
6

p
− ϕ1z4=R4

4
ffiffiffi
6

p þ ϕ1z4=R4

�
; ð3:10Þ

e2AðyÞ ¼ R2

z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

η2ϕ2
1

96

z8

R8

r
; ð3:11Þ

with

z ¼ Re−y=R; ð3:12Þ

where ϕ0 and ϕ1 are two integral constants. ϕ0 corresponds
to a coupling constant in the UV limit (y ¼ ∞), as
mentioned before. The invariance of the gravity action
under ϕ → −ϕ allows two different profiles with η ¼ �1.
Since a classical gravity theory is dual to a full quantum

QFT, the classical geometry in (3.10) must provide us
information about the quantum effect of the deformation.
The inner geometry of (3.10) for η ≠ 0 deviates from AdS
space, so that the conformal symmetry breaks down at an
intermediate energy scale. This means that the deformation
is not truly marginal. In other words, the deformation in
(3.10) is either marginally relevant or marginally irrelevant
due to nontrivial quantum corrections. This feature is
consistent with our new identification discussed before.
There exists another solution which yields a truly

marginal deformation. When the scalar field has a constant
profile with ϕ1 ¼ 0 which is equivalent to take η ¼ 0, its
gravitational backreaction is absent. Thus, the AdS metric
is still a solution of the deformed theory

ϕ ¼ ϕ0; ð3:13Þ

AðyÞ ¼ y
R
: ð3:14Þ

This fact implies that the deformed theory is a CFT even at
the quantum level.However, the deformed theory is different
from the undeformed one because their dual CFTs
have different coupling constants, for example, ϕ ¼ 0
for the undeformed theory but ϕ ¼ ϕ0 for the deformed
theory. This is a typical feature of a truly marginal defor-
mation which provides a constant shift of a coupling
constant with a vanishing β-function.

A. Holographic description of the RG flow

The RG equation is usually represented as the first-order
differential equations, while the equations of motion of a
gravity theory are governed by the second-order differential
equations. To derive the RG flow equations from the bulk
ones, we need to reformulate the bulk equations in terms
of the first-order differential equations. By using the
Hamilton-Jacobi formalism, we rewrite the bulk equations
as the combination of the first-order differential equations
[10–13,15,16]. To do so, we first notice that the metric
solution in (3.6) is a specific case of the following general
metric

ds2 ¼ N2dy2 þ γμνðx; yÞdxμdxν; ð3:15Þ

where N is a lapse function and γμν ¼ e2AðyÞδμν. Note that
the lapse function is nondynamical and that varying the
action with respect to the lapse function gives rise to a
constraint. Therefore, we can set N ¼ 1, without loss of
generality, after all calculation.
Regarding the radial coordinate y as a Euclidean time,

we can rewrite the previous Einstein-scalar gravity action as
a functional form of the extrinsic curvature [10–12]

S ¼
Z

d4xdy
ffiffiffi
g

p
L; ð3:16Þ

with

L¼ 1

2κ2

�
Nð−Rð4Þ þKμνKμν−K2þ2ΛÞþ 1

2N
_ϕ2

�
; ð3:17Þ

where the extrinsic curvature is defined as

Kμν ¼
1

2N

∂γμν
∂y : ð3:18Þ

Above Rð4Þ denotes an intrinsic curvature of the boundary
spacetime. Since the boundary is flat in our setup, Rð4Þ
automatically vanishes. The canonical momenta of the
boundary metric γμν and scalar field ϕ are given by

πμν ≡ ∂S
∂ _γμν ¼ −

1

2κ2
ðKμν − γμνKÞ;

πϕ ≡ ∂S
∂ _ϕ ¼ 1

2κ2
_ϕ: ð3:19Þ

These canonical momenta enable us to reexpress the action
as the first-order form

S ¼
Z

d4xdy
ffiffiffi
g

p ðπμν _γμν þ πϕ _ϕ − NHÞ; ð3:20Þ

where the Hamiltonian density is given by
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H ¼ 2κ2
�
γμργνσπμνπρσ −

1

3
π2 þ 1

2
π2ϕ

�
−
Λ
κ2

; ð3:21Þ

with π ¼ γμνπμν. The variation of this action with respect to
the lapse function leads to the Hamiltonian constraint,
H ¼ 0. This Hamiltonian is a generator of the translation in
the y-direction. All solutions connected by this trans-
formation are gauge equivalent.
After imposing the Hamiltonian constraint, the variation

of the action finally results in the variation of the boundary
action

δSB ¼
Z
∂M

d4x
ffiffiffi
γ

p ðπμνδγμν þ πϕδϕÞ; ð3:22Þ

where all variables are defined at the boundary. In the
Hamilton-Jacobi formalism, the canonical momenta are
defined as

πμν ¼
1ffiffiffi
γ

p δSB
δγμν

and πϕ ¼ 1ffiffiffi
γ

p δSB
δϕ

: ð3:23Þ

According to the AdS=CFT correspondence, the above
boundary action is identified with the generating functional
of the dual QFT. To see this relation explicitly and to relate
the bulk equations with the RG equations correctly, we
resolve the following two issues. First, we have to clarify
how the radial position of the boundary is related to the RG
scale [48–50]. Second, the above boundary action is an
unrenormalized generating functional because we did not
get rid of UV divergences yet. Therefore, we have to
renormalize it by adding appropriate counterterms.
Although the RG flow can vary the coupling constants

including the metric, it does not change the background
geometry where the QFT is defined. On the dual gravity
side, this implies that the boundary spacetime described by
ds2B ¼ γμνdxμdxν must be invariant under the scale trans-
formation. Since the metric component in (3.15) scales by
eAðȳÞ → eσeAðȳÞ under x → e−σx or μ → eσμ, we can
associate the RG scale μ with the metric component at
the boundary, y ¼ ȳ,

μ ¼ eAðȳÞ

R
; ð3:24Þ

where AðȳÞ indicates the value of A at the boundary. This
relation describes how the RG scale changes when the
boundary moves in the radial direction. From now on, we
concentrate on the dual QFT defined at the boundary, so we
drop out the bar symbol. For η ¼ �1, the RG scale is
related to the radial position of the boundary

μ ¼ ey=R

R

�
1 −

ϕ2
1

96
e−8y=R

�
1=4

: ð3:25Þ

To describe the RG flow, we have to specify counter-
terms to remove the UV divergences [51,52]. In the
renormalization procedure, there may exist several different
counterterms which have the same UV divergences [51].
Although the regular terms do not give any contribution to
the renormalization, they significantly affect on the RG
flow in the intermediate energy scale. This regular con-
tribution is crucially related to the quantum correction and
seriously modify the IR physics. Therefore, it is important
to determine the counterterms correctly to understand the
RG flow and its IR physics. The UV divergence of the
above boundary action appears due to the invariant integral
measure at a UV cutoff (ȳ → ∞)

Z
d4x

ffiffiffi
γ

p
∼
Z

d4x e4ȳ=R: ð3:26Þ

On the other hand, the integrands of the boundary action in
the asymptotic region behave as

πμνγ
μν ∼ _A ∼

1

R
;

πϕϕ ∼ e−4ȳ=R: ð3:27Þ

As shown in these asymptotic behaviors, the gravity part,R
d4x

ffiffiffi
γ

p
πμνγ

μν, gives rise to a UV divergence proportional
to e4ȳ=R, whereas the scalar field part,

R
d4x

ffiffiffi
γ

p
πϕϕ, does

not make any additional UV divergence. Therefore, we
need the counterterm which cancels only the divergence of
the gravity part. In other words, since the marginal
deformation does not make any additional UV divergence,
it is sufficient to exploit the same counterterm used in the
undeformed CFT [45]

Sct ¼ −
1

2κ2

Z
d4x

ffiffiffi
γ

p
Lct; ð3:28Þ

with

Lct ¼
6

R
: ð3:29Þ

Then, the renormalized action is given by

Γ½γμν;ϕ; ȳ� ¼ SB − Sct: ð3:30Þ

This renormalized boundary action is finite and corre-
sponds to the renormalized generating functional of the
dual QFT.
The UV cutoff we introduced is artificial, so that the

renormalized action must be independent of the artificial
UV cutoff. The scale independence of the renormalized
action leads to the following RG equation
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0 ¼ μ
∂Γ
∂μ þ ∂γμν

∂ log μ
∂Γ
∂γμν þ

∂ϕ
∂ log μ

∂Γ
∂ϕ ; ð3:31Þ

where μ is the RG scale satisfying (3.24). Due to the
following relation

dγμν

d log μ
¼ −2γμν; ð3:32Þ

we further rewrite the above RG equation as the usual form

0 ¼ μffiffiffi
γ

p ∂Γ
∂μ þ γμνhTμνi þ βϕhOi; ð3:33Þ

with the following definitions

βϕ ≡ ∂ϕ
∂ log μ ; ð3:34Þ

hTμνi≡ −
2ffiffiffi
γ

p ∂Γ
∂γμν ¼ −

�
2πμν −

1

2κ2
γμνLct

�
; ð3:35Þ

hOi≡ 1ffiffiffi
γ

p δΓ
δϕ

¼ πϕ þ
1

2κ2
∂Lct

∂ϕ : ð3:36Þ

This is the same as the generalized RG equation of a QFT in
(2.5). Above, ϕ indicates the boundary value of the bulk
scalar field. Under the identification of ϕ with the dimen-
sionless coupling, the VEV of the deformation operator is
determined as a derivative of the generating functional with
respect to the coupling constant, as shown in (3.35) and
(3.36). In this case, the VEV is usually determined as a
function of coupling constants.

B. RG flow triggered by a marginal operator

When we describe the holographic RG flow, it is more
convenient to introduce a superpotential. To see more
details, we return to the bulk equations of motion. Since
the bulk equations, (3.7), (3.8), and (3.9), are depending
only on _A and Ä, we can introduce a superpotential
satisfying [13,46,53–57]

WðϕÞ ¼ 6 _A: ð3:37Þ

Then, the bulk equations reduce to two first-order differ-
ential equations

2Λ ¼ 1

2

�∂W
∂ϕ

�
2

−
1

3
W2; ð3:38Þ

_ϕ ¼ −
∂W
∂ϕ : ð3:39Þ

Here the first equation corresponds to the Hamiltonian
constraint which determines the superpotential as a

function of ϕ. Using this superpotential, we rewrite the
RG equation in terms of the superpotential

0 ¼ μffiffiffi
γ

p ∂Γ
∂μ þ γμνhTμνi þ βϕhOi; ð3:40Þ

with

βϕ ¼ −
6

W
∂W
∂ϕ ; ð3:41Þ

hTμνi ¼
1

κ2
ðKμν − γμνKÞ − 3

κ2R
γμν; ð3:42Þ

hOi ¼ 1

2κ2
∂W
∂ϕ : ð3:43Þ

For a marginal deformation, ∂Lct=∂ϕ automatically van-
ishes because Lct is independent of ϕ, as shown in (3.29).

1. Marginally relevant or irrelevant deformation

The Hamiltonian constraint (3.38) allows two different
types of solutions. The first one is given by [15,16,46,47]

W ¼ 6

R
cosh

� ffiffiffi
2

3

r
ðϕ − ϕ0Þ

�
: ð3:44Þ

After substituting the superpotential into (3.39) and solving
it, we reobtain the previous gravity solutions, (3.10) and
(3.11) with η ¼ �1. From the profile of the bulk scalar field
(3.10), we can easily read off the corresponding β-function
in the UV region

βϕ ¼ ηϕ1

μ4
þO

�
1

μ12

�
: ð3:45Þ

Recalling that the β-function of the marginal operator
vanishes at the classical level, the above nonvanishing
β-function comes thoroughly from the quantum effect. This
fact indicates that the deformation operator is marginally
relevant (βϕ < 0) for η ¼ −1 or marginally irrelevant
(βϕ > 0) for η ¼ 1, see Fig. 1. On the other hand, if we
identify the bulk scalar field with the inverse of a coupling
constant as will be seen in the next section, the deformation
becomes marginally relevant for η ¼ 1 and marginally
irrelevant for η ¼ −1. We see from (3.36) that the VEV
of the deformation operator reduces to

hOi ¼
ffiffiffi
6

p

κ2R
sinh

� ffiffiffi
2

3

r
ðϕ − ϕ0Þ

�
; ð3:46Þ

which is a function of the coupling constant ϕ, as
mentioned before. In the UV region, as will be shown in
the next section, the VEV is proportional to ϕ1μ

−4 at
leading order. This is the form expected by the RG flow of a
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QFT. More precisely, the VEV scales by μ−4 for Δ ¼ 4, as
mentioned in (2.2). In addition, the second integral constant
ϕ1 determines the VEV in the UV limit. This fact indicates
that the new identification used in this work is consistent
with the UV identification of Ref. [2–4] at least in the UV
region. Unlike the UV identification, however, the new
identification allows us to describe the change of the
coupling constant along RG flow.

2. Truly marginal deformation

There exists another superpotential satisfying the
Hamiltonian constraint. The second superpotential is
given by

W ¼ 6

R
ð3:47Þ

which corresponds to the case of ϕ ¼ ϕ0 in (3.44). This
superpotential reproduces the trivial solution, (3.10) with
η ¼ 0. Plugging this superpotential into (3.39) and (3.37),
we finally reobtain the trivial solution in (3.13). In this case,
the coupling constant ϕ ¼ 0 of the undeformed CFT
changes into ϕ ¼ ϕ0 of the deformed CFT. However, the
β-function automatically vanishes. This is a typical feature
of the truly marginal deformation. A truly marginal
operator changes a CFT into another CFT by shifting
the coupling constant without generating a nontrivial RG
flow. The dual geometry of the truly marginal deformation
is again given by an AdS space, as expected.

IV. HOLOGRAPHIC DUAL OF THE GLUON
CONDENSATION

Several distinct condensations occur in QCD. They are
usually associated with a certain spontaneous symmetry
breaking and responsible for the mass of hadrons. Due to
the Lorentz invariance, the condensation should be a

Lorentz scalar and has vanishing charges under various
global and local symmetries. The well-known condensa-
tions in QCD are the chiral and gluon condensations. The
chiral condensation is the condensate of two fermions with
breaking the chiral symmetry spontaneously and yields a
large effective mass to quarks and most hadrons. The other
example is the gluon condensation. For a four-dimensional
Yang-Mills theory, the kinetic term of the gauge field is
given by

SYM ¼ −
1

4g2YM

Z
d4x

ffiffiffi
γ

p
TrF2: ð4:1Þ

In this case, since the Yang-Mills coupling constant is
classically marginal, the classical β-function automatically
vanishes. However, the one-loop quantum correction gen-
erates a nonvanishing β-function [5,58,59]. In general,
QCD contains many ingredients and condensations, so
that a dual gravity theory also has many bulk fields
corresponding to such QCD contents. Unfortunately, a
dual gravity theory of QCD is still unknown. If we take into
account other relevant deformations of QCD, there may be
a mixing of marginal and relevant deformations. Such
mixing of deformation makes the theory have a more rich
structure and allows other interesting IR physics. We leave
the study on this issue as future works. In the present work,
we concentrate only on the gluon condensation for a
marginal deformation, ignoring the effects of other QCD
contents. Then, the dual gravity of the gluon condensation
is well approximated by the previous Einstein-scalar
gravity. This study is sufficient to clarify the effect of a
marginal deformation discussed before.
When QCD deforms by the gluon condensation, we are

able to regard ϕ ¼ 1=ð4g2YMÞ as a coupling constant and
G ¼ −TrF2 as a deformation operator whose vacuum
expectation value (VEV) corresponds to the gluon con-
densation. Although it is not clear whether the gluon
condensation is associated with the known phase change,
there are many indications for the nonvanishing gluon
condensation in lattice QCD simulations. The gluon con-
densation may be partly responsible for masses of hadrons
and leads to a nontrivial RG flow closely related to the trace
anomaly. The lattice QCD simulations expects that the one-
loop quantum correction in the UV region leads to the
following trace anomaly [21,22]

hTμ
μi ¼ −

Nc

8π

βλ
λ2

hGi; ð4:2Þ

where Nc indicates the rank of the gauge group and βλ
means a β-function of the ’t Hooft coupling constant λ.
In general, the condensation plays a crucial role in non-
perturbative phenomena. To understand such nonperturba-
tive features, the AdS=CFT correspondence may be
helpful. The effect of the gluon condensation on the trace
anomaly can be understood by using the holographic RG

FIG. 1. The RG flows caused by marginally relevant and
irrelevant operators.
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flow discussed before. Although the gravity model we
considered is too simple to study IR physics, the present
model is still useful to account for the UV physics because
it gives rise to the leading behavior of the marginal
deformation at least in the UV region.
Now, we specify the parameters of the gravity theory in

terms of those of the dual QFT. For applying the AdS=CFT
correspondence, we define the ’t Hooft coupling constant
as λ ¼ Ncg2YM and take the double scaling limit where
Nc → ∞ and g2YM → 0 with a fixed λ. Despite an infinite
rank of the gauge group, the AdS=CFT correspondence still
has an advantage in catching the important feature of the
nonperturbative RG flow. If we identify the VEVof the dual
operator with the gluon condensation, hGi, the bulk scalar
field is associated with the ’t Hooft coupling constant

ϕ ¼ Nc

4λ
: ð4:3Þ

In the large ’t Hooft coupling limit (λ ≫ 1), the leading
behavior of ϕ is proportional to 1=μ4 in (3.10). This implies
that the ’t Hooft coupling constant is related to the RG scale
by λ ∼ μ4 in the UV region (μ ≫ 1). The β-function (3.45)
derived from the bulk scalar field can be reexpressed as that
of the ’t Hooft coupling constant

βϕ ¼ −
Nc

4

βλ
λ2

: ð4:4Þ

When we identify the bulk scalar field with the inverse of
the ’t Hooft coupling constant in (4.3), we have to take
η ¼ 1 rather than η ¼ −1 for describing a marginally
relevant deformation. For example, if the rank of the gauge
group Nc is sufficiently larger than the number of other
matter fields, βλ has a negative value representing a
marginally relevant deformation. In (4.4), the negative βλ
enforces a positive βϕ which is the same as choosing
η ¼ þ1 in (3.45). This is also consistent with our previous
prescription that, when the bulk field is identified with the
inverse of the coupling constant, η ¼ þ1 describes a
marginally relevant deformation.
From the holographic RG flow description studied

before, the β-function and the gluon condensation in the
UV region are given by functions of the RG scale

βϕ ¼ ϕ1

R4

1

μ4
−

ϕ3
1

48R12

1

μ12
þOðμ−20Þ;

hGi ¼ −
ϕ1

2κ2R5

1

μ4
þOðμ−28Þ: ð4:5Þ

Here the βλ and hGi are also represented as functions of the
’t Hooft coupling constant, for example, βλ ∼ −λ and
hGi ∼ −1=λ in the UV region. The leading behavior of
the gluon condensation, hGi ∼ μ−4, is the form expected by
the classical dimension counting in (2.2). This result

shows that the gluon condensation rapidly suppresses as
the ’t Hooft coupling constant increases. From (3.36),
moreover, we show that the trace anomaly has the follow-
ing RG scale dependence

hTμ
μi ¼ −

ϕ2
1

4κ2R9

1

μ8
þ ϕ4

1

384κ2R17

1

μ16
þOðμ−24Þ: ð4:6Þ

Reexpressing the trace anomaly in terms of the coupling
constant and gluon condensation, we finally find that the
trace anomaly is closely related to the gluon condensation

hTμ
μi ¼ −

Nc

8

βλ
λ2

hGi þOðλ−4Þ: ð4:7Þ

Here, the leading contribution satisfies the trace anomaly
expected in the lattice QCD [21,22]. Intriguingly, this
holographic result shows that the trace anomaly of the
lattice QCD (4.2) is valid only at the one-loop level. At the
higher-loop level, there exists an additional contribution at
the λ−4 order. As a result, the higher-order correction
modifies the one-loop trace anomaly. Lastly, the holo-
graphic description of the gluon condensation leads to the
expected behavior of the RG flow. For example, the gluon
condensation and the trace anomaly rapidly suppress in the
UV region and then the conformal symmetry is restored at
the UV fixed point.

V. DISCUSSION

In this work, we studied the holographic RG flow of a
CFT deformed by a marginal operator. We discussed how
we can understand the RG flow of a boundary QFT in terms
of the Hamilton-Jacobi formulation on the dual gravity
side. At the classical level, a marginal operator does not
change the CFT. The quantum effect, however, can lead to
nontrivial modification of the CFT along the RG flow.
Using the holographic description, we studied how
the quantum effect of the marginal deformation modifies
the β-function and the VEV of the operator. Furthermore,
we compared this holographic result with the gluon
condensation known in QCD.
There were several distinct prescriptions to realize the

nonperturbative RG flow of the QFT on the dual gravity
side. In the present work, we exploited the Hamilton-Jacobi
formalism which allows us to rewrite the gravity equations
as the first-order differential equations. The RG equations
are generally given by the first-order differential equations,
so that the Hamilton-Jacobi formulation is useful to under-
stand the RG flow of the dual QFT. When we applied the
Hamilton-Jacobi formulation, it suffers from the UV
divergences similar to those appearing in the QFT renorm-
alization. We discussed the counterterms, which get rid of
the UV divergences, and then find the finite boundary
action corresponding to the generating functional of the
dual QFT.
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After the holographic renormalization, we explicitly
showed that the quantum correction modifies a classically
marginal operator into one of the truly marginal, marginally
relevant and marginally irrelevant operators at the quantum
level. More precisely, the quantum correction gives rise to a
nonvanishing β-function for marginally relevant and irrel-
evant deformations. If we focus on the marginally relevant
deformation, the undeformed theory at the UV fixed point
becomes unstable. Thus, the UV CFT flows to a new IR
theory. In this case, the other quantities like the stress tensor
and VEVof the operator also vary along the RG flow. We
explicitly calculated the RG scale dependence of those
quantities near the UV fixed point. We also showed that the
holographic RG flow reproduces the known trace anomaly
of the gluon condensation [21,22]. Intriguingly, the holo-
graphic RG flow further shows that the trace anomaly
formula of the lattice QCD is valid only at the λ−2 order.
In the present work, the Einstein-scalar gravity we

considered has no well defined IR geometry because of
the existence of a singularity at z4 ¼ 4

ffiffiffi
6

p
=ϕ1. This means

that the dual QFT of the present model is IR incomplete,
so that the end of the RG flow is not manifest. This means
that the present model is not valid in the IR region.
Nevertheless, the results we obtained in this work are still

valid in the UV region because they corresponds to the
leading contribution. To study the IR physics further, we
have to consider a more general gravity theory which
allows a well-defined IR fixed point. For example, we can
take into account a scalar potential with higher-order terms

VðϕÞ ¼
X
n≥3

anϕn: ð5:1Þ

For a relevant deformation, this potential crucially modifies
IR physics and can allow an IR fixed point. Despite this
fact, its contribution in the UV region becomes subdomi-
nant. Due to this reason, in this work we concentrate on
the UV behavior of the RG flow. Nevertheless, it is still
important to take into account higher-order terms to
understand interesting IR phenomena. We hope to report
more results on this issue in future works.
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