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Generalizing to relativistic exponential scaling and using the theory of noise from quantum fluctuations,
it has been shown that one vacuum (Rindler, Hartle-Hawking, or Gibbons-Hawking for the cases of the
uniformly accelerated detector, black hole, and de Sitter universe, respectively) can be understood as
resulting from the scaling of quantum noise in another vacuum. We explore this idea more generally to
establish a flat spacetime and curved spacetime analogy. For this purpose, we start by examining noise
kernels for free fields in some well-known curved spacetimes, e.g., the spacetime of a charged black hole,
the spacetime of a Kerr black hole, Schwarzschild-de Sitter, Schwarzschild anti–de Sitter, and Reissner-
Nordstrom de Sitter spacetimes. Here, we consider a maximal analytical extension for all these spacetimes
and different vacuum states. We show that the exponential scale transformation is responsible for the
thermal nature of radiation.
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I. INTRODUCTION

The Unruh effect refers to the thermal fluctuations
experienced by a detector while undergoing linear motion
with uniform acceleration in a Minkowski vacuum [1–6].
This thermality can be demonstrated by tracing the vacuum
state of the field over the modes beyond the accelerated
detector’s event horizon. However, the event horizon is well
defined only if the detector moves with eternal uniform
linear acceleration, wherein the particle’s speed asymptoti-
cally approaches the speed of light, entailing the formation
of an event horizon. In contrast, in the circular case,
velocity changes direction, but its magnitude remains
constant, and there is no event horizon. In the realistic
Unruh case, eternal uniform linear acceleration is impos-
sible; hence the notion of the horizon is difficult to
envisage. In [7] the effect was studied as a kinematic
effect in terms of influence functionals. In this context, also
see [8]. Thermal radiance from a black hole or observed by
an accelerated detector is usually viewed as a geometric
effect related to the existence of an event horizon. In [9,10],
it was proposed that the detection of thermal radiance in
these systems is a local, kinematic effect arising from the
vacuum being subjected to a relativistic exponential scale
transformation.
Generalizing to relativistic exponential scaling and using

the theory of noise kernel from quantum fluctuations [11],
it has been shown that one vacuum (Rindler, Hartle-
Hawking, or Gibbons-Hawking for the cases of the

uniformly accelerated detector, black hole, and de Sitter
universe, respectively) can be understood as resulting from
the scaling of quantum noise in another.
This paper explores the idea of relativistic exponential

scaling and influence function formalism more generally to
establish a flat spacetime and curved spacetime analogy.
For this purpose, in Sec. II, we briefly discuss relativistic
exponential scaling. In Sec. III, a sketch of the influence
functional formalism is provided. The derivation of this
formalism in different spacetimes is essentially the same as
in the Unruh effect. Hence, in Sec. IV, the key derivation of
the Unruh effect using exponential scale transformation and
influence functional formalism is brought out. This for-
malism is applied in the other examples discussed. Thus,
for example, the Hawking radiation for 1þ 1 dimensional
charged black hole, Kerr black hole, 1þ 1 dimensional
Schwarzschild de Sitter, Schwarzschild anti–de Sitter, and
Reissner-Nordstrom de-Sitter spacetimes are studied in
Secs. V, VI, VII, VIII, IX respectively, using exponential
scale transformation and the influence functional formal-
ism. Used is made of maximal analytical extension for all
these spacetimes and different vacuum states. The temper-
ature obtained is consistent with that in the literature,
obtained in different contexts. We finally make our
conclusions.

II. RELATIVISTIC EXPONENTIAL SCALING

There exist several well-established methods in quantum
field theory in curved spacetimes [12,13] to study the
particle creation from a black hole or Unruh effect. The
central aspect of the Unruh effect is that the vacuum state
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where thermal radiance is observed (e.g., the Rindler
vacuum), is related to the inertial vacuum state
(Minkowski vacuum) by an exponential scale transforma-
tion. Similarly, for the Hawking radiation, the vacuum
state where thermal radiance is observed (e.g., the
Schwarzschild vacuum which is also known as the
Boulware vacuum), is related to the inertial vacuum state
(e.g., Kruskal vacuum which is also known as the Hartle-
Hawking vacuum) by an exponential scale transformation.
Due to the presence of the exponential terms, Rindler
spacetime used by accelerated observers covers only a
wedge-shaped region of Minkowski spacetime. Similarly,
for the Hawking effect, the Schwarzschild coordinate
covers only a wedge-shaped patch of the Kruskal coor-
dinate [9,10]. Hence, using these coordinate systems, one
can see the Hawking radiation and the Unruh effect [1,14].
One can also consider another vacuum state such as the
Unruh state for calculating Hawking radiation [12,15]. The
Unruh vacuum state corresponds to the Boulware vacuum
in the far past and the Hartle-Hawking vacuum in the far
future [15,16]. In this paper, we also show that the
exponential scale transformation is responsible for the
thermal nature of radiation of these spacetimes, thus

highlighting a uniform approach to this phenomenon.
Further, this also strives to build up a geometry, quantum
statistical mechanical equivalence.

III. INFLUENCE FUNCTIONAL

We consider the scenario wherein a detector is used to
probe the unperturbed state of a scalar field. The detector
and the massless scalar field can be considered to be the
system and its bath, respectively. The system interacts
weakly with the massless scalar field. We assume that at a
given initial time, the system and the environment are
uncorrelated. Thus, the total density matrix of the total
system (systemþ environment) at the initial time can be
written as the density matrix of the system outer product
with the density matrix of the environment. As we are
interested in the time evolution of the system of interest,
which, here, is the detector, the field degrees of freedom
are traced out. This provides the reduced density matrix
of the detector, taking into account the influence of the
field. This is ensconced in the form of the influence
functional [17–23], which can be generically shown
to be

F ½x; x0� ¼ exp

�
−
i
ℏ

Z
τ

0

dτ
Z

s

0

dτ0ðxðτÞ − xðτ0ÞÞ½μðτ; τ0Þðxðτ0Þ þ x0ðτ0ÞÞ − iνðτ; τ0Þðxðτ0Þ − x0ðτ0ÞÞ�
�
; ð1Þ

where νðt; t0Þ and μðt; t0Þ are the noise and dissipation
kernels, respectively. These kernels can be written com-
pactly as

ςðtðτÞ; tðτ0ÞÞ ¼
Z

dk Iðk; τ; τ0Þe−iω½tðτÞ−tðτ0Þ�

¼ νðt; t0Þ þ iμðt; t0Þ; ð2Þ

where Iðk; τ; τ0Þ is the field (bath) spectral density.
The influence functional is a path integral approach to

study the dynamics of the system of interest taking into
account the effects of the environment, sometimes called
the reservoir. From the influence functional, characterizing
the environment, one obtains what is known as the
propagator. The propagator can then be used as a capsule
to generate the final state of the system of interest, given its
initial state, hence the name propagator. This provides a
flexible tool to approach a vast variety of problems, ranging
from the early universe, black holes [24] to decoherence in
the quantum to classical transition [25]. Here, a paradigm
model is that of quantum Brownian motion [18,19]. The
noise and dissipation kernels characterizing the influence
kernel are determined by the spectral density [26]. In order
to obtain true irreversible dynamics, a continuous distri-
bution of bath modes can be introduced, such that the

spectral density is represented by a smooth function of the
environment’s frequencies.
In this work, we explore the idea of relativistic expo-

nential scaling and influence function formalism more
generally with the aim to establish a flat spacetime and
curved spacetime analogy. For this purpose, we examine
noise kernels for free fields in some well-known curved
spacetimes, e.g., the spacetimes of a charged black hole, a
Kerr black hole, Schwarzschild-de Sitter, Schwarzschild
anti–de Sitter, and Reissner-Nordstrom de Sitter space-
times. The essential derivation of this formalism is the one
involved in the Unruh effect because the relation between
the tortoise and the Kruskal coordinates is similar to the
Rindler coordinate and the inertial coordinate. We briefly
review the key derivation of the Unruh effect using
exponential scale transformation and influence functional
formalism in the next section.

IV. UNRUH EFFECT

A uniformly accelerated observer can see a part of
Minkowski spacetime. The line element for this observer
in Minkowski spacetime is given by [1,4,27],

ds2 ¼ e2aξð−dτ2 þ dξ2Þ þ dy2 þ dz2: ð3Þ
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The observer is uniformly accelerated in the x direction,
and a is the four acceleration vector. On the other hand, the
Minkowski metric is given by,

ds2 ¼ −dt2 þ dx2 þ dy2 þ dz2: ð4Þ

The fy; zg coordinates are the same here. The following
transformation connects the accelerated observer and the
inertial observer,

tðτÞ ¼ 1

a
eaξ sinhðaτÞ; xðτÞ ¼ 1

a
eaξ coshðaτÞ: ð5Þ

Here, we see that the Rindler coordinates are related to
the inertial coordinates by an exponential scale trans-
formation. Hence, Rindler spacetime used by accelerated
observers covers only a wedge-shaped region of
Minkowski spacetime. Now we consider a two-dimen-
sional massless scalar field ϕ in flat spacetime with mode
decomposition

ϕðxÞ ¼
ffiffiffiffiffiffiffiffi
2=L

p X
k

½qþk cos kxþ q−k sin kx�: ð6Þ

The Lagrangian for the field can be expressed as a sum of
oscillators with amplitude q�k for each mode as

LðsÞ ¼ 1

2

Xþ−

σ

X
k

½ð _qσkÞ2 − k2ðqσkÞ2�: ð7Þ

Here we consider an observer undergoing constant accel-
eration a in this field with the following trajectory

xðτÞ ¼ 1

a
coshðaτÞ; tðτÞ ¼ 1

a
sinhðaτÞ: ð8Þ

We want to show via the influence functional method that
the observer detects thermal radiation. The system-field
interaction is taken as [10,28],

LintðxÞ ¼ −ϵrϕðxÞδðxðτÞÞ: ð9Þ

They are coupled at the spatial point xðτÞ with coupling
strength ϵ and r is the detector’s internal coordinate.
Integrating out the spatial variable, we find that

LintðτÞ ¼
Z

LintðxÞdx ¼ −ϵrϕðxðτÞÞ: ð10Þ

The scalar field is characterized by the spectral density,
which in the discrete case is given by [10,28],

Iðk; τ; τ0Þ ¼
Xþ−

σ

X
n

δðk − knÞcσnðτÞcσnðτ0Þ
2ωn

: ð11Þ

Here kn ¼ ωn ¼ jknj, as we take a massless scalar field.
cþn ðτÞ ¼ ϵ

ffiffiffiffiffiffiffiffi
2=L

p
cos kxðτÞ, c−n ðτÞ ¼ ϵ

ffiffiffiffiffiffiffiffi
2=L

p
sin kxðτÞ are

effective coupling constants for the accelerated observer
coupled to the field [10,28]. If we use

P
n →

L
2π

R
dk,

Iðk; τ; τ0Þ becomes [10,28],

Iðk; τ; τ0Þ ¼ IðkÞ cos k½xðτÞ − xðτ0Þ�; ð12Þ

where IðkÞ ¼ ϵ2

2πω is the spectral density of the scalar field
seen by an inertial detector. For the case where the scalar
field is initially in a vacuum, a scenario that is apt for the
present work, the influence of the quantum field on the
detector is expressed in terms of an influence kernel
[10,28], appearing in the exponent of the influence func-
tional and has the form,

ςðtðτÞ; tðτ0ÞÞ ¼ 1

2

Z
dk IðkÞe−ik½xðτÞ−xðτ0ÞþtðτÞ−tðτ0Þ�

þ 1

2

Z
dk IðkÞe−ik½xðτ0Þ−xðτÞþtðτÞ−tðτ0Þ�

¼ 1

2

Z
dk IðkÞ½e−2ikeaΣ sinhðaΔÞ=a

þ e−2ike
−aΣ sinhðaΔÞ=a�; ð13Þ

where 2Σ ¼ τ þ τ0, Δ ¼ τ − τ0 and use is made of Eq. (8).
Expanding the exponential terms in the above equations in
terms of the Bessel functions of imaginary order, ςðτ; τ0Þ
can be expressed as,

ςðτ; τ0Þ

¼
Z

∞

0

dkGðkÞ
�
coth

�
πk
a

�
cos kðτ − τ0Þ − i sin kðτ − τ0Þ

�
;

ð14Þ

where GðkÞ¼ 2
πasinhðπk=aÞ

R
∞
0 dk0Iðk0Þ½K2ik0=að2k0eaΣ=aÞþ

K2ik0=að2k0e−aΣ=aÞ� (for more details, see Appendix A).
From Eq. (14), the temperature associated with the Unruh
effect is seen as T ¼ a

2πkB
[28]. Here a is the acceleration of

the detector and kB is the Boltzman constant. This
formalism will be applied subsequently.

V. HAWKING RADIATION FOR 1+ 1
DIMENSIONAL CHARGED BLACK HOLE

Here we consider a massless minimal coupled scalar
field in a 1þ 1 dimensional charged black hole (Reissner-
Nordstrom black hole). The line element of this black hole
is given by [29–34],
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ds2 ¼
�
1 −

2M
r

þQ2

r2

�
dt2 −

�
1 −

2M
r

þQ2

r2

�−1
dr2

¼
�
1 −

2M
r

þQ2

r2

�
ðdt2 − dr⋆2Þ; ð15Þ

where dr⋆ ¼ dr

ð1−2M
r þQ2

r2
Þ
¼ dr

fðrÞ, fðrÞ ¼ ð1 − 2M
r þ Q2

r2 Þ. Here
M is the mass of the black hole and Q is the charge of the
black hole. From the equation fðrÞ ¼ 0, one can get two

horizons as r� ¼ ðM �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
Þ, where r� are the

event horizon and the Cauchy horizons, respectively.
Surface gravities at the horizons is defined as

κ� ¼ jf0ðrÞj
2

jr ¼ r�. Here κþ is the surface gravity at the
event horizon and κ− is the surface gravity at the Cauchy
horizon. In terms of the surface gravities and horizons, the
tortoise coordinates, r⋆, can be written as
r⋆ ¼ 1

κþ
ln j r

rþ
− 1j − 1

κ−
ln j r

r−
− 1j. Now using the expres-

sion of surface gravity at the event horizon, we define
Kruskal coordinates for the event horizon as,

r̄⋆ðtÞ ¼ 1

κþ
eκþr

⋆
coshðκþtÞ; t̄ðtÞ ¼ 1

κþ
eκþr

⋆
sinhðκþtÞ:

ð16Þ

Here, the exponential transformation makes its appearance.
Thus, the ordinary coordinate of a charged black hole (t, r⋆)
covers only a wedge-shaped patch of the Kruskal coor-
dinate. A detector at constant r⋆ is similar to the case of the
accelerating observer, as can be seen from an analogy with
Eq. (8). The spectral density, in analogy with Eq. (12), is
given by,

Iðk; t; t0Þ ¼ IðkÞ cos k½r̄⋆ðtÞ − r̄⋆ðt0Þ�; ð17Þ

where IðkÞ ¼ ϵ2

2πω is the spectral density of the scalar field,
as seen by an inertial detector. The influence of the
quantum field on the detector is expressed in terms of
the influence kernel,

ςðt; t0Þ ¼ 1

2

Z
dk IðkÞe−ik½r̄⋆ðtÞ−r̄⋆ðt0Þþt̄ðtÞ−t̄ðt0Þ�

þ 1

2

Z
dk IðkÞe−ik½r̄⋆ðt0Þ−r̄⋆ðtÞþt̄ðtÞ−t̄ðt0Þ�

¼
Z

∞

0

dkGðkÞ
�
coth

�
πk
κþ

�
cos kðt − t0Þ

− i sin kðt − t0Þ
�
; ð18Þ

where GðkÞ ¼ 2
πκþ

sinhðπk=κþÞ
R
∞
0 dk0Iðk0Þ × ½K2ik0=κþ ×

ð2k0eκþΣ=κþÞ þ K2ik0=κþð2k0e−κþΣ=κþÞ� (for more details,
see Appendix A. The calculation is similar but one has to

take surface gravity κþ instead of acceleration a and
appropriate coordinate system). From Eq. (18), it can be
seen that temperature associated with Hawking radiation

for 1þ 1 dimensional charged black hole is T ¼ κþ
2πkB

¼ffiffiffiffiffiffiffiffiffiffiffi
M2−Q2

p
2πkBr2þ

[28]. From the expression of the temperature, it

follows that for the nonextreme case (M ≠ Q), temperature
is not zero, but it is zero for the extreme case (M ¼ Q).
One can also arrive at the result from Eq. (18), by writing

the influence kernel in terms of null coordinates (U and V)
as [35],

ςðt; t0Þ ¼ 1

2

Z
dk IðkÞe−ikðUðtÞ−Uðt0ÞÞ

þ 1

2

Z
dk IðkÞe−ikðVðtÞ−Vðt0ÞÞ; ð19Þ

where U ¼ t̄ − r̄⋆ ¼ − 1
κþ
e−κþu and V ¼ t̄þ r̄⋆ ¼ 1

κþ
eκþv

are the Kruskal coordinates. Here u ¼ t − r⋆ and v ¼ tþ
r⋆ are the ordinary null coordinates for charged black hole.
For a detector at fixed r⋆ the influence kernel can be written
exactly as Eq. (18). One can also consider Unruh vacuum
state, using the null coordinatesU and v, for calculating the
Hawking radiation for 1þ 1 dimensional charged black
hole. The influence kernel can be written in terms of null
coordinates (U and v) as,

ςðt; t0Þ ¼ 1

2

Z
dk IðkÞe−ikðUðtÞ−Uðt0ÞÞ

þ 1

2

Z
dk IðkÞe−ikðvðtÞ−vðt0ÞÞ: ð20Þ

For a detector at fixed r⋆ the influence kernel (20), using
the Unruh vacuum state, can be written as,

ςðt; t0Þ

¼
Z

∞

0

dkGðkÞ
�
coth

�
πk
κþ

�
cos kðt − t0Þ − i sin kðt − t0Þ

�

þ 1

2

Z
dk IðkÞe−ikðt−t0Þ; ð21Þ

where GðkÞ ¼ 2
πκþ

sinhðπk=κþÞ
R∞
0 dk0Iðk0Þ × ½K2ik0=κþ ×

ð2k0e−κþΣ=κþÞ� (for more details, see Appendix B). As v
is not same as V, we get a form different from that of
Eq. (18). From Eq. (21), it can be seen that temperature
associated with Hawking radiation for 1þ 1 dimensional

charged black hole is T ¼ κþ
2πkB

¼
ffiffiffiffiffiffiffiffiffiffiffi
M2−Q2

p
2πkBr2þ

. Thus, we get the

same temperature using the Unruh vacuum state instead of
the Hartle-Hawking vacuum state.
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VI. HAWKING RADIATION FROM THE KERR
BLACK HOLE

Here we consider a massless minimal coupled scalar
field in Kerr black holes. Near the horizon, the scalar field
theory in a 4-d Kerr black hole spacetime can be reduced to
the 2-d field theory [36].
In Boyer-Lindquist coordinates, Kerr metric is given by

[37–44],

ds2 ¼ −
Δ − a2sin2θ

Σ
dt2 − 2asin2θ

r2 þ a2 − Δ
Σ

dtdϕ

þ ðr2 þ a2Þ2 − Δa2sin2θ
Σ

sin2θdϕ2 þ Σ
Δ
dr2 þ Σdθ2;

ð22Þ

where

Σ ¼ r2 þ a2cos2θ;

Δ ¼ r2 − 2Mrþ a2

¼ ðr − rþÞðr − r−Þ: ð23Þ
Here M is the mass of the black hole, a is the angular
momentum per unit mass of the black hole, and r ¼ r� is
the event horizon and the Cauchy horizon, respectively.
The determinant of the above metric is

ffiffiffiffiffiffi
−g

p ¼ Σ sin θ; ð24Þ

and the inverse of the above metric of (t;ϕ) parts is given
by [36],

gtt ¼ −
ðr2 þ a2Þ2 − Δa2sin2θ

ΣΔ
;

gϕϕ ¼ Δ − a2sin2θ
ΣΔsin2θ

;

gtϕ ¼ −
aðr2 þ a2 − ΔÞ

ΣΔ
: ð25Þ

The action for a massless minimal coupled scalar field in
the 4-d Kerr spacetime is given by [36],

S½φ� ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
φ∇2φ

¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
φ
1

Σ

�
−
�ðr2 þ a2Þ2

Δ
− a2sin2θ

�
∂2
t

−
2aðr2 þ a2 − ΔÞ

Δ
∂t∂ϕ þ

�
1

sin2θ
−
a2

Δ

�
∂2
ϕ

þ ∂rΔ∂r þ
1

sin θ
∂θ sin θ∂θ

�
φ: ð26Þ

After taking the limit r → rþ and the leading order terms,
we get,

S½φ� ¼ 1

2

Z
d4x sin θφ

�
−
ðr2þ þ a2Þ2

Δ
∂2
t

−
2aðr2þ þ a2Þ

Δ
∂t∂ϕ −

a2

Δ
∂2
ϕ þ ∂rΔ∂r

�
φ: ð27Þ

Now we transform the coordinates to the locally non-
rotating coordinate system, given by [36],

�
ψ ¼ ϕ −ΩHt;

ξ ¼ t;
ð28Þ

where

ΩH ≡ a
r2þ þ a2

: ð29Þ

Using ðξ; r; θ;ψÞ coordinates, the action (27) can be
rewritten as [36],

S½φ� ¼ a
2ΩH

Z
d4x sinθφ

�
−

1

fðrÞ∂
2
ξ þ ∂rfðrÞ∂r

�
φ; ð30Þ

where

fðrÞ≡ΩHΔ
a

: ð31Þ

Applying the spherical harmonics expansion φðxÞ ¼P
l;m φlmðξ; rÞYlmðθ;ψÞ, finally one can get the effective

2-dimensional action as [36],

S½φ� ¼ a
ΩH

X
l;m

1

2

Z
dξdrφlm

�
−

1

fðrÞ ∂
2
ξ þ ∂rfðrÞ∂r

�
φlm:

ð32Þ

The effective 2-dimensional metric from the above action
can be expressed as [36],

ds2 ¼ −fðrÞdξ2 þ 1

fðrÞ dr
2: ð33Þ

Hence, in the near-horizon region, the geometry of Kerr
spacetime is the same as the Rindler spacetime when
rþ > r−. One can rewrite this metric as,

ds2 ¼ fðrÞð−dξ2 þ dr⋆2Þ; ð34Þ

where dr⋆ ¼ dr
fðrÞ. Surface gravity at the event horizon is

defined as κþ ¼ jf0ðrÞj
2

jr ¼ rþ. Now using the expression of
the surface gravity, we define Kruskal coordinates as,
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r̄⋆ðξÞ ¼ 1

κþ
eκþr

⋆
coshðκþξÞ; t̄ðξÞ ¼ 1

κþ
eκþr

⋆
sinhðκþξÞ:

ð35Þ

Here we again come across the exponential transformation
relation. Thus, in the near-horizon region, the ordinary
coordinate of Kerr black hole (ξ, r⋆) covers only a wedge-
shaped patch of the Kruskal coordinate. For a detector at
constant r⋆, the case is similar to an accelerating observer,
as can be seen from an analogy with Eq. (8). The spectral
density, in analogy with Eq. (12), is given by,

Iðk; ξ; ξ0Þ ¼ IðkÞ cos k½r̄⋆ðξÞ − r̄⋆ðξ0Þ�; ð36Þ

where IðkÞ ¼ ϵ2

2πω is the spectral density of the scalar field
seen by an inertial detector. The influence of the quantum
field on the detector is expressed in terms of the influence
kernel, having the form

ςðξ; ξ0Þ ¼ 1

2

Z
dk IðkÞe−ik½r̄⋆ðξÞ−r̄⋆ðξ0Þþt̄ðξÞ−t̄ðξ0Þ�

þ 1

2

Z
dk IðkÞe−ik½r̄⋆ðξ0Þ−r̄⋆ðξÞþt̄ðξÞ−t̄ðξ0Þ�

¼
Z

∞

0

dkGðkÞ
�
coth

�
πk
κþ

�
cos kðξ − ξ0Þ

− i sin kðξ − ξ0Þ
�
; ð37Þ

where GðkÞ ¼ 2
πκþ

sinhðπk=κþÞ
R
∞
0 dk0Iðk0Þ × ½K2ik0=κþ ×

ð2k0eκþΣ=κþÞ þ K2ik0=κþð2k0e−κþΣ=κþÞ� (for more details,
see Appendix A, where one has to take surface gravity κþ
instead of acceleration a and appropriate coordinate sys-
tem). From Eq. (37), it can be seen that the temperature
associated with Hawking radiation for a Kerr black hole is

T ¼ κþ
2πkB

¼ 1
2πkB

	 ffiffiffiffiffiffiffiffiffiffi
M2−a2

p

Mþ
ffiffiffiffiffiffiffiffiffiffi
M2−a2

p


. From this it follows that for

the nonextreme case (M ≠ a), the temperature is not zero,
but it is zero for the extreme case (M ¼ a).
As shown above, one can write the influence kernel

interims of null coordinates (U and V) as [35],

ςðξ; ξ0Þ ¼ 1

2

Z
dk IðkÞe−ikðUðξÞ−Uðξ0ÞÞ

þ 1

2

Z
dk IðkÞe−ikðVðξÞ−Vðξ0ÞÞ; ð38Þ

where U ¼ t̄ − r̄⋆ ¼ − 1
κþ
e−κþu and V ¼ t̄þ r̄⋆ ¼ 1

κþ
eκþv

are the Kruskal coordinates and u ¼ ξ − r⋆ and v ¼ ξþ r⋆
are ordinary null coordinates for Kerr black hole in
the near-horizon region. For a detector at fixed r⋆ the
influence kernel can be written exactly as Eq. (37). One
can also consider the Unruh vacuum state for cal-
culating the Hawking radiation for the Kerr black hole.

The influence kernel can be written as in terms of null
coordinates (U and v) as,

ςðξ; ξ0Þ ¼ 1

2

Z
dk IðkÞe−ikðUðξÞ−Uðξ0ÞÞ

þ 1

2

Z
dk IðkÞe−ikðvðξÞ−vðξ0ÞÞ: ð39Þ

For a detector at fixed r⋆ the influence kernel (39), using
the Unruh vacuum state, can be written as,

ςðξ; ξ0Þ

¼
Z

∞

0

dkGðkÞ
�
coth

�
πk
κþ

�
cos kðξ − ξ0Þ − i sin kðξ − ξ0Þ

�

þ 1

2

Z
dk IðkÞe−ikðξ−ξ0Þ; ð40Þ

where GðkÞ ¼ 2
πκþ

sinhðπk=κþÞ
R∞
0 dk0Iðk0Þ × ½K2ik0=κþ ×

ð2k0e−κþΣ=κþÞ� (for more details, see Appendix B, where
one has to consider appropriate coordinate system).
From Eq. (40), it can be seen that the temperature
associated with Hawking radiation for Kerr black hole is

T ¼ κþ
2πkB

¼ 1
2πkB

	 ffiffiffiffiffiffiffiffiffiffi
M2−a2

p

Mþ
ffiffiffiffiffiffiffiffiffiffi
M2−a2

p


. We get the same temperature

using the Unruh vacuum state instead of the Hartle-
Hawking vacuum state.

VII. HAWKING RADIATION FOR 1+ 1
DIMENSIONAL SCHWARZSCHILD

DE-SITTER SPACETIME

We now consider a massless minimal coupled scalar field
in the Schwarzschild-de Sitter spacetime. The line element
for this spacetime in 1þ 1d is [45–51],

ds2 ¼
�
1 −

2M
r

−
Λr2

3

�
dt2 −

�
1 −

2M
r

−
Λr2

3

�−1
dr2:

ð41Þ

Here M is the mass of the black hole, and Λ is the positive
cosmological constant. For 3M

ffiffiffiffi
Λ

p
< 1, this spacetime has

three Killing horizons, which are,

rH ¼ 2ffiffiffiffi
Λ

p cos

�
1

3
cos−1ð3M

ffiffiffiffi
Λ

p
Þ þ π

3

�
;

rc ¼
2ffiffiffiffi
Λ

p cos

�
1

3
cos−1ð3M

ffiffiffiffi
Λ

p
Þ − π

3

�
;

ru ¼ −ðrH þ rcÞ: ð42Þ

rH is the black hole event horizon and rc > rH is the
cosmological horizon, and ru is negative, which is the
unphysical horizon. Now in terms of tortoise coordinates,
the above line element (41) can be written as,
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ds2 ¼
�
1 −

2M
r

−
Λr2

3

�
ðdt2 − dr⋆2Þ: ð43Þ

The exact form of tortoise coordinate, r⋆, is given below,

r⋆ ¼
Z

dr�
1 − 2M

r − Λr2
3

�

¼ 1

κH
ln

���� r
rH

− 1

���� − 1

κc
ln

���� rrc − 1

����þ 1

κu
ln

���� rru − 1

����;

where κi is the surface gravity of the corresponding horizon
ri which is given by,

κi ¼
1

2

����∂r

�
1 −

2M
r

−
Λr2

3

�����
r¼ri

: ð44Þ

Here κH is the surface gravity at the black hole event
horizon, and κc is the surface gravity at the cosmological
horizon. We now define Kruskal coordinates for the black
hole event horizon as [45],

r̄⋆ðtÞ ¼ 1

κH
eκHr

⋆
coshðκHtÞ; t̄ðtÞ ¼ 1

κH
eκHr

⋆
sinhðκHtÞ:

ð45Þ

We also define Kruskal coordinates for the cosmological
horizon as [45],

r̄⋆0 ðtÞ ¼ 1

κc
eκcr

⋆
coshðκctÞ; t̄0ðtÞ ¼ 1

κc
eκcr

⋆
sinhðκctÞ:

ð46Þ

For both the cases we have exponential transformation
relations. Thus, the ordinary coordinate of Schwarzschild-
de Sitter spacetime (t, r⋆) covers only a wedge-shaped
patch of the Kruskal coordinate. It follows that for a
detector at constant r⋆, the case is similar to the accelerating
observer. The spectral density for black hole event horizon,
in analogy to the previous cases, is,

Iðk; τ; τ0Þ ¼ IðkÞ cos k½r̄⋆ðtÞ − r̄⋆ðt0Þ�; ð47Þ

where IðkÞ ¼ ϵ2

2πω is the spectral density of the scalar field
seen by an inertial detector. The influence kernel character-
izing the influence of the quantum field on the detector has
the form

ςðt; t0Þ ¼ 1

2

Z
dk IðkÞe−ik½r̄⋆ðtÞ−r̄⋆ðt0Þþt̄ðtÞ−t̄ðt0Þ�

þ 1

2

Z
dk IðkÞe−ik½r̄⋆ðt0Þ−r̄⋆ðtÞþt̄ðtÞ−t̄ðt0Þ�

¼
Z

∞

0

dkGðkÞ
�
coth

�
πk
κH

�
cos kðt − t0Þ

− i sin kðt − t0Þ
�
; ð48Þ

where GðkÞ ¼ 2
πκH

sinhðπk=κHÞ
R
∞
0 dk0Iðk0Þ × ½K2ik0=κH ×

ð2k0eκHΣ=κHÞ þ K2ik0=κHð2k0e−κHΣ=κHÞ� (for more details,
see Appendix A. The calculation is similar but one has to
take surface gravity κH instead of acceleration a and
appropriate coordinate system). From Eq. (48), the temper-
ature associated with Hawking radiation for black hole
horizon is seen to be TH ¼ κH

2πkB
.

Similarly, the spectral density for cosmological horizon
is given by,

Iðk; τ; τ0Þ ¼ IðkÞ cos k½r̄⋆0 ðtÞ − r̄⋆0 ðt0Þ�; ð49Þ

where IðkÞ ¼ ϵ2

2πω is the spectral density of the scalar field.
The form of the influence kernel is

ςðt; t0Þ ¼ 1

2

Z
dk IðkÞe−ik½r̄⋆0 ðtÞ−r̄⋆0 ðt0Þþt̄0ðtÞ−t̄0ðt0Þ�

þ 1

2

Z
dk IðkÞe−ik½r̄⋆0 ðt0Þ−r̄⋆0 ðtÞþt̄0ðtÞ−t̄0ðt0Þ�

¼
Z

∞

0

dkGðkÞ
�
coth

�
πk
κc

�
cos kðt − t0Þ

− i sin kðt − t0Þ
�
; ð50Þ

where GðkÞ ¼ 2
πκc

sinhðπk=κcÞ
R
∞
0 dk0Iðk0Þ × ½K2ik0=κc ×

ð2k0eκcΣ=κcÞ þ K2ik0=κcð2k0e−κcΣ=κcÞ� (for more details,
see Appendix A, with surface gravity κc instead of
acceleration a and appropriate coordinate system). From
Eq. (50), the temperature associated with Hawking radia-
tion for the cosmological horizon comes out to
be Tc ¼ κc

2πkB
.

The influence kernel can be expressed in terms of null
coordinates (U and V) as [35],

ςðt; t0Þ ¼ 1

2

Z
dk IðkÞe−ikðUðtÞ−Uðt0ÞÞ

þ 1

2

Z
dk IðkÞe−ikðVðtÞ−Vðt0ÞÞ; ð51Þ

where U ¼ t̄ − r̄⋆ ¼ − 1
κH
e−κHu and V ¼ t̄þ r̄⋆ ¼ 1

κH
eκHv

are the Kruskal coordinates for the black hole event horizon
and u ¼ t − r⋆ and v ¼ tþ r⋆ are ordinary null
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coordinates for Schwarschild de Sitter spacetime. For the
Unruh vacuum state the influence kernel, using the null
coordinates U and v, is

ςðt; t0Þ ¼ 1

2

Z
dk IðkÞe−ikðUðtÞ−Uðt0ÞÞ

þ 1

2

Z
dk IðkÞe−ikðvðtÞ−vðt0ÞÞ: ð52Þ

At fixed r⋆ Eq. (52) becomes,

ςðt; t0Þ

¼
Z

∞

0

dkGðkÞ
�
coth

�
πk
κH

�
cos kðt − t0Þ − i sin kðt − t0Þ

�

þ 1

2

Z
dk IðkÞe−ikðt−t0Þ; ð53Þ

where GðkÞ ¼ 2
πκH

sinhðπk=κHÞ
R
∞
0 dk0Iðk0Þ × ½K2ik0=κH ×

ð2k0e−κHΣ=κHÞ� (for more details, see Appendix B, where
one has to consider appropriate coordinate system and
surface gravity κH instead of κþ). From Eq. (53), it can be
seen that temperature associated with Hawking radiation
for black hole horizon is TH ¼ κH

2πkB
, same as that using the

Hartle-Hawking vacuum state.
Similarly, one can also consider Unruh vacuum state for

calculating the Hawking radiation for cosmological hori-
zon. In this case, the temperature associated with Hawking
radiation for cosmological horizon is TH ¼ κc

2πkB
which is

the same as that using the Hartle-Hawking vacuum state.

VIII. HAWKING RADIATION FOR 1+ 1
DIMENSIONAL SCHWARZSCHILD
ANTI–DE SITTER SPACETIME

Now we consider a massless minimal coupled scalar
field in 1þ 1 d Schwarzschild anti–de Sitter spacetime.
The line element for this spacetime is [52–57]

ds2 ¼
�
1 −

2M
r

þ r2

l2

�
dt2 −

�
1 −

2M
r

þ r2

l2

�−1
dr2

¼
�
1 −

2M
r

þ r2

l2

�
ðdt2 − dr⋆2Þ; ð54Þ

where dr⋆ ¼ dr
ð1−2M

r þr2

l2
Þ ¼

dr
fðrÞ, fðrÞ ¼ ð1 − 2M

r þ r2

l2Þ. HereM
is the mass of the black hole and l2 is connected with
the positive cosmological constant. From the equation
fðrÞ ¼ 0, one can get one horizon as, rþ ¼
2
3

ffiffiffi
3

p
l sinh

	
1
3

ffiffiffi
3

p
lsinh−1

	
3

ffiffiffi
3

p
m
l




, where rþ is the event

horizon. Surface gravity at the event horizon is defined as

κ ¼ jf0ðrÞj
2

jr ¼ rþ. We define the Kruskal coordinates as,

r̄⋆ðtÞ ¼ 1

κ
eκr

⋆
coshðκtÞ; t̄ðtÞ ¼ 1

κ
eκr

⋆
sinhðκtÞ; ð55Þ

an exponential transformation. It follows that the ordinary
coordinate of Schwarzschild anti–de Sitter (t, r⋆) covers
only a wedge-shaped patch of the Kruskal coordinate. For a
detector at constant r⋆, the case is similar to an accelerating
observer. The spectral density is given by,

Iðk; τ; τ0Þ ¼ IðkÞ cos k½r̄⋆ðtÞ − r̄⋆ðt0Þ�; ð56Þ

where IðkÞ ¼ ϵ2

2πω. The influence of the quantum field on
the detector is expressed in terms of an influence kernel

ςðt; t0Þ ¼ 1

2

Z
dk IðkÞe−ik½r̄⋆ðtÞ−r̄⋆ðt0Þþt̄ðtÞ−t̄ðt0Þ�

þ 1

2

Z
dk IðkÞe−ik½r̄⋆ðt0Þ−r̄⋆ðtÞþt̄ðtÞ−t̄ðt0Þ�

¼
Z

∞

0

dkGðkÞ
�
coth

�
πk
κ

�
cos kðt − t0Þ

− i sin kðt − t0Þ
�
; ð57Þ

where GðkÞ¼ 2
πκsinhðπk=κÞ

R
∞
0 dk0Iðk0Þ½K2ik0=κð2k0eκΣ=κÞþ

K2ik0=κð2k0e−κΣ=κÞ� (for more details, see Appendix A,
with surface gravity κ instead of acceleration a and
appropriate coordinate system). From Eq. (57), it is seen
that the temperature associated with Hawking radiation
for 1þ 1 d Schwarzschild anti–de Sitter spacetime

is T ¼ κ
2πkB

¼ 1
2πkB

	
m
r2þ
þ rþ

l2



.

The influence kernel in terms of null coordinates (U and
V) is [35],

ςðt; t0Þ ¼ 1

2

Z
dk IðkÞe−ikðUðtÞ−Uðt0ÞÞ

þ 1

2

Z
dk IðkÞe−ikðVðtÞ−Vðt0ÞÞ; ð58Þ

where U ¼ t̄ − r̄⋆ ¼ − 1
κ e

−κu and V ¼ t̄þ r̄⋆ ¼ 1
κ e

κv are
the Kruskal coordinates and u ¼ t − r⋆ and v ¼ tþ r⋆ are
ordinary null coordinates for Schwarschild anti–de Sitter
spacetime. For a detector at fixed r⋆ the influence kernel
can be written exactly as Eq. (57). One can also consider
Unruh vacuum state for calculating the Hawking radiation
for 1þ 1 d Schwarzschild anti–de Sitter spacetime. The
influence kernel in terms of null coordinates (U and v) is,

ςðt; t0Þ ¼ 1

2

Z
dk IðkÞe−ikðUðtÞ−Uðt0ÞÞ

þ 1

2

Z
dk IðkÞe−ikðvðtÞ−vðt0ÞÞ: ð59Þ
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For a detector at fixed r⋆ the influence kernel (59) using
Unruh vacuum state can be written as,

ςðt; t0Þ

¼
Z

∞

0

dkGðkÞ
�
coth

�
πk
κ

�
cos kðt − t0Þ − i sin kðt − t0Þ

�

þ 1

2

Z
dk IðkÞe−ikðt−t0Þ; ð60Þ

where GðkÞ ¼ 2
πκ sinhðπk=κÞ

R∞
0 dk0Iðk0Þ × ½K2ik0=κ ×

ð2k0e−κΣ=κÞ� (for more details, see Appendix B, with
an appropriate coordinate system and surface gravity κ
instead of κþ). From Eq. (60), it can be seen that temper-
ature associated with Hawking radiation for 1þ 1 d
Schwarzschild anti–de Sitter spacetime is TH ¼ κ

2πkB
¼

1
2πkB

ðmr2þ þ
rþ
l2 Þ, as obtained using the Hartle-Hawking

vacuum state.

IX. HAWKING RADIATION FOR 1+ 1
DIMENSIONAL REISSNER-NORDSTROM

DE SITTER SPACETIME

We now consider a massless minimal coupled scalar field
in the Reissner-Nordstrom de Sitter spacetime. The line
element for this spacetime in 1þ 1 d is [58–62],

ds2 ¼
�
1 −

2M
r

þQ2

r2
−
Λr2

3

�
dt2

−
�
1 −

2M
r

þQ2

r2
−
Λr2

3

�−1
dr2

¼
�
1 −

2M
r

þQ2

r2
−
Λr2

3

�
ðdt2 − dr⋆2Þ; ð61Þ

where dr⋆ ¼ dr

ð1−2M
r þQ2

r2
−Λr2

3
Þ
¼ dr

fðrÞ, fðrÞ¼ð1− 2M
r þQ2

r2 −
Λr2
3
Þ.

HereM is the mass of the black hole, Q is the charge of the
black hole, and Λ is the positive cosmological constant.
From the equation fðrÞ ¼ 0, one can get three horizons for
this spaetime. Here we consider r� as the event and the
Cauchy horizons, respectively, and rc the cosmological
horizon. Surface gravities at the horizons are defined as

κ� ¼ jf0ðrÞj
2

jr¼r� and κc ¼ jf0ðrÞj
2

jr¼rc . Here κþ is the surface
gravity at the event horizon, κ− is the surface gravity at the
Cauchy horizon, and κc is the surface gravity at the
cosmological horizon, respectively. The exact form of
tortoise coordinate, r⋆, in terms of the surface gravities
and the horizons is,

r⋆ ¼
Z

dr

ð1 − 2M
r þ Q2

r2 −
Λr2
3
Þ

¼ 1

κþ
ln

���� r
rþ

− 1

���� − 1

κ−
ln

���� r
r−

− 1

����
−

1

κc
ln

���� rrc − 1

����þ 1

κu
ln

���� rru − 1

����;
where ru is negative, which is the unphysical horizon. We
now define Kruskal coordinates for the event horizon as,

r̄⋆ðtÞ ¼ 1

κþ
eκþr

⋆
coshðκþtÞ; t̄ðtÞ ¼ 1

κþ
eκþr

⋆
sinhðκþtÞ:

ð62Þ

We also define Kruskal coordinates for the cosmological
horizon as,

r̄⋆0 ðtÞ ¼ 1

κc
eκcr

⋆
coshðκctÞ; t̄0ðtÞ ¼ 1

κc
eκcr

⋆
sinhðκctÞ:

ð63Þ

For both the cases we have exponential transformation
relations. Thus, the ordinary coordinate of Reissner-
Nordstrom de-Sitter spacetime (t, r⋆) covers only a
wedge-shaped patch of the Kruskal coordinate. It follows
that for a detector at constant r⋆, the case is similar to the
accelerating observer. The spectral density for the event
horizon, in analogy to the previous cases, is,

Iðk; τ; τ0Þ ¼ IðkÞ cos k½r̄⋆ðtÞ − r̄⋆ðt0Þ�; ð64Þ

where IðkÞ ¼ ϵ2

2πω is the spectral density of the scalar field
seen by an inertial detector. The influence kernel character-
izing the influence of the quantum field on the detector has
the form

ςðt; t0Þ ¼ 1

2

Z
dk IðkÞe−ik½r̄⋆ðtÞ−r̄⋆ðt0Þþt̄ðtÞ−t̄ðt0Þ�

þ 1

2

Z
dk IðkÞe−ik½r̄⋆ðt0Þ−r̄⋆ðtÞþt̄ðtÞ−t̄ðt0Þ�

¼
Z

∞

0

dkGðkÞ
�
coth

�
πk
κþ

�
cos kðt − t0Þ

− i sin kðt − t0Þ
�
; ð65Þ

where GðkÞ ¼ 2
πκþ

sinhðπk=κþÞ
R∞
0 dk0Iðk0Þ × ½K2ik0=κþ ×

ð2k0eκþΣ=κþÞ þ K2ik0=κþð2k0e−κþΣ=κþÞ� (for more details,
see Appendix A, with surface gravity κþ replacing accel-
eration a and an appropriate coordinate system). From
Eq. (65), the temperature associated with Hawking radia-
tion for black hole horizon is seen to be Tþ ¼ κþ

2πkB
.
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Similarly, the spectral density for cosmological horizon
is given by,

Iðk; τ; τ0Þ ¼ IðkÞ cos k½r̄⋆0 ðtÞ − r̄⋆0 ðt0Þ�; ð66Þ
where IðkÞ ¼ ϵ2

2πω is the spectral density of the scalar field.
The form of the influence kernel is

ςðt; t0Þ ¼ 1

2

Z
dk IðkÞe−ik½r̄⋆0 ðtÞ−r̄⋆0 ðt0Þþt̄0ðtÞ−t̄0ðt0Þ�

þ 1

2

Z
dk IðkÞe−ik½r̄⋆0 ðt0Þ−r̄⋆0 ðtÞþt̄0ðtÞ−t̄0ðt0Þ�

¼
Z

∞

0

dkGðkÞ
�
coth

�
πk
κc

�
cos kðt − t0Þ

− i sin kðt − t0Þ
�
; ð67Þ

where GðkÞ ¼ 2
πκc

sinhðπk=κcÞ
R∞
0 dk0Iðk0Þ × ½K2ik0=κc ×

ð2k0eκcΣ=κcÞ þ K2ik0=κcð2k0e−κcΣ=κcÞ� (for more details,
see Appendix A, with surface gravity κc instead of accel-
eration a and appropriate coordinate system). FromEq. (67),
the temperature associated with Hawking radiation for the
cosmological horizon comes out to be Tc ¼ κc

2πkB
. Further,

one can use the Unruh vacuum state, as discussed in the
previous sections. Same temperatures associated with the
black hole and cosmological horizons are obtained, as that
using the Hartle-Hawking vacuum state.

X. CONCLUSIONS

Generalizing to relativistic exponential scaling and,
using the theory of noise from quantum fluctuations, it
was shown that one vacuum (Rindler, Hartle-Hawking, or
Gibbons-Hawking for the cases of the uniformly accel-
erated detector, black hole, and de Sitter universe, respec-
tively) can be understood as resulting from the scaling of
quantum noise in another vacuum. Here, this idea was
explored more generally to establish a flat and curved
spacetime analogy. This provides a common perspective to
the Unruh and Hawking effects. For this purpose, we
examined noise kernels for free fields in some well-known
curved spacetimes, e.g., charged black hole, Kerr black
hole, Schwarzschild-de Sitter, Schwarzschild anti–de Sitter,
and Reissner-Nordstrom de Sitter spacetimes. We have
shown that the exponential scaling transformation is
responsible for the thermal nature of radiation. Here, we
consider a maximal analytic extension for these spacetimes
and different vacuum states. The temperature obtained,
exactly matches with the literature in different contexts,
using, for example, the Bogoliubov transformations. This
formalism can also be applied for some other curved
spacetime such as Reissner-Nordstrom-anti–de Sitter
[63,64], Kerr-de Sitter [65,66], Kerr-anti–de Sitter
[67,68], Kerr-Newman de Sitter [69–71], and Kerr-
Newman-anti–de Sitter spacetimes [72,73].

Recently, it has been shown that quasinormal modes of
AdS black holes [74] are related to black hole temperature.
It would be interesting to check the relation between the
quantum fluctuations to the quasinormal mode for a black
hole spacetime.
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APPENDIX A: THE EXPONENT OF THE
INFLUENCE KERNEL

The exponent of the influence functional has the follow-
ing form for the Unruh effect,

ςðtðτÞ; tðτ0ÞÞ ¼ 1

2

Z
dk IðkÞe−ik½xðτÞ−xðτ0ÞþtðτÞ−tðτ0Þ�

þ 1

2

Z
dk IðkÞe−ik½xðτ0Þ−xðτÞþtðτÞ−tðτ0Þ�

¼ 1

2

Z
dk IðkÞe−ikðUðτÞ−Uðτ0ÞÞ

þ 1

2

Z
dk IðkÞe−ikðVðτÞ−Vðτ0ÞÞ

¼ 1

2

Z
dkIðkÞ½e−2ikeaΣ sinhðaΔÞ=a

þ e−2ike
−aΣ sinhðaΔÞ=a�; ðA1Þ

where U ¼ t − x and V ¼ tþ x are the null coordinates,
2Σ ¼ τ þ τ0 and Δ ¼ τ − τ0. Here UðτÞ − Uðτ0Þ ¼
2e−aΣ sinhðaΔÞ=a and VðτÞ − Vðτ0Þ ¼ 2eaΣ sinhðaΔÞ=a.
Using the expansion

e−iα sinhðx=2Þ ¼ 4

π

Z
∞

0

dνK2iνðαÞ½coshðπνÞ cosðνxÞ

− i sinhðπνÞ sinðνxÞ�; ðA2Þ

where Kn is the Bessel function of order n, we get ςðτ; τ0Þ
as,

ςðτ; τ0Þ

¼
Z

∞

0

dkGðkÞ
�
coth

�
πk
a

�
cos kðτ − τ0Þ − i sin kðτ − τ0Þ

�
;

ðA3Þ

whereGðkÞ¼ 2
πasinhðπk=aÞ

R∞
0 dk0Iðk0Þ½K2ik0=að2k0eaΣ=aÞþ

K2ik0=að2k0e−aΣ=aÞ�.

APPENDIX B: UNRUH VACUUM STATE

For Unruh vacuum state, one uses null coordinatesU and
v. The influence kernel for a 1þ 1 dimensional charged
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black hole can be written in terms of null coordinates
(U and v) as,

ςðt; t0Þ ¼ 1

2

Z
dk IðkÞe−ikðUðtÞ−Uðt0ÞÞ

þ 1

2

Z
dk IðkÞe−ikðvðtÞ−vðt0ÞÞ: ðB1Þ

For a detector at fixed r⋆ the influence kernel (B1), using
the Unruh vacuum state, can be written as,

ςðt; t0Þ ¼ 1

2

Z
dk IðkÞe−2ike−κþΣ sinhðκþΔÞ=κþ

þ 1

2

Z
dk IðkÞe−ikΔ; ðB2Þ

where 2Σ ¼ tþ t0 and Δ ¼ t − t0. Here, if we consider
r⋆ is zero then UðtÞ − Uðt0Þ ¼ 2e−κþΣ sinhðκþΔÞ=κþ and
vðtÞ − vðt0Þ ¼ Δ. Using the Eq. (A2) we get ςðt; t0Þ as,

ςðt; t0Þ

¼
Z

∞

0

dkGðkÞ
�
coth

�
πk
κþ

�
cos kðt − t0Þ − i sin kðt − t0Þ

�

þ 1

2

Z
dk IðkÞe−ikðt−t0Þ; ðB3Þ

where GðkÞ ¼ 2
πκþ

sinhðπk=κþÞ
R
∞
0 dk0Iðk0Þ × ½K2ik0=κþ×

ð2k0e−κþΣ=κþÞ�.
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