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The Sachdev–Ye–Kitaev (SYK) model has a wormholelike solution after averaging over the fermionic
couplings in the nearly AdS2 space. Even when the couplings are fixed the contribution of these wormholes
continues to exist and new saddle points appear which are interpreted as “half-wormholes.” In this paper,
we will study the fate of these wormholes in a model without quenched disorder, namely, a tensor model
withOðNÞq−1 gauge symmetry whose correlation function and thermodynamics in the largeN limit are the
same as that of the SYK model. We will restate the factorization problem linked with the wormhole
threaded Wilson operator, in terms of global charges or nontrivial cobordism classes associated with
disconnected wormholes. Therefore for the partition function to factorize especially at short distances, there
must exist certain topological defects which break the global symmetry associated with wormholes and
make the theory devoid of global symmetries. We will interpret these wormholes with added topological
defects as our “half-wormholes.” We will also comment on the late time behavior of the spectral form
factor, particularly its leading and subleading order contributions coming from higher genus wormholes in
the gravitational sector. Finally we will show how the other nontrivial saddles from half-wormhole
dominate and give rise to unusual thermodynamics in the bulk sector due to nonperturbative effects.
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I. INTRODUCTION

In the context of AdS=CFT correspondence wormholes
play a significant role in understanding the physics of
quantum black holes, the long-time behavior of spec-
tral form factor and Hawking-Bekenstein entropy [1–3].
Recent developments have uncovered many interesting
links between wormholes and random matrix theory
and even humanly traversable wormhole has been
studied [4–10].
But despite this, the addition of wormhole leads to

puzzles such as the factorization problem i.e., the partition
function of the combined system L and R from the
boundary perspective factorizes. In other words, they
are just the product of two boundary components as
ZLR ¼ ZLZR, but in the bulk computation, the contribution
of the wormhole tends to spoil the factorization which gives
rise to the factorization puzzle.

However, the factorization puzzle is not a paradox since
these wormhole contributions are subdominant or suffer
from instabilities in all UV complete string theories. But
while studying the spectral form factor, the long time
behavior of the linear ramp is described by wormholes and
if they do not perform the time averaging in the context of
the SYK, the long time behavior of the spectral form factor
has large oscillations, close to the size of the ramp.
Therefore one might suspect that there are wormhole
contributions that describe these oscillations and must be
taken into account.
Recently in a paper by Saad, Shenker, Stanford, and Yao

[11–15] where they studied the SYK model with fixed
coupling and computed the observables zLzR and the
correlation between the two boundary systems L and R
by introducing the collective field variables GLR;ΣLR. The
model has wormhole solutions when GLR;ΣLR ≠ 0. While
studying this model they found two different types of
saddle points one describing the wormhole and another
one which they called “half-wormhole.” This new half-
wormhole contribution depends strongly on the coupling
and comes from the no self-averaging part of the theory and
vanishes when the average is considered hzLzRi. However,
when the contribution of both the wormhole and half-
wormhole are taken into account the factorization of the
partition function seems to be restored in the model with
fixed coupling.
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In this paper, we study a SYK related quantum mechani-
cal model without the quenched disorder in which the
complex gauged fermionic fields transform in the funda-
mental representation of q − 1 copies of OðNÞ [16–18]. It
has been shown that the model behaves similarly to that of
SYK in the large N limit even though they differ at finite
values of N. In the large N limit by integrating out the
fermionic fields we found that the subdominant saddle
points of gauge holonomies play a crucial role in unitar-
izing the black hole physics, therefore these saddle points
are similar to half-wormhole saddles in the SYK.
We then construct a wormhole threaded Wilson operator

in the bulk connecting the two boundaries and will restate
the problem of factorization of bulk field into left and right
CFToperator into the problem nontrivial cobordism classes
with global symmetries associated to two separate dis-
connected wormholes. However, we know that any sensible
theory of quantum gravity should be free from global
symmetries, and hence from [19] any theory of quantum
gravity must contain only trivial cobordism classes, mean-
ing any d − 1 dimensional boundary embedded inside d
dimensional surface must be able to transform to another
d − 1 dimensional surface by any allowed topological
changing or quantum gravity operations. Therefore for
the partition function to factorize, especially at short
distances, there must exist certain topological defects which
break the global symmetry associated with wormholes and
make the theory devoid of global symmetries. We will
interpret these wormholes with added topological defects as
our half-wormholes. We will then calculate the spectral
form factor (SFF) of the tensor model and see how gauge
holonomy governs the late time behavior of SFF followed
by the thermodynamics of wormhole saddles and hints of
higher genus topology in the entropy spectrum.
The organization of the paper is as follows:
(i) In Secs. II A and II B, we give a brief review of the

SYK model and study the behavior of the square of
the partition function, first in the case when we
average over the states and in the second case when
we have fixed choice of coupling, which are com-
monly identified as a nonaveraging version of the
previous one.

(ii) In Sec. III A, we explain how in the large N limit the
OðNÞq−1 tensor model is indistinguishable from the
SYK without quench disorder.

(iii) In Sec. III B, we explicitly calculate the half-worm-
hole saddle points for the tensor model in the limit
where dynamics of gauge holonomy can no longer
be ignored. In the limit where the holonomy is the
identity matrix, the tensor model reduces to the
regular SYK. We found that the trivial saddle points
of the holonomy action have wormhole contribution
in the self-averaging regime whereas nontrivial
saddle points have half-wormhole contributions in
the nonself-averaging regime.

(iv) In Sec. III C, we discuss the factorization problem
of a wormhole linked Wilson operator and restate in
the language of nontrivial cobordism classes or
global charges associated with the disconnected
wormholes.

(v) In Sec. IV, we discuss the relationship between
global symmetries and cobordism classes and why
any theory of quantum gravity must be devoid of
nontrivial cobordism classes.

(vi) In Sec. V, we discuss how half-wormholes of tensor
could be seen as a topological defect that breaks
the global symmetry using the results that we obtain
in III C.

(vii) In Sec. VI, we capture the late time behavior of the
spectral form factor and show that the plateau has
Oð1Þ contributions coming from the nontrivial
saddle points of holonomy.

(viii) In Sec. VII, we study the contribution from the
wormhole, and half-wormhole saddles in ensemble
averaged energetics, which we have studied in terms
of average energy, average free-energy and average
entropy function.

(ix) In Sec. VIII, we compare our results of OðNÞq−1
with that of the SYK in the framework of without
averaging over states.

(x) Finally, we will conclude our results with some
interesting future directions in Sec. IX.

II. AVERAGING VS NONAVERAGING

A. Averaged theory

In the study of the zero-dimensional SYK model
averaged over the quantity hzi vanishes therefore the
most general averaged quantity hz2i also defined as zLzR
is computed using the collective field formalism G,
Σ [20–28]. After averaging over the ensemble J with
Gaussian distribution the quantity hz2i is given by the
following expression:

hz2i ¼
Z

d2Nψ exp

�
N
q

�
1

N

XN
i¼1

ψL
i ψ

R
i

�q�
ð1Þ

Now, after expressing (1) in the collective field description,
we get a matrix of collective fields GLL;GRR;GLR where
GLR represents a wormhole type correlation function. By
performing the integral Σ over the imaginary axis and G
over the real axis (1) is given as:

hz2i ¼ 1

NN

Z
R
dG exp

�
N
q
Gq

�
ð−∂GÞNδðGÞ

¼ ffiffiffi
q

p
exp

�
−
�
1 −

1

q

�
N

�
at G ¼ 0 for large N ð2Þ
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By rotating the contours by:

Σ ¼ i exp

�
−
iπ
q

�
σ; G ¼ exp

�
iπ
q

�
g; ð3Þ

and doing the integration at ϕ ¼ π
q over the σ and g, we get

nonzero value for the saddle point contribution for the
variable GLR which is fixed by constraint σ and can be
expressed by the following equation

G ¼ 1

N

X
i

ψL
i ψ

R
i ð4Þ

This represents correlation between two decoupled parti-
tion functions or in euclidean gravity a wormhole connect-
ing separate boundary regions as shown in 1. For more
details on this aspect see the Refs. [29,30].

B. Nonaveraged theory

To study the behavior of z2 in the SYK model with fixed
coupling recently in Refs. [11,13,15] the authors has
introduced collective field variables representing the cor-
relation between the systems L and R by inserting identity
in the integral given by the following expression:

1 ¼
Z

dG
Z

dΣ
2πi=N

exp½−ΣðNG − ψL
i ψ

R
i Þ�

× exp

�
N
q

�
Gq −

�
1

N
ψL
i ψ

R
i

�
q
��

: ð5Þ

By rotating the contour as given by:

Σ ¼ i exp

�
−
iπ
q

�
σ; G ¼ exp

�
iπ
q

�
g; ð6Þ

the representation of z2 is given as:

z2 ¼
Z

dσΨðσÞΦðσÞ ð7Þ

where the quantity ΨðσÞ is given by the following
expression:

ψðσÞ ¼
Z

dg
2π=N

exp

�
N

�
−iσg −

1

q
gq
��

ð8Þ

If we close look into the above equation then we can clearly
observe that the above equation is peaked around σ ¼ 0 and

does not have any dependence on the coupling parameter
at all.
On the other hand, the second factor in (7) can be

expressed as:

ΦðσÞ ¼
Z

d2Nψ exp

�
i exp

�
−
iπ
q

�
σψL

i ψ
R
i

þi
q
2JAðψL

A þ ψR
AÞ − ðiqj̄2ψL

i ψ
R
i Þq

�
: ð9Þ

It has been shown in [11] that the integral (7) has two kinds
of saddle points.
(1) First, near σ ¼ j1j, here the function Φ ¼ 1 is self-

averaging. These are wormhole saddles living on
this region with jσj ¼ 1 which reproduces the exact
answer for hz2i for the averaged case.

(2) The second saddle point is near the region near
σ ¼ 0 where ΦðσÞ is nonself-averaging and has a
weak dependence on σ variable. The function ΦðσÞ
also has a saddle point which is exponentially
peaked at σ ¼ 0 and is described as a half-wormhole
in [11].

Therefore, in the SYKmodel with fixed coupling at largeN
the quantity z2 could be approximately given by the
following simplified expression:

z2 ¼ hz2i þΦð0Þ ð10Þ

In this paper, we will go beyond this analysis and we will
provide an interpretation of these half-wormholes in the
context of OðNÞq−1 tensor model with fixed coupling
parameter which in the large N limit behaves like SYK.

III. HALF-WORMHOLE FROM OðNÞq− 1
TENSOR MODEL

A. The OðNÞq− 1 tensor model

The OðNÞq−1 tensor model is a quantum mechanical
model with,

q ¼ Dþ 1; ð11Þ

real fermions ψ0;…ψD. This construction is made in such a
way that for some integer n each fermionic field have nD

components which implies that the total number of fer-
mionic field is given by [31]:

N ¼ ðDþ 1ÞnD: ð12Þ

In the large N limit this model is exactly solvable as the
SYK also each field ψa transform according to the full
symmetry group of the model which is given by:

G0 ¼
Y
a<b

Gab ¼ OðnÞDðDþ1Þ
2 ; ð13Þ

FIG. 1. Correlation between left and right boundary systems.
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The index a is the flavor index that runs from 0; 1;…; D.
The action for such a model which in the large N limit
exhibits similar behavior as that SYK with a fixed coupling
j is given by the following expression:

I ¼
Z

dt

�
i
2

X
ψ i

d
dt

ψ i − i
q
2jψ0ψ1…ψD

�
; ð14Þ

The most fundamental characteristics of the Feynman
diagrams concerning this model can be found in [32–
37]. To study the large N limit of this theory it is suitable to
represent each line in the diagram with D strands with
index a ∈ f0; 1.…; Dg labeling each vertex and the edge
by ab connected by vertices a and b. These strands form a
closed loop which in turn contributes a factor of n. For an
unordered pair a; b ∈ f0; 1.…; Dg the number of closed
loops F ab is given as:

F ¼
X
a<b

F ab: ð15Þ

Here F is total number of faces, which will contribute a
factor of the form:

nF ¼
Y
a<b

nF ab : ð16Þ

The large N limit of this model has been studied by Witten
in [38] given J ¼ ða0; a1; :…aDÞ each Feynman graph G
can be resolved in strands of type aib such that there are D
strands in total as shown in 2. Thus following the argu-
ments of the matrix model each graph G forms a closed two
manifold whose Euler characteristic χJ is given by:

χJ ¼ 2 − 2gJ ; ð17Þ

The model is similar to that of the SYK when the genus

gJ ¼ 0: ð18Þ

To see this more clearly we define the degree of the
graph G for some non-negative genus gJ by the following
expression:

ωðGÞ ¼
X
J

gJ ¼
X
J

�
1 −

χJ
2

�
: ð19Þ

It has been shown in Ref. [38] that when ωG ¼ 0 then g ¼ 0

which means that the G are all melonic diagrams drawn on a

two-sphere. These planar diagrams are obvious planar
diagrams and are constructed by taking a point at infinity
in the plane. It remains to understand how ωG ¼ 0 produces
leading-order contribution which is exactly proportional to
N. To visualize this more clearly, let us define v0 and v1 to
be the vertices and edges of the graphs which are related
to each other as:

v1 ¼
�
Dþ 1

2

�
v0: ð20Þ

The numbers v0 and v1 do not depend on J however, the
number of faces denoted as v2;J does depend on the choice
of J as:

v2;J ¼
XD
i¼0

F ai;aiþ1
: ð21Þ

From the Euler characteristics of the manifold is given by

χJ ¼ v0 − v1 þ v2;J

¼ −
�
D − 1

2

�
v0 þ

X
i

F ai;aiþ1
: ð22Þ

Hence by making use of (22) and one could finally arrive at
the following simplified expression:

2

ðD − 1Þ!ωðGÞ ¼ DþDðD − 1Þ
4

− F : ð23Þ

Now in the large N limit we take the coupling with
fixed J as

j ¼ J

n
DðD−1Þ

4

ð24Þ

Therefore a Feynman graph G with total number of faces F
and vertices v0 will contribute a factor of the following
form:

FðnÞ ¼ n−
DðD−1Þ

4
v0þF

¼ nðD− 2
ðD−1Þ!ωðGÞÞ

¼ nDð1− 2
D!
ωðGÞÞ

¼
�

N
Dþ 1

�ð1− 2
D!
ωðGÞÞ

≈
�

1

Dþ 1

�ð1− 2
D!
ωðGÞÞ

N at large N; ð25Þ

for all ωðGÞ ≥ 0 the leading order contribution in the large
N limit are at most proportional to N. However precisely at
ωðGÞ ¼ 0 the leading order contribution is exactly propor-
tional to N, i.e.,FIG. 2. A typical planar Feynmann graph G with ωG ¼ 0.
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FðnÞ ¼ nD ¼
�

N
Dþ 1

�
when ωðGÞ ¼ 0: ð26Þ

Here we have used the relationship between n and N
explicitly for both cases. Thus a graph with gJ ¼ 0 is
planar and can be drawn on a two-sphere by only one way.
However, if ωðGÞ is also zero then it generates the leading
order diagrams of the SYK model that can be drawn on a
two-sphere in many possible ways.
Though in the large N limit the quantum mechanical

model seems to agree with the SYK, there exist new
dynamics at subleading order 1

N in the form of new light
modes due to the time-dependent OðNÞq−1 transforma-
tions, there also exist modes in the original the SYK
that arise due to conformal diffeomorphism. Hence the
total number of new light modes is given by ðq − 1Þ N2

2

which is quantitatively very large in the large N limit
and whose dynamics is governed by effective sigma
action as shown in the Ref. [31]. These new light
modes have an interesting bulk interpretation as they
might represent gauge fields propagating in the AdS2
background.
Most significantly, in this tensor model which we

have described in (14) also has holonomy contributions
in addition to matter fields whose effective action takes
a simple universal form SeffðUÞ. In Sec. III B, we will
show how the dynamics of gauge holonomy contributes
in restoring the factorization of the partition function
and unitarizing black hole dynamics by giving rise to
half-wormhole saddle points, it is when the holonomy
of the gauge group is identity matrix the quantum
mechanical model is indistinguishable from the origi-
nal SYK.

B. Computation of half-wormhole saddle points

In this section, we will compute the quantity zLR in the
collective field description which unlike SYK transform
under the gauge group OðNÞq−1 melonic theory. We will
follow the same procedure as mentioned in Ref. [11]
since the quantum mechanical tensor model we will be
working with has a fixed coupling chosen out of an
Gaussian unitary ensemble (GUE). We introduce an
identity element in the partition function by the following
fashion:

1 ¼
Z

dG
Z

dΣ
2πi=N

exp½−Σa
bðNGa

b − ðψaÞLðψbÞR�

× exp

�
N
q

�
ðGa

bÞq −
�
1

N
ðψaÞLðψbÞR

�
q
��

ð27Þ

where the delta function is represented as an integral over
Σ. The partition function now becomes

ZLR ¼
Z

d2Nψ exp

�
i
q
2

X
JððψaÞL þ ðψbÞRÞ

�

×
Z
R
dGδ

�
Ga

b −
1

N
ðψaÞLðψbÞR

�

× exp

�
N
q

�
ðGa

bÞq −
�
1

N
ðψaÞLðψbÞR

�
q
��

: ð28Þ

We then rotate the integration contour of G and Σ with
the amount ϕ ¼ π

q as described in the previous section for q
number of Majorana fermions. In the original SYK model,
this procedure splits the integral into two parts, (1) one
described by ψðσÞ and (2) the other by ϕðσÞ. However, in
the quantum mechanical model to calculate the expression
for ZLR one has to take into account the holonomic degrees
of freedom due to the gauge group OðNÞq−1, which are
absent in the original SYK model without having any
holonomy contribution. In the large N limit, the saddle
points of the SYK action in the collective field description
effectively capture the free energy of the system. Therefore
at fixed temperatures when the holonomy of the gauge
group is identity the saddle points of the tensor model
coincides with that of the SYK model, which is quite
expected from this analysis.
Therefore, when the holonomy of the gauge group is

identity the saddle points of ZLR is effectively given
by (9) when we average over the coupling of original
SYK i.e.,

hΦðσÞi ¼
Z

d2Nψ exp

�
i exp

�
−
iπ
q

�
σψL

i ψ
R
i

�

¼
�
i exp

�
−
iπ
q

�
σ

�
N
: ð29Þ

However, in the limit when each Ui which is an OðNÞ
matrix that represents the holonomy in ith factor in the
gauge group OðNÞq−1) is not the identity matrix i.e., when
the dynamics of the gauge group VðtÞ becomes effective,
where VðtÞ is an arbitrary group element of OðNÞq−1,
the two decoupled boundary correlator is nonzero as
follows:

GLR ≠
1

N
ψL
i ψ

R
i : ð30Þ

Unlike when the holonomy of the gauge group is identity,
this can be seen as follows, since the holonomy matrices
Um are unitary its eigenvalues can be expressed in the
form expðiθnmÞ, where n runs from 1 to N. Consequently,
the corresponding eigenvalue density function could be
defined as

ρmðθÞ ¼
1

N

XN
n¼1

δðθ − θnmÞ: ð31Þ
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Since the eigenvalues can be written as an integral the
above mentioned Dirac delta function at large N can be
represented by the following expression:

TrUn
m

N
¼
P

N
j¼1 expðinθjmÞ

N
¼
Z

ρiðθÞ expðinθÞ¼ ρnm ð32Þ

where it is important to note thatm runs from 1 to q − 1 and
n runs from 0 to ∞ which represents the eigenvalue dis-
tribution in the Fourier mode. Following from Ref. [31] in
the large N limit, the integral over the eigenvalues θnm can
be morphed into a path integral over the eigenvalue density
function as given by the following expression:

ZðxÞ ¼
Z Yq−1

i¼1

Dρ exp

�
1

2

X∞
n¼1

�
−N2

Xq−1
m¼1

jρnmj2
n

− 2NFNq−1ð−xÞn ð
Qq−1

m¼1 ρ
n
mÞ

n

��
: ð33Þ

The above equation has two kinds of terms:
(i) The first kind, which is proportional to Nq−1,
(ii) The second kind, which is proportional to N2.

Here x ¼ e−βm, where m is the mass of the fermions which
is taken to be positive and which we suppose arises due to
the interaction of the gauge fields when the holonomy is
switched on. When x is of unit order the partition function
reduces to ΦðσÞ. In other words when the holonomy of the
gauge group is identity matrix the above function reduces
to the partition function of the original SYK model.
However, when x ¼ α

pNq−3 where p ¼ NF the contributions

coming from both dynamics of gauge and energy compete
with each other thus in the limit where N → ∞ and α is
held fixed, the partition function as stated in (33) simplifies
to the following form:

ZðαÞ ¼
Z Yq−1

i¼1

dUi expð−SeffðUiÞÞ ð34Þ

where the effective action SeffðUiÞ is given by:

Seff ¼ −
α

Nq−1

�Yq−1
i¼1

TrUi

�
: ð35Þ

The above integral (34) is related to the integral over
unitary matrices and can be solved easily in the large N
limit where the integral is taken over the U1 since
TrU2;…:TrUq−1 are all constant, which reduces (34) to
the following simplified form:

ZSU ¼
Z

dU1 exp

�
N
g1

ðTrU1 þ TrU†
1Þ
�
; ð36Þ

where we have:

1

g1
¼ αρ12ρ

1
3…::ρ1q−1 ¼ αu2u3…:uq−1: ð37Þ

Here we refer to ρ1m ¼ um. The saddle points that extremize
the Eq. (36), which has been calculated in Ref. [31] as:

u ¼
�
αuq−2 if u ≤ 1

2

1 − 1
4αuq−2 ; if u > 1

2
:

ð38Þ

since all of um and gm are equal we define u as the common
saddle point value of um. Once the above-mentioned saddle
point solution is determined then one can immediately
write down the expression for the partition function as
stated in (34) in the large N as [31]:

ZðαÞ ¼ exp

�
−
N2

2
Vðu; αÞ

�
; ð39Þ

where the holonomy dependent effective potential Vðu; αÞ
in this context can be computed as [31]:

Vðu; αÞ ¼ ðq − 1ÞfðuÞ − 2αuq−1; ð40Þ

where we define the holonomy dependent new function
fðuÞ by the following expression [31]:

fðuÞ ¼

8>><
>>:

0 if u ¼ 0

u2 if u ≤ 1
2

1
4
− 1

2
ln ½2ð1 − uÞ�; if u > 1

2
:

ð41Þ

After substituting back all these expression in the expres-
sion (39) and after doing a little bit of algebraic manipu-
lation we get the following simplified expression for the
holonomy dependent partition function at the large N limit,
which is given by:
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ZðαÞ ¼

8>><
>>:

1 if u ¼ 0

exp
	
− N2

2
½ðq − 1Þu2 − 2αuq−1�



if u ≤ 1

2

2
N2

4
ðq−1Þ exp

	
− N2

8
ðq − 1Þ



ð1 − uÞN2

4
ðq−1Þ exp ðN2αuq−1Þ; if u > 1

2
:

ð42Þ

The presence of these subdominant saddles play an
important role in unitary evolution of correlators around
black hole. Thus we see that when the holonomy of the
gauge group is identity the saddle points of ZLR is
effectively given by hΦðσÞi, however for fluctuations
around the identity matrix where the dynamics of the
holonomy are nontrivial we see that the identity from the
Ref. [11] also persists for the quantummechanical model as
stated in (14), which is

ZLR ¼ ðwormhole saddle at u ¼ 0Þ
þ ðhalf-wormhole saddle with juj ¼ 1Þ ð43Þ

We see that at u ¼ 0 the partition function has value
ZðαÞ ¼ 1 which means precisely at u ¼ 0, ZðαÞ ¼
hΦðσÞi ¼ 1 and therefore wormhole saddle turns out to
be in the self-averaging regime. However, for juj around 1
the value of the partition function will be given by the
second and the third line contributions appearing in the

above equation (42), which are approximately the contri-
butions from wormhole saddles.
Further, one can use Eq. (42) for the holonomy depen-

dent partition function at the large N to understand how
exactly in the wormhole saddle at u ¼ 0 and in the half-
wormhole saddle around juj ¼ 1 the averaged energy as
well as the free energy contribute from this particular
OðNÞq−1 tensor model computation. Doing a further bit of
simple algebra, the averaged energy as well as the free
energy from the mentioned system at different saddle point
contributions can be explicitly computed as:

EðαÞ ¼ α∂α lnZðαÞ ¼
8<
:

0 if u ¼ 0

N2αuq−1 if u ≤ 1
2

N2αuq−1; if u > 1
2
:

ð44Þ

and

FðαÞ ¼ −
1

α
lnZðαÞ ¼

8>>><
>>>:

0 if u ¼ 0

N2

2

h
1
α ðq − 1Þu2 − 2uq−1

i
if u ≤ 1

2

N2
n
uq−1 þ 1

4α ðq − 1Þ
h
1
2
− ln 2 − lnð1 − uÞ

io
if u > 1

2
:

ð45Þ

Last but not least, one can push forward this analysis to compute the contribution from the entropy function at the largeN
to understand how exactly in the wormhole saddle at u ¼ 0 and in the half-wormhole saddle around juj ¼ 1 contribute in
the present context, which gives us finally:

SðαÞ ¼
�
lnZðαÞ − EðαÞ ln α

Nq−3p

�
¼

8>>>>><
>>>>>:

0 if u ¼ 0
N2

2
½ð1 − qÞu2 þ 2αuq−1� − N2αuq−1 ln α

Nq−3p if u ≤ 1
2

N2
n
−αuq−1 þ 1

4
ð1 − qÞ

h
1
2
− ln 2 − lnð1 − uÞ

io
− N2αuq−1 ln α

Nq−3p if u > 1
2
:

ð46Þ

C. The factorization problem

We will now focus on the problem of factorization of
gauge fields in the bulk in terms of boundary operators in
the dual CFT. We will consider a wormhole threading
Wilson line that runs through the bulk connecting the two
boundaries since the property of Wilson line makes it
necessary for the two boundaries to be connected through
the bulk as shown in Fig. 3. However, such a wormhole

threaded Wilson line could not be reconstructed as a CFT
operators as cutting the Wilson lines into two parts gives us
operators that are not individually gauge invariant [39–44]:

Wn¼ exp

�
in
Z

R

L
A

�

¼ exp

�
in
Z

0

L
A

�
exp

�
in
Z

R

0

A

�
∀ðn∈ZÞ ð47Þ
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This is known as the well-known factorization problem
since in the Hilbert space of the theory any two CFT
operators can be factorized as the sum of tensor product of
one-CFT operators which are themselves gauge invariant
under the bulk gauge transformations. Thus it has been
shown that for the two CFT Hilbert space to factorize in the
presence of wormhole-threading Wilson lines the CFT
must possess local operators that are charged under the
symmetry current dual to the gauge field because if we
calculate the expectation value of the operator QL −QR on
the thermofield double with a Wilson line, we get states
with nontrivial single CFT charged operator Q. Now
cutting the Wilson line in the fundamental representation
with the pair of opposite charges at the ends by the
following fashion:

W0 ¼ ϕ⃖l
†ϕ⃗lþ1 ð48Þ

we can then factorize this newly defined operator in the left
(L) and right (R) half of the CFT.
One could argue that the now defined operator in the

fundamental charged representation is not the one we
started with however, these operators are proportional to
each other in the low-energy correlation function under the
renormalization group (RG) flow as shown in Fig. 4.

However, in short distances, this mechanism would only
resolve the factorization problem if the gauge field comes
out to be emergent right before the Planck scale since any
observer at such short distance will notice the difference
between Wilson operators connecting the bulk. In the next
section, we will show that how the above-defined factori-
zation could be defined in terms of nontrivial cobordism
classes.

IV. GLOBAL SYMMETRIES
AND COBORDISM CLASSES

Cobordism refers to an equivalence relation more gen-
eral than diffeomorphism between two smooth manifolds.
In other words, when two manifolds are related to each
other by an allowed set of topological operations then they
are said to be cobordant and are said to be equivalent to
each other. Now we know that any theory of quantum
gravity with two n-dimensional topologies namely M, N
are cobordant i.e., M ∼ N if they are related by a sequence
of topological operations, and one should allow only those
topological changing processes which are dynamically
allowed in our theory of quantum gravity [19,45]. Thus
the cobordism groups are defined as

ΩQG
k ¼fCompact; Closed n-dimensional backgroundsg=∼

ð49Þ

It has been shown in [19] that the presence of a nontrivial
cobordism group ΩQG

k means there exists a global sym-
metry with charges represented by classes,

½M� ¼ ΩQG
k ð50Þ

We know that any theory of quantum gravity should be free
from global symmetries other it represents an inconsistency
of the following d-dimensional theory which implies that in
the context of AdS=CFT correspondence the cobordism
group must be trivial i.e., ΩQG

k ¼ 0. In case we have an
approximate consistent theory of quantum gravity with
nontrivial cobordism classes then we need to add topo-
logical defects in order to cancel the charge to make sense
of the full theory [46–48]. In other words there exist
topological defects such as singularities which break the
global symmetry and produce new cobordism classes
which were not previously connected. The map

ΩQG
k → ΩQGþdefects

k ð51Þ

represents the transition of approximate theory to full
theory with no global symmetry.

FIG. 4. The two operators are proportional to each other under
the renormalization group flow. The split Wilson line with
charges at opposite ends factorizes in the left and right half CFT.

FIG. 3. The blue line represent wormhole threaded Wilson line
on the AdS and AdS-Schwarzschild background. The black dot
represents local operators creating positive and negative charges.
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V. HALF-WORMHOLES AS
TOPOLOGICAL DEFECTS

In this section we will restate the factorization problem
linked with wormhole threaded Wilson lines in terms of
global charges associated with the wormhole at short
distances. From Sec. III C we recall that the operator W
is proportional to W0 only at low energies and thus would
fail to factorize at short distances. So instead of taking a
single wormhole threaded Wilson line let us take two
wormholes with end charges of operator W0 resting on the
end and mouth of two disconnected wormholes as shown
in Fig. 5. At low energies, the difference between the
two figures tends to vanish and we are again back to the
configuration where the operator with fundamental charges
seems to factorize. However, at short distances purely from
the gravitational perspective, the inclusion of two worm-
holes seems to create a problem for the partition function to
factorize. One could now restate the problem as follows, we
now from Sec. III C that at short distances any observer
would be able to figure out the difference between operator
W and W0 thus in the context of wormholes as shown in
Fig. 5 the problem of factorization seems to get converted
to the problem of nontrivial cobordism classes. To see this
more clearly let us calculate the product of one point
charged correlators:

hOqiβhO†
qiβ ¼ 0 ½for Fig: 6ðaÞ� ð52Þ

and

hOqiβhO†
qi ¼ expð−SÞ ½for Fig: 6ðbÞ� ð53Þ

Whether the above correlation function yields a nonzero
value depends on under what kind of symmetries the bulk
field transforms if the symmetry is gauged then the
correlation function vanishes as shown in (52), but if the
symmetry is global symmetry then the contribution of

the wormhole will yield a nonzero answer as in (53) where
S is the entropy of the system [49–55]. Since at a short
distance the Wilson operator W0 no longer seems to
factorize since the operator W0 is not equal to W at high
energies, this means that the operator is no longer gauge
invariant therefore the boundary to boundary correlation
function will be nonzero. Now in this case two things could
happen: either the bulk gauge field must be emergent
as shown in [40] or, since we know that a wormhole
seems to carry information about the variance of
observables as,

hϕϕiwormhole ¼ jhOij2 ð54Þ

Therefore equivalently one could attach global charges to
the object in Fig. 5 which in the language of cobordism
means that the boundaries of two wormholes do not seem to
be connected in the bulk by any sequence of allowed
topological changes or quantum gravity operations. Now,
this seems to be a much bigger problem as it will allow
wormholes to have global charges transforming under

FIG. 5. The split Wilson line with charge field at opposite ends
at short distances could be represented as a pair of disconnected
wormhole with nontrivial cobordism classes.

FIG. 6. The figure (a) represents the wormhole in the limit
where the Wilson operators W and W0 are indistinguishable. The
inability of the Wilson operator W to factorize at short distances
could be restated in the language of nontrivial cobordism classes
which prohibits the boundaries of wormhole in 5 to merge.
Figure (b) is a wormhole with topological defect represented by
red wavy lines which introduces new cobordism classes in order
for the boundaries to connect and breaks the global symmetry.

WORMHOLE CALCULUS WITHOUT AVERAGING FROM … PHYS. REV. D 105, 046002 (2022)

046002-9



global symmetries which cannot happen in any theory of
quantum gravity. Therefore in order to cancel these global
charges there should exist certain topological defects as in
Fig. 6 which would break the global symmetry and
construct new cobordism classes which will restore the
factorization problem even at short distances. We call these
wormholes with added a topological defects our half-
wormholes whose contribution in the SYK model with
fixed coupling also restores the factorization into the left
and right parts of the CFT operator.
From the above discussion we propose that the duality

between wormholes and half-wormholes could be seen as
an electromagnetic duality particularly in the limit of
topological field theory where electromagnetic duality in
4D is analogous to geometric Langlands correspondence
[56]. This could be seen as follows, from the above
discussions we know that the problem of factorization of
Wilson operator can be restated in terms of wormholes
having global charges or nontrivial cobordism classes.
Therefore in order to break the global symmetry, one
needs to add certain topological defects to the wormhole,
particularly at short distances. In case the defect is a kind of
singularity it is then given by the holomorphic G bundles
on P1 defined as BunGP1 which then could be translated in
the form of an irreducible representation of Langlands dual
group as IrrðG0Þ. Given a representation V of Langlands
dual group we get a t’Hooft operator labeled byHV thus the
operator W0 at short distances is now represented by
representations of the Langlands dual group. Now in

deriving Langlands correspondence one exchanges
electric and magnetic observables i.e., Wilson and
t’Hooft loop which in our case are wormholes and half-
wormholes.

VI. SPECTRAL FORM FACTOR

In this section, we will compute the two point spectral
form factor for our quantum mechanical model (14). We
will see how the presence of nontrivial gauge holonomy
effectively describes the ramp behavior for fixed choice of
coupling. For a statistical ensemble (GUE) governed by
random unitary matrix [57–63] we define our thermofield
double state as:

jΨiTFD ¼ 1ffiffiffiffiffiffijLjp XN
n;m¼1

Un;mjmiLjniR ð55Þ

where L is the value of Zðβ þ itÞ at t ¼ 0, which is
basically ZðβÞ expressed in (34). We will study the
normalized version of the quantity hZðβ þ itÞZðβ − itÞi,
which is commonly identified to be the spectral form factor
and from the present analysis we will try to observe how it
differs from the regular SYK model computation. Now to
proceed with this computation we take disordered average
over the ensemble, especially in the presence of holonomy
whose density matrix will be constructed and can be further
used for the computation of the spectral form factor, which
is the present context turns out to be

SFF ¼ hZðβ þ itÞZðβ − itÞi
hjZðβÞj2i ¼ TFDhΨjjZðβ þ itÞZðβ − itÞjΨiTFD

TFDhΨjZðβÞj2jΨiTFD
¼

XN
n;n0;m;m0¼1

Z
dUhρnmρn0m0 i

¼ 1

jLjN2

XN
n;n0;m;m0¼1

Z
dθδðθ − θnmÞδðθ − θn

0
m0 Þ þ 1

N2

XN
n;n0;m;m0¼1

Z
dUhρnmihρn0m0 i

¼ 1

jLjN2

XN
n;n0;m;m0¼1

δðθnm − θn
0

m0 Þ þ 1

N2

XN
n;n0;m;m0¼1

Z
dUhρnmihρn0m0 i ð56Þ

Since we have explicitly shown the presence of half-wormhole saddle points in the presence of nontrivial gauge
holonomy where nontrivial saddle points exist, we suspect the partition function to effectively factorize, therefore (68)
which describes the nontrivial saddle points can be written as:Z

dUhρnmihρnmi ¼
Z

dUhTrU1LihTrU�
1Ri

¼ 1

jLj2N2

XN
n;n0;m;m0¼1

δLn;n0δ
R
m;m0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Contribution from wormhole saddle at u¼0

þ 1

jLj2N2

XN
n;n0;m;m0¼1

δLn;n0δ
R
m;m0J 1ðN; q; βÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Contribution from half-wormhole saddle at u≤1

2

þ 1

jLj2N2

XN
n;n0;m;m0¼1

δLn;n0δ
R
m;m0J 2ðN; q; βÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Contribution from half-wormhole saddle at u>1

2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Contribution from half-wormhole saddle with juj¼1

: ð57Þ
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In the above equation is an integral over Haar measure ensemble average over unitary matrices which can be easily
evaluated in the present context. See Ref. [64] more discussion on this topic. Here we have introduced two integrals
J 1ðN; q; βÞ and J 1ðN; q; βÞ over the holonomy, which are given by:

J 1ðN; q; βÞ ≔
Z

1=2

u¼Δ>0
du u2 exp ð−N2½ðq − 1Þu2 − 4βuq−1�Þ; ð58Þ

J 2ðN; q; βÞ ≔ 2
N2

2
ðq−1Þ exp

�
−
N2

4
ðq − 1Þ

�Z
1

u¼1=2þΛð>0Þ
du u2ð1 − uÞN2

2
ðq−1Þ exp ðN22βuq−1Þ: ð59Þ

where physicallyΔ represents small positive shift from u ¼ 0 and Λ represent small positive shift from u ¼ 1
2
saddle points.

These integrals further cannot be exactly analytically computable. But one can study various limiting solutions of these
above-mentioned integrals. Let us first look into the small q with large N and any arbitrary β limiting approximation under
which we get the following analytical expressions:

J 1ðN; q; βÞ ≔ 1

16
expð2N2βÞ

�
8Δ3þ2N2ðq−1Þβ ExpIntegralE

�
−
1

2
þ N2βð1 − qÞ; N2Δ2ðq − 1Þ

�

− 2−2N
2þðq−1Þβ ExpIntegralE

�
−
1

2
þ N2βð1 − qÞ; 1

4
N2ðq − 1Þ

��
; ð60Þ

J 2ðN; q; βÞ ≔ 2
N2

2
ðq−1Þ exp

�
−
N2

4
ðq − 1Þ

�
expð2N2βÞ

×

�
Γð1

2
ðq − 1ÞN2 þ 1ÞΓð2ðq − 1ÞβN2 þ 3Þ
Γð1

2
ðq − 1Þð4β þ 1ÞN2 þ 4Þ − BΛþ1

2

�
2ðq − 1ÞβN2 þ 3;

1

2
ðq − 1ÞN2 þ 1

��
: ð61Þ

Next we consider the large N, extremely small β along-with the constraint N2β is finite and very small and no restriction
in q limiting approximation under which we get the following analytical expressions:

J 1ðN; q; βÞ ≔ 1

4N3ðq − 1Þ
� ffiffiffi

π
p ðerfið1

2
N

ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p Þ − erfiðΔN ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p ÞÞffiffiffiffiffiffiffiffiffiffiffi
1 − q

p

þ 2NΔ expð−N2Δ2ðq − 1ÞÞ − N exp

�
−
N2

4
ðq − 1Þ

��

þ 2βN2

�
1

2
Δqþ2ExpIntegralE

�
−
q
2
; N2ðq − 1ÞΔ2

�
− 2−q−3ExpIntegralE

�
−
q
2
;
1

4
N2ðq − 1Þ

��
; ð62Þ

J 2ðN;q;βÞ≔ 2βN2Γðqþ 2ÞΓð1
2
ðq− 1ÞN2þ 1Þ

Γð1
2
ðq− 1ÞN2þqþ 3Þ − 2βN2BΛþ1

2

�
qþ 2;

1

2
ðq− 1ÞN2þ 1

�

þð1− 2ΛÞð1
2
−ΛÞ12N2ðq−1Þð32ΛðΛþ 2Þþ ð2Λþ 1Þ2N4ðq− 1Þ2þ 2ð2Λþ 1Þð6Λþ 7ÞN2ðq− 1Þþ 56Þ

4ðN2ðq− 1Þþ 2ÞðN2ðq− 1Þþ 4ÞðN2ðq− 1Þþ 6Þ : ð63Þ

These analytical results will be helpful to understand the behavior of the subleading contributions which contributes to
the higher genus contributions to the half-wormholes in the present context of discussion.
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Hence the full general result of SFF for the OðNÞq−1 tensor model can be expressed as:

SFF ¼ 1

jLjN2

XN
n;n0;m;m0¼1

δðθnm − θn
0

m0 Þ þ 1

jLj2N2

XN
n;n0;m;m0¼1

δLn;n0δ
R
m;m0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Contribution from wormhole saddle at u¼0

þ 1

jLj2N2

XN
n;n0;m;m0¼1

δLn;n0δ
R
m;m0J 1ðN; q; βÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Contribution from half-wormhole saddle at u≤1

2

þ 1

jLj2N2

XN
n;n0;m;m0¼1

δLn;n0δ
R
m;m0J 2ðN; q; βÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Contribution from half-wormhole saddle at u>1

2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Contribution from half-wormhole saddle with juj¼1

¼ 1

N2

�
1

jLj
XN

n;n0;m;m0¼1

δðθnm − θn
0

m0 Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Leading contribution

þ 1

jLj2
XN

n;n0;m;m0¼1

δLn;n0δ
R
m;m0 ½1þ J 1ðN; q; βÞ þ J 2ðN; q; βÞ�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Subleading contribution

�

¼
�

1

jLj þ
1

jLj2 þ
ðJ 1ðN; q; βÞ þ J 2ðN; q; βÞÞ

jLj2
�
: ð64Þ

Here it is important to note that:

XN
n;n0;m;m0¼1

δLn;n0δ
R
m;m0 ¼

XN
n;n0¼1

δLn;n0
XN

m;m0¼1

δRm;m0 ¼ NLNR ∼ N2 ðwhere NL ∼ NRÞ: ð65Þ

In Eq. (64) the sum over Dirac delta functions will result in four terms but since we are working in the large N limit one
could argue that n ¼ m due to the large number of fermionic fields, also by summing over in the large limit the n ≠ n0 cross
terms with oscillating phases will cancel out giving rise to leading order term which is independent of N. For this reason we
have used the following fact:

XN
n;n0;m;m0¼1

δðθnm − θn
0

m0 Þ ¼ N2: ð66Þ

The first term of the above equation effectively describes the late time ramp behavior of our quantum mechanical model
in the regime where nontrivial saddle points of holonomic degrees of freedom play a crucial role. The gravitational
interpretation of the subleading contributions appearing in (64) can be interpreted in terms of higher genus wormhole or
equivalently in the language of topological defects as described in previous section which breaks the global symmetry and
can be seen as a nonperturbative effect. We see that the behavior of ramp/plateau of tensor model is analogous to ramp/
plateau behavior of Brownian SYK where the late time behavior of spectral form factor is of Oð1Þ governed by the
nontrivial saddle point in the collective field description.
Now for the small q with large N and any arbitrary β limiting approximation the SFF can further approximately reduces

to the following form:

SFF ¼
�

1

jLj þ
1

jLj2
�
1þ 1

16
expð2N2βÞ

�
8Δ3þ2N2ðq−1Þβ ExpIntegralE

�
−
1

2
þ N2βð1 − qÞ; N2Δ2ðq − 1Þ

�

− 2−2N
2þðq−1Þβ ExpIntegralE

�
−
1

2
þ N2βð1 − qÞ; 1

4
N2ðq − 1Þ

��

þ 2
N2

2
ðq−1Þ exp

�
−
N2

4
ðq − 1Þ

�
expð2N2βÞ ×

�
Γð1

2
ðq − 1ÞN2 þ 1ÞΓð2ðq − 1ÞβN2 þ 3Þ
Γð1

2
ðq − 1Þð4β þ 1ÞN2 þ 4Þ

− BΛþ1
2

�
2ðq − 1ÞβN2 þ 3;

1

2
ðq − 1ÞN2 þ 1

����
: ð67Þ
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Also large N, extremely small β along-with the constraint N2β is finite and very small and no restriction in q limiting
approximation the SFF can further approximately reduces to the following form:

SFF ¼
�

1

jLj þ
1

jLj2
�
1þ 1

4N3ðq − 1Þ
� ffiffiffi

π
p ðerfið1

2
N

ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p Þ − erfiðΔN ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p ÞÞffiffiffiffiffiffiffiffiffiffiffi
1 − q

p

þ 2NΔ expð−N2Δ2ðq − 1ÞÞ − N exp

�
−
N2

4
ðq − 1Þ

��

þ 2βN2

�
1

2
Δqþ2 ExpIntegralE

�
−
q
2
; N2ðq − 1ÞΔ2� − 2−q−3 ExpIntegralE

�
−
q
2
;
1

4
N2ðq − 1Þ

��

þ 2βN2Γðqþ 2ÞΓð1
2
ðq − 1ÞN2 þ 1Þ

Γð1
2
ðq − 1ÞN2 þ qþ 3Þ − 2βN2BΛþ1

2

�
qþ 2;

1

2
ðq − 1ÞN2 þ 1

�

þ ð1 − 2ΛÞð1
2
− ΛÞ12N2ðq−1Þð32ΛðΛþ 2Þ þ ð2Λþ 1Þ2N4ðq − 1Þ2 þ 2ð2Λþ 1Þð6Λþ 7ÞN2ðq − 1Þ þ 56Þ

4ðN2ðq − 1Þ þ 2ÞðN2ðq − 1Þ þ 4ÞðN2ðq − 1Þ þ 6Þ
��

: ð68Þ

In the regime where the dynamics of the gauge holonomy is just the identity matrix, we have seen that the dominant
contribution to the partition function comes from the Nq−1 term (energy contribution) and thus reduces to the partition
function of the original SYK for which we define:

hZðβ þ itÞZðβ − itÞi ¼
ZZ

dλ1dλ2hρðλ1Þihρðλ2Þi expð−βðλ1 þ λ2ÞÞ expð−iðλ1 − λ2ÞtÞ: ð69Þ

In this context, the density-density correlator can be written in terms of connected and disconnected parts as follows:

hρðλ1Þρðλ2ÞÞi ¼ hρðEÞiδðẼÞ þ hρðλ1Þihρðλ2Þi
�
1 −

sin2½πhρðEÞiẼ�
½πhρðEÞiẼ�2

�
ð70Þ

where we define the density ρðEÞ and the newly defined variable Ẽ as:

ρðEÞ ∝ sinh ðπ
ffiffiffi
2

p
ẼÞ; Ẽ ¼ cðE − E0ÞN

π2
; c ¼ π2

q2j
: ð71Þ

Thus the SFF gets contribution from the disconnected part and has been calculated in the Ref. [64] as:

SFF ¼ hZðβ þ itÞZðβ − itÞi
hjZðβÞj2i ¼ β3

jLj2ðβ3 þ t3Þ3=2 exp
�
−

cNt2

βðβ þ t2Þ
�
þ grampðtÞ ð72Þ

when we evaluate the second term in Eq. (70) it gives rise to ramp in the spectral form factor which grows linearly with time
as follows:

grampðtÞ ¼

8>>>>><
>>>>>:

t
2π exp

h
−2Ns0 − cN

β

i
t
2π < eNs0

t
2π exp

h
−2Ns0 − cN

β − β
cN log

2ðt=2πeNs0
Þ
i

eNs0 < t
2π <

tp
2π

exp
h
−Ns0 − 3cN

4β

i
tp < t:

ð73Þ

In the above computation in absence of the holonomy, the definition of the thermofield double state will be different from
the previously mentioned definition, and it is given by the following expression:

jΨiTFD ¼ 1ffiffiffiffiffiffijLjp X
n

exp

�
−
�
itþ β

2

�
En

�
jni1jni2: ð74Þ
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We see that the SFF of tensor model (without the
contribution of holonomy) differs from the SFF of tensor
model (with holonomy contribution) particularly in the
ramp region which hasOð1Þ contributions coming from the
nontrivial saddle points at late times while the latter grows
linearly with time also at β ¼ 0 there are regular oscil-
lations in the slope region when the holonomy of gauge
group is identity (similar to original SYK).
The detailed understanding of the plots with or without

having holonomy in the present context are appended
below pointwise:

(i) When the contributions of holonomic saddle points
are taken into account in the computation we expect
the theory to deviate from the usual SYK. From 7(a)
we found such deviations for q ¼ 3 from the usual
SYK. The spectral form factor for lower values of β
remains constant up to β ¼ 1 and then has a smooth
exponential rise. Here we see that the slope of the
exponential rise is increasing for increasing the

parameter value N. The low temperature contribu-
tions specifically comes from the nontrivial saddle
points of gauge holonomy which are the subleading
contributions around juj ¼ 1 as shown in (64) and
explicitly coming from the half-wormhole saddles.
On the other hand, the contribution from the worm-
hole saddle u ¼ 0 and an additional contribution
which is coming from the summing over the Dirac
delta function over all holonomy indices of the
eigenvalues running from 1 to N. We also see a
similar kind of behavior for different values of N
except from the slope that we have mentioned.
However, SFF for larger values of N has more rapid
growth than compared to smaller values of N. In
Fig. 7(b), we have shown a slight variance where the
spectrum for N ¼ 15 which has slightly more rapid
growth as compared to N ¼ 20. As we go toward
larger and larger values of q we observer that SFF
with lowest values N takes over and has much more

FIG. 7. Behavior of the spectral form factor (SFF) with holonomy for OðNÞq−1 for tensor model with respect to inverse temperature β
for different values of the parameter q ¼ 3, q ¼ 4, q ¼ 5, and q ¼ 6 respectively. In these plots we have considered largeN parameter to
be N ¼ 10, 15, 20.
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rapid growth as compared to larger values of N, as
explicitly shown in Figs. 7(c) and 7(d), respectively.
Also, when we increase the value of q the leading
order contribution dominates for larger values of β
before it starts rising for N ¼ 10 as compared to
N ¼ 20 and 15. However, the mirror image of the
SFF with respect to inverse temperature β has a
similar behavior with that of SYK where at low
temperatures the SFF has a slope region and then
intersects with the plateau except that it has no ramp
which grows linearly with time. We observe similar
kind of feature in the Brownian SYK where the
plateau has Oð1Þ contributions coming from the
nontrivial saddle points. In the OðNÞq−1 tensor
model the nontrivial half-wormhole saddle point
contributions are dominant at low temperatures
(large β) and constant plateau type of contribution
is dominant at high temperature (low β). Apart from
the constant part and the rising part of the plots for
SFF, the significant deformation which is describing
by the dominant behavior of wormhole saddle
contribution over the half-wormhole saddles for
increasing values of the parameter q along-with
the increasing value of the large N parameter is
one of the highlighting findings from these plots for
OðNÞq−1 tensor models with holonomy.

(ii) In Fig. 8(a), we have plotted the behavior of the SFF
with respect the large N parameter for a fixed value
of q, which we done at q ¼ 4 and for different values
of inverse temperature β which covers low, inter-
mediate and high temperature behaviors in a single
plot. From this plot we observe that for all the values
of β the SFF has a similar kind of behavior, where
for smaller values of N SFF has a decaying slop
region coming from the nontrivial holonomic saddle
points coming from half-wormhole contributions
and then quickly saturates between 10 < N < 20,

which is coming from the wormhole saddle point
contribution along with the summing over Dirac
delta function contribution over all holonomy in-
dices. We additionally observe that the SFF for β ¼
0.5 is a little more steep than the contribution
coming from β ¼ 1. A similar kind of behavior is
observed between β ¼ 1 and 1.5 also.

(iii) In Fig. 8(b), we have discussed the behavior of
spectral form factor with respect to the parameter q
for fixed value of N ¼ 10 and three different values
of β, which basically cover the low, intermediate and
high temperature behaviors respectively. We observe
that for β ¼ 0.5 the SFF decreases linearly and then
saturates around q ¼ 3. We observe a similar kind of
behavior for β ¼ 1 but now it has a larger value of
SFF for small values of q which then reach a
saturation point around q ¼ 4. Thus we observe
that as we increase β the SFF has large values for
small q compared to smaller values of β.

(iv) In Fig. 9, we have observed the behavior of energy
density vs energy in the absence of gauge holonomy
for fixed values of parameters c ¼ 0.01 (coupling)
and E0 ¼ 1.1 and for three different values of N. We
see that energy density shows a sudden jump in its
value for E ¼ 0.1 and from there on increases quite
linearly with respect to E for some values of E and
then has an exponential rise. We observe that for
larger values of N the exponential rise of energy
density starts on early i.e for smaller values of E as
compared to lower values of N.

(v) We see that in the large N limit the ramp described
above saturates and intersects the plateau which has
a height of OðLÞ. The three different graphs with
different values N seems to merge for large values of
inverse β as shown in Fig. 10. The nonzero value
of the plateau is an indication of discreteness of
the energy spectrum and is plotted by taking a

FIG. 8. Behavior of the spectral form factor (SFF) with holonomy for OðNÞq−1 for tensor model with respect to N and q. Here for
different values of the parameter β ¼ 0.5, 1, 1.5, respectively.
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disordered average over the coupling. For fixed
choice of coupling of the slope, we expect the late
time behavior to have massive fluctuations which is
not shown in here.

(vi) In the absence of holonomy we know that the large
N behavior of the tensor model is indistinguishable
to that of SYK. In Fig. 11(b), we study the behavior
of spectral form factor particularly in the absence of
holonomy for three different values of β. We see that
at early times the figure has a slope which decreases
rapidly and is described by the simple Schwarzian
action which, after some time, intersects with the
ramp which increases linearly with time. The region
where the transition from slope to ramp takes place
is effectively described by the spin-glass phase that
is present in the Sachdev-Ye model. As we decrease
the value β one finds that there is an increase in the
slope portion which decreases more rapidly at earlier
values of time. In Fig. 11(a), we see a similar
behavior for three different values of N where region
of slope increases for larger values of N and a more
rapid fall as compared to smaller values of N.

VII. WORMHOLE AND HALF-WORMHOLE
ENERGETICS

In this section, our prime objective is to find the
contributions from the wormhole and half-wormholes in
particularly in the energetics. This is described mainly by
averaged energy, averaged free energy and averaged
entropy. In this context, to take the average over all of
these thermodynamic quantities which describes the ener-
getics, we have to take the average over the holonomy
dependent thermofield double state for OðNÞq−1 tensor
model, which we have explicitly defined in the Eq. (55).
This is exactly the analogous approach that we follow in the
context of statistical mechanics to compute the statistical

FIG. 10. Behavior of the spectral form factor (SFF) without
holonomy vs the inverse temperature β. Here we have fixed the time
scale t ¼ 1, other parameters s0 ¼ 0.00001 and c ¼ 0.001, respec-
tively. Additionally, we have considered the different values of the
largeN parameterN which areN ¼ 1000, 2000, 3000, respectively.

FIG. 11. Behavior of the spectral form factor (SFF) without holonomy with respect to the timescale t. Here we fix different values of
the parameters c ¼ 0.001 and s0 ¼ 0.00001, respectively. For the first plot we have fixed β ¼ 0.5 and change N ¼ 1000, 2000, 3000.
On the other hand, for the second plot we have fixed N ¼ 1000 and vary β ¼ 0.5, 1, 1.5, respectively.

FIG. 9. Behavior of energy density vs energy without holonomy.
Herewehave fixed theparameterc¼0.01 andE0¼0.1, respectively.
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ensemble averages of the above-mentioned thermodynamic
quantities.
To study the wormhole and half-wormhole energetics we

will follow the following strategies, which we have stated
point-wise in the following:

(i) First of all, we take the derived expression for the
energy, free energy and entropy from the holonomy
dependent partition functions [see Eq. (42)] for
OðNÞq−1 tensor model as stated in Eqs. (44), (45),
and (46).

(ii) Then using the definition of the holonomy depen-
dent thermofield double state for OðNÞq−1 tensor

model as stated in Eq. (55) we derive the averaged
contributions from the energetics by integrating over
the holonomies around the wormhole saddle u ¼ 0
and from half-wormhole saddle point contribution
appearing around juj ¼ 1.

(iii) Here the integrating over holonomies can be per-
formed by taking the integration over the Haar
measure explicitly in a specified range of u which
can cover both the information coming from the
saddles around u ¼ 0 and juj ¼ 1.

After following the above-mentioned steps we get the
following contributions from the averaged energetics:

hEðβÞi ¼

8>>><
>>>:

0 if u ¼ 0

N2β
R 1

2

u¼Δ>0 du u
qþ1 ¼ N2β

qþ2

h
1

2qþ2 − Δqþ2
i

if u ≤ 1
2

N2β
R
1
u¼1

2
þΛð>0Þ du u

qþ1 ¼ N2β
qþ2

h
1 −

	
1
2
þ Λ



qþ2

i
; if u > 1

2
:

ð75Þ

hFðβÞi ¼

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

0 if u ¼ 0

N2

2

R 1
2

u¼Δ>0 du
h
1
β ðq − 1Þu4 − 2uqþ1

i

¼ N2

2

h
1
5β ðq − 1Þ

n
1
32
− Δ5

o
− 2

qþ2

n
1

2qþ2 − Δqþ2
oi

if u ≤ 1
2

N2
R
1
u¼1

2
þΛð>0Þ du

n
uqþ1 þ u2

4β ðq − 1Þ
h
1
2
− ln 2 − lnð1 − uÞ

io

¼ N2
h

1
qþ2

n
1 −

	
1
2
þ Λ



qþ2

o
þ ðq−1Þ

576β

n
−48 ln 2

−5ð2Λ − 1Þð4ΛðΛþ 2Þ þ 7Þ þ 6ð2Λþ 1Þ3 logð2Λþ 1Þ
oi

if u > 1
2
:

ð76Þ

hSðβÞi ¼

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

0 if u ¼ 0

N2

2

R 1
2

u¼Δ>0 du ½ð1 − qÞu4 þ 2βuqþ1�
−N2β ln β

Nq−3p

R 1
2

u¼Δ>0 duu
qþ1

¼ N2

2

h
ð1−qÞ
5

n
1
32
− Δ5

o
þ 2β

qþ2

n
1

2qþ2 − Δqþ2
oi

if u ≤ 1
2

N2
R
1
u¼1

2
þΛð>0Þ du

n
−βuqþ1 þ u2

4
ð1 − qÞ

h
1
2
− ln 2 − lnð1 − uÞ

io
−N2β ln β

Nq−3p

R
1
u¼1

2
þΛð>0Þ duu

qþ1

¼ N2
n
− β

qþ2

	
1þ ln β

Nq−3p


h
1 −

	
1
2
þ Λ



qþ2

i
þ ðq−1Þ

576
½−48 ln 2

−5ð2Λ − 1Þð4ΛðΛþ 2Þ þ 7Þ þ 6ð2Λþ 1Þ3 logð2Λþ 1Þ
io

if u > 1
2
:

ð77Þ

whereat last we compute the contribution from the averaged entropy function at the largeN to understand how exactly in the
wormhole saddle at u ¼ 0 and in the half-wormhole saddle around juj ¼ 1 contribute in the present context.
After doing these computations we have to sum over all the contributions coming from the saddles at u ¼ 0 and around

juj ¼ 1 which finally give rise to the following full contribution in the ensemble averaged energetics:

hEðβÞifull ¼ hEðβÞiu¼0 þ hEðβÞiu≤1
2
þ hEðβÞiu>1

2
¼ N2β

qþ 2

�
1þ 1

2qþ2
− Δqþ2 −

�
1

2
þ Λ

�
qþ2

�
; ð78Þ
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hFðβÞifull ¼ hFðβÞiu¼0 þ hFðβÞiu≤1
2
þ hFðβÞiu>1

2
¼ N2

2

�
1

5β
ðq − 1Þ

�
1

32
− Δ5

�
−

2

qþ 2

�
1

2qþ2
− Δqþ2

��

þ N2

�
1

qþ 2

�
1 −

�
1

2
þ Λ

�
qþ2

�

þ ðq − 1Þ
576β

f−48 ln 2 − 5ð2Λ − 1Þð4ΛðΛþ 2Þ þ 7Þ þ 6ð2Λþ 1Þ3 logð2Λþ 1Þg
�
; ð79Þ

hSðβÞifull ¼ hSðβÞiu¼0 þ hSðβÞiu≤1
2
þ hSðβÞiu>1

2
¼ N2

2

�ð1 − qÞ
5

�
1

32
− Δ5

�
þ 2β

qþ 2

�
1

2qþ2
− Δqþ2

��

þ N2

�
−

β

qþ 2

�
1þ ln

β

Nq−3p

��
1 −

�
1

2
þ Λ

�
qþ2

�

þ ðq − 1Þ
576

½−48 ln 2 − 5ð2Λ − 1Þð4ΛðΛþ 2Þ þ 7Þ þ 6ð2Λþ 1Þ3 logð2Λþ 1Þ�
�

ð80Þ

From the above-mentioned computations we have found
the following crucial facts:

(i) We can explicitly see that the saddle coming from
the wormhole at u ¼ 0 does not directly contribute
to the energetics.

(ii) But most importantly, the half-wormhole saddles
around juj ¼ 1 which is actually coming from u ≤ 1

2

and u > 1
2
nontrivially contribute to the ensemble

averaged energetics in the present computation from
the OðNÞq−1 tensor model.

(iii) We have found that the ensemble averaged energy
hEðβÞi at large N linearly grows with β ¼ 1=T,
which further implies that at very high temperature

regime this particular contribution fall linearly with
the temperature and in the low temperature regime it
will grow linearly with temperature. The both high
and low temperature behavior of the ensemble
averaged energy hEðβÞi at large N with respect to
the inverse temperature β is explicitly shown in
Fig. 12, which is quite consistent with the expect-
ation from our computed result after summing over
all contributions from saddles.

(iv) We also have found that the ensemble averaged free
energy hFðβÞi at large N varies as ðCþ D

βÞ, where C
and D are the constant factors which will depend on
the parameters N, q, Δ and Λ. From the obtained

FIG. 12. High and low temperature behavior of the ensemble averaged energy hEðβÞi at largeN with respect to the inverse temperature
β. Here we have fixed three parameters q ¼ 4, Δ ¼ 0.1, and Λ ¼ 0.2. We have shown the behavior for three different large N values
which we have taken N ¼ 1000, N ¼ 2000, and N ¼ 3000.
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feature it is expected that very low temperature
regime the first term C dominates over the second
term D

β and shows a constant behavior with respect to
temperature. On the other hand, in the high temper-
ature regime the second term D

β dominates over the
first constant term C and shows a linearly increasing
behavior with temperature. The both high and low
temperature behavior of the ensemble averaged free
energy hFðβÞi at large N with respect to the inverse
temperature β is explicitly shown in the Fig. 13,
which shows the competition between the two
obtained contributions and we found that the overall
behavior is quite consistent with the expectation
from our computed result after summing over all
contributions from saddles.

(v) Last but not the least, we have found that the
ensemble averaged entropy hSðβÞi at large N varies
as ðAþ β½B −M ln β�Þ, where A, B and M are the
constant factors which will depend on the parame-
ters N, q, Δ and Λ. From the obtained feature it is
expected that very low temperature regime the last
term β log β and second term β dominates over the
first term A and show a rising behavior with respect
to temperature. On the other hand, in the high
temperature regime the first constant term A and
the last term β log β dominates over the second term
β and show a constant and then a falling behavior
with temperature. The both high and low temper-
ature behavior of the ensemble averaged entropy
hSðβÞi at large N with respect to the inverse temper-
ature β is explicitly shown in Fig. 14, which shows
the competition between the three obtained contri-
butions and we found that the overall behavior is
quite consistent with the expectation from our

computed result after summing over all contribu-
tions from saddles. We all know that the growing
behavior actually describing the measure of the
disorder which visible in β < 50 regime from the
plot. But after crossing this region it reaches a
maximum value and the from the plot we found
that the disorder reduces and the system we are
studying goes more and more toward the ordered
phase. This is depicted by the falling behavior within
60 < β < 150 including going toward the negative
value for β > 150. This study shows that at very low
temperature the system is the disordered phase, in
the intermediate temperature reaches a maximum
value and for very low temperature the system
started moving toward the ordered phase in the
present context of discussion. Additionally, it is
important to note that, in this figure we also have
found a crossover at β ¼ 150 at some positive
averaged value of the entropy function. Before the
crossover in β > 150 we have found that as we
increase the values of the large N parameter con-
sidering N ¼ 1000, N ¼ 2000 and N ¼ 3000 slope
of the curve decrease with increasing the value of N.
After the crossover in the region β > 150 where we
have the negative entropy contribution we have
found that as we increase the value of the large N
parameter, fall in the entropy function is faster and
faster with inverse temperature β.

(vi) We see that the u ¼ 0 saddle does not contribute in
the ensemble averaged entropy whereas the half -
wormhole saddles around u ¼ 1 especially in the
region u ≤ 1

2
and u > 1

2
contribute nontrivially to

ensemble energetics which could be seen in Fig. 14
where in the large N limit the ensembled average
entropy first rises around u ≤ 1

2
and then falls around

FIG. 13. High and low temperature behavior of the ensemble
averaged free-energy hFðβÞi at largeN with respect to the inverse
temperature β. Here we have fixed three parameters q ¼ 4, Δ ¼
0.1 and Λ ¼ 0.2. We have shown the behavior for three different
large N values which we have taken N ¼ 1000, N ¼ 2000
and N ¼ 3000.

FIG. 14. High and low temperature behavior of the ensemble
averaged entropy hSðβÞi at large N with respect to the inverse
temperature β. Here we have fixed three parameters q ¼ 4, Δ ¼
0.1 and Λ ¼ 0.2. We have shown the behavior for three different
large N values which we have taken N ¼ 1000, N ¼ 2000
and N ¼ 3000.
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u > 1
2
due to nonperturbative effects in the gravita-

tional path integral.
(vii) Quantum mechanically Fig. 14 corresponds to the

nonperturbative fluctuations that originates from the
discreteness of the energy spectrum. In the bulk
these are hints of the higher genus topology that are
not compatible with the global symmetry of the
gravitational system. In Sec. V we have pointed to
the similar scenario where at short distances the
wormhole must be equipped with topological de-
fects that give rise to new cobordism classes that
were not previously connected and are responsible
for breaking of global symmetry, we showed that
these objects are exactly the half-wormholes coming
from the nontrivial saddle points of the holonomy
whose contribution factorizes the partition function
of the tensor model. In de Sitter space this is
analogous to S2 × S2 Nariai geometry whose non-
perturbative contribution in the gravitational path
integral gives rise to a massive fluctuation due to
which de Sitter space turns itself “inside out.”

VIII. SYK VS TENSOR MODEL IN THE
FRAMEWORK OF WITHOUT AVERAGING

Though in the large n limit the correlation function and
thermodynamics of the tensor model with OðNÞq−1 gauge
symmetry are the same as that of the SYK but they differ in
their bulk description in various ways which are as
follows,

(i) The broken conformal diffeomorphism of GSYKðtÞ
produces zero modes in the extreme low energy
limit. However (14) has a new light model governed
by the effective sigma model and admits a bulk
interpretation of gauge field propagating in ADS2
background.

(ii) When taken average over the coupling SYK has
wormhole like correlation given by nonzero value of
GLR in the bulk. The quantum mechanical model
with fixed choice of coupling (14) gives exactly the
same value of GLR when the holonomy of the gauge
group is identity.

(iii) The SYK model which fixed choice of coupling has
wormhole saddle point in the self-averaging regime
which has weak dependence on the coupling sim-
ilarly the tensor model also has self-averaging
wormhole saddle points described by trivial eigen-
values of gauge holonomy.

(iv) The SYK model with fixed choice of coupling has
half-wormhole saddle points in the nonself-averag-
ing regime of the theory which are necessary for the
factorization of the partition function. However, in
the tensor model the dynamics of the gauge holo-
nomy somehow gives rise to these half-wormhole
saddle points which are in turn described by their
nontrivial eigenvalues.

(v) The SFF of SYK has linear growth of ramp with
respect to time and at late times as fluctuations of the
height of ramp when we consider fixed choice of
coupling. However, the SFF of the tensor model (with
holonomy contribution) particularly in the high tem-
perature regime has a plateaulike structure which
comes from the trivial saddle points of holonomy and
then has an exponential rise dominated by the non-
trivial saddle points around u ¼ 1.

IX. CONCLUSION

In this paper, we have given an interpretation of half-
wormholes in the bulk with the gauge field. These half-
wormholes were discussed in the SYK model with fixed
coupling as a saddle point ofΦðσÞ near σ ¼ 0which vanish
when we take average over the ensemble. These half-
wormhole play an important role in restoring the factori-
zation. We have shown how dynamics of the gauge
holonomy from the decoupled L and R system contributes
to the wormholelike correlation between boundary partition
function as in SYK. We discussed how the problem of
factorization of the Wilson operator at short distances could
be transformed as a problem of global charges and non-
trivial cobordism classes associated with the disconnected
wormhole. In order to break global symmetry, these
wormholes need to have a defect which cancels the global
charges and produces new cobordism classes which were
not previously connected. The new wormholes with added
topological defect is what we interpret as half-wormhole
which are necessary for factorization. It will be interesting
to know if one could think of these defects as perturbation
around the wormhole as discussed in [65] to get the
factorized answer of the square of the partition function
in the SYK. To know more about the story in the
gravitational counterpart see Ref [66]. We also commented
on the behavior of spectral form factor with respect to
various parameters, particularly with respect to temperature
we found that at low temperatures the half-wormhole
saddle contributes to the SFF whereas at high temperatures
the wormhole saddle plays an important part. Last but not
the least, we have explicitly studied the ensemble averaged
energetics in terms of energy, free energy and entropy from
OðNÞq−1 tensor model summing up all the possible con-
tributions coming from wormhole saddle point and half-
worm saddle points. From this energetics study we have
found that in the final results the wormhole saddle will not
at all contribute from the present computations. On the
other hand, all the contributions coming from the half-
worm saddle points nontrivially contribute in the final
results and explicitly show the inverse temperature β ¼
1=T dependence in the large N limiting results for the
various measures of the energetics.
The future prospects of the work are as follows:
(i) We know that dynamics of holonomy is described

by the simple effective action SeffðUÞ and by
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summing over infinite class of graph captures the
leading deviations or perturbation away from free
HamiltonianH0. It would be interesting to know that
the dynamics of holonomy which give rise to “half-
wormhole" saddle points in the bulk can also be seen
as a hint of perturbation around wormhole in the
OðNÞq−1 tensor model.

(ii) We have described wormholes with topological
defects as the half-wormholes in which factorizes
the Wilson operator at short distances. One can now
ask what kind of cobordism classes comes into play
which breaks the global symmetry?

(iii) The out of time order correlator (OTOC) has been
calculated in the bulk dual of regular SYK. One can
now ask how the dynamics of gauge holonomy

contributes in the calculations of (OTOC) in
the bulk.
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