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The OðNÞ model with scalar quartic interactions at its ultraviolet fixed point, and the OðNÞ model with
scalar cubic interactions at its infrared fixed point are conjectured to be equivalent. This has been checked
by comparing various features of the two models at their respective fixed points. Recently, the scaling
dimensions of a family of operators of fixed charge Q have been shown to match at the FPs up to Oð 1

N2Þ at
leading order (LO) and next-to-leading order (NLO) in Q using a semiclassical computation which is valid
to all orders in the coupling. Here we perform a complementary but overlapping comparison using a
perturbative calculation in six dimensions, up to three-loop order in the coupling, to compare these critical
scaling dimensions beyond NLO in Q, in fact to all relevant orders in Q. We also obtain the corresponding
results at Oð 1

N3Þ for the cubic theory.

DOI: 10.1103/PhysRevD.105.045021

I. INTRODUCTION

There has been remarkable progress in recent years in the
study of scalar field theories characterized by renormaliz-
able self-interactions. As well as increasing precision of
perturbative calculations (up to the seven-loop level [1–7])
the use of semiclassical approximations has proved very
fruitful, both in direct comparison with perturbation theory
and, importantly, in exploring areas of parameter space
inaccessible to perturbation theory for the relevant theories.
In Ref. [8] it was conjectured that the OðNÞ model with
scalar quartic interactions (the “quartic theory”) at its
ultraviolet fixed point (FP) is equivalent to the OðNÞ
model with scalar cubic interactions (the “cubic theory”)
at its infrared FP (we shall call the theory at its FP the
“critical theory”). It was shown that the 1

N expansions of
various operator scaling dimensions in the critical cubic
theory match the known results for the critical quartic
theory continued to d ¼ 6 − ϵ dimensions. This compari-
son was further refined by a three-loop calculation in
Ref. [9]. Subsequently four-loop [10] and five-loop [11,12]
calculations were performed for the cubic theory, and once
again the critical scaling dimensions were found to agree at
these orders with the known results in the 1

N expansion for
the critical quartic theory.

Meanwhile, following early work in Ref. [13], there has
been considerable recent interest [14–23] in the use of
semiclassical methods to investigate the scaling dimensions
of composite operators. This allows results to all orders in
the coupling but at leading order (LO) and next-to-leading
order (NLO) in the charge Q of the operator. Of particular
relevance for our purposes, in Ref. [24] the authors
computed the scaling dimensions of traceless symmetric
operators of charge Q (which we shall denote by TQ) in
both the cubic and quartic critical theories for d ¼ 6 − ϵ at
leading order in both Q and ϵ, and found agreement at this
level. Recently systematic semiclassical calculations of
these scaling dimensions at both leading and non-leading
order in Q have been performed for the quartic [25] and
cubic [26] theories, and agreement has been found in the
critical theories for d ¼ 6 − ϵ to high orders in Qϵ

N .
Specifically the two O½QðQϵ

N Þj� results were shown to agree
for j ¼ 0…8 and the two O½NðQϵ

N Þjþ1� results were shown
to agree for j ¼ 0…6; we may expect that the results for
higher values of j will continue to agree.1 These two sets of
terms represent leading order contributions in 1

N. For low
values of j (j ¼ 0, 1, 2) results were also obtained in the
critical cubic theory for some of the terms subleading in N
compared to these; though those deriving from the NLO
computation had to be computed numerically. These results
for j ¼ 0, 1, 2 for the critical cubic theory were compared
with previous results obtained at Oð1NÞ [27] and Oð 1

N2Þ [28]
in the 1

N expansion for the critical scaling dimensions of
charged operators in the quartic theory. When these latter
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1The scaling dimensions were also shown in Ref. [26] to match
in a large Q=N expansion.
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results were expanded in ϵ around d ¼ 6 − ϵ, agreement
was obtained up to the limits of numerical precision
wherever a comparison was possible. In the present article
we perform an overlapping but complementary calculation
to that of Ref. [26]. We compute the scaling dimension of
TQ perturbatively for the cubic theory in d ¼ 6 − ϵ up to
three loop order in the coupling. At the critical point, this
corresponds to terms up to Oðϵ3Þ. Organizing the critical
anomalous dimensions of TQ as a power series in 1

N, we
may compare with the Oð1NÞ results of Ref. [27] and the
Oð 1

N2Þ results of Ref. [28], after expanding these latter in ϵ

around d ¼ 6 and keeping terms up to ϵ3; we find precise
agreement for all relevant powers of Q. We also obtain the
corresponding results at Oð 1

N3Þ for the critical cubic theory,
potentially providing useful comparison with future exten-
sions of the 1

N expansion in the quartic theory.
The paper is organized as follows: in Sec. II we describe

the cubic and quartic OðNÞ models and review the known
results in the 1

N expansion for the scaling dimensions of the
field ϕ and the fixed-charge operator TQ in the critical
quartic theory. In Sec. III we describe our own calculation
for the scaling dimension of TQ up to three loops in the
cubic theory. We then specialize to the critical theory and
compare with the corresponding results for the critical
quartic theory. We relegate some details of the calculation
to the Appendix. Here we list both the Feynman diagram
results we have computed ourselves and for convenience
those we have adopted from Ref. [9]. We also give results
for the scaling dimensions in terms of individual diagrams,
as an aid to following or checking our calculations.

II. THE QUARTIC AND CUBIC OðNÞ MODELS

In this section we introduce both the quartic and
cubic scalar OðNÞ models whose properties we shall be
comparing at their critical points. The quartic scalar action
is given by

S ¼
Z

ddx

�
1

2
∂μϕ

i∂μϕi þ 1

2
σϕiϕi −

3

2λ
σ2
�
; ð2:1Þ

where the sum over i runs from 1 to N. This theory is
renormalizable in d ¼ 4 − ϵ dimensions. We shall only list
here the particular properties at the critical point in which
we are interested; for a more complete exposition see, for
instance, Ref. [29]. At the critical point the final term may
be neglected; and the anomalous dimension of the field ϕ is
expressed in terms of the critical index η as

γϕ ¼ 1

2
η: ð2:2Þ

η may be computed in the large-N expansion as

η ¼
X
i

ηi
Ni : ð2:3Þ

Here η1 is given by

η1 ¼ −4
Γð2μ − 2Þ

Γð2 − μÞΓðμ − 1ÞΓðμ − 2ÞΓðμþ 1Þ ; ð2:4Þ

where d ¼ 2μ, and η2 is given by [30,31]

η2 ¼ η21ðT1 þ T2 þ T3Þ; ð2:5Þ

where

T1 ¼ R1 þ
μ2 þ μ − 1

2μðμ − 1Þ ;

T2 ¼
μ

2 − μ
R1 þ

μð3 − μÞ
2ð2 − μÞ2 ;

T3 ¼
μð2μ − 3Þ
2 − μ

R1 þ
2μðμ − 1Þ
2 − μ

: ð2:6Þ

Here

R1 ¼ ψð2 − μÞ þ ψð2μ − 2Þ − ψð2Þ − ψðμ − 2Þ; ð2:7Þ
where ψ is the digamma function.
An operator of charge Q is given by

TQ ¼ Ti1i2…iQϕi1ϕi2…ϕiQ ; ð2:8Þ

where Ti1i2…iQ is symmetric, and traceless on any pair of
indices. The scaling dimension of TQ in the quartic theory
at the FP is given by

ΔQ ¼
�
d
2
− 1

�
Qþ γQ þQγϕ; ð2:9Þ

where the first term is the classical scaling dimension, γϕ is
given by Eq. (2.2), and the anomalous dimension γQ of TQ

has been computed in the 1=N expansion as [27,28]

γQ ¼ −
1

N
μ

2ðμ − 2Þ η1QðQ − 1Þ

−
1

N2
η21

QðQ − 1Þμ
4ðμ − 1Þðμ − 2Þ2

× f2ðQ − 2Þμðμ − 1Þ2½ψ 0ð1Þ − ψ 0ðμÞ�
− μð2μ − 3Þ þ 2ðμ − 1Þð2μ2 − 3μþ 2ÞR2g þ…:

ð2:10Þ
Here η1 is again given by Eq. (2.4), and

R2 ¼ ψð2 − μÞ þ ψð2μ − 2Þ − ψð1Þ − ψðμ − 1Þ: ð2:11Þ

The ellipsis indicates higher-order terms in the 1=N expansion.
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The cubic action is given by

S ¼
Z

ddx

�
1

2
∂μϕ

i∂μϕi þ 1

2
∂μσ∂μσ þ 1

2
gσϕiϕi þ 1

6
hσ3

�
;

ð2:12Þ

where the sum over i again runs from 1 toN. This theory is
renormalizable in d ¼ 6 − ϵ dimensions. However, the

two theories given by Eqs. (2.1) and (2.12) are believed to
be equivalent at their conformal FPs. In the next section
we shall compute perturbatively the scaling dimension
ΔQ of the operator TQ in Eq. (2.8) at the FP of the cubic
theory, in order to compare with the corresponding result
for the quartic theory, given later in Eq. (2.15). For this we
shall need the expressions for the values of the couplings
at the FP in the cubic theory, as obtained via the ϵ
expansion. These are given by [8,9]

g� ¼
ffiffiffiffiffi
6ϵ

N

r �
1þ 22

N
þ 726

N2
−
326180

N3
þ
�
−
155

6N
−
1705

N2
þ 912545

N3

�
ϵþ 1777

144N
ϵ2 þ 1

N2

�
29093

36
− 1170ζ3

�
ϵ2 þ…

�
;

h� ¼ 6

ffiffiffiffiffi
6ϵ

N

r �
1þ 162

N
þ 68766

N2
þ 41224420

N3
þ
�
−
215

2N
−
86335

N2
−
75722265

N3

�
ϵþ 2781

48N
ϵ2

þ 1

6N2
ð270911 − 157140ζ3Þϵ2 þ…

�
: ð2:13Þ

We shall also need expressions for the quantities from the quartic theory, expanded around d ¼ 6 − ϵ. Using Eqs. (2.4) and
(2.5), the terms η1, η2 in the 1=N expansion of η have the expansions

η1 ¼ 2ϵ −
11

6
ϵ2 −

13

72
ϵ3 þ…;

η2 ¼ 88ϵ −
835

3
ϵ2 þ 6865

36
ϵ3 þ… ð2:14Þ

Using Eqs. (2.2) and (2.10), ΔQ in Eq. (2.9) may be expanded in ϵ as

ΔQ ¼
�
2 −

ϵ

2

�
Qþ 1

N

�
ð−3Q2 þ 4QÞϵþ

�
7

4
Q2 −

8

3
Q

�
ϵ2 þ

�
11

16
Q2 −

7

9
Q

�
ϵ3
�

þ 1

N2

�
44ð−3Q2 þ 4QÞϵþ

�
−45Q3 þ 857

2
Q2 −

1568

3
Q

�
ϵ2

þ
��

36ζ3 þ
93

4

�
Q3 −

�
108ζ3 þ

3743

24

�
Q2 þ

�
72ζ3 þ

4105

18

�
Q

�
ϵ3
�
þ… ð2:15Þ

which we shall compare with our perturbative results for
the critical cubic theory in the next section.

III. LOOP CALCULATIONS

In this section we perform the perturbative computation
of the scaling dimension of an operator of the form (2.8)
within the cubic theory given by Eq. (2.12), up to three
loops, and then compare the result at the FP Eq. (2.13) with
the corresponding result for the quartic theory in Eq. (2.15).
The scaling dimension of TQ is given by an equation of the
same form as Eq. (2.9) as

ΔQ ¼
�
d
2
− 1

�
Qþ γQ þQγϕ; ð3:1Þ

where γQ is again the anomalous dimension of TQ and γϕ
the anomalous dimension of the single field ϕ; but now all
quantities are computed in the cubic theory. The L-loop
one-particle-irreducible (1PI) diagrams contributing to γQ
are constructed from a single TQ vertex and a number of
three-point vertices derived from the action in Eq. (2.12).
The latter vertices thus have either two ϕ lines and one σ
line, or three σ lines, emerging from them; which may
form either internal or external lines in the diagram. These
L-loop diagrams have up to Lþ 1 internal lines emanating
from the TQ vertex, together with two or three internal lines
emanating from the other vertices; the total number of
external lines is always the same as the number of internal
lines emerging from the TQ vertex. These correspond to
logarithmically divergent Feynman integrals. The Feynman
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diagrams with no more than three internal lines emerging
from any vertex (including the TQ vertex) have the same
topology as those contributing to the β-function computa-
tion, and their pole terms have already been derived up to
three loops and given in Refs. [9]. As an example, in Fig. 1
we show the one-loop diagram. Straight and wavy lines
denote ϕ and σ propagators respectively; and moreover we
use a small circle to denote the cubic vertices derived from
Eq. (2.12), and a lozenge to denote the TQ vertex. Figure 1
has the same topology and therefore the same pole structure
as diagram (a) in Fig. 8 of Appendix B in Ref. [9].
It therefore produces a contribution to γ1PIQ given by

γð1ÞQ ¼ 1

2
QðQ − 1Þcag2; ð3:2Þ

where ca is the simple pole coefficient from the diagram (a) in
Fig. 8 of Ref. [9]. For Eq. (3.1) we also need the perturbative
computation of the anomalous dimension of ϕ, γϕ. The
computation of the anomalous dimensions for the scalar fields
ϕ and σ in the cubic theory was given explicitly in Ref. [9],
similarly in a helpful diagram-by-diagram form. With a view
to a uniform presentation, we have reconstructed the expres-
sion for γϕ in terms of simple pole contributions (we have no
need for γσ), so at one loop we have

γð1Þϕ ¼ −
1

2
cAg2 ð3:3Þ

where in our notation cA is the simple pole coefficient from
thediagram (a) in Fig. 7 ofRef. [9].Wegive the result for γϕ in
a corresponding form up to three loops in the Appendix.
Combining Eqs. (3.2) and (3.3), we find from Eq. (3.1)

ΔQ ¼ 1

2
QðQ − 1Þcag2 −

1

2
QcAg2; ð3:4Þ

The values for the simple pole coefficients can be obtained
from Ref. [9]; but for completeness we have also listed them
in theAppendix, in Eqs. (A1) and (A4).We emphasize that by
ca we mean precisely the simple pole coefficient from the
Feynman integral, whereas the pole terms given in Figs. 7–9
of Ref. [9] also include a symmetry factor. After inserting the
values of the simple pole coefficients, we obtain at one loop

Δð1Þ
Q ¼ −

1

2
QðQ − 1Þg2 þ 1

6
Qg2: ð3:5Þ

In order to save space we have refrained from depicting most
of the diagrams contributing to ΔQ at two and three loops.
Specifically, we do not show those which can straightfor-
wardly be reconstructed from the diagrams shown in Figs. 8
and 9 of Ref. [9], by considering the various ways in which a
single TQ vertex (with two or three internal legs), and cubic
vertices derived from Eq. (2.12), may be assigned to each
diagram.However, at three loops there are also diagramswith
four internal legs emerging from the TQ vertex, which are not
considered in Ref. [9], since of course such diagrams do not
feature in a β-function computation for a theory with only
cubic interactions. These diagrams, which furnish the leading
contribution in Q at three loops, are depicted in Fig. 2. We
have therefore been obliged to compute these Feynman
diagrams ourselves; the results are given in the Appendix.
The results for ΔQ in terms of the simple pole coefficients at
two and three loops are given in Eqs. (A6) and (A8), with
Eqs. (A9) and (A10); in the absence of the full set of diagrams,
these detailed results should facilitate following our calcu-
lations. Upon inserting the values of these coefficients from
Eqs. (A1) and (A4), (A7), we obtain

Δð2Þ
Q ¼ −QðQ − 1ÞðQ − 2Þ

�
1

4
g4 þ 1

6
g3h

�

þQðQ − 1Þ
�

7

144
Ng4 −

49

144
g4 −

1

4
g3hþ 7

144
g2h2

�

þQ

�
−

11

432
Ng4 þþ 13

216
g4 þ 1

9
g3hþ 11

432
g2h2

�
;

ð3:6Þ

(a) (b) (c)

(d) (e) (f)

(g)

FIG. 2. Three-loop diagrams at leading Q for γTQ
.

FIG. 1. One-loop diagram for γTQ
.
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and

Δð3Þ
Q ¼QðQ−1ÞðQ−2ÞðQ−3Þ

�
1

4
g6þ1

4
g5hþ1

8
g4h2

�
þQðQ−1ÞQ−2Þ

�
Ng6

�
1

6
ζ3−

35

288

�
þ 11

288
Ng5h−

�
ζ3þ

7

18

�
g6

−
49

36
g5h−

�
ζ3−

89

288

�
g4h2þ1

6

�
ζ3−

35

48

�
g3h3

�
þQðQ−1Þ

�
449

2592
Ng6þ 73

432
Ng5h−

119

5184
Ng4h2þ 11

3456
N2g6

−
749

324
g6−

�
ζ3−

37

432

�
g5hþ1

2

�
ζ3−

8131

2592

�
g4h2þ185

864
g3h3þ 143

10368

�
þQ

�
13

31104
N2g6−

29

3888
Ng6−

49

576
g5h

þ 193

15552
g4h2−

1

6

�
ζ3−

1133

648

�
g6−

17

162
g5h−

1

6

�
ζ3−

5881

2592

�
g4h2−

157

5184
g3h3−

109

10368
g2h4

�
: ð3:7Þ

Finally, upon inserting the FP values for g and h given by Eq. (2.13), we obtain

ΔQ ¼
�
2 −

ϵ

2

�
Qþ 1

N

�
ð−3Q2 þ 4QÞϵþ

�
7

4
Q2 −

8

3
Q

�
ϵ2 þ

�
11

16
Q2 −

7

9
Q

�
ϵ3 þ…

�
þ 1

N2

�
44ð−3Q2 þ 4QÞϵ

þ
�
−45Q3 þ 857

2
Q2 −

1568

3
Q

�
ϵ2 þ

��
36ζ3 þ

93

4

�
Q3 −

�
108ζ3 þ

3743

24

�
Q2 þ

�
72ζ3 þ

4105

18

�
Q

�
ϵ3 þ…

�

þ 1

N3

�
1936ð−3Q2 þ 4QÞϵþ ð−9000Q3 þ 59520Q2 − 66872QÞϵ2 þ

�
ð4536ζ3 þ 4374ÞQ3 − ð3996ζ3 þ 5898ÞQ2

−
�
4212ζ3 −

160885

2

�
Q

�
ϵ3 þ…

�
þ… ð3:8Þ

This agrees with Eq. (2.15) as far as terms of order 1
N2; the

results at Oð 1
N3Þ are not yet available for the quartic theory

for general values of Q. However the agreement at least
persists for Q ¼ 1, since for this value the computation
reduces to that of the scaling dimension for a single field ϕ;
and as explained in more detail in the Appendix, the
anomalous dimension of ϕ was shown in Ref. [9] to agree
up to Oð 1

N3Þ in the cubic and quartic theories.
The ellipses in Eq. (3.8) indicate terms originating from

higher-loop contributions. Since these are eighth-order and
higher in the couplings, we see from Eq. (2.13) that they are
Oðϵ4Þ and higher; but they may appear at any order in 1=N,
bearing in mind that factors of N may be produced by
tensor contractions within diagrams, as may be seen in
Eq. (A6), for instance.

IV. CONCLUSIONS

In this paper we have made a detailed comparison in
d ¼ 6 − ϵ dimensions between perturbation theory for ϕ3

theory and large-N results for ϕ4 theory, at the fixed points
of the respective theories. We showed that, for the scaling
dimension of a set of operators of fixed charge Q, this
comparison may be carried out to all relevant orders inQ at
Oð1NÞ and Oð 1

N2Þ. The results support the conjecture that
essentially the renormalizable theories in d ¼ 4 − ϵ and
d ¼ 6 − ϵ correspond to the same conformal theory at their
respective fixed points, and provide data on the d ¼ 6 − ϵ

side for further checks atOð 1
N3Þ when corresponding results

become available for d ¼ 4 − ϵ. It would be interesting to
explore further the relationship between these two theories
at these FPs and the other simple renormalizable scalar
theory, to wit ϕ6 in d ¼ 3 − ϵ. This paper and the general
canon of research to which they contribute have obvious
relevance to the theory of critical phenomena. A different
question is whether these techniques could be applied to
other renormalizable, classically scale invariant theories
such as, in particular, QCD. This will involve formidable
technical obstacles evaded in the elementary scalar case,
but clearly any progress in the understanding of QCD
remains a primary goal for particle physicists.
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APPENDIX: DETAILS OF CALCULATIONS

As mentioned in the main text, the expressions for the
divergent contributions for diagrams with up to three
internal lines emerging from the TQ vertex can be obtained
from Ref. [9]. We denote by ca the simple pole coefficient
from the diagram (a) in Fig. 8 of Ref. [9], and so on. Once
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again we emphasize that by ca we mean precisely the simple pole coefficient from the Feynman integral, whereas the pole
terms given in Figs. 7–9 of Ref. [9] also include a symmetry factor. We list here the values of ca–cu as derived from Ref. [9],
suppressing a factor of ð16π2Þ−L at L loops.

ca ¼ −
1

3
;

cb ¼
1

8
; cc ¼ −

7

72
; cd ¼

1

2
;

ce ¼ −
1

8
; cf ¼ 1

24
; cg ¼

5

48
; ch ¼ ci −

47

1296
; cj ¼

23

432
;

ck ¼
5

81
; cl ¼

11

324
; cm ¼ −

19

486
; cn ¼ co ¼

11

1296
;

cp ¼ 11

216
; cq ¼ −

1

24
; cr ¼

1

3

�
ζ3 −

23

24

�
; cs ¼

1

3

�
ζ3 −

29

24

�
; ct ¼ −

1

3
;

cu ¼ −
1

3

�
ζ3 −

1

3

�
: ðA1Þ

As we said earlier, we have found it convenient to reconstruct from Ref. [9] the expression for the anomalous dimension
γϕ in terms of the simple-pole coefficients of two-point diagrams. We easily find

γϕ ¼ −
1

2
cAg2 −

1

2
NcCg4 − ðcC þ cBÞg4 − cBg3h −

1

2
cCg2h2 −

3

2
ðcDaD þ � � � þ cLaLÞ þ… ðA2Þ

where (as defined earlier) cA is the simple pole coefficient from the diagram (a) in Fig. 7 of Ref. [9], and so on, and
furthermore the corresponding combinations of g and h are given by

aD ¼ ðN þ 2Þg6 þ 3g5hþ g4h2;

aE ¼ g6 þ 2g5hþ g4h2;

aF ¼ g6 þ 1

2
Ng5h;

aG ¼ ðN þ 2Þðg6 þ g5hÞ;

aH ¼
�
1

2
N þ 1

�
g6 þ ðN þ 1Þg5h;

aI ¼ g6 þ g4h2;

aJ ¼
1

2
Ng6;

aK ¼
�
3

2
N þ 1

�
g6 þ 1

2
Ng4h2;

aL ¼
�
1

4
N2 þ 1

�
g6 þ 1

2
Ng4h2: ðA3Þ

The values of the coefficients cA etc are given by (once again suppressing factors of 16π2)

cA ¼ −
1

3
;

cB ¼ −
1

9
; cC ¼ 11

216
;

cD ¼ −
7

1296
; cE ¼ −

71

1296
; cF ¼ 103

3888
; cG ¼ 1

81
; cH ¼ 121

3888
;

cI ¼
1

9

�
ζ3 −

7

36

�
; cJ ¼ −

23

11664
; cK ¼ −

103

5832
; cL ¼ 13

11664
: ðA4Þ
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Inserting the values from Eqs. (A3) and (A4) into Eq. (A2),
and also specializing to the fixed-point couplings in
Eq. (2.13), we easily find the results given in Ref. [9]

γϕ¼
1

N

�
ϵ−

11

12
ϵ2−

13

144
ϵ3
�
þ 1

N2

�
44ϵ−

835

6
ϵ2þ6865

72
ϵ3
�

þ 1

N3

�
1936ϵ−16352ϵ2þ1

2
ð54367−7344ζ3Þϵ3

�
þ…

ðA5Þ

Using Eq. (2.2), the 1=N and 1=N2 terms in the expansion
may be seen [9] to agree with those for η1 and η2 in
Eq. (2.14). Furthermore, as mentioned earlier, in Ref. [9]
the 1=N3 terms were shown to agree with the result for η3
in Ref. [32].
The one-loop result for the scaling dimension of TQ was

given in terms of simple pole coefficients in Eq. (3.2). The
corresponding two-loop result in terms of the simple pole
coefficients is

Δð2Þ
Q ¼ −

1

3
QðQ − 1ÞðQ − 2Þð6cbg4 þ ccg3hÞ

þQðQ − 1Þ
�
1

2
Nccg4 þ ð3cb þ 2cc þ cdÞg4

þ 2cbg3hþ 1

2
ccg2h2

�
−Q

�
1

2
NcCg4 þ ðcC þ cBÞg4

þ cBg3hþ 1

2
cCg2h2

�
: ðA6Þ

At three loops, the divergences for diagrams with two or
three internal lines emerging from the TQ vertex can be
extracted from Ref. [9], as described earlier. However, at
three loops there are diagrams with four internal lines
which give the contribution leading in Q. These are
depicted in Fig. 2. We emphasize that vertices are always
denoted by a small circle; a crossing of two propagators
without such a circle, as seen in Figs. 2(d)–2(g), is not a
vertex. Three-loop diagrams with four internal lines of
course did not form part of the β-function computation and
therefore no diagrams of this structure were evaluated in
Ref. [9]. We have therefore been obliged to compute their
divergences ab initio. The procedure was largely straight-
forward. Since they are all only logarithmically divergent,
we may use “infrared rearrangement” which entails judi-
ciously setting external momenta to zero, leaving only one
incoming and one outgoing momentum. This should if
possible be done in such a way as to avoid introducing
spurious infrared divergences. Ultraviolet subdivergences
are subtracted using the R̄ procedure. In the case of
Fig. 2(b) it was not possible to avoid spurious infrared
divergences, and we augmented the process with the R̄�
procedure of using a modified infrared convergent propa-
gator. All these methods are comprehensively described in
Ref. [29] and also summarized in (for instance) Ref. [33].
We have denoted the simple pole coefficients correspond-
ing to the diagrams in Figs. 2(a)–2(g) by da−g in order to
avoid confusion with the coefficients extracted from
Ref. [9]. These new coefficients are given by

da ¼
1

8
; db ¼ −

1

16
; dc ¼ −

5

48
; dd ¼ de ¼

1

24
; df ¼

1

8
; dg ¼

1

3
: ðA7Þ

The final result for the three-loop contribution to the anomalous dimension of TQ in terms of simple pole coefficients is

Δð3Þ
Q ¼ QðQ − 1ÞðQ − 2ÞðQ − 3Þ

��
da þ

1

2
db þ

1

2
dc þ dd

�
g6 þ 1

2
ðde þ dfÞg5hþ 1

8
dgg4h2

�

þ 1

2
QðQ − 1ÞðQ − 2Þðceað3Þe þ � � � þ cua

ð3Þ
u Þ þ 3

2
QðQ − 1Þðceað2Þe þ � � � þ cua

ð2Þ
u Þ

−
3

2
QðcDaD þ � � � þ cLaLÞ; ðA8Þ

where the combinations of g and h for diagrams with two internal lines emerging from the TQ vertex are denoted as að2Þe etc.
and given by
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að2Þe ¼ 3g6 þ 4g5hþ g4h2;

að2Þf ¼ 2ðN þ 3Þg6 þ 8g5hþ 2g4h2 þ 2g3h3;

að2Þg ¼ 3g6 þ 4g5hþ g4h2;

að2Þh ¼
�
1

2
N þ 2

�
g6 þ 2g5hþ 1

2
g4h2;

að2Þi ¼ ðN þ 4Þg6 þ 2g5hþ g4h2 þ g3h3;

að2Þj ¼
�
1

2
N þ 2

�
g6 þ 2g5hþ 1

2
g4h2;

að2Þk ¼ ðN þ 4Þg6 þ ðN þ 2Þg5hþ g4h2 þ g3h3;

að2Þl ¼ 1

2
ðN þ 4Þg6 þ Ng5hþ 1

2
g4h2 þ g3h3;

að2Þm ¼ 2ðN þ 1Þg6 þ 1

2
ðN þ 2Þg4h2 þ 1

2
g2h4;

að2Þn ¼
�
1

4
N2 þ 2

�
g6 þ 1

2
Ng4h2 þ 1

4
g2h4;

að2Þo ¼ ðN þ 1Þg6 þ g4h2;

að2Þp ¼ ðN þ 4Þg6 þ g4h2;

að2Þq ¼ 3g6 þ 2g5h;

að2Þr ¼ 2g6 þ 2g5h;

að2Þs ¼ 3g6 þ 2g4h2;

að2Þt ¼ 2g6 þ g4h2;

að2Þu ¼ 5g6 þ 4g5hþ g4h2; ðA9Þ

and for those with three internal lines emerging from the TQ

vertex are denoted as að3Þe etc and given by

að3Þe ¼ 2g6 þ g5h;

að3Þf ¼ g6 þ g5h;

að3Þg ¼ 2g6 þ 2g5h;

að3Þh ¼ 1

2
Ng6 þ g4h2;

að3Þi ¼ 2g6;

að3Þj ¼ 0;

að3Þk ¼
�
1

2
N þ 1

�
g6 þ 1

2
g4h2;

að3Þl ¼ g6;

að3Þm ¼ 0;

að3Þn ¼ 0;

að3Þo ¼ 0;

að3Þp ¼
�
1

4
N þ 1

2

�
g5hþ 1

4
g3h3;

að3Þq ¼ 1

2
g5hþ 1

2
g4h2;

að3Þr ¼ 1

6
Ng6 þ 1

2
g5hþ 1

6
g3h3;

að3Þs ¼ 1

2
g5h;

að3Þt ¼ g5h;

að3Þu ¼ g5hþ g4h2: ðA10Þ

As explained in the main text, upon inserting the values of
the simple pole coefficients from Eqs. (A1), (A4), and (A7),
the expressions Eqs. (A6) and (A8) lead to Eqs. (3.6) and
(3.7) respectively.
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