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In this work we show that the introduction of an appropriate cutoff in the spectra of the Laplacian of an
spherically symmetric and static black hole reveals an equivalence between shape and holographic degrees
of freedom. Even more, the aforementioned cutoff introduces a correction to the Bekenstein-Hawking
entropy which resembles the corresponding holographic loop quantum gravity, generalized uncertainty
principle and entanglement entropy corrections. The difficulty of extending our results to nonspherically
symmetric black holes is pointed out.
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General relativity and quantum theory are two extremely
successful theories formulated in two different mathematical
languages, their physical principles being axiomatized under
their corresponding mathematical description. From this
point of view, one possibility that can be followed in order
to construct a unified theory which incorporates gravity and
quanta is to seek an appropriate mathematical framework
which naturally incorporates both languages; i.e., differential
geometry for general relativity and functional analysis for
quantum theory. It is at the intersection of these two
mathematical disciplines where spectral geometry plays its
role. This subject was first introduced in pure mathematics
by Weyl [1] (see, for example, [2]) and later, physicists
interested in gravitation started to use it during the 1990s
[3–5].
As pointed out in [6], the relevant spectral geometric

question for quantum gravity is to what extent the
curvature of certain Riemannian spacetimes (which are
of interest for the Euclidean approach to quantum gravity)
can be described in terms of the spectra of canonical
differential operators on the manifold (for example, the
Laplace or Dirac operators). Even more, as these spectra
only depend on the Riemannian structure, the degrees of
freedom (d.o.f.) of gravity would be easily identified as
some set of eigenvalues and, therefore, their dynamics and
quantization would be free of difficulties [7]. If, for
instance, we fix our attention to the Laplacian, the
problem with this approach is that, although the metric

of a manifold completely determines the spectrum of its
Laplacian, it is very difficult to determine if or where the
map from the metric to the spectrum may be invertible.
Although some highly symmetric situations are tractable,
iterative linearized spectral geometry has been explored in
order to circumvent the aforementioned issue [6,8]. In the
Lorentzian realm, similar ideas have been applied recently
to see to what extent causal sets can be identified through a
set of geometric invariants such as spectra of canonical
operators defined on them [9,10].
In spite of the problem the of the existence of isospectral

but nonisometric manifolds [11], it is a well-known fact that
an S1-invariant two-dimensional surface diffeomorphic to
the sphere with a mirror symmetry about its equator is
uniquely determined by the spectrum of its Laplacian. This
result has been used as the starting point to reconstruct the
Kerr-Newman event horizon. To be more precise, Engmann
et al. [12] explicitly reconstructed the metric of the Kerr-
Newman event horizon from the spectrum of its Laplacian,
giving a unique and explicit determination of the metric for
the uncharged case from the aforementioned spectrum. In
this sense, after invoking Robinson’s uniqueness theorem
[13], “One can hear the shape of noncharged stationary
axially symmetric black hole (BH) spacetimes by listening to
the vibrational frequencies of its event horizon only” [12]. In
addition, this result was later extended to the de Sitter-Kerr-
Newman case [14], showing that the metric can be uniquely
determined by the union of the spectra of the Laplacian of
both the cosmological and event horizons. Very recently, we
employed Engman’s techniques to show that the event
horizon of the Chong-Cvetic-Lu-Pope BH can be recon-
structed in terms of the spectra of the Laplacian on it [15].
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In thisworkweuse spectral geometry to showa connection
between Padmanabhan’s holographic d.o.f. [16,17], which
are given in terms of certain tessellations of the event horizon
and have a clear thermodynamic interpretation in terms
of energy equipartition, and Kempf’s shape d.o.f. [6], which
are given in terms of the eigenvalues of the Laplace operator
on the horizon of a static and spherically symmetric BH.
This work is organized as follows. In the next section we

show, by introducing an appropriate UV cutoff, that holo-
graphic degrees of freedom are equivalent to shape degrees
of freedom for a two-dimensional spherically symmetric
and static event horizon. Then, we study some effects of
the aforementioned UV cutoff. After briefly exploring the
effects of this UV cutoff in a spherically symmetric black
hole spacetime, a discussion on the possibility of extending
our results to higher-dimensional horizons or to nonspheri-
cally symmetric geometries is developed. We end with some
final comments.
Spherical horizon. For simplicity let us consider a S2

horizon of radius rþ of a static and spherically symmetric
BH. In this regard, the round metric of S2 can be written as

g ¼ r2þ½f−1ðxÞdx ⊗ dxþ fðxÞdϕ ⊗ dϕ�; ð1Þ

where x ¼ cos θ and fðxÞ ¼ 1 − x2. Now, the Laplace
operator in S2 − fpolesg is

Δ ¼ ∂x½fðxÞ∂x� þ f−1ðxÞ∂2
ϕ; ð2Þ

whose spectrum and degeneracies are given by

λn ¼ nðnþ 1Þr−2þ
degðλnÞ ¼ 2nþ 1; ð3Þ

(n ∈ N) respectively.
At this point a couple of comments are in order. First,

note that the trace reads

γ ¼
X
n

1

λn
¼ r2þ; ð4Þ

so the total area of the horizon can be written as

A ¼ 4πγ ¼
X∞
n¼1

4πr2þ
nðnþ 1Þ≡

X∞
i¼1

An; ð5Þ

which allows us to define a quantum of area, An.
This is not a surprising result because some approaches to

quantum gravity coincide in that the geometry should be
quantized as a consequence of a discrete spectrum of both
the volume and area operators. As a particular example,
the quantum numbers of a black hole are discussed by
Bekenstein in Ref. [18], pointing out that the quantization of
the horizon area can be thought of as a horizon formed by

patches of the order of a Planck length squared. Indeed, it is
claimed that the patchwork horizon can be considered as a
having many degrees of freedom for each patch. This
interesting feature will emerge in our work as we will show.
Second, note that if we introduce the following UV

cutoff

An ≥ l2p ∀ n; ð6Þ

there exists some nm that saturates Eq. (6), namely

4πr2þ
nmðnm þ 1Þ ¼ l2p; ð7Þ

where lp is the Planck length. Now, following
Padmanabhan’s holographic equipartition [16,17], we
arrive at

N ≡ 4πr2þ
l2p

¼ nmðnm þ 1Þ; ð8Þ

where N stands for the so-called holographic degrees of
freedom. Note that as rþ ≫ lp, N ≫ 1.
These holographic d.o.f. are important because they have

a clear thermodynamic meaning. Specifically, the Komar
energy of a spherically symmetric BH spacetime, E, is given
by [16,17] E ¼ 1

2
NT, where T stands for the local Hawking

temperature. In this sense, the N spacetime atoms [16,17]
emerge as the semiclassical d.o.f. for BHs. Interestingly, it is
possible to fully reconstruct BH thermodynamics starting
from statistical mechanics principles applied to the afore-
mentioned N d.o.f. [19,20].
Finally, the shape degrees of freedom [6] are given, for a

generic surface as

X∞
n¼0

degðλnÞ; ð9Þ

which, after introducing the UV cutoff, reads

Xnm
n¼0

degðλnmÞ ¼
Xnm
n¼0

ð2nþ 1Þ ¼ ðnmþ 1Þ2 ∼Nþ
ffiffiffiffi
N

p
; ð10Þ

where the limit N ≫ 1 has been used in the last part of
Eq. (10). In this sense, we conclude that Padmanabhan’s
holographic d.o.f. (including fluctuations that go with

ffiffiffiffi
N

p
)

are nothing but shape d.o.f. Therefore, the spectra of the
Laplacian on the horizon, together with the aforementioned
UV cutoff, can be related to BH thermodynamics in the
very same way as Padmanabhan’s d.o.f. are. Some effects of
the UV cutoff. Let us introduce the following decomposi-
tion for the area
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A0 ¼
Xnm
n¼1

A0

nðnþ 1Þ þ
X∞

n¼nmþ1

A0

nðnþ 1Þ ; ð11Þ

where A0 ¼ 4πr2þ stands for the usual area of the horizon
and the first term of the rhs of Eq. (11) corresponds to the
UV cutoff area, AUV. After performing the sums we arrive at

AUV ¼ A0

�
1 −

1

nm þ 1

�
: ð12Þ

Now, as shown in Eq. (8) we have that N ¼ A0

l2p
¼

nmðnm þ 1Þ so, in the large nm limit, we have N ∼ n2m
from where

AUV ¼ A0 − lp
ffiffiffiffiffi
A0

p
: ð13Þ

It is worth noticing that the previous UV cutoff introduces a
correction term to the Bekenstein-Hawking entropy in the
large nm limit as

S ¼ A0

4l2p
→

AUV

4l2p
¼ A0

4l2p
−

ffiffiffiffiffiffiffiffiffi
A0

16l2p

s
: ð14Þ

Interestingly, Eq. (14) has formal resemblances with
corrections found in other contexts. For example, for
holographic BHs, where one uses the matter degeneracy
suggested by quantum field theory with a cutoff at the
vicinity of the horizon, the entropy becomes [21]

S ¼ A0

4
þ

ffiffiffiffiffiffiffiffi
πA0

6γ

s
þOð

ffiffiffiffi
A

p
Þ; ð15Þ

where γ is the Barbero-Immirzi parameter. The correction
is formally the same (the difference appears in the sign of
the correction term). Another example is based on the fact
that the area law can be considered as a consequence of the
entanglement of the quantum fields in the vacuum (i.e.,
ground) state across the horizon [22]. However, when the
vacuum state is replaced by generic coherent states or a
class of squeezed states it is found that entropy scales as a
power of the BH area [22]. In this regard, when a generic
state consisting of a superposition between ground and
excited states is considered, the Bekenstein-Hawking
entropy reads

S ¼ A0

4l2p
− κα

Aα
0

4l2p
; ð16Þ

where κα is a constant which depends on the power of the
correction. Note that when κα < 0 the result coincides not
only with Eq. (15) but with corrections obtained in other
contexts as, for example, in the framework of the generalized
uncertainty principle, where is found that [23]

S ¼ A0

4l2p
þ α

4lp

ffiffiffiffiffiffi
πA

p
: ð17Þ

When κα > 0, the result is formally the obtained here
where quantum corrections lead to a decreasing of the
semiclassical entropy, S ¼ A0=4. In this sense, the number
of microstates gets lowered by this kind of quantum
correction.
Effective geometry. The idea is to introduce a modified

radial distance, rUVðrÞ, which has a minimal value around
lp. In order to do that, following Eq. (13), let us introduce a
modified radius variable rUV as

rUV ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

lp
r

ffiffiffiffiffiffi
4π

p
s

:

Then, we take this modified radius variable rUVðrÞ as the
physical radius variable and do the formal substitution
r → rUVðrÞ. Therefore, circles of r ¼ constant now have
circumference 2πrUVðrÞ and the area of the spheres is given
by Eq. (13).
Let us now explore the implications of aforementioned

substitution, r → rUVðrÞ, for a static and spherically sym-
metric BH spacetime whose line element is expressed as

ds2 ¼ −hðrÞdt2 þ dr2

hðrÞ þ r2UVdΩ2: ð18Þ

Interestingly, we find that

Rαβ ¼ OðlpÞ2 ð19Þ

for

hðrÞ ¼ 1 −
2M
r

þ lp
4

ffiffiffi
π

p
r
−

lpM

2
ffiffiffi
π

p
r2
; ð20Þ

where two arbitrary constants of integration have been
chosen to recover the usual Newtonian limit. Therefore,
Eq. (20) solves the vacuum Einstein equations up to second
order in the Planck length. Additionally,

R ¼ OðlpÞ2; ð21Þ

RαβRαβ ¼ OðlpÞ4; ð22Þ

RαβγδRαβγδ ¼
48M2

r6
−
12lpðMr − 6M2Þffiffiffi

π
p

r7
þOðlpÞ2; ð23Þ

which explicitly shows, together with Eq. (20), that the
Schwarzschild case is recovered when lp is switched off.
At this point some comments are in order: First, note that

Eqs. (20), (21), (22), and (23) coincide formally with that of
the BH with quantum potential studied in Ref. [24]. Second,
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the event horizon is not modified [hðrþÞ ¼ 0 implies rþ ¼
2M or rþ ¼ − lp

4
ffiffi
π

p ]. As a consequence, the Hawking

temperature reads Tþ ¼ 1
8πM þ lp

64π3=2M2 þOðlpÞ2 and the

heat capacity is C ¼ −8πM2ð1 − lp
4
ffiffi
π

p
MÞ þOðlpÞ2.

Additionally, the angular part of the geometry is given by
the line element

ð2Þds2 ¼ r2
�
1 −

lpffiffiffiffiffiffi
4π

p
r

�
dΩ2; ð24Þ

which gets degenerated at r⋆ ¼ lpffiffiffiffi
4π

p . However, it must be

noted that the substitution r → rUV is only valid in the large
nm limit, which implies r ≫ lp. Therefore, the previous
dimensional reduction can not be described within our
approach.
Finally, we note that a cosmological constant can be

easily included, giving place to

hðrÞ ¼ 1 −
2M
r

−
Λr2

3
−
2lpMffiffiffi
π

p
r2

þ Λlpr
6

ffiffiffi
π

p þOðlpÞ2: ð25Þ

D dimensions and other geometries. Let us see if the
correspondence between Padmanabhan’s and shape d.o.f.
holds for an event horizon of D dimensions.
Specifically, for a canonical D-dimensional spherical

event horizon of radius rþ we have that

λn ¼ nðnþD − 1Þr−Dþ : ð26Þ

The area of SDðrþÞ is given by

AðSDÞ ¼ A ¼ 2π
Dþ1
2

ΓðDþ1
2
Þ r

Dþ; ð27Þ

therefore

A ¼
X∞
n¼1

rDþ
nðnþD − 1Þ

2π
Dþ1
2

ΓðDþ1
2
Þ

D − 1

γ þ ψðDÞ≡
X∞
n¼1

An; ð28Þ

where γ is Euler’s constant and ψ stands for the digamma
function.
If the UV cutoff

An ≥ l2p ∀ n ð29Þ

is introduced, then there exists some nm that saturates
Eq. (29). Specifically,

rDþ
nmðnm þD − 1Þ

2π
Dþ1
2

ΓðDþ1
2
Þ

D − 1

γ þ ψðDÞ ¼ l2p; ð30Þ

and therefore,

N ≡ A
l2p

¼ nmðnm þD − 1Þ γ þ ψðDÞ
D − 1

; ð31Þ

where N again stands for Padmanabhan’s holographic
d.o.f. [16,17].
In this case, the degeneracy of λn is

degðλnÞ ¼
�
Dþ n

n

�
−
�
Dþ n − 2

n − 2

�
: ð32Þ

Therefore, after introducing the UV cutoff we find

degðλnmÞ ¼
2nDm

ΓðDþ 1Þ
�
1þ D2

2nm
þOðnmÞ−2

�
; ð33Þ

which only scales as N when D ¼ 2.
Therefore, shape d.o.f. coincide with Padmanabhan’s

holographic d.o.f. only in the two-dimensional case. In
this precise sense, two-dimensional event horizons are
special.
Let us now try to apply the previous ideas to a

nonspherical horizon (for example, that of a Kerr or
a Kerr-Newman BH) by employing some techniques due
to Engman [12,25,26].
After separation of variables, the eigenspace (Eλm) of the

Laplacian, Δ, for metrics of the type of Eq. (1), is given by
[27]

Eλm ¼ ⨁
k¼m

k¼−m
eikϕWk; ð34Þ

where Wk is the eigenspace of the operator

Lk ¼ −
d
dx

�
fðxÞ d

dx

�
þ k
fðxÞ : ð35Þ

The spectrum of the Laplacian on the surface described
by the metric g is given by

SpecðgÞ ¼ ∪
k∈Z

SpecðLkÞ; ð36Þ

where the spectrum of Lk is

SpecðLkÞ ¼ f0 < λ1k < λ2k < � � � < λjk < � � �g ð37Þ

for all k ∈ Z.
Additionally, each Lk has a Green operator, Γk, whose

spectrum is given by [12]

SpecðΓkÞ ¼
�
1

λjk

�
∞

j¼1

: ð38Þ

Importantly, the trace of Γk reads
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γk ¼
X∞
j¼1

1

λjk
: ð39Þ

Finally, in Refs. [25,26] it is shown that, for a surface with a
metric given by Eq. (1) we have

γ0 ¼
1

2

Z
1

−1

1 − x2

fðxÞ dx ð40Þ

and

γk ¼
1

jkj ; k ≠ 0: ð41Þ

Then, an immediate consequence of Eq. (41) is that the area
of a surface described by Eq. (1) can be decomposed as

A ¼ 4πjkjγk; n ∈ N: ð42Þ

Additionally, if a metric conformal to that of Eq. (1) is
considered (g̃ ¼ α2g), then

γk ¼
α2

jkj ; k ≠ 0 ð43Þ

and Eq. (42) still applies.
Importantly, Eq. (42) is a fundamental result regarding

Engman’s reconstruction of the metric for the whole Kerr
spacetime [12].
We note that the case here considered, Eq. (5),

corresponds to k ¼ 1, α ¼ rþ, and therefore, γ1 ¼
r2þ

P∞
j¼1 ðjðjþ 1ÞÞ−1.

Concerning the event horizon of a Kerr-Newman BH, let
us note that it can be described by fðxÞ ¼ 1−x2

1−β2ð1−x2Þ and

α2 ¼ r2þ þ a2, where β ¼ a
α. Then, following Eq. (42), after

decomposing the area of the surface whose line element is
given by g̃,

A ¼
X∞
j¼1

Ak
j ð44Þ

and, by introducing the UV cutoff, we arrive at

λkjmγk ¼ N ¼ A
l2p
: ð45Þ

Although Eq. (45) generalizes in some sense Eq. (8), the
degeneracies of the spectrum are needed in order to
compute the shape d.o.f. for g̃. Specifically,

degðλjmÞ ¼
Xjm
j¼0

degðλjÞ: ð46Þ

Finally, let us note that, although degðλjÞ ≤ 2jþ 1 is a
general result (the equality is achieved if and only if g̃ is
isometric to a sphere of constant curvature), no specific
results for the Kerr-Newman geometry are available to the
best of our knowledge. We think this is a interesting open
problem which could shed light on the role that spectral
geometry could play on a possible microscopic description
of rotating BHs.
Final comments. In this work we have shown, by

introducing an appropriate UV cutoff, a connection between
Padmanabhan’s holographic degrees of freedom and
Kempf’s shape degrees of freedom which are given in terms
of the eigenvalues of the Laplace operator on the horizon of
a static and spherically symmetric black hole. Even more,
the aforementioned cutoff introduces a correction to the
Bekenstein-Hawking entropy which resembles the corre-
sponding holographic loop quantum gravity, generalized
uncertainty principle, and entanglement entropy corrections.
In addition, we have explored the implications of the formal
substitution of the radial coordinate by its corresponding UV
counterpart for a static and spherically symmetric black hole
spacetime, showing resemblance with a different improved
black hole model induced by a quantum potential. The
difficulty of extending our results for higher-dimensional
black holes has been also pointed out. Finally, we have
pointed out that a interesting open problem is to calculate the
degeneracy of the Laplacian for the event horizon of a Kerr
(or Kerr-Newman) black hole. We think that there is a deep
link between the so called shape degrees of freedom and the
microscopic properties which are essential to understand
black hole physics.
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