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Thermal radiation in curved spacetime using influence functional formalism
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Generalizing to relativistic exponential scaling and using the theory of noise from quantum fluctuations,
it has been shown that one vacuum (Rindler, Hartle-Hawking, or Gibbons-Hawking for the cases of the
uniformly accelerated detector, black hole, and de Sitter universe, respectively) can be understood as
resulting from the scaling of quantum noise in another vacuum. We explore this idea more generally to
establish a flat spacetime and curved spacetime analogy. For this purpose, we start by examining noise
kernels for free fields in some well-known curved spacetimes, e.g., the spacetime of a charged black hole,
the spacetime of a Kerr black hole, Schwarzschild-de Sitter, Schwarzschild anti—de Sitter, and Reissner-
Nordstrom de Sitter spacetimes. Here, we consider a maximal analytical extension for all these spacetimes
and different vacuum states. We show that the exponential scale transformation is responsible for the

thermal nature of radiation.
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I. INTRODUCTION

The Unruh effect refers to the thermal fluctuations
experienced by a detector while undergoing linear motion
with uniform acceleration in a Minkowski vacuum [1-6].
This thermality can be demonstrated by tracing the vacuum
state of the field over the modes beyond the accelerated
detector’s event horizon. However, the event horizon is well
defined only if the detector moves with eternal uniform
linear acceleration, wherein the particle’s speed asymptoti-
cally approaches the speed of light, entailing the formation
of an event horizon. In contrast, in the circular case,
velocity changes direction, but its magnitude remains
constant, and there is no event horizon. In the realistic
Unruh case, eternal uniform linear acceleration is impos-
sible; hence the notion of the horizon is difficult to
envisage. In [7] the effect was studied as a kinematic
effect in terms of influence functionals. In this context, also
see [8]. Thermal radiance from a black hole or observed by
an accelerated detector is usually viewed as a geometric
effect related to the existence of an event horizon. In [9,10],
it was proposed that the detection of thermal radiance in
these systems is a local, kinematic effect arising from the
vacuum being subjected to a relativistic exponential scale
transformation.

Generalizing to relativistic exponential scaling and using
the theory of noise kernel from quantum fluctuations [11],
it has been shown that one vacuum (Rindler, Hartle-
Hawking, or Gibbons-Hawking for the cases of the
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uniformly accelerated detector, black hole, and de Sitter
universe, respectively) can be understood as resulting from
the scaling of quantum noise in another.

This paper explores the idea of relativistic exponential
scaling and influence function formalism more generally to
establish a flat spacetime and curved spacetime analogy.
For this purpose, in Sec. II, we briefly discuss relativistic
exponential scaling. In Sec. III, a sketch of the influence
functional formalism is provided. The derivation of this
formalism in different spacetimes is essentially the same as
in the Unruh effect. Hence, in Sec. IV, the key derivation of
the Unruh effect using exponential scale transformation and
influence functional formalism is brought out. This for-
malism is applied in the other examples discussed. Thus,
for example, the Hawking radiation for 1 4+ 1 dimensional
charged black hole, Kerr black hole, 1 + 1 dimensional
Schwarzschild de Sitter, Schwarzschild anti—de Sitter, and
Reissner-Nordstrom de-Sitter spacetimes are studied in
Secs. V, VI, VII, VIII, IX respectively, using exponential
scale transformation and the influence functional formal-
ism. Used is made of maximal analytical extension for all
these spacetimes and different vacuum states. The temper-
ature obtained is consistent with that in the literature,
obtained in different contexts. We finally make our
conclusions.

II. RELATIVISTIC EXPONENTIAL SCALING

There exist several well-established methods in quantum
field theory in curved spacetimes [12,13] to study the
particle creation from a black hole or Unruh effect. The
central aspect of the Unruh effect is that the vacuum state
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where thermal radiance is observed (e.g., the Rindler
vacuum), is related to the inertial vacuum state
(Minkowski vacuum) by an exponential scale transforma-
tion. Similarly, for the Hawking radiation, the vacuum
state where thermal radiance is observed (e.g., the
Schwarzschild vacuum which is also known as the
Boulware vacuum), is related to the inertial vacuum state
(e.g., Kruskal vacuum which is also known as the Hartle-
Hawking vacuum) by an exponential scale transformation.
Due to the presence of the exponential terms, Rindler
spacetime used by accelerated observers covers only a
wedge-shaped region of Minkowski spacetime. Similarly,
for the Hawking effect, the Schwarzschild coordinate
covers only a wedge-shaped patch of the Kruskal coor-
dinate [9,10]. Hence, using these coordinate systems, one
can see the Hawking radiation and the Unruh effect [1,14].
One can also consider another vacuum state such as the
Unruh state for calculating Hawking radiation [12,15]. The
Unruh vacuum state corresponds to the Boulware vacuum
in the far past and the Hartle-Hawking vacuum in the far
future [15,16]. In this paper, we also show that the
exponential scale transformation is responsible for the
thermal nature of radiation of these spacetimes, thus

|

highlighting a uniform approach to this phenomenon.
Further, this also strives to build up a geometry, quantum
statistical mechanical equivalence.

II1. INFLUENCE FUNCTIONAL

We consider the scenario wherein a detector is used to
probe the unperturbed state of a scalar field. The detector
and the massless scalar field can be considered to be the
system and its bath, respectively. The system interacts
weakly with the massless scalar field. We assume that at a
given initial time, the system and the environment are
uncorrelated. Thus, the total density matrix of the total
system (system + environment) at the initial time can be
written as the density matrix of the system outer product
with the density matrix of the environment. As we are
interested in the time evolution of the system of interest,
which, here, is the detector, the field degrees of freedom
are traced out. This provides the reduced density matrix
of the detector, taking into account the influence of the
field. This is ensconced in the form of the influence
functional [17-23], which can be generically shown
to be

Fed) =exp{~1 ["dr [ @t - x@te. )0 + 4 - ke Vol X} ()

where v(t,¢') and u(z,¢') are the noise and dissipation
kernels, respectively. These kernels can be written com-
pactly as

o(1(2), (7)) = / dk I(k, 7, ') e-ollD-i(?)]

= (1) +ip(1, 1), )

where I(k,7,7’) is the field (bath) spectral density.

The influence functional is a path integral approach to
study the dynamics of the system of interest taking into
account the effects of the environment, sometimes called
the reservoir. From the influence functional, characterizing
the environment, one obtains what is known as the
propagator. The propagator can then be used as a capsule
to generate the final state of the system of interest, given its
initial state, hence the name propagator. This provides a
flexible tool to approach a vast variety of problems, ranging
from the early universe, black holes [24] to decoherence in
the quantum to classical transition [25]. Here, a paradigm
model is that of quantum Brownian motion [18,19]. The
noise and dissipation kernels characterizing the influence
kernel are determined by the spectral density [26]. In order
to obtain true irreversible dynamics, a continuous distri-
bution of bath modes can be introduced, such that the

|
spectral density is represented by a smooth function of the
environment’s frequencies.

In this work, we explore the idea of relativistic expo-
nential scaling and influence function formalism more
generally with the aim to establish a flat spacetime and
curved spacetime analogy. For this purpose, we examine
noise kernels for free fields in some well-known curved
spacetimes, e.g., the spacetimes of a charged black hole, a
Kerr black hole, Schwarzschild-de Sitter, Schwarzschild
anti—de Sitter, and Reissner-Nordstrom de Sitter space-
times. The essential derivation of this formalism is the one
involved in the Unruh effect because the relation between
the tortoise and the Kruskal coordinates is similar to the
Rindler coordinate and the inertial coordinate. We briefly
review the key derivation of the Unruh effect using
exponential scale transformation and influence functional
formalism in the next section.

IV. UNRUH EFFECT

A uniformly accelerated observer can see a part of
Minkowski spacetime. The line element for this observer
in Minkowski spacetime is given by [1,4,27],

ds? = 2% (—d7* + d&*) + dy* + dz*. (3)

045020-2



THERMAL RADIATION IN CURVED SPACETIME USING ...

PHYS. REV. D 105, 045020 (2022)

The observer is uniformly accelerated in the x direction,
and « is the four acceleration vector. On the other hand, the
Minkowski metric is given by,

ds® = —dt* + dx* + dy* + dz*. (4)

The {y, z} coordinates are the same here. The following
transformation connects the accelerated observer and the
inertial observer,

t(r) = ée“ﬁ sinh(ar), x(7) = ée“f cosh(az). (5)

Here, we see that the Rindler coordinates are related to
the inertial coordinates by an exponential scale trans-
formation. Hence, Rindler spacetime used by accelerated
observers covers only a wedge-shaped region of
Minkowski spacetime. Now we consider a two-dimen-
sional massless scalar field ¢ in flat spacetime with mode
decomposition

X) = \/2/Lz:[qk+ cos kx + gy sin kx]. (6)
T

The Lagrangian for the field can be expressed as a sum of
oscillators with amplitude gi¥ for each mode as

ZZ a;)?

Here we consider an observer undergoing constant accel-
eration a in this field with the following trajectory

kz CIk) J. (7)

x(r):écosh(ar), t(r):%sinh(ar). (8)

We want to show via the influence functional method that
the observer detects thermal radiation. The system-field
interaction is taken as [10,28],

Lin(x) = —erg(x)5(x(7)). ©)

They are coupled at the spatial point x(z) with coupling
strength e and r is the detector’s internal coordinate.
Integrating out the spatial variable, we find that

mt /‘Cmt dx - _€r¢( (T)) (10)

The scalar field is characterized by the spectral density,
which in the discrete case is given by [10,28],

k 7, T ZZ k k )Cn< ) Z(T/>. (11)

Here k, = w, = |k,|, as we take a massless scalar field.

cy(r) = ey/2/Lcoskx(t), c¢;(t) =e\/2/Lsinkx(z) are

effective coupling constants for the accelerated observer

coupled to the field [10,28]. If we use Y., — & [ dk,
I(k,7,7") becomes [10,28],
I(k,7,7') = I(k) cos k[x(z) — x(7')], (12)

where I(k) = 5= is the spectral density of the scalar field
seen by an 1nert1al detector. For the case where the scalar
field is initially in a vacuum, a scenario that is apt for the
present work, the influence of the quantum field on the
detector is expressed in terms of an influence kernel
[10,28], appearing in the exponent of the influence func-
tional and has the form,

1 ) ) /
s(t(e). (7)) = 5 / dk I(k) e~ Hx(@ () 1(2)~1(2)

+% / dk I(k) =& =x) (=)

— 5 [ dkrtleie s

+ e—2ike"'2 sinh(aA)/a]’ (13)

where 22 = 7+ 7/, A = 7 — 7/ and use is made of Eq. (8).
Expanding the exponential terms in the above equations in
terms of the Bessel functions of imaginary order, ¢(z,7’)
can be expressed as,

¢(z.7)
= Am dkG (k) [coth <%k> cosk(z —7') —isink(r —7)|,
(14)

where G (k) =2sinh(k/a)[5° dk'I(K')[K 14 (2K e/ a)+
Ky a(2K'e™**/a)] (for more details, see Appendix A).
From Eq. (14), the temperature associated with the Unruh
effectis seenas 7' = ﬁ [28]. Here a is the acceleration of
the detector and kp is the Boltzman constant. This
formalism will be applied subsequently.

V. HAWKING RADIATION FOR 1+1
DIMENSIONAL CHARGED BLACK HOLE

Here we consider a massless minimal coupled scalar
field in a 1 4+ 1 dimensional charged black hole (Reissner-
Nordstrom black hole). The line element of this black hole
is given by [29-34],
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2 2\ —
d52:<1——+Q> (1 2M+Q> 1dr2

M Q?
(1 S e )(dﬂ —dr?), (15)
where dr* = —4 = f‘f—;), f(r)=(1-2242) Here

(1-24.2)
M 1is the mass of the black hole and Q is the charge of the
black hole. From the equation f(r) = 0, one can get two

horizons as ry = (M + — Q?), where r, are the
event horizon and the Cauchy horizons, respectively.
Surface gravities at the horizons is defined as
Ky = w |r = ro. Here k, is the surface gravity at the
event horizon and x_ is the surface gravity at the Cauchy
horizon. In terms of the surface gravities and horizons, the
tortoise  coordinates, r*, can be written as
r :iln| L —1|-LIn|-L - 1|. Now using the expres-
sion of surface grav1ty at the event horizon, we define
Kruskal coordinates for the event horizon as,

1 ‘ . 1 .
(1) = K—e"+’ cosh(k 1), (1) = K—e"+’ sinh(k ).
+ +

(16)

Here, the exponential transformation makes its appearance.
Thus, the ordinary coordinate of a charged black hole (t, r*)
covers only a wedge-shaped patch of the Kruskal coor-
dinate. A detector at constant r* is similar to the case of the
accelerating observer, as can be seen from an analogy with
Eq. (8). The spectral density, in analogy with Eq. (12), is
given by,

I(k,t,t") = I(k)cosk[F* (1) — 7*(7)], (17)
where (k) = 5> is the spectral density of the scalar field,
as seen by an mertlal detector. The influence of the
quantum field on the detector is expressed in terms of
the influence kernel,

g(t, t’) _ %/ dk I(k)e—ik[?'(t)—i*(t’)+?(t)—?(r’)]

_ A " dk G(k) [coth (g) cos k(t — ')

—isink(r—t’)}, (18)
where  G(k) = ésinh(ﬂk/m) Joo dK'I(K') X (Ko je, X
(2K'e*+* [k, ) + Ko/ (2K €™+ [k, )] (for more details,
see Appendix A. The calculation is similar but one has to

take surface gravity x, instead of acceleration a and
appropriate coordinate system). From Eq. (18), it can be
seen that temperature associated with Hawking radiation

for 1+ 1 dimensional charged black hole is T = 2’;—;8 =
271'k3r2+
follows that for the nonextreme case (M # (), temperature
is not zero, but it is zero for the extreme case (M = Q).
One can also arrive at the result from Eq. (18), by writing
the influence kernel in terms of null coordinates (U and V)
as [35],

[28]. From the expression of the temperature, it

1 ‘ ,
s(t.1) =3 / dk I(k)e~KU©=U()

1 . ,
I / Ak I(k)e-HVO-VED | (19)

where U =7—-7 = —ie"‘“‘ and V=74+7 = ie"“}
are the Kruskal coordinates. Here u =t —r* and v =t +
r* are the ordinary null coordinates for charged black hole.
For a detector at fixed r* the influence kernel can be written
exactly as Eq. (18). One can also consider Unruh vacuum
state, using the null coordinates U and v, for calculating the
Hawking radiation for 1+ 1 dimensional charged black
hole. The influence kernel can be written in terms of null
coordinates (U and v) as,

s(r.1) :% / dk I1(k)e=*UO=U()

+1/ dk I(k)e_ik(”(t)_v(t/)).

5 (20)

For a detector at fixed r* the influence kernel (20), using
the Unruh vacuum state, can be written as,

s(t.7)

= ooa’kG(k) coth k cosk(t—1) —isink(r—1)
i aowloa(S)

1 o
+5 / dk I(k)e~ =),

G(k) = %sinh(zrk/mr) Joo A I(K') x [Kojpe /e, ¥
(2k'e™+* /. )] (for more details, see Appendix B). As v
is not same as V, we get a form different from that of
Eq. (18). From Eq. (21), it can be seen that temperature
associated with Hawking radiation for 1 4+ 1 dimensional

charged black hole is T = 2n'k ‘ZZ;_,zQ :

same temperature using the Unruh vacuum state instead of
the Hartle-Hawking vacuum state.

(21)

where

. Thus, we get the

045020-4



THERMAL RADIATION IN CURVED SPACETIME USING ...

PHYS. REV. D 105, 045020 (2022)

VI. HAWKING RADIATION FROM THE KERR
BLACK HOLE

Here we consider a massless minimal coupled scalar
field in Kerr black holes. Near the horizon, the scalar field
theory in a 4-d Kerr black hole spacetime can be reduced to
the 2-d field theory [36].

In Boyer-Lindquist coordinates, Kerr metric is given by
[37-44],

A — 2q3 29 2 2 —A
ds? = —%dz2 ~2asin?0 T 8 diagp
2 2\2 —A 23 29 3
Lt . 4 in20dg? + S dr + a6,

(22)
where
> = r? 4 a?cos?6,
A=7r*=2Mr+ a®
=(r—ry)(r—r_). (23)

Here M is the mass of the black hole, a is the angular
momentum per unit mass of the black hole, and r = r, is
the event horizon and the Cauchy horizon, respectively.
The determinant of the above metric is

V-9 =

and the inverse of the above metric of (, ¢) parts is given
by [36],

Ysin6, (24)

N (r* + a®)* — Aa®sin®0
g = SA ’
oo A= a?sin0
9 T TsAsinZ0
” a(r* +a* - A)
gt = A (25)

The action for a massless minimal coupled scalar field in
the 4-d Kerr spacetime is given by [36],

1
Slo] =5 / d'x\/=goV0
/d“x‘/ 9P = { (%—a sin? )82
2a(r* +a®> — A) 1 a*\ .,
A 010y + <s1n29 A)a
+ G,Aar =+ Lag sin 989:| Q. (26)
sin @

After taking the limit r — r, and the leading order terms,
we get,

1 ) i +a*)?
Sle] =3 / d'xsin O [_%8%
2 2 2
_ w 00y =5 03 +0,80,|g. (27)

Now we transform the coordinates to the locally non-
rotating coordinate system, given by [36],

=¢ - Qut,
{ w=a¢ H (28)
E=1,
where
a
e (29)

Using (&, r,0,w) coordinates, the action (27) can be
rewritten as [36],

Slg] = 2£H / d4xs1n9(p<—f()82+8,f() >(p, (30)

where

QA
.

fr)= (31)

Applying the spherical harmonics expansion ¢(x) =
Yot @im(E, 7)Y 1, (0,w), finally one can get the effective
2-dimensional action as [36],

Slol =35 | d&dnplm< O 0,110 )golm.

(32)

QH Im

The effective 2-dimensional metric from the above action
can be expressed as [36],

ds*> = —f(r)dé +f(1r)dr2. (33)

Hence, in the near-horizon region, the geometry of Kerr
spacetime is the same as the Rindler spacetime when
r. > r_. One can rewrite this metric as,

ds* = f(r)(=d& + dr*?), (34)

f”f:). Surface gravity at the event horizon is

defined as k, = |f ) |r = r,. Now using the expression of
the surface grav1ty, we deﬁne Kruskal coordinates as,

where dr* =

045020-5
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_ 1 .
(€)= e cosh(x,E),  (E)=en sinh(x.£).
Ky +

(35)

Here we again come across the exponential transformation
relation. Thus, in the near-horizon region, the ordinary
coordinate of Kerr black hole (&, r*) covers only a wedge-
shaped patch of the Kruskal coordinate. For a detector at
constant r*, the case is similar to an accelerating observer,
as can be seen from an analogy with Eq. (8). The spectral
density, in analogy with Eq. (12), is given by,

I(k.&.&) = I(k) cosk[F* (&) —7*(&)].  (36)

where I(k) = % is the spectral density of the scalar field
seen by an inertial detector. The influence of the quantum
field on the detector is expressed in terms of the influence

kernel, having the form
c(£.8) = l/de(k) —ik[F* (&)= (&) +1(£)-1(&)]

+% / dk 1 (k) ek (€)=7 (©+1(&)-1(&)

- A " dk G(k) {coth (g) cos k(& — &)

—isink(& - g/)} , (37)

where  G(k) = %sinh(ﬂk/m) Joo dK'I(K') X (Ko je, X
(2K'e*+* [k, ) + Ko (2K e/, )] (for more details,
see Appendix A, where one has to take surface gravity x,
instead of acceleration a and appropriate coordinate sys-
tem). From Eq. (37), it can be seen that the temperature
associated with Hawking radiation for a Kerr black hole is

Ky 1 VM?—a? PR
= 277;3 = 5% (m) From this it follows that for

the nonextreme case (M # a), the temperature is not zero,
but it is zero for the extreme case (M = a).

As shown above, one can write the influence kernel
interims of null coordinates (U and V) as [35],

s(&.¢) = : / dik 1(k)e~kU©-UE)

L1 / dk I(k)e=*VE-V(E)

. (38)

where U=7—7 =—Le™" and V =7+ 7 =L
+

N
are the Kruskal coordinatesand u = £ — r* and v = £+ r*
are ordinary null coordinates for Kerr black hole in
the near-horizon region. For a detector at fixed r* the
influence kernel can be written exactly as Eq. (37). One
can also consider the Unruh vacuum state for cal-

culating the Hawking radiation for the Kerr black hole.

The influence kernel can be written as in terms of null
coordinates (U and v) as,

d(68) = [ dkRe e

1 . ,
+ / dk 1(k)e=M0@-0E) (39

For a detector at fixed r* the influence kernel (39), using
the Unruh vacuum state, can be written as,

¢(£.¢)
= Am dk G (k) [coth (g) cosk(é—¢) —isink(é—¢)

1 o
+5 / dk I(k)e &), (40)

where  G(k) = %Sinh(n’k/l('_i_) Joo A I(K') % [Kopjpe /e, %
(2K’ e™+%/k,)] (for more details, see Appendix B, where
one has to consider appropriate coordinate system).
From Eq. (40), it can be seen that the temperature
associated with Hawking radiation for Kerr black hole is

2’;1’23 = 27[1/(3 <M+MV 12‘/12 ) We get the same temperature

using the Unruh vacuum state instead of the Hartle-
Hawking vacuum state.

VII. HAWKING RADIATION FOR 1+1
DIMENSIONAL SCHWARZSCHILD
DE-SITTER SPACETIME

We now consider a massless minimal coupled scalar field
in the Schwarzschild-de Sitter spacetime. The line element
for this spacetime in 1 4 1d is [45-51],

M AP? M A\ !
ds2—<1———Tr>dt2—<l————r> dr.
(41)

Here M is the mass of the black hole, and A is the positive

cosmological constant. For 3M+/A < 1, this spacetime has
three Killing horizons, which are,

Iy = —cos [gcos '3MVA) + }
o= %cos Ecos‘l(3M\/X) - ﬂ
re=—(rug +re). (42)

ry is the black hole event horizon and r, > ry is the
cosmological horizon, and r, is negative, which is the
unphysical horizon. Now in terms of tortoise coordinates,
the above line element (41) can be written as,
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ds? = (1 _M A—r> (d* —dr*). (43)

The exact form of tortoise coordinate, r*, is given below,

r 3

. / dr
r = —_—
(5)

1
=—1In
Ky

—=1
'y

LN
KC

—In
KIA

r ’

__1‘

Te

1_1‘,

Ty

where k; is the surface gravity of the corresponding horizon
r; which is given by,

2
o (1-2-2)

(44)

Here ky is the surface gravity at the black hole event
horizon, and «,. is the surface gravity at the cosmological
horizon. We now define Kruskal coordinates for the black
hole event horizon as [45],

1 . - 1 .
7* () = — e cosh(kyt), 1(t) = — e " sinh(kyt).
Ky Ky

(45)

We also define Kruskal coordinates for the cosmological
horizon as [45],

’ 1 * W, 1 *
™ (1) = K—e"v’ cosh(x.1), 7(1) = K—e’“"
c c

sinh(k.1).

(40)

For both the cases we have exponential transformation
relations. Thus, the ordinary coordinate of Schwarzschild-
de Sitter spacetime (t, r*) covers only a wedge-shaped
patch of the Kruskal coordinate. It follows that for a
detector at constant r*, the case is similar to the accelerating
observer. The spectral density for black hole event horizon,
in analogy to the previous cases, is,

I(k,7,7') = I(k) cos k[F* (1) — 7* ()], (47)

where I(k) = % is the spectral density of the scalar field
seen by an inertial detector. The influence kernel character-
izing the influence of the quantum field on the detector has

the form

g(t.1) = % / dk I(k) e~k (0= (") +1(0-1(1)]
1 e
+o [ dk I(k)e~

_ A " dkG (k) {coth (g) cosk(t— 1)
—isink(t— t’)] , (48)

()= (1) +1()=1(1)]

where  G(k) = ;& sinh(zk/ky) [5° dK'T(K') X [Kaip e, %

(2K e** [kyy) + Ko s, (2K €7%1% [iyy)] (for more details,
see Appendix A. The calculation is similar but one has to
take surface gravity xy instead of acceleration a and
appropriate coordinate system). From Eq. (48), the temper-
ature associated with Hawking radiation for black hole
horizon is seen to be Ty =

2ﬂk3
Similarly, the spectral density for cosmological horizon
is given by,

I(k,7,7') = I(k) cos k[F* (t) — 7 (¢')]. (49)

where I(k) = 2 — is the spectral density of the scalar field.
The form of the influence kernel is

s(t.7) :% / dk I(k) e~k (=7 ()¢ ()= (1)

4y [ ket oo

- /) " dk G (k) [coth (Z—k) cos k(1 — 1)

—isink(t— t’)} . (50)

where  G(k) = —smh (mk/k.) [§° dK'T(K') X [Kojp /. X
(2k’e’<v2/Kc)+K2,k//,<('(2k’ “*X/k.)] (for more details,
see Appendix A, with surface gravity «. instead of
acceleration a and appropriate coordinate system). From
Eq. (50), the temperature associated with Hawking radia-
tion for the cosmological horizon comes out to
be T, = 2ﬂk

The influence kernel can be expressed in terms of null
coordinates (U and V) as [35],

g(t. 1) =% / dk I(k)e~ kU (=U(")

1 ) )
5 / Ak I()e-FVO-VED (51
where U =7—7 = —ée"‘”” and V=747 = ée"”"’
are the Kruskal coordinates for the black hole event horizon
and u=t—r* and v=t+47r* are ordinary null
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coordinates for Schwarschild de Sitter spacetime. For the
Unruh vacuum state the influence kernel, using the null
coordinates U and v, is

g(t.1') :% / dk I(k)e=*U(H=-U)

1 ; ,
+3 / dk I(k)e=*0O=0) (52)
At fixed r* Eq. (52) becomes,
s(t.1)
© rk ..
= dk G(k)|coth{ — | cosk(r—1') —isink(r — 1)
0 Kn
1 o
+3 / dk I(k)e=*0=1), (53)

where  G(k) = ;&sinh(zk/xy) [§° dK'T(K') % [Kyiej, X
(2k'e= 1= [xp;)] (for more details, see Appendix B, where
one has to consider appropriate coordinate system and
surface gravity xy instead of x, ). From Eq. (53), it can be
seen that temperature associated with Hawking radiation
for black hole horizon is Ty = Z’;Z—ZB same as that using the
Hartle-Hawking vacuum state.
Similarly, one can also consider Unruh vacuum state for
calculating the Hawking radiation for cosmological hori-
zon. In this case, the temperature associated with Hawking

radiation for cosmological horizon is Ty = 22—1@ which is
the same as that using the Hartle-Hawking vacuum state.

VIII. HAWKING RADIATION FOR 1+1
DIMENSIONAL SCHWARZSCHILD
ANTI-DE SITTER SPACETIME

Now we consider a massless minimal coupled scalar
field in 1+ 1 d Schwarzschild anti—de Sitter spacetime.
The line element for this spacetime is [52-57]

M P oM A\ !
dsz—<1——+—r2>dt2—<1——+—r> dr?
r [ r

12
2M  r? 5 2

where dr* = —4r :f‘f—;), fr)y=(1 —27M—|—;—22).HereM

(1-2040)
is the mass of the black hole and /2 is connected with
the positive cosmological constant. From the equation
f(r)=0, one can get one horizon as,

%ﬂl sinh (% v/31sinh™! (3\/§ %) ), where r, is the event
horizon. Surface gravity at the event horizon is defined as

r, =

K= @ |r = r,. We define the Kruskal coordinates as,

. . .
7*(t) = — """ cosh(kr), 1(t) = — " sinh(xt),

p - (55)

an exponential transformation. It follows that the ordinary
coordinate of Schwarzschild anti—de Sitter (t, r*) covers
only a wedge-shaped patch of the Kruskal coordinate. For a
detector at constant r*, the case is similar to an accelerating
observer. The spectral density is given by,
I(k,7,7') = I(k) cos k[F*(t) — 7*(1')], (56)
where I(k) = #20) The influence of the quantum field on
the detector is expressed in terms of an influence kernel

(1) =5 / Ak T(k) =7 007 (017030

+% / dh I(J) e ()= (0+7(0)~7(1)]

_ A " dk G(k) [coth (”?k) cosk(t — ')

—isink(r — t’)}, (57)

where G(k)=-2sinh(zk/x) [$°dk'I(K')[Kyip /(2K € /) +
Ko/ (2k'e™*/k)] (for more details, see Appendix A,
with surface gravity « instead of acceleration a and
appropriate coordinate system). From Eq. (57), it is seen
that the temperature associated with Hawking radiation
for 14+ 1 d Schwarzschild anti-de Sitter spacetime
8T =50 = 2ﬂlk3 (% + rz%)

The influence kernel in terms of null coordinates (U and
V) is [35],

s(t. 1) =% / dk I(k)e~*U(0=-U)

1 ) ,
s / Ak I(K)e-FVO-VE) | (58)

where U=7—7"=—1¢™ and V=7+7 =1¢ are
the Kruskal coordinates and u =t — r* and v = ¢ + r* are
ordinary null coordinates for Schwarschild anti—de Sitter
spacetime. For a detector at fixed r* the influence kernel
can be written exactly as Eq. (57). One can also consider
Unruh vacuum state for calculating the Hawking radiation
for 1 + 1 d Schwarzschild anti—de Sitter spacetime. The

influence kernel in terms of null coordinates (U and v) is,

1 / /
s(r.r) =5 / dk 1(k)e=*U(O=U()

1 , )
-3 / dk I(k)e-K00O=0) (50)
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For a detector at fixed r* the influence kernel (59) using
Unruh vacuum state can be written as,

g(r. 1)
- A " Ak G (k) {coth (%) cosk(r— 1) —isink(r — 7

1 .
+3 / dk I(k)e™ =), (60)

where G(k) = Zsinh(zk/x) [5° dK'I(K') X [Kyi /i X
(2k'e™*/x)] (for more details, see Appendix B, with
an appropriate coordinate system and surface gravity x
instead of ). From Eq. (60), it can be seen that temper-
ature associated with Hawking radiation for 141 d
Schwarzschild anti—de Sitter spacetime is Ty =
2y (8 7):

vacuum state.

2ty =
as obtained using the Hartle-Hawking

IX. HAWKING RADIATION FOR 1+1
DIMENSIONAL REISSNER-NORDSTROM
DE SITTER SPACETIME

We now consider a massless minimal coupled scalar field
in the Reissner-Nordstrom de Sitter spacetime. The line
element for this spacetime in 1 4+ 1 d is [58-62],

r 2 3
2M  Q* Ar
— 1= = 2
( r +r2 3) dr
2M  Q* AF? ) )
=|\l-—+5-—F (dt= —dr**), (61)
r r 3

where dr* =

dr __ dr 0> A2
T~y F =-S5

Here M is the mass of the black hole, Q is the charge of the
black hole, and A is the positive cosmological constant.
From the equation f(r) = 0, one can get three horizons for
this spaetime. Here we consider r. as the event and the
Cauchy horizons, respectively, and r. the cosmological
horizon. Surface gravities at the horizons are defined as

If

and k., = U—gr)‘ |,—, - Here k. is the surface

Ky = : |r re
gravity at the event horizon, x_ is the surface gravity at the
Cauchy horizon, and «, is the surface gravity at the
cosmological horizon, respectively. The exact form of
tortoise coordinate, r*, in terms of the surface gravities

and the horizons is,

R / dr
r* = 5
(-2 85

| 1
= "I ——1‘——111 L—l‘
Ky |1y K. |1
1 1
——In —1’ | -1,
KC rC KM ru

where r, is negative, which is the unphysical horizon. We
now define Kruskal coordinates for the event horizon as,

1 . .
7* (1) = — e cosh(k, 1), — """ sinh(k ).
Ky Ky

(62)

We also define Kruskal coordinates for the cosmological
horizon as,

5 |
1'(t) = — e sinh(k,1).

K¢ K¢

(63)

For both the cases we have exponential transformation
relations. Thus, the ordinary coordinate of Reissner-
Nordstrom de-Sitter spacetime (t, r*) covers only a
wedge-shaped patch of the Kruskal coordinate. It follows
that for a detector at constant r*, the case is similar to the
accelerating observer. The spectral density for the event
horizon, in analogy to the previous cases, is,

I(k,z,7") = I(k) cos k[F* (1) — 7*(1')], (64)
where I(k) = 2”” is the spectral density of the scalar field
seen by an inertial detector. The influence kernel character-
izing the influence of the quantum field on the detector has
the form

¢(t,7) =% / dk I (k) e~k (=7 (1) +7(0)=(7)]

+% / dle I(J) ekl (1)=7* (+7(2)~7(7)]

_ A " dk G(k) [coth (g) cos k(t — ')

—isink(r — t’)} (65)

where G(k) = %sinh(:zk/lgr) Joo d'T(K') x [Kojpo e, ¥
(2K'e*+* [k, ) + Koy (2K e+ [k, )] (for more details,
see Appendix A, with surface gravity x, replacing accel-
eration a and an appropriate coordinate system). From
Eq. (65), the temperature associated with Hawking radia-

tion for black hole horizon is seen to be 7', = 2%3
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Similarly, the spectral density for cosmological horizon
is given by,

I(k,7,7) = I(k) cos k[F* (t) — 7 (¢')], (66)
where (k) = % is the spectral density of the scalar field.
The form of the influence kernel is

s(r.7) =% / dk I(k)e= ik (=7 ()2 (=7 (¢)]

+2 / de (k)&= )=+ (07 ()70

_ A " dk G(k) [coth C—k) cos k(1 — ')

—isink(r— t’)} , (67)
where  G(k) = £ sinh(nk/k.) [ dK'I(K') x Ky /. X
(2K e [k.) + Koy (2K e™*/k,)] (for more details,
see Appendix A, with surface gravity k. instead of accel-
eration a and appropriate coordinate system). From Eq. (67),
the temperature associated with Hawking radiation for the

cosmological horizon comes out to be 7. = 2;;‘(8. Further,

one can use the Unruh vacuum state, as discussed in the
previous sections. Same temperatures associated with the
black hole and cosmological horizons are obtained, as that
using the Hartle-Hawking vacuum state.

X. CONCLUSIONS

Generalizing to relativistic exponential scaling and,
using the theory of noise from quantum fluctuations, it
was shown that one vacuum (Rindler, Hartle-Hawking, or
Gibbons-Hawking for the cases of the uniformly accel-
erated detector, black hole, and de Sitter universe, respec-
tively) can be understood as resulting from the scaling of
quantum noise in another vacuum. Here, this idea was
explored more generally to establish a flat and curved
spacetime analogy. This provides a common perspective to
the Unruh and Hawking effects. For this purpose, we
examined noise kernels for free fields in some well-known
curved spacetimes, e.g., charged black hole, Kerr black
hole, Schwarzschild-de Sitter, Schwarzschild anti—de Sitter,
and Reissner-Nordstrom de Sitter spacetimes. We have
shown that the exponential scaling transformation is
responsible for the thermal nature of radiation. Here, we
consider a maximal analytic extension for these spacetimes
and different vacuum states. The temperature obtained,
exactly matches with the literature in different contexts,
using, for example, the Bogoliubov transformations. This
formalism can also be applied for some other curved
spacetime such as Reissner-Nordstrom-anti—de Sitter
[63,64], Kerr-de Sitter [65,66], Kerr-anti-de Sitter
[67,68], Kerr-Newman de Sitter [69-71], and Kerr-
Newman-anti—de Sitter spacetimes [72,73].

Recently, it has been shown that quasinormal modes of
AdS black holes [74] are related to black hole temperature.
It would be interesting to check the relation between the
quantum fluctuations to the quasinormal mode for a black
hole spacetime.
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APPENDIX A: THE EXPONENT OF THE
INFLUENCE KERNEL

The exponent of the influence functional has the follow-
ing form for the Unruh effect,

1 ) / /
g(t(r), I(T/)) _ 5/ dk I(k)e—zk[x(r)—x(r)+t(r)—t(r )]

+2 / ke T(k) =KX 42

:% / Ak 1(k) - HUE-UE)

+3 / dk (k)= VD-V(@)

1 il i
zi/dk](k)[e—bke sinh(aA)/a

+ g~ 2ike™™ sinh(aA)/a] (Al)
where U =t — x and V =t + x are the null coordinates,
2%=7+7 and A=7-7. Here U(r)-U(7)=

2¢7%*sinh(aA)/a and V(r) — V(') = 2e“sinh(aA)/a.
Using the expansion

- 4 [
etasinh(x/2) — ~ / dvK»;, () [cosh(nv) cos(vx)

7 Jo

— i sinh(zv) sin(vx)], (A2)

where K, is the Bessel function of order n, we get ¢(z, 7')
as,

s(z,7)

- /O " dkG (k) [coth <”—k> cosk(t — ) —isink(z —7) |,

a

(A3)
where G(k) =Zsinh(zk/a) [°dk'I(K')[K 14 (2K e/ a)+
Kojw/a(2K e /a)).

APPENDIX B: UNRUH VACUUM STATE

For Unruh vacuum state, one uses null coordinates U and
v. The influence kernel for a 1 4+ 1 dimensional charged
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black hole can be written in terms of null coordinates
(U and v) as,

1 , ,
s(r.1) =5 / dk I(k)e~UO=U)

1 , ,
+§/dk[(k)e_’k(”(’)_”<’))_ (Bl)

For a detector at fixed r* the influence kernel (B1), using
the Unruh vacuum state, can be written as,

1 ey
g(t, t/) _ 5/ dk](k)e_z’ke +¥sinh(x, A)/x,

1 —ikA
+5 / dk 1(K)e= ™2, (B2)

where 2¥ =t+1¢ and A =t —¢. Here, if we consider
r* is zero then U(t) — U(¢') = 2e~*+* sinh(k,A)/k, and
v(t) — v(f') = A. Using the Eq. (A2) we get ¢(7,7) as,

s(t,1)
© k
= / dk G (k) [coth <7[—> cosk(t—1)—isink(t—1)
0 Ky
1 L
+3 / dk I(k)e= =), (B3)
where  G(k) = ;E-sinh(nk/k ) [§° dK'T(K') X [Kaip /i,

(2K ™%/ ,))].
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