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I. INTRODUCTION

The concept of symmetry is a powerful tool for inter-
preting physical phenomena. A fundamental class of
symmetries is presented by the duality symmetries. The
primary notion of duality consists of connecting different
theories or opposing regimes of the same model, each
containing different associated symmetries. In fact, whether
different theories are dual it suggests that they represent
themselves as a manifestation of the same theory with
different “guises.” In addition, dual properties provide a
powerful mechanism to seek out and understand non-
perturbative effects within the context of quantum field
theories [1] and condensed matter systems [2].
Thus, the study of dualities is an ever-present and

relevant topic in physics. Dualities play an important role
in the context of toroidal compactifications [3] and string
and M theory. Namely, the five string theories we have
known so far are—albeit at first sight they look radically
different—linked together by dualities. For example, the
duality between type IIA and type IIB string theories is
called T duality, which is related to the geometrical
properties of the target space (see [4,5] for a review),
while type I and SOð32Þ heterotic string theories are related
to each other by S duality, which means that one theory in
the strong coupling regime is equivalent to the other in the

weak coupling regime (see [6] for a review on this subject).
Another kind of special duality is the so-called gauge-
gravity duality which, in turn, relates two theories with
different natures—a (super)gravity theory to a gauge
theory. A particular realization of this duality is the
AdS=CFT correspondence that links a low-energy string
theory in AdS spacetime to a strong coupling regime of a
conformal field theory on the AdS boundary [7]. Besides
this, among duality processes, bosonization possesses a
special importance being widely used to investigate non-
perturbative properties in low-dimensional condensed mat-
ter systems [8]. In 1þ 1 dimensions, it is possible to
establish a fermion-boson correspondence based on the
properties of Fermi surfaces [9]. This duality can be
generalized for non-Abelian fields [10] and higher dimen-
sions [11,12]. Recently, bosonization has led to new 2þ 1
connections called web duality [13–15].
Awell-known example of duality involves topologically

massive gauge theories [16]. The first discovered case
relates the self-dual (SD) [17] and Maxwell-Chern-Simons
(MCS) [18] models. These two theories describe a single
massive particle of spin 1 in 2þ 1 flat spacetime. However,
only the MCS model is gauge invariant. The equivalence
between the SD and MCS models was initially established
by Deser and Jackiw [18], and since then several studies of
this equivalence were carried out in the literature [19–25].
Particularly, considering couplings with fermionic fields, it
was shown in Ref. [23] that the models are equivalent, as
long as a Thirring interaction is included. Furthermore,
supersymmetric [26–28] and noncommutative [29,30]
extensions to the duality involving the SD and MCS
models were studied in several contexts.
The Chern-Simons term plays a key role at the heart

of the SD-MCS duality. An alternative topological term in
3þ 1 dimensions can be formed from a gauge vector field
Aμ and a rank-2 antisymmetric tensor field Bμν, also called
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the Kalb-Ramond field [31]. The associated topological
term is known as the B ∧ F term [32–37]. Hence, a higher-
dimensional generalization of the MCS model consists of
the Maxwell and Kalb-Ramond fields coupled by a B ∧ F
term. The Maxwell-Kalb-Ramond (MKR) theory is gauge
invariant, unitary, and renormalizable when minimally
coupled to fermions and represents a massive spin-1
particle [32]. The Kalb-Ramond field appears in several
contexts in the literature; in particular, we can mention its
study within the contexts of string theories [38], quantum
field theory [39,40], supersymmetry [41], Lorentz sym-
metry violation [42–45], black hole solutions [46], cosmol-
ogy [47,48], and brane world scenarios [49,50].
A self-dual version of the MKR model (SDBF) was first

studied in Ref. [51], where the authors included the B ∧ F
term added of gauge-noninvariant mass terms. In this work,
the gauge embedding procedure [25] was used to prove the
classical equivalence between the models without and
in the presence of fermion couplings. Analogous to the
SD-MCS case in 2þ 1 dimensions, interactions with
fermionic fields require Thirring-like terms to preserve
the duality mapping. More recently, the proof of duality has
been extended to the quantum level through the master
action approach and considering arbitrary nonconserved
matter currents [52].
The main objective of the present work is to obtain a

supersymmetric generalization of the duality between
SDBF and MKR theories, at both classical and quantum
levels, employing their superfield description. Throughout
this paper, we use the definitions and conventions for the
superfield formalism adopted in Ref. [53] (see also
Ref. [54], where the chiral spinor superfield has been
introduced originally) and further applied in Ref. [41],
where the supersymmetric theory of an antisymmetric
tensor field, described within the superfield approach by
a chiral spinor superfield, has been studied in the one-loop
approximation (see also Ref. [55], where a simplified
version of this theory was considered). Actually, this paper
can be treated as a natural continuation of Ref. [41].
This work is organized as follows. In Sec. II, we discuss

the equivalence of self-dual and topologically massive
theories at the tree level, both for the case of free models
and in the presence of nontrivial matter couplings. In
Sec. III, we demonstrate the equivalence of these theories
at the perturbative level, through performing integration
over dynamical fields. Finally, in the summary, we discuss
our results.

II. CLASSICAL EQUIVALENCE

In this section, for the sake of convenience, we first
investigate the classical equivalence in the case of free dual
theories. Then, we investigate the classical equivalence in
the case of the dual theories interacting with chiral
matter superfields. Earlier, their equivalence has been
discussed in Ref. [56], where, however, a completely

distinct methodology has been used while we follow the
master action approach developed in Ref. [18] known as a
standard tool for studying the duality (for its further
development, see, for example, Ref. [25]). Moreover, in
Ref. [56], the real and spinor scalar superfields were
coupled to a curved background, while we consider the
flat superspace only, but, unlike Ref. [56], our superfields
are coupled to chiral matter.

A. Free theories

In N ¼ 1, d ¼ 4 superspace, the supersymmetric self-
dual model is formulated in terms of a real superfield Z and
a chiral spinor superfield πα, which are not subject to gauge
transformations. This model is described by the following
first-order action [54]:

SSD¼−
χϑ

2

Z
d8zðπαDαZþ π̄ _αD̄ _αZÞ

þ1

4

�Z
d6zπαπαþ

Z
d6z̄π̄ _απ̄ _α

�
þm2

2

Z
d8zZ2; ð1Þ

wherem is a constant with mass dimension equal to 1, ϑ is a
dimensionless constant, and χ ¼ �1 determines if the
model is self-dual or anti-self-dual. The theory (1) is a
supersymmetric extension of the self-dual B ∧ F model
[51] and describes massive superfields which can be seen as
follows. The Euler-Lagrange equations following from
Eq. (1) have the forms

δSSD
δZ

¼ χϑ

2
ðDαπα þ D̄ _απ̄ _αÞ þm2Z ¼ 0; ð2Þ

δSSD
δπα

¼ −
χϑ

2
D̄2DαZ þ 1

2
πα ¼ 0; ð3Þ

δSSD
δπ̄ _α

¼ −
χϑ

2
D2D̄ _αZ þ 1

2
π̄ _α ¼ 0: ð4Þ

We can use well-known properties of the covariant deriv-
ativesDα and D̄ _α along with the above equations of motion
to show that

D2Z ¼ 0; D̄2Z ¼ 0; Dαπα ¼ D̄ _απ̄ _α: ð5Þ

With the help of these constraints, we can manipulate
Eqs. (2)–(4) to decouple the superfields and derive

�
□−

m2

ϑ2

�
Z¼0;

�
□−

m2

ϑ2

�
πα¼0;

�
□−

m2

ϑ2

�
π̄ _α¼0:

ð6Þ

Therefore, we can conclude that Z and πα satisfy Klein-
Gordon equations with the mass square m2

ϑ2
. Indeed, the

algebraic Euler-Lagrange equations (3) and (4) can be
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solved for πα and π̄ _α, and the substitution of these solutions
into Eq. (1) gives the massive vector multiplet model. On
the other hand, solving Eq. (2) for Z, this superfield can be
eliminated from the action (1) altogether yielding the
massive tensor multiplet model [54].
Contrastingly, the supersymmetric extension of the

topologically massive model [34] is formulated in terms
of a real prepotential V and a chiral spinor prepotential ψα,
which are subject to gauge transformations

δV¼ iðΛ̄−ΛÞ; δψα¼ iD̄2DαL; δψ̄ _α¼−iD2D̄ _αL; ð7Þ

and correspond to the following gauge-invariant superfield
strengths:

Wα ¼ iD̄2DαV; W̄ _α ¼ −iD2D̄ _αV;

G ¼ −
1

2
ðDαψα þ D̄ _αψ̄ _αÞ: ð8Þ

The second-order model which describes a massive gauge
theory consists of quadratic terms in the superfield
strengths and a term which the variation yields a total
divergence [54]:

STM ¼ ϑ4

4

�Z
d6zWαWα þ

Z
d6z̄W̄ _αW̄ _α

�

−
ϑ2

2m2

Z
d8zG2 − χϑ

Z
d8zVG: ð9Þ

In order to establish the duality between the self-dual and
topologically massive models, let us determine the Euler-
Lagrange equations from the action (9). They have the form

δSTM
δV

¼ −
iϑ2

2
DαWα þ

iϑ2

2
D̄ _αW̄ _α − χϑG ¼ 0; ð10Þ

δSTM
δψα ¼ −

ϑ2

2m2
D̄2DαGþ i

χϑ

2
Wα ¼ 0; ð11Þ

δSTM
δψ̄ _α

¼ −
ϑ2

2m2
D2D̄ _αG − i

χϑ

2
W̄ _α ¼ 0: ð12Þ

It is possible to manipulate these equations, using the
properties of the spinor covariant derivatives and the
superfield strengths, to show that the superfield strengths
also satisfy Klein-Gordon equations with the squared mass
m2

ϑ2
:

�
□−

m2

ϑ2

�
Wα¼0;

�
□−

m2

ϑ2

�
W̄ _α¼0;

�
□−

m2

ϑ2

�
G¼0:

ð13Þ

A direct inspection of the two different sets of equations of
motion (2)–(4) and (10)–(12) unveils that the equations of

motion for the superfields fZ; πα; π̄ _αg look like those
for the superfield strengths fWα; W̄ _α; Gg. This shows that
(2)–(4) are identical with (10)–(12) when the identifications

Z↔ −
χϑ

m2
G; πα ↔ −iχϑWα; π̄α ↔ iχϑW̄ _α ð14Þ

are used. Therefore, there is a classical equivalence between
the supersymmetric self-dual and topologically massive mod-
els, that is, equivalence at the level of equations of motion.
Alternatively, we can also establish the duality discussed

above by means of the master action approach [18]. The
master action approach is useful, because it reveals the
common origin of dual theories such as Eqs. (1) and (9).
Besides, the master action is a valuable theoretical tool for
establishing the equivalence of generating functionals of
dual theories at the quantum level.
To obtain the master action, we introduce a set of gauge-

invariant auxiliary superfields fZ; πα; π̄ _αg in order to
reduce the number of derivatives in the original second-
order model (9). Doing this, we obtain the following gauge-
invariant master action:

SM ¼ 1

4

�Z
d6zπαπα þ

Z
d6z̄π̄ _απ̄ _α

�

þ i
χϑ

2

�Z
d6zπαWα −

Z
d6z̄π̄ _αW̄ _α

�

þ
Z

d8z

�
m2

2
Z2 þ χϑZG

�
− χϑ

Z
d8zVG: ð15Þ

Let us demonstrate that Eq. (15) is indeed a first-order
formulation of the supersymmetric topologically massive
model. Varying SM with respect to the auxiliary superfields,
we find

δSM
δZ

¼ m2Z þ χϑG ¼ 0; ð16Þ

δSM
δπα

¼ 1

2
πα þ i

χϑ

2
Wα ¼ 0; ð17Þ

δSM
δπ̄ _α

¼ 1

2
π̄ _α − i

χϑ

2
W̄ _α ¼ 0: ð18Þ

Solving these algebraic equations for the auxiliary super-
fields and substituting them into Eq. (15), we find that
SM½V;ψα; ψ̄ _α� ¼ STM, thus demonstrating the equivalence
of Eq. (15) with Eq. (9).
On the other hand, in order to prove that Eq. (15) is also

equivalent to Eq. (1), let us vary SM with respect to the
gauge prepotentials and get the following equations of
motion:

δSM
δV

¼ χϑ

2
ðDαπα þ D̄ _απ̄ _αÞ − χϑG ¼ 0; ð19Þ
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δSM
δψα ¼ χϑ

2
D̄2DαZ −

χϑ

2
D̄2DαV ¼ 0; ð20Þ

δSM
δψ̄ _α

¼ χϑ

2
D2D̄ _αZ −

χϑ

2
D2D̄ _αV ¼ 0: ð21Þ

These equations can be immediately integrated and give the
following general solutions:

V ¼ Z þ iðΨ̄ −ΨÞ; ψα ¼ −πα þ iD̄2DαN;

ψ̄ _α ¼ −π̄ _α − iD2D̄αN; ð22Þ

where Ψ and N are arbitrary chiral and real scalar super-
fields, respectively.
Finally, plugging these solutions into Eq. (15), we

completely eliminate the gauge prepotentials from the
master action and show that SM½Z; πα; π̄ _α� ¼ SSD, which
implies that Eq. (15) is also equivalent to Eq. (1).
Accordingly, we can conclude that the models (1) and (9)

originate from a single action (15). This demonstrates the

classical equivalence between the supersymmetric self-dual
and topologically massive models; that is, these models are
different mathematical descriptions of the same classical
physics.

B. Interaction with chiral matter superfields

In the previous subsection, we investigated the classical
equivalence in the case of free theories. However, fields in
the real world interact with each other. Thus, we now turn
to the study of the classical equivalence of interacting
theories, which are more realistic and interesting descrip-
tions of the physical phenomena. We will do this including
new terms in the master action that will couple different
superfields to each other. In particular, for the sake of
simplicity, we will include in the master action (15) only
linear couplings with external superfields, whose associ-
ated currents are composed only of dynamical chiral matter
superfields, which we generically denote by Φ. Thus, we
define the new master action as

Sð1ÞM ¼ 1

4

�Z
d6zπαπα þ

Z
d6z̄π̄ _απ̄ _α

�
þ i

χϑ

2

�Z
d6zπαWα −

Z
d6z̄π̄ _αW̄ _α

�
þ
Z

d8z

�
m2

2
Z2 þ χϑðZ − VÞG

�

þ
Z

d6zπαjα þ
Z

d6z̄π̄ _αj̄ _α þ
Z

d8zZJ þ S½Φ; Φ̄�; ð23Þ

where S½Φ̄;Φ� is the functional responsible for the dynamics of the chiral matter superfields while jα and J are
corresponding chiral and real sources, respectively.
In the same way as we described in the last subsection, we can use the Euler-Lagrange equations of Sð1ÞM either to

eliminate the gauge prepotentials from Eq. (23) and obtain

Sð1ÞSD ¼ −
χϑ

2

Z
d8zðπαDαZ þ π̄ _αD̄ _αZÞ þ

1

4

�Z
d6zπαπα þ

Z
d6z̄π̄ _απ̄ _α

�
þm2

V

2

Z
d8zV2

þ
Z

d6zπαjα þ
Z

d6z̄π̄ _αj̄ _α þ
Z

d8zZJ þ S½Φ; Φ̄� ð24Þ

or to remove the auxiliary superfields from Eq. (23) and get

Sð1ÞTM ¼ ϑ4

4

�Z
d6zWαWα þ

Z
d6z̄W̄ _αW̄ _α

�
−

ϑ2

2m2

Z
d8zG2 − χϑ

Z
d8zVG −

Z
d6zðiχϑWα þ jαÞjα

þ
Z

d6z̄ðiχϑW̄ _α − j̄ _αÞj̄ _α −
Z

d8zð2χϑGþ JÞ J
2m2

þ S½Φ; Φ̄�: ð25Þ

Not surprisingly, Eqs. (24) and (25) are extensions of the
self-dual and topologically massive models which include
interactions with matter. Notice that, in contrast to the self-
dual model (24), the topologically massive model (25)
contains a Thirring-like current-current interaction and the
gauge prepotentials interact with matter through a non-
minimal magneticlike coupling, as in Refs. [23,25,27,28].

On the one hand, the variation of the model (24) with
respect to Z, πα, and π̄ _α leads to the Euler-Lagrange
equations

δSð1ÞSD

δZ
¼ χϑ

2
ðDαπα þ D̄ _απ̄ _αÞ þm2Z þ J ¼ 0; ð26Þ
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δSð1ÞSD

δπα
¼ −

χϑ

2
D̄2DαZ þ 1

2
πα þ jα ¼ 0; ð27Þ

δSð1ÞSD

δπ̄ _α
¼ −

χϑ

2
D2D̄ _αZ þ 1

2
π̄ _α þ j̄ _α ¼ 0; ð28Þ

which are just the equations of motion (2)–(4) in the
presence of external sources. On the other hand, the
variation of the action (25) with respect to V, ψα, and
ψ̄ _α leads to the equations of motion

δSð1ÞTM

δV
¼ −

iϑ2

2
DαWα þ

iϑ2

2
D̄ _αW̄ _α − χϑG

− χϑDαjα − χϑD̄ _αj̄ _α ¼ 0; ð29Þ

δSð1ÞTM

δψα ¼−
ϑ2

2m2
D̄2DαGþ i

χϑ

2
Wα−

χϑ

2m2
D̄2DαJ¼0; ð30Þ

δSð1ÞTM

δψ̄ _α
¼−

ϑ2

2m2
D2D̄ _αG− i

χϑ

2
W̄ _α−

χϑ

2m2
D2D̄ _αJ¼0; ð31Þ

which are the Euler-Lagrange equations (10)–(12)
extended to include external source terms.
It is not difficult to see that the equations of motion

(26)–(28) and (29)–(31) are equivalent to each other if we
make the following generalized identifications:

Z ↔ −
χϑ

m2
G −

1

m2
J; πα ↔ −iχϑWα − 2jα;

π̄ _α ↔ iχϑW̄ _α − 2j̄ _α: ð32Þ
It is worth pointing out that if the currents were simply
c-number external sources, we could claim that classical
equivalence is maintained even when the superfields are
coupled to external sources. However, since the currents are
functions of dynamical chiral matter superfields, we need to
go a step further and demonstrate that the matter sectors of
the two theories (24) and (25) have the same dynamics. To
achieve this, let us first consider the variation of the action

Sð1ÞSD with respect to the chiral superfields Φ. It follows from
Eq. (24) that

δSð1ÞSD

δΦ
¼0⇒

δS
δΦ

¼−
Z

d8zZ
δJ
δΦ

−
Z

d6zπα
δjα
δΦ

−
Z

d6z̄π̄ _α δj̄ _α
δΦ

: ð33Þ

We want to solve Eqs. (26)–(28) for Z, πα, and π̄ _α and
substitute them into Eq. (33). The first step in this direction is
to decouple the equations by turning them into second-order
differential equations via differentiation and substitution.
Doing this for the superfield Z and using the constraints

D2Z ¼ −
D2J
m2

; D̄2Z ¼ −
D̄2J
m2

;

Dαπα þ 2Dαjα ¼ D̄ _απ̄ _α þ 2D̄ _αj̄ _α; ð34Þ

which follow directly from Eqs. (26)–(28), we find the
following inhomogeneous relativistic wave equation:

ðϑ2□−m2ÞZ¼
�
1−

ϑ2

m2
fD2;D̄2g

�
J−χϑðDαjαþD̄ _αj̄ _αÞ:

ð35Þ

Since the wave operator Ô−1 ≡ ðϑ2□ −m2Þ is nondegener-
ate, there exists an inverse operator Ô. Therefore, the solution
of Eq. (35) can be written as

Z ¼ Ô
��

1 −
ϑ2

m2
fD2; D̄2g

�
J − χϑðDαjα þ D̄ _αj̄ _αÞ

�
: ð36Þ

The solutions for πα and π̄ _α can be found by repeating a
similar reasoning that led us to Eq. (36). For this reason, we
will present only the final results. The solutions are

πα ¼ −jα þ Ôðm2jα − iϑ2∂α _αD̄2j̄ _α þ χϑD̄2DαJÞ; ð37Þ

π̄ _α ¼ −j̄ _α þ Ôðm2j̄ _α − iϑ2∂α _αD2jα þ χϑD2D̄ _αJÞ: ð38Þ

Plugging Eqs. (36)–(38) into Eq. (33), we obtain

δS
δΦ

¼
Z

d8zÔ
��

ϑ2

m2
fD2; D̄2g − 1

�
J þ χϑðDαjα þ D̄ _αj̄ _αÞ

�
δJ
δΦ

þ
Z

d6z½jα − Ôðm2jα − iϑ2∂α _αD̄2j̄ _α þ χϑD̄2DαJÞ� δjα
δΦ

þ
Z

d6z̄½j̄ _α − Ôðm2j̄ _α − iϑ2∂α _αD2jα þ χϑD2D̄ _αJÞ� δj̄ _α
δΦ

: ð39Þ

Now, let us find the equations of motion which follow from the variation of the action Sð1ÞTM with respect to the chiral
superfields Φ. They are given by

δSð1ÞTM

δΦ
¼ 0 ⇒

δS
δΦ

¼
Z

d8z
1

m2
ðJ þ χϑGÞ δJ

δΦ
þ
Z

d6zð2jα þ iχϑWαÞ δjα
δΦ

þ
Z

d6z̄ð2j̄ _α − iχϑW̄ _αÞ δj̄ _α
δΦ

: ð40Þ
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In the same way as we did above, we can decouple
Eqs. (29)–(31) using differentiation and substitution. Pro-
ceeding this way, we get inhomogeneous relativistic wave
equations for each superfield strength:

ðϑ2□−m2ÞG¼ χϑDαD̄2DαJþm2ðDαjα þ D̄ _αj̄ _αÞ; ð41Þ

ðϑ2□−m2ÞWα ¼ iχϑ□jα þ χϑ∂α _αD̄2j̄ _α þ iD̄2DαJ; ð42Þ

ðϑ2□−m2ÞW̄ _α ¼ −iχϑ□j̄ _α − χϑ∂α _αD2jα − iD2D̄ _αJ: ð43Þ

These differential equations have the following solutions:

G ¼ −
χ

ϑ
J þ Ô

�
−
χm2

ϑ
J þ χϑfD2; D̄2gJ

þm2ðDαjα þ D̄ _αj̄ _αÞ
�
; ð44Þ

Wα ¼ i
χ

ϑ
jα þ Ô

�
i
χm2

ϑ
jα þ χϑ∂α _αD̄2j̄ _α þ iD̄2DαJ

�
;

ð45Þ

W̄ _α ¼ −i
χ

ϑ
j̄ _α − Ô

�
i
χm2

ϑ
j̄ _α þ χϑ∂α _αD2jα þ iD2D̄ _αJ

�
;

ð46Þ

where we have used the identities

□ ¼ 1

ϑ2
ðÔ−1 þm2Þ; ð47Þ

DαD̄2Dα ¼ −
1

ϑ2
ðÔ−1 þm2Þ þ fD2; D̄2g: ð48Þ

Finally, replacing these solutions in Eq. (40), we obtain

δS
δΦ

¼
Z

d8zÔ
��

ϑ2

m2
fD2; D̄2g − 1

�
J þ χϑðDαjα þ D̄ _αj̄ _αÞ

�
δJ
δΦ

þ
Z

d6z½jα − Ôðm2jα − iϑ2∂α _αD̄2j̄ _α þ χϑD̄2DαJÞ� δjα
δΦ

þ
Z

d6z̄½j̄ _α − Ôðm2j̄ _α − iϑ2∂α _αD2jα þ χϑD2D̄ _αJÞ� δj̄ _α
δΦ

: ð49Þ

Bya direct inspection of Eqs. (33) and (40),we can claim that thematter sectors of the two theories (24) and (25) have the same
dynamics. This allows us to conclude that the classical equivalence between the supersymmetric self-dual and topologically
massive models is maintained even when the superfields are linearly coupled to dynamical matter superfields.

III. QUANTUM EQUIVALENCE

It is important to point out that equivalence at the classical level does not necessarily imply equivalence at the
quantum level, because in the quantum theory the generating functional is defined by integrating over all possible
field configurations, not only the ones which satisfy the equations of motion. Thus, in order to investigate whether the
duality holds at the quantum level, we define the generating functional of Green functions in the master theory (23) as

Z ¼ N
Z

DVDψαDψ̄ _αDZDπαDπ̄ _α exp

�
1

4

�Z
d6zπαπα þ

Z
d6z̄π̄ _απ̄ _α

�
þ i

χϑ

2

�Z
d6zπαWα −

Z
d6z̄π̄ _αW̄ _α

�

þ
Z

d8z

�
m2

2
Z2 þ χϑðZ − VÞG

�
þ
Z

d6zπαjα þ
Z

d6z̄π̄ _αj̄ _α þ
Z

d8zZJ þ S½Φ; Φ̄�
�
; ð50Þ

where N is a normalization constant which will be used to
absorb field-independent factors.
On the one hand, it is convenient to change the functional

integrationvariables in Eq. (50) toV→VþZ,ψα → ψα − πα,
and ψ̄ _α → ψ̄ _α − π̄ _α. Since we assume that the superfields Z,
πα, and π̄ _α do not change under these transformations, the
Jacobian of such a change of variables is equal to one.
Proceeding this way, the superfieldsV, ψα, and ψ̄ _α completely
decouple, and the functional integration over these superfields
yields the following result:

Z ¼ N
Z

DZDπαDπ̄ _α expðSð1ÞSDÞ; ð51Þ

where Sð1ÞSD is the model obtained in Eq. (24).
On the other hand, let us consider this time the following

transformations in Eq. (50): Z → Z − χϑ
m2 G − 1

m2 J,
πα → πα − iχϑWα − 2jα, and π̄ _α → π̄ _α þ iχϑW̄ _α − 2j̄ _α.
Since these transformations are simply shifts by a constant,
they leave the integration measures in the functional
integrals invariant and decouple the superfields Z, πα,

F. S. GAMA et al. PHYS. REV. D 105, 045023 (2022)

045023-6



and π̄ _α. This allows us to easily perform integrations over Z,
πα, and π̄ _α and obtain

Z ¼ N
Z

DVDψαDψ̄ _α expðSð1ÞTMÞ; ð52Þ

where Sð1ÞTM is the action found in Eq. (25).
Notice that Eqs. (51) and (52) are generating functionals

in the supersymmetric self-dual and topologically massive
models, respectively. The fact that there exists a master
generating functional (50) which interpolates between
Eqs. (51) and (52) is strong evidence that the duality holds
at the quantum level. However, in order to complete the
proof of the quantum equivalence between the supersym-
metric self-dual and topologically massive models, we need
to carry out the remaining integrals in Eqs. (51) and (52).
First, let us consider the generating functional (51).

By using Eq. (24), we can rewrite Eq. (51) in a more
convenient form:

Z¼NeS½Φ̄;Φ�
Z

DZexp
Z

d8z

�
m
2
Z2þZJ

�

×
Z

Dπαexp
Z

d6z

�
1

4
παπαþπα

�
−
χϑ

2
D̄2DαZþjα

��

×
Z

Dπ̄ _αexp
Z

d6z̄

�
1

4
π̄ _απ̄ _αþ π̄ _α

�
−
χϑ

2
D2D̄ _αZþ j̄ _α

��
:

ð53Þ

We see that the integrals over the superfields πα and π̄ _α are
ordinary Gaussian integrals that can be evaluated directly.
Therefore, we find

Z ¼ N exp

�
S½Φ̄;Φ� −

Z
d6zjαjα −

Z
d6z̄j̄ _αj̄ _α

�

×
Z

DZ exp
Z

d8z

�
1

2
Zðϑ2DαD̄2Dα þm2ÞZ

þ ZðJ − χϑDαjα − χϑD̄ _αj̄ _αÞ
�
: ð54Þ

In order to evaluate the last integral, we first have to find the
inverse of the differential operator in the quadratic part in Z.
It is not hard to show that

ðϑ2DαD̄2Dα þm2Þ−1 ¼ −Ô
�
1 −

ϑ2

m2
fD2; D̄2g

�
: ð55Þ

Thus, integrating over the superfield Z, we are led to the
following result:

Z¼N exp

�
S½Φ̄;Φ�þ

Z
d8z

�
1

2
JÔ

�
1−

ϑ2

m2
fD2;D̄2g

�
J

−χϑJÔðDαjαþD̄ _αj̄ _αÞþ iϑ2jαÔ∂α _αj̄ _α

�

þ1

2

Z
d6zjαðm2Ô−1Þjαþ

1

2

Z
d6z̄j̄ _αðm2Ô−1Þj̄ _α

�
:

ð56Þ

Now, let us consider the functional integrals in Eq. (52).
These integrals are ill defined due to the gauge invariance
of the classical action STM. Thus, to make progress, it is

necessary to fix the gauge by adding to Sð1ÞTM some gauge-
fixing functional SGF. We choose [53]

SGF ¼ −
ϑ2

α

Z
d8zðD̄2VÞD2V

−
ϑ2

8ξm2

Z
d8zðDαψα − D̄ _αψ̄ _αÞ2; ð57Þ

where α and ξ are gauge-fixing parameters. Since the
Faddeev-Popov ghosts completely decouple for this gauge-
fixing functional, their action will be omitted.
Therefore, it follows from Eqs. (25), (52), and (57) that

Z ¼ N
Z

DVDψαDψ̄ _α exp ðSð1ÞTM þ SGFÞ

¼ N exp

�
S½Φ̄;Φ� −

Z
d6zjαjα −

Z
d6z̄j̄ _αj̄ _α −

1

2m2

Z
d8zJ2

�Z
DV exp

Z
d8z

�
−
ϑ2

2
V□

�
Π1

2
þ 1

α
Π0

�
V

− χϑVðDαjα þ D̄ _αj̄ _αÞ
� Z

Dψα exp
Z

d6z

�
−

ϑ2

4m2
ψα

□

�
Πþ þ 1

ξ
Π−

�
ψα − i

χϑ

2m2
ψαD̄2Dαðm2V þ JÞ

�

×
Z

Dψ̄ _α exp
Z

d6z̄

�
−

ϑ2

4m2
ψ̄ _α

□

�
Πþ þ 1

ξ
Π−

�
ψ̄ _α − i

χϑ

2m2
ψ̄ _αD2D̄ _αðm2V þ JÞ

�
; ð58Þ
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where we have introduced two sets of projection operators.
The first set of operators are the familiar projectors on the
transverse and longitudinal parts of the superfield V:

Π1
2
¼ −

DαD̄2Dα

□
; Π0 ¼

fD2; D̄2g
□

: ð59Þ

The second set of operators are defined in terms of the rest-
frame conjugation operator K [53,57]:

Π� ¼ 1

2
ð1�KÞ; ð60Þ

whereK acts on aN ¼ 1 chiral spinor superfield ψα in the
following way:

Kψα ¼ −
D̄2i∂α

_α

□
ψ̄ _α: ð61Þ

Of course, both sets of projection operators satisfy relations
of completeness, idempotence, and orthogonality. Because

of these properties, projection operators make the task of
inverting the differential operators in Eq. (58) quite easy.
For example, it is trivial to show that

�
−

ϑ2

2m2
□

�
Πþ þ 1

ξ
Π−

��−1
¼ −

2m2

ϑ2□
ðΠþ þ ξΠ−Þ: ð62Þ

This propagator allows us to integrate Eq. (58) over ψα and
ψ̄ _α. After these integrations, we can manipulate the results,
with the help of the identities

ΠþD̄2Dαðm2V þ JÞ ¼ D̄2Dαðm2V þ JÞ;
ΠþD2D̄ _αðm2V þ JÞ ¼ D2D̄ _αðm2V þ JÞ; ð63Þ

Π−D̄2Dαðm2V þ JÞ ¼ 0; Π−D2D̄ _αðm2V þ JÞ ¼ 0;

ð64Þ

and show that

Z ¼ N exp

�
S½Φ̄;Φ� −

Z
d6zjαjα −

Z
d6z̄j̄ _αj̄ _α þ

1

2m2

Z
d8zJðΠ1

2
− 1ÞJ

�

×
Z

DV exp
Z

d8z

�
−
1

2
V

�
Ô−1Π1

2
þ ϑ2□

α
Π0

�
V þ VðΠ1

2
J − χϑDαjα − χϑD̄ _αj̄ _αÞ

�
: ð65Þ

It is also trivial to get the V propagator. It is given by

�
−Ô−1Π1

2
−
ϑ2□

α
Π0

�−1
¼ −

�
ÔΠ1

2
þ α

ϑ2□
Π0

�
: ð66Þ

By means of this propagator we can evaluate the last
integration. Then, by making use of

Π1
2
ðΠ1

2
J − χϑDαjα − χϑD̄ _αj̄ _αÞ ¼ Π1

2
J − χϑDαjα − χϑD̄ _αj̄ _α;

ð67Þ

Π0ðΠ1
2
J − χϑDαjα − χϑD̄ _αj̄ _αÞ ¼ 0; ð68Þ

we can finally obtain

Z ¼ N exp

�
S½Φ̄;Φ� þ

Z
d8z

�
1

2
JÔ

�
1 −

ϑ2

m2
fD2; D̄2g

�
J − χϑJÔðDαjα þ D̄ _αj̄ _αÞ þ iϑ2jαÔ∂α _αj̄ _α

�

þ 1

2

Z
d6zjαðm2Ô − 1Þjα þ

1

2

Z
d6z̄j̄ _αðm2Ô − 1Þj̄ _α

�
: ð69Þ

Notice that the ξ- and α-dependent contributions to the generating functional Z vanished due to the identities (64) and (68),
which have led to a gauge-independent final result (69).
We see that the integrations over Z, πα, and π̄ _α in Eq. (51) and the integrations over V, ψα, and ψ̄ _α in Eq. (52) resulted in

the same effective nonlocal action [see Eqs. (56) and (69)]

Seff ¼ S½Φ̄;Φ� þ
Z

d8z

�
1

2
JÔ

�
1 −

ϑ2

m2
fD2; D̄2g

�
J − χϑJÔðDαjα þ D̄ _αj̄ _αÞ þ iϑ2jαÔ∂α _αj̄ _α

�

þ 1

2

Z
d6zjαðm2Ô − 1Þjα þ

1

2

Z
d6z̄j̄ _αðm2Ô − 1Þj̄ _α: ð70Þ
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It is not hard to check that the variation of Seff with respect
to the matter superfields leads to equations of motion which
are exactly those ones found in the previous section,
namely, Eqs. (33) and (40). Accordingly, we can conclude
that there exists a quantum equivalence between super-
symmetric self-dual and topologically massive models
linearly coupled to dynamical matter.

IV. SUMMARY

We proved duality between two four-dimensional super-
field theories describing the spinor chiral superfield, that is,
the supersymmetric self-dual and topologically massive
models, for both free and coupled cases, at classical and
quantum levels. The importance of our result is motivated
by the fact that while, up to now, the duality between self-
dual and gauge theories originally proposed in Ref. [18]
was treated as a typically three-dimensional phenomenon
except for a few papers, that is, Refs. [51,58], we not only
promoted duality to the four-dimensional space-time, but
demonstrated its possibility for supersymmetric field the-
ories defined in this space-time. It worth mentioning also
that, while most of papers devoted to duality between
various versions of self-dual and massive gauge theories
considered only the tree-level aspects of the duality, we
studied also its quantum manifestation, generalizing results
of Refs. [27,28] to four-dimensional theories. Moreover,
we obtained new results for the chiral spinor superfield,

which is the less-studied one among all superfields listed in
Ref. [53], so that only a few its perturbative studies were
performed up to now [41,55].
Certainly, the natural question consists in possible

generalizations and extensions of our results. In this
context, one way can consist in the analysis of other
couplings of the spinor chiral superfield [it is worth
mentioning that there are different couplings of the anti-
symmetric tensor field (see, for example, Ref. [45]), and
their promotion to the superfield level is a very interesting
problem]. Another line can consist in study of various
applications of the duality we demonstrated, within differ-
ent contexts, from condensed matter to string theory.
Besides, certainly it is interesting to study whether it is
possible to establish duality between supersymmetric
theories describing other supermultiplets discussed in
Ref. [53] and extend the duality we proved to the case
of a curved superspace generalizing the results obtained in
Ref. [56]. We plan to consider these problems in forth-
coming papers.
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