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We consider finite and infinite-dimensional ghost-ridden dynamical systems whose Hamiltonians
involve nonpositive definite kinetic terms. We point out the existence of three classes of such systems
where the ghosts are benign, i.e., systems whose evolution is unlimited in time: (i) systems obtained from
the variation of bounded-motion systems; (ii) systems describing motions over certain Lorentzian
manifolds and (iii) higher-derivative models related to certain modified Korteweg-de Vries equations.
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I. INTRODUCTION

A ghost-ridden dynamical quantum system is defined as
a system whose spectrum is not bounded neither from
below, nor from above. This is in particular the case for the
quantum versions of the Ostrogradsky Hamiltonians [1],
describing the dynamics of higher-derivative Lagrangians
(for a review, see, e.g., [2]). Many ghost-ridden systems are
sick: their evolution operator is not unitary. Such systems
involve classical trajectories that run into a singularity after
a finite time of evolution (a blowup).
There are, however, ghost-ridden systems with benign

ghosts, in the sense that they do not exhibit a classical blowup
and have a unitary quantum evolution operator. One of the
simplest examples of such a benign-ghost system is the Pais-
Uhlenbeckoscillator [3]with thehigher-derivativeLagrangian,

L ¼ 1

2
½ẍ2 − ðω2

1 þ ω2
2Þ_x2 þ ω2

1ω
2
2x

2�: ð1:1Þ

The quantum version of the corresponding Ostrogradsky
Hamiltonian does not have a bottom. Indeed, there exists a
canonical transformation [4,5] that brings the Hamiltonian into
the form,1

H ¼ P̂2
1 þ ω2
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2
: ð1:2Þ

This Hamiltonian has a pure point spectrum with neither a
bottom, nor a ceiling,

Enm ¼
�
nþ 1

2

�
ω1 −

�
mþ 1

2

�
ω2: ð1:3Þ

If the ratio ω1=ω2 is irrational, the spectrum is dense every-
where. The evolution operator is unitary.
The ghosts generally strike back, however, when one

leaves the realm of quadratic Hamiltonians to include
interactions. Consider, for example, the Lagrangian,

L ¼ 1

2
½ẍ2 − 2ω2 _x2 þ ω4x2� − 1

4
αx4; ð1:4Þ

whose classical equation of motion reads

�
d2

dt2
þ ω2

�
2

x − αx3 ¼ 0: ð1:5Þ

The classical trajectories depend on four initial conditions.
There is an obvious stationary point,

xð0Þ ¼ _xð0Þ ¼ ẍð0Þ ¼ xð3Þð0Þ ¼ 0: ð1:6Þ

The behavior of the system in the vicinity of this point
depends on the sign of α. If α > 0, the point (1.6) lies
within an “island of stability”—the trajectories with initial
conditions sufficiently close to (1.6) do not go astray but
exhibit an oscillatory behavior. However, this island has a
shore. When the deviations of initial conditions from (1.6)
are large enough, the trajectory blows up [8].
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1We assumed here that ω1 ≠ ω2 (and took ω1 > ω2 > 0). In the
case of equal frequencies, the situation is somewhat more compli-
cated because the canonical transformation mentioned above is
singular and the Hamiltonian is not reduced to the form (1.2). Still,
the Hamiltonian is well defined. It has a continuous spectrum [3,6,7].
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If α < 0, the island of stability for the system (1.5)
shrinks to the single point (1.6). All the trajectories except
xðtÞ ¼ 0 run away to infinity in a finite time. This does not
happen, however, for the Pais-Uhlenbeck oscillator with
unequal frequencies.
In most cases, an island of stability with a finite phase-

space volume is present. For instance, a similar island of
stability (surrounded by an infinite ocean of blowup
behavior) was observed in [9] for a (cosmology-inspired)
model obtained by adding to the Pais-Uhlenbeck
Hamiltonian (1.2) (with ω1 ¼ 0 and ω2 ≠ 0) an interaction
term λX2

1X
2
2 (with λ > 0). A proof of the existence of an

island of stability for (nonresonant) Pais-Uhlenbeck
Hamiltonians perturbed by a general interaction term
μ3ðX1 − X2Þ3 þ μ4ðX1 − X2Þ4 þO½ðX1 − X2Þ5� was given
in Ref. [4].
When considering the quantum version of ghost-ridden

Hamiltonians involving nontrivial interactions, it is difficult
to reach definite answers applying to general situations.
A case by case study is required. For instance, it has
been argued that the quantum problem for the system (1.4)
is also malignant [2]. On the other hand, there are
Hamiltonians which entail blowing up classical motions
but which lead to a well-defined, unitary quantum evolu-
tion. A well-known example is the Hamiltonian describing
the three-dimensional motion of a particle in an attractive 1

r2

potential,

H ¼ p⃗2

2m
−

κ

r2
: ð1:7Þ

Classically, for certain initial conditions, the particle falls to
the center in a finite time. The quantum dynamics of this
system depends on the value of κ. If mκ < 1=8, the ground
state exists, and unitarity is preserved. If mκ > 1=8, the
spectrum is not bounded from below and, what is worse,
the quantum problem cannot be well posed until the
singularity at the origin is smoothed out [10]. One can
say that for mκ < 1=8, quantum fluctuations cope success-
fully with the attractive force of the potential and prevent
the system from collapsing.
The latter example suggests that quantum fluctuations

can only make a ghost-ridden system better, not worse. We
therefore conjecture that, if the classical dynamics of the
system is benign, its quantum dynamics will also be
benign, irrespective of whether the spectrum has, or does
not have, a bottom.
Some particular examples of benign ghost-ridden (non-

linearly interacting) Hamiltonians have been presented in
previous works [8,11–15]. The aim of the present paper is
to delineate new classes of benign Hamiltonians, some of
which have a large generality (in the sense that they contain
several arbitrary functions). More precisely, we shall
present classes of nontrivially interacting ghost-ridden
systems such that all the classical motions (and not
only the motions restricted to a limited region of phase

space) admit an infinite-time evolution.2 In view of the
conjecture stated in the last paragraph, we expect that the
quantum dynamics of our benign ghost-ridden systems
will be well posed. We leave studies of this issue to
future work.

II. VARIATIONAL DYNAMICS: A LARGE CLASS
OF BENIGN GHOSTS

A general class of dynamical systems with benign
ghosts is obtained by considering the variational equations
of motion of a bounded-motion3 Hamiltonian system.
An example of such a system was found in [11]
by studying a certain higher-derivative supersymmetric
mechanical system, though its variational nature was not
noticed.4

The general setting for defining such systems is the
following. One starts from a basic, unperturbed dynamical
system (with n degrees of freedom) described, say, by a
Lagrangian, L0ðqi; _qiÞ, i ¼ 1; � � � n, i.e., by the action,

S0½q; _q� ¼
Z

dtL0ðqi; _qiÞ: ð2:1Þ

Then, one considers the dynamics defined by varying the
Lagrangian action (2.1), i.e., by making in L0ðqi; _qiÞ the
replacement,

qiðtÞ → qiðtÞ þ ϵQiðtÞ;
_qiðtÞ → _qiðtÞ þ ϵ _QiðtÞ; ð2:2Þ

and by keeping only the term linear in ϵ. In other words,
one is considering the new action (with 2n degrees of
freedom),

S1½q; _q;Q; _Q� ¼
Z

dtL1ðqi; _qi;Qi; _QiÞ; ð2:3Þ

where

L1ðqi; _qi;Qi; _QiÞ ¼ Qj ∂L0ðq; _qÞ
∂qj þ _Qj ∂L0ðq; _qÞ

∂ _qj : ð2:4Þ

The variational action (2.3) leads to the following equations
of motion for qi and Qi (with δ=δq denoting an Euler-
Lagrange variational derivative, ∂q − d

dt ∂ _q þ d2

dt2 ∂ q̈ þ � � �):

2Note that we are not requiring that the motions indefinitely
stay within a compact region of phase space. We do not exclude
power law, or exponential, runaway behaviors. We are simply
excluding finite-time blowup.

3Here, “bounded motion” means that the time evolution of the
considered, unperturbed, system stays within some compact
domain of phase space.

4The supersymmetric aspects of this problem are not relevant
here, and we shall forget here about fermions.
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0 ¼ δL1

δQi ¼
∂L0ðq; _qÞ

∂qi −
d
dt

∂L0ðq; _qÞ
∂ _qi ≡ δL0

δqi
;

0 ¼ δL1

δqi
¼ Qj ∂L0ðq; _qÞ

∂qj∂qi þ _Qj ∂L0ðq; _qÞ
∂ _qj∂qi −

d
dt

�
Qj ∂L0ðq; _qÞ

∂qj∂ _qi
�
−

d
dt

�
_Qj ∂L0ðq; _qÞ

∂ _qj∂ _qi
�
: ð2:5Þ

We see that the first Euler-Lagrange equation 0 ¼ δL1=δQi

coincides with the unperturbed equation of motion of qi,
δL0ðq; _qÞ=δqi ¼ 0. On the other hand, the second equation,
0 ¼ δL1=δqi coincides with the variation of the equation
δL0ðq; _qÞ=δqi ¼ 0: it is obtained by replacing there qiðtÞ
and their first and second derivatives as in (2.2) and keeping
only the term linear in ϵ.
When considering the first-order Hamiltonian version of

the so-defined variational dynamics, one encounters a
slightly surprising feature. Namely, if we denote the
momenta conjugate to qi and Qi, respectively, as pi and
Pi, the HamiltonianH1ðqi; Qi;pi; PiÞ describing the varied
dynamics [corresponding to L1ðqi; _qi;Qi; _QiÞ] is not
obtained by varying the unperturbed Hamiltonian
H0ðqi;piÞ by means of the naively expected variation
qi → qi þ ϵQi;pi → pi þ ϵPi. It is obtained by first doing
the latter naive variation and then by swapping the
momenta according to pi ↔ Pi.
The necessity to swap p ↔ P in the naive variation of

H0ðqi;piÞ is easily seen by varying the Hamiltonian
version of the action (2.1),

SH0 ½q; p� ¼
Z

dt½pi _qi −H0ðq; pÞ�: ð2:6Þ

Using the naively defined variations qi → qi þ ϵQi;
pi → pi þ ϵPi, we get

δSH0 ½q;Q;p;P�¼
Z

dt
�
Pi _qiþpi

_Qi

−
�
Qi∂H0ðq;pÞ

∂qi þPi
∂H0ðq;pÞ

∂pi

��
; ð2:7Þ

in which the Hamiltonian kinetic term Pi _qi þ pi
_Qi shows

that the conjugate momentum to qi is actually Pi ∼ δpi,
while the conjugate momentum toQi is the unperturbed pi.
After the swap p ↔ P, one finally gets the Hamiltonian for
the varied dynamics expressed in terms of the canonical
pairs ðq; pÞ; ðQ;PÞ,

H1ðq;Q;p; PÞ ¼ Qi ∂H0ðq; PÞ
∂qi þ pi

∂H0ðq; PÞ
∂Pi

: ð2:8Þ

From our present perspective (namely, studying ghost-
ridden dynamics), note that all the varied Hamiltonians
H1ðq;Q;p; PÞ are necessarily unbounded below (and
above) because they have a linear dependence on the

phase-space variables Qi and pi; see Eq. (2.8). This makes
the quantum spectrum also unbounded. Let us, however,
see why this ghost feature leads generically to a benign
evolution.
The simplest type of varied dynamics is obtained by

varying a simple Hamiltonian (with 1 degree of freedom) of
the form,

H0ðx; pÞ ¼
1

2
p2 þ VðxÞ: ð2:9Þ

In that case, the variation of the first term yields the
symmetric structure pP, invariant under the swap p ↔ P,
which is thus ineffective. One then gets (with the notation
D≡Q ¼ δx used in [11]) a varied-dynamics Hamiltonian
involving two pairs of canonically conjugated variables,
ðx; pÞ and ðD;PÞ,

H1ðx;D;p; PÞ ¼ pPþDV 0ðxÞ: ð2:10Þ

The classical equations of motion are

ẍþ V 0ðxÞ ¼ 0; D̈þ V 00ðxÞD ¼ 0: ð2:11Þ

They admit two constants of motion: the varied
Hamiltonian H1ðx;D;p;PÞ and the conserved energy
E0 ¼ 1

2
_x2 þ VðxÞ of the unperturbed motion of x. Using

the Hamilton equation _x ¼ ∂H1∂p ¼ P, the unperturbed
energy E0ðx; _xÞ yields the second integral of motion
Nðx; PÞ with

Nðx; PÞ ¼ P2

2
þ VðxÞ: ð2:12Þ

The model of Ref. [11] was of this type, with the simplest
nontrivial potential,

VðxÞ ¼ ω2x2

2
þ λx4

4
; λ > 0: ð2:13Þ

If one introduces the variables,

X1;2¼
ffiffiffiffi
ω

2

r
x� 1ffiffiffiffiffiffi

2ω
p D; P1;2¼

1ffiffiffiffiffiffi
2ω

p p�
ffiffiffiffi
ω

2

r
P; ð2:14Þ

the Hamiltonian (2.10) acquires the form [11],
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H1 ¼
P2
1 þω2X2

1

2
−
P2
2 þω2X2

2

2
þ λ

4ω
ðX1 −X2ÞðX1 þX2Þ3:

ð2:15Þ

In other words, this is the Hamiltonian (1.2) with degen-
erate frequencies, with an additional quartic interaction of a
special form.
A nice distinguishing feature of the system (2.10) is its

integrability. Indeed, we have 2 degrees of freedom and two
commuting integrals of motion: H1 and N. (The vanishing
of the Poisson bracket fH1; Ng is easily checked.) This
allows one to find, for the simple potential (2.13), the
solution analytically.
First, the unperturbed dynamics for x describes oscil-

lations in the quartic potential (2.13). The solutions are
elliptic functions whose parameters depend on the integral
of motion N,

xðtÞ ¼ x0cn½Ωðt − t0Þ; k�; ð2:16Þ

where cn is a Jacobi elliptic function (with elliptic modulus
k ¼ ffiffiffiffi

m
p

), and

α¼ ω4

λN
; Ω¼½λNð4þαÞ�1=4;

k2≡m¼1

2

�
1−

ffiffiffiffiffiffiffiffiffiffi
α

4þα

r �
; x0¼

�
N
λ

�
1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þα
p

−
ffiffiffi
α

pq
:

ð2:17Þ

Bearing in mind (2.16), the equation forD is a Hill equation
describing an oscillator with periodically varying fre-
quency. The solutions of generic Hill equations are
obtained by Floquet theory and, depending on parameters,
can be either bounded for all times, or exponentially
growing. However, we are here in a special case. We know
that the equation forD describes the infinitesimal variations
of the general solution of the quartic oscillator describing
the x dynamics. Therefore, we can simply obtain the
general solution for D by varying the integration constants
entering the general solution (2.16). It is enough to get
two independent solutions. A first one can be obtained by
varying the integration constant t0 in Eq. (2.16). This yields

D1ðtÞ ¼
∂½xðtÞ�
∂t0 ¼ −_xðtÞ ¼ þΩx0sn½Ωt; k�dn½Ωt; k�;

ð2:18Þ

where we have set t0 ¼ 0 after variation. This solution is
periodic in t.
A second solution is obtained by varying the value of N

in Eq. (2.16). Varying N implies that both the amplitude
x0ðNÞ, and the frequencyΩðNÞ, of xðtÞmust be varied. The
variation of ΩðNÞ in xðtÞ ¼ x0ðNÞcn½ΩðNÞt; k� (setting
again t0 ¼ 0, and noticing that k does not depend on N)

brings about a prefactor t multiplying the derivative of
cnðxÞ and generates a D2ðtÞ of the form,

D2ðtÞ¼ t
d
dt
cn½ΩðNÞt;k�þβcn½ΩðNÞt;k�

¼−tΩðNÞsn½ΩðNÞt;k�dn½ΩðNÞt;k�þβcn½ΩðNÞt;k�;
ð2:19Þ

where β is some constant. The contribution
−tΩsn½Ωt; k�dn½Ωt; k� is the product of t by a periodic
function of t. Therefore, while the first independent
solution D1ðtÞ is periodic, the second independent solution
D2ðtÞwill exhibit an oscillatory behavior with an amplitude
rising linearly in time. This is illustrated in Fig. 1. What is
important for our present purpose is the benign nature
of the general solution,DðtÞ ¼ c1D1ðtÞ þ c2D2ðtÞ. Indeed,
we consider as malignant ghost only the cases leading to
blowup in a finite time. The linear growth in time exhibited
by the generic solution of theDðtÞ equation is quite benign.
We refer to Ref. [11] for a study of the quantum version

of the Hamiltonian (2.10) (due to integrability, the eigen-
values, and eigenfunctions of the quantum Hamiltonian can
be found explicitly in this case).
We have used here the specific quartic potential (2.13) to

be able to exhibit explicit solutions of the equations of
motion for the system (2.10). However, the conclusions we
reached about the benign dynamics of the ðx;D;p; PÞ
system hold for a general class of potentials. Indeed, if we
take for VðxÞ, a smooth confining potential growing as
x → �∞, the solutions for xðtÞ will represent a nonlinear
oscillation of a certain type—periodic functions of time
with a frequency Ω depending on the integral of motion,

E0ðx; _xÞ≡ 1

2
_x2 þ VðxÞ ¼ P2

2
þ VðxÞ≡ N: ð2:20Þ

In other words,

D

t

FIG. 1. A typical behavior of DðtÞ, as follows from solving
Eq. (2.11).
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xðtÞ ¼ X½ΩðNÞðt − t0Þ; N�; ð2:21Þ

where Xðθ; NÞ is a periodic function of θ, with period 2π. It
can be expanded into a Fourier series,

Xðθ; NÞ ¼ Re

�X
k∈Z

AkðNÞeikθ
�
: ð2:22Þ

The existence of the two commuting integrals of motionH1

and N allows one to solve the motion of xðtÞ by a
quadrature, giving some type of hyperelliptic function.
The general solution for DðtÞ can then be simply

obtained by varying the general solution for xðtÞ with
respect to the two integration constants it contains, namely
t0 and N. Again, it is clear that the first independent
solution,

D1ðtÞ¼∂xðtÞ=∂t0¼−_xðtÞ¼ΩðNÞIm
�X

k

kAkðNÞeikθðtÞ
�
;

ð2:23Þ

will be periodic in time [with the same period as xðtÞ],
while the second solution,

D2ðtÞ ¼
∂
∂N X½ΩðNÞðt − t0Þ; N�

¼ Re
∂
∂N

�X
k

AkðNÞeikΩðNÞðt−t0Þ
�
; ð2:24Þ

will be the sum of a periodic function, and of the function,

d lnΩðNÞ
dN

ðt − t0Þ_xðtÞ: ð2:25Þ

The latter function is a product of t − t0 and of a periodic
function of t. As in the case illustrated in Fig. 1, we have
again an oscillatory behavior with an amplitude rising
linearly in time. A benign ghost again.
Let us consider the generalization of these results to n

degrees of freedom, i.e., to the system with the varied
Lagrangian (2.4) and the corresponding Hamiltonian
(2.8). In that case, the results will strongly depend
on the integrable or nonintegrable character of the
unperturbed dynamics described by the action (2.1), or
equivalently, (2.6).
Let us first assume that the unperturbed dynamics (2.6) is

integrable and that we are considering bounded motions. In
that case, the general solution of the dynamics (2.6)
corresponds to a quasiperiodic motion, where the phase-
space coordinates qi, pi admit representations of the form,

qiðtÞ¼qi½I;θðtÞ�¼
X
k

aik1���knðI1;…;InÞeiðk1θ1ðtÞþ���þknθnðtÞÞ;

piðtÞ¼pi½I;θðtÞ�¼
X
k

bik1���knðI1;…;InÞeiðk1θ1ðtÞþ���þknθnðtÞÞ:

ð2:26Þ

Here, ðI; θÞ ¼ ðIi; θiÞ, i ¼ 1;…; n are action-angle varia-
bles, k ¼ ðkiÞ; i ¼ 1;…; n are multiplets of (relative)
integers (summed over Zn), and the time evolution of
the angles is of the form,

θiðtÞ ¼ ωiðIÞtþ θ0i : ð2:27Þ

We assume that the 2n integration constants entering this
solution are Ii, and θ0i . The general solution for the variation
Qi ¼ δqi can then be obtained as a linear superposition
of the 2n particular varied solutions defined by varying the
2n integration constants, i.e.,

QiðtÞ ¼
X
j

�
CIj

∂
∂Ij q

i½I; θðtÞ� þ Cθj

∂
∂θ0j q

i½I; θðtÞ�
�
:

ð2:28Þ

This expression is the sum of some quasiperiodic functions
[of the type (2.26)] and of the functions coming from
varying the frequencies ωiðIjÞ, namely,

t
X
j;l

CIj

∂ωl

∂Ij
∂qi½I; θ�
∂θl : ð2:29Þ

The latter functions are the products of t and quasiperiodic
functions of time.5 This is again a benign behavior of
linearly growing oscillatory form, which is essentially a
quasiperiodic version of Fig. 1.
Let us now consider the generic case where the unper-

turbed system (2.1) is not integrable and exhibits a chaotic
behavior. [We are still assuming that the (unperturbed)
evolution stays within a compact domain of phase space.]
In that case, the behavior of the varied dynamical system
can be much worse than in the integrable case assumed
above. First, on midterm time scales, the variations
Qi ¼ δqi may grow exponentially with time (Lyapunov
instability). On longer time scales, such a Lyapunov
exponential instability might (via an Arnold-type diffusion)
evolve into a more chaotic behavior. Anyway, QiðtÞ
satisfies an homogeneous linear ordinary differential equa-
tion (ODE) with time-dependent coefficients, say (in the
simple, equal-mass, potential case)

5Here, we assume a fast enough decay for the coefficients
aik1���kn as the ki tend to infinity to ensure the quasiperiodic nature
of the right factor in Eq. (2.29).
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Q̈i þ ∂2VðqÞ
∂qi∂qj Q

j ¼ 0; ð2:30Þ

in which qi must be replaced by a solution of

q̈i þ ∂VðqÞ
∂qi ¼ 0. General theorems about linear ODE’s then

guarantee that QiðtÞ can only have singularities at a finite
time if the coefficients of the ODE become singular. As we
assume here that the unperturbed solution qiðtÞ is regular
for all times, we are guaranteed that the behavior of QiðtÞ
will be benign in our general sense (i.e., no finite-time
blowup).
Let us finally mention that our variational approach can

be straightforwardly generalized to field theory systems
(i.e., to an infinite number of dynamical variables). For
instance, if we start with the unperturbed Lagrangian [using
here the signature ðxμÞ2 ≡ t2 − x2],

L0 ¼
1

2
ð∂μϕÞ2 − VðϕÞ; ð2:31Þ

we are led to the following variational Lagrangian for two
real fields ϕðt;xÞ and Dðt;xÞ≡ δϕðt;xÞ∶

L ¼ ∂μϕ∂μD −DV 0ðϕÞ: ð2:32Þ

If we use the same potential as in (2.10), the equations of
motion for the system (2.32) are

□ϕþ ω2ϕþ λϕ3 ¼ 0;

□Dþ ðω2 þ 3λϕ2ÞD ¼ 0: ð2:33Þ

The particular case of a (1þ 1)-dimensional spacetime
has been considered (and numerically investigated)
in Ref. [14].
General mathematical results on the nonlinear Klein-

Gordon equation (with potential λϕp=p, with λ > 0 and
p < 2þ 4

d−2 in d spatial dimensions) [16] guarantee the
global existence of solutions of Eq. (2.33) for ϕðt;xÞ, with
suitable (finite-energy) Cauchy data at t ¼ 0. These generic
solutions have been shown to exhibit asymptotic decay in
time. We then expect that these exact results on the
nonlinear Klein-Gordon equation for ϕ imply (by varying
the Cauchy data) a benign behavior (with asymptotic
decay) for generic solutions of the linear, varied Klein-
Gordon equation satisfied by D ¼ δϕ. Reference [14]
numerically investigated the case of a one-dimensional
space (d ¼ 1) compactified on a circle. The space com-
pactification suppresses the asymptotic time decay of ϕ
and seemingly induced a mild (linear in time) growth
for D [14].
Evidently, our variational construction can be set up

basically for any system. One can vary the Yang-Mills
Lagrangian,

LYM
0 ¼ −

1

2
TrfFμνFμνg; ð2:34Þ

setting Aμ → Aμ þ ϵBμ and keeping in (2.34) the terms
linear in Bμ, namely,

LYM
1 ¼ Bμ

δLYM½A�
δAμ

: ð2:35Þ

At the linearized level (in A), LYM
1 describes two massless

spin-1 fields, one of which is a ghost. At the nonlinear level,
the number of degrees of freedom is preserved because
of the invariance of LYM

1 under two distinct gauge trans-
formations: the usual one acting on A, and a separate one
(involving A-covariant derivatives) acting on B. This
system is again a benign ghost-ridden system.
Mutatis mutandis, one can also consider the ghost-ridden

action obtained by varying the Einstein action [we use here
the signature ð−þþþÞ and 16πG ¼ 1],

LE
0 ¼ ffiffiffiffiffiffi

−g
p

gμνRμν½g�: ð2:36Þ

Varying gμν → gμν þ ϵhμν and keeping the term linear in ϵ
yields

LE
1 ¼ −

ffiffiffiffiffiffi
−g

p �
Rμν½g� − 1

2
gμνR½g�

�
hμν: ð2:37Þ

At the linearized level around flat spacetime (gμν ¼
ημν þ ϵfμν), LE

1 describes two massless spin-2 fields, one
of which is a ghost. At the nonlinear level, the number of
degrees of freedom is preserved because of the invariance
of LE

1 under two distinct gauge transformations: the usual
coordinate transformations, x0μ ¼ fμðxνÞ, acting both on
gμν and on the tensor hμν, and a separate one (involving
g-covariant derivatives) acting linearly on h, namely
hμν → hμν þ∇g

μξν þ∇g
νξμ. Note that the Euler-Lagrange

equations derived from LE
1 imply that gμν must satisfy the

(vacuum) Einstein equations,

Eμν½gαβ�≡ ffiffiffiffiffiffi
−g

p �
Rμν½g� − 1

2
gμνR½g�

�
¼ 0; ð2:38Þ

while hμν must satisfy the linearized Einstein equations,

δEμν

δgαβ
hαβ ¼ 0: ð2:39Þ

This system is again a benign ghost-ridden system. For
instance, the mathematical results on the global nonlinear
stability of the Minkowski spacetime [17–19] have shown
the global existence of solutions of Einstein vacuum
equations for gμνðt;xÞ, with small Cauchy data at t ¼ 0.
These generic solutions have been shown to exhibit
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asymptotic decay in time. We believe that the good control
(in all spacetime directions) of the geometric properties of
these nonlinear, but small perturbations of Minkowski
space [17] suffice to prove the global existence of the
Green’s function needed to solve the linearized Einstein
equation satisfied by hμν (after a suitable gauge fixing).
The basic reason why the ghost-ridden systems con-

sidered in this section were benign is that the equations
of motion of the variables ðQ;PÞ were linear [though
influenced by the nonlinear dynamics of the unperturbed
variables ðq; pÞ]. In the following, we are going to
introduce more interesting ghost-ridden systems where
the dynamics of the ghost degrees of freedom is nonlinear.
It is then more delicate to delineate ghost-ridden
systems that stay benign in spite of such nonlinear
interactions.

III. GEODESICS ON LORENTZIAN MANIFOLDS

A general class of nonlinear ghost-ridden Hamiltonians
with benign solutions are the (quadratic) Hamiltonians
describing geodesic motion on geodesically complete
Lorentzian manifolds. Namely, to any givenD-dimensional
Lorentzian manifoldMD with metric tensor gμνðxÞ, one can
associate the Hamiltonian,

Hðxλ; pλÞ ¼
1

2
gμνðxÞpμpν: ð3:1Þ

Because of the −þ � � � þ signature that we choose to use
here, this Hamiltonian contains D − 1 positive terms and a
ghostlike negative term. The Hamiltonian (3.1) describes
geodesic motions on MD. More precisely, the Hamilton
equations of motion,

dxμ

dτ
¼ ∂H

∂pμ
¼ gμνðxÞpν;

dpμ

dτ
¼ −

∂H
∂xμ ¼ −

1

2
∂μgνλðxÞpνpλ; ð3:2Þ

describe a motion in the 2D-dimensional phase space
ðxλ; pλÞ [the cotangent space of MD] with respect to an
Hamiltonian “time variable” τ, which is an affine parameter
along the considered geodesic. For a general curved
spacetime, the only conserved quantity of the dynamics
(3.2) is the “energy” (the factor 2 being introduced for
convenience),

E ¼ 2Hðx; pÞ≡ gμνðxÞpμpν: ð3:3Þ

A positive value of E describes spacelike geodesics, a
negative value describes timelike ones, while E ¼ 0
describes null geodesics. Actually, as the affine para-
metrization of geodesics is defined modulo an arbitrary
affine transformation τ → aτ þ b, one can, without loss of
generality only consider the three cases: E ¼ þ1, E ¼ −1,

and E ¼ 0. The values E ¼ �1 mean that τ is equal to the
proper length

ffiffiffiffiffiffiffiffiffiffiffi
�ds2

p
along the geodesic, with

ds2 ¼ gμνðxÞdxμdxν: ð3:4Þ

We are interested in the systems for which the Hamiltonian
evolution (3.2) can be continued indefinitely with respect to
the Hamiltonian time variable τ. Then, as was argued in the
Introduction, the ghosts are benign. In the context of the
geodesic Hamiltonian (3.1), our condition boils down to
saying that the Lorentzian manifold ðMD; gÞ is geodesically
complete. We can therefore conclude that the ghost-ridden
Hamiltonian (3.1) defines a benign dynamics (for all values
of the energy E) on any geodesically complete Lorentzian
manifold.
Mathematical investigations have given large classes of

geodesically complete Lorentzian manifolds. Of particular
physical significance is the fact, proven in Refs. [20,21],
that the vacuum Einstein spacetimes close to Minkowski
that were constructed in Refs. [17–19] are geodesically
complete for all values of the energy. Evidently, this
property will not extend if one considers spacetimes
containing black holes.
As a very particular type of geodesically complete

spacetimes, we can also mention the de Sitter, as well as
anti–de Sitter (AdS), spacetimes (of any dimension) [22].
For concreteness, let us consider the AdS spacetime, with
the metric (in global coordinates),

ds2 ¼ −
�
1þ r2

l2

�
dt2 þ dr2

1þ r2

l2
þ r2dΩ2

D−2: ð3:5Þ

The associated geodesic Hamiltonian reads

H ¼ −
1

2

p2
t

1þ r2

l2
þ 1

2

�
1þ r2

l2

�
p2
r þ

1

2

J2

r2
: ð3:6Þ

Here, l is the AdS length scale giving the constant negative
curvature K ¼ −1=l2 and J2 is the squared angular
momentum linked to the motion on the sphere SD−2.
The AdS spacetime is a homogeneous, symmetric space,

equivalent to the coset Oð2; D − 1Þ=Oð1; D − 1Þ. Because
of its homogeneity we can reduce the study of geodesics to
the geodesics starting from any given point, say the
origin t ¼ 0, r ¼ 0 in the global coordinates of (3.5).
In addition, as the isotropy group of the cosetOð2; D − 1Þ=
Oð1; D − 1Þ, namely Oð1; D − 1Þ is the local Lorentz
group, we can use this group to reduce the study of
the three types of geodesics to a particular timelike
geodesic (e.g., the geodesic r ¼ 0), a particular spacelike
one (e.g., the radial geodesic t ¼ 0;Ω ¼ cst), and a
particular null geodesic (a radial one directed along the
light cone).
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In these cases, the solutions to the Eqs. (3.2) are very
simple6: the spacelike geodesic with E ¼ 1 is rðτÞ ¼ sinh τ,
t ¼ 0, Ω ¼ cst, the timelike geodesic with E ¼ −1 is
r ¼ 0, t ¼ τ, Ω ¼ cst, while the null geodesic is r ¼ τ,
t ¼ arctan τ, Ω ¼ cst. We see that all three types of geo-
desics have an infinite affine length.
The class of Ricci-flat, near-Minkowski geodesically

complete Lorentzian manifolds mentioned above [20,21]
might naively suggest that any Lorentzian manifold with
small enough curvature will be geodesically complete (as is
the case for Riemannian manifolds). In other words, one
might think that the incompleteness of geodesics must be
linked to the presence of curvature singularities or at least
of high-curvature regions. This is incorrect. The (toy-Taub-
NUT) Misner manifold [23] (see also Sec. V.8 in [22])
yields a simple example of a smooth Lorentzian manifold,
which is locally flat, but geodesically incomplete (because
of its nontrivial topology). The Misner manifold is two
dimensional and has the topology R × S1. In global
coordinates ðx;ϕÞ, where x ∈ R and where ϕ ∈ ½0; 2π� is
an angle describing the circle S1, the metric reads7

ds2 ¼ 2dxdϕþ xdϕ2: ð3:7Þ

This corresponds to the geodesic Hamiltonian (multiplied
by a factor of 2 compared to Eq. (3.1)),

Hðx;ϕ;px; pϕÞ ¼ 2pxpϕ − xp2
x: ð3:8Þ

Note that the metric and the Hamiltonian stay regular as
one crosses the line x ¼ 0 (which is a Killing horizon). The
determinant of the metric is everywhere equal to −1, and
the signature is globally −þ, so that the Hamiltonian is not
positive definite, representing locally a difference between
two squares. In other words, it involves an ordinary and a
ghost degree of freedom.
The equations of motion read

_x ¼ 2pϕ − 2xpx;

_ϕ ¼ 2px;

_px ¼ p2
x;

_pϕ ¼ 0: ð3:9Þ

Denoting here the Hamiltonian time variable as t (i.e.,
_x ¼ dx

dt), it is simple to solve the equations of motion. We
see that pϕ is an integral of motion. Assuming that the
initial value of px is not zero, say pxð0Þ ¼ 1=c, the equation
of motion for px is easily integrated, giving

pxðtÞ ¼
1

c − t
: ð3:10Þ

This leads to a blowup for pxðtÞ at the finite time t ¼ c,
which can be positive or negative. Correspondingly, ϕðtÞ
blows up logarithmically as t → c according to

ϕðtÞ ¼ ϕð0Þ − 2 ln

�
1 −

t
c

�
; ð3:11Þ

assuming t=c < 1. While pϕ stays constant, the time
evolution of the remaining phase space variable xðtÞ is
conveniently obtained by using the constancy of the
energy: E ¼ Hðx;ϕ;px; pϕÞ. This yields

x ¼ 2pxpϕ − E

p2
x

: ð3:12Þ

When one approaches the blowup (where px → ∞), x tends
to zero.
One can visualize the Misner manifold as a cylinder

(with ϕ being the angular coordinate and x the coordinate
along its axis). The geodesic incompleteness of the Misner
manifold means that most geodesics [apart from the ones
with pxð0Þ ¼ 0] spiral [either for t < 0 or t > 0, depending
on the sign of pxð0Þ] towards the horizon circle x ¼ 0 by
making infinitely many turns within a finite (affine) time.
This exemplifies how the nonlinearity of the ghost-ridden
Hamiltonian (3.8) leads to a finite-time blowup in phase
space, i.e., (3.8) is a system with a malignant ghost.

IV. MODIFIED KORTEWEG-DE VRIES
EQUATION AS A BENIGN

HIGHER-DERIVATIVE MODEL

We started our discussion with the Pais-Uhlenbeck
oscillator (1.1), a higher-derivative model with benign
ghosts. We noted in the Introduction that the ghosts
generically cease to be benign if a nonlinear interaction
term is added to the Lagrangian (1.1). The ghost models
considered in Sec. II were benign essentially because the
ghost degrees of freedom satisfied linear equations of
motion. The ghost models considered in Sec. III involved
nonlinear evolution equations, and could be benign (or not)
depending on the global geometric properties of the
considered Lorentzian manifold. However, they were not
models linked to higher-derivative Lagrangians.
A natural question at this stage is are there nonlinear

higher-derivative models with benign ghosts? In Ref. [24],
one of us suggested that the usual two-dimensional ðt; xÞ
Korteweg-de Vries (KdV) system, with the roles of
temporal and spatial variables interchanged might be
benign because of the existence of infinitely many local
conservation laws. Indeed, let us rename

t → X; x → T: ð4:1Þ
6To simplify them still further, we have set l ¼ 1.
7See [22] for the local coordinate transformation needed to

exhibit the flatness of the Misner metric (3.7).
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Then the local flux conservations, 0 ¼ ∂tJtn þ ∂xJxn ≡∂TJxn þ ∂XJtn, imply the T conservation of the fluxes,

F n ¼
Z

dX½Jxn�T¼cst ≡
Z

dt½Jxn�x¼cst: ð4:2Þ

Let us recall that the ordinary KdV equation for uðt; xÞ,
namely,8

uxxx þ 6uux þ ut ¼ 0; ð4:3Þ

derives from the action
R
dtdxL½ψðt; xÞ� with the two-

dimensional Lagrangian density,

L½ψðt; xÞ� ¼ 1

2
ψ2
xx − ψ3

x −
1

2
ψ tψx; ð4:4Þ

if one denotes uðt; xÞ≡ ψx after having varied over ψðt; xÞ.
When changing the names of spacetime variables

according to Eq. (4.1) and denoting ψðt; xÞ ¼ ψðX; TÞ →
ΨðT; XÞ, the action reads

R
dTdXL½ΨðT; XÞ� with a

Lagrangian density,

L½ΨðT; XÞ� ¼ 1

2
Ψ2

TT −Ψ3
T −

1

2
ΨTΨX; ð4:5Þ

which contains higher-order T-time derivatives. The cor-
responding equation of motion,

uTTT þ 6uuT þ uX ¼ 0; ð4:6Þ

is of third order in the T-time derivative of u ¼ ΨT . As we
will see below, higher-order T-derivatives in Eq. (4.6) bring
about exponential instabilities when considering the evo-
lution in the T (i.e., x) direction.
In order to express our results on the KdV and modified

KdV equations in a more transparent way, we willl not
henceforth use the notation T for x and X for t. We will
simply consider a nonstandard Cauchy problem for
Eq. (4.3) [and its modified version, Eq. (4.10), considered
below] written in a conventional way. Namely, instead of
setting the initial value of uðt; xÞ at9 t ¼ 0 [i.e., giving one
function of x, vðxÞ, with the condition uð0; xÞ ¼ vðxÞ], we
shall now pose a “rotated” Cauchy problem on the x ¼ 0
axis. However, as Eq. (4.3) features the third x derivative of
u, we must now give as Cauchy data three independent
functions of t, u0ðtÞ, u1ðtÞ, and u2ðtÞ, with the three
conditions,

uðt;0Þ¼u0ðtÞ; uxðt;0Þ¼u1ðtÞ; uxxðt;0Þ¼u2ðtÞ: ð4:7Þ

Note that this means that we are now considering more
general solutions of the KdV equation. Indeed, any
solution of the ordinary Cauchy problem [determined
by one function vðxÞ ¼ uð0; xÞ] will evolve in t (in both
directions, t > 0 and t < 0) and will induce on the
x ¼ 0 axis some values for the three functions uðt; 0Þ,
uxðt; 0Þ, and uxxðt; 0Þ, which are not functionally inde-
pendent because they are all determined by the single
function vðxÞ.
The ordinary (t direction) Cauchy problem for the KdV

equation (4.3) has been shown to be globally well-posed
when the single Cauchy datum vðxÞ belongs to suitable
functional spaces, namely Hs Sobolev spaces with s ≥ 1
(see [25] and references therein). However, the fact that the
KdVequation has good dynamic behavior when evolved in
the t direction does not mean that the same is true for its
evolution in the x direction.
Indeed, we will explicitly see below that the x evolution

gives rise [when considering the linearized approximation
of (4.3)] to exponentially growing modes (which are absent
when considering the t evolution). These exponentially
growing modes amplify any small-scale structure present in
the x-evolution Cauchy data u0ðtÞ, u1ðtÞ, and u2ðtÞ and are
not tamed by the existence of the infinitely many conserved
fluxes F n defined in Eq. (4.2), because their integrands Jxn
are not positive definite.
Worse, Eq. (4.3) admits approximate (as well as exact)

solutions which blow up along a line located at some
finite distance in the x direction. Indeed, if one looks for
power-law singularities of uðt; xÞ of the general form
uðt; xÞ ≈ CðtÞ½x − x0ðtÞ�α, it is easily seen that they must
necessarily be of the form,

uðt; xÞKdVblowup ≈ −2½x − x0ðtÞ�−2; ð4:8Þ

with an arbitrary possible blowup line x ¼ x0ðtÞ. A specific
example of such a blowup solution is the following exact
t-independent solution of the KdV equation:

uðt; xÞ ¼ −
2

ðx − cÞ2 ; ð4:9Þ

where c is any constant. The function (4.9) has smooth
Cauchy data on the x ¼ 0 axis, and blows up on the line
x ¼ c. We also performed some numerical simulations
(with periodic Cauchy data given at x ¼ 0) and found that
many such initial data develop a singularity of the form
(4.8) during their x-direction evolution. This seems to
confirm the standard “Ostrogradsky-ghost” lore that the
evolution of a higher-derivative model, such as (4.5)
becomes singular during their evolution. And one cannot
expect that the quantum problem for the system (4.5) would
be benign.

8As usual, we denote the partial derivatives of uðt; xÞ by
subscripts; e.g., ux ≡ ∂u=∂x.

9As the KdV equation is invariant under t translations (and x
translations), one can fix the initial-t Cauchy hypersurface at t ¼
0 (and the initial-x Cauchy hypersurface at x ¼ 0).

DYNAMICAL SYSTEMS WITH BENIGN GHOSTS PHYS. REV. D 105, 045018 (2022)

045018-9



However, the situation appears to be much better for the
modified10 KdV equation,

uxxx þ 12κu2ux þ ut ¼ 0: ð4:10Þ

This equation admits an infinite number of integrals of
motion, as the ordinary KdV equation does. The first three
local conservation laws are

∂tu ¼ −∂xðuxx þ 4κu3Þ; ð4:11Þ

∂tu2 ¼ −2∂x

�
3κu4 þ uuxx −

1

2
u2x

�
; ð4:12Þ

∂t

�
κu4 −

1

2
u2x

�
¼ ∂x

�
κuxð12u2ux þ uxxxÞ

−
1

2
u2xx − 4κu3uxx − 8κ2u6

�
: ð4:13Þ

We will argue in the following that, in contrast to Eq. (4.3),
the Eq. (4.10) does not involve a blowup.
Let us first briefly discuss the linearized KdV equation,

uxxx þ ut ¼ 0; ð4:14Þ

which describes the fluctuations around the trivial solution
uðt; xÞ ¼ 0 of the usual KdV equation (4.3), as well as
of all its modified versions with the nonlinear term
nðn − 1Þκuðn−2Þux, n ≥ 3.
Let us emphasize the drastic difference between the

t-evolution Cauchy problem and the x-evolution Cauchy
problem of the linearized equation (4.14).
Equation (4.14) can be solved by decomposing the

solution uðt; xÞ in plane waves eiðωtþkxÞ. This yields the
dispersion law,

ω ¼ k3: ð4:15Þ

If one poses the usual Cauchy problem with some Fourier-
transformable initial data,

uð0; xÞ ¼ vðxÞ≡
Z

dk
2π

vðkÞeikx; ð4:16Þ

the t evolution of the initial data vðxÞ yields the solution
(valid for both signs of t),

uðt; xÞ ¼
Z

dk
2π

vðkÞeiðk3tþkxÞ: ð4:17Þ

The important point here is that uðt; xÞ is obtained from
vðkÞ by a purely oscillatory complex kernel eiðk3tþkxÞ of unit
modulus. It has been shown that this oscillatory kernel has
smoothing properties (see, e.g., [25]). This allows one to
take the initial data in low-s Sobolev spaces Hs (describing
pretty rough initial data) [25].
On the other hand, if one considers the x-evolution

Cauchy problem, one starts from three independent
functions of t along the x ¼ 0 axis: uðt; 0Þ ¼ u0ðtÞ,
uxðt; 0Þ ¼ u1ðtÞ, and uxxðt; 0Þ ¼ u2ðtÞ; see Eq. (4.7).
Assuming that the three Cauchy data uaðtÞ, a ¼ 0, 1, 2,
are Fourier-transformable, we can represent them as

uaðtÞ≡
Z

dω
2π

uaðωÞeiωt: ð4:18Þ

The three Cauchy data determine a unique solution which,
when decomposed in plane waves, satisfies the same
dispersion law (4.15) as before. However, the dispersion
law (4.15) must now be solved for k in terms of ω. As it is a
cubic equation in k, it has three different roots, namely,

kaðωÞ ¼ ω
1
3ja; ð4:19Þ

where ω
1
3 denotes the unique real cubic root of ω and where

ja ¼ 1; j; j2 (with j≡ e
2πi
3 ¼ − 1

2
þ i

ffiffi
3

p
2
) are the three com-

plex roots of unity. This yields a solution for uðt; xÞ of
the form,

uðt; xÞ ¼
X

a¼0;1;2

Z
dω
2π

vaðωÞeiðωtþkaxÞ; ð4:20Þ

where the three coefficients vaðωÞ are (uniquely) deter-
mined by the three initial conditions at x ¼ 0, namely by
the following system of three linear equations11:

u0ðωÞ ¼
X

a¼0;1;2

vaðωÞ;

u1ðωÞ ¼ i
X

a¼0;1;2

kaðωÞvaðωÞ;

u2ðωÞ ¼ −
X

a¼0;1;2

k2aðωÞvaðωÞ: ð4:21Þ

The point of this exercise was to exhibit the fact that, when
considering the x evolution with arbitrary Cauchy data
u0ðtÞ, u1ðtÞ, u2ðtÞ, the solution involves exponentially
growing modes in the x direction, linked to the fact

that ik1 ¼ iω
1
3j and ik2 ¼ iω

1
3j2 have real parts �

ffiffi
3

p
2
ω

1
3

10Modified KdV equations are generally defined by replacing
the nonlinear KdV term 6uux by nðn − 1Þκuðn−2Þux. The usual
KdV equation is the case n ¼ 3. In this case, a rescaling of the
variables can set the coefficient κ to 1. Here, we consider the next
modified KdV equation for n ¼ 4. In that case, a rescaling of the
variables can set the coefficient κ either to 1 or −1; these two
cases having different physical properties—the so-called focusing
and defocusing cases. 11The determinant of this system is −3

ffiffiffi
3

p
ω.
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(this holds for both signs of x). This instability is associated
with the presence of higher time derivatives.12

From the mathematical point of view, this means that
high-frequency (HF) wiggles, in the sense of high ω, in the
initial Cauchy data (at x ¼ 0) will be amplified, on both
sides of the x axis, by the exponentially growing factor

e
ffiffi
3

p
2
jωj13jxj. This indicates that the Cauchy problem will be

well-posed only if one takes initial data whose Fourier
transforms vaðωÞ decrease sufficiently fast as jωj → þ∞.
As a minimum condition for a local existence theorem, one
should require the Fourier transforms vaðωÞ to decrease

like e−cjωj
1
3 for some positive constant c. This essentially

defines the s ¼ 3 Gevrey class of functions on R (see,
e.g., [26]). Note that such a regularity condition is stronger
than infinite differentiability, but weaker than analyticity
(which corresponds to a decrease of the Fourier transforms
of the type e−cjωj, i.e., to the s ¼ 1 Gevrey class).
We therefore expect that it will be mathematically

possible to prove (at least for sufficiently weak Cauchy
data) a local existence theorem for solutions of the
x-evolution of the modified KdVequation (4.10) in suitable
Gevrey classes (say, with 1 < s ≤ 3).13

We wish to further argue that the special nonlinearity of
Eq. (4.10), when taking κ > 0, is likely to allow sufficiently
smooth x ¼ 0 Cauchy data to define global solutions,
extending to arbitrary large values of jxj. Our main argu-
ment for believing that the local x evolution of Eq. (4.10)
can be extended to large values of jxj is the absence of
blowup solutions. Indeed, let us look for power-law
singularities of uðt; xÞ of the general form,

uðt; xÞ ≈ βðtÞ½x − x0ðtÞ�α; ð4:22Þ

with α < 0. Inserting such an asymptotic behavior in
Eq. (4.10), it is easily seen that the t-derivative term ut
is necessarily subdominant with respect to the x-derivative
terms. Therefore, blowup solutions must, in lowest
approximation, solve the truncated equation,

0 ¼ uxxx þ 12κu2ux ¼
∂
∂x ðuxx þ 4κu3Þ: ð4:23Þ

This equation is a third-order dynamical equation for the x
evolution which admits the “constant of motion,”

uxx þ 4κu3 ¼ C: ð4:24Þ

In turn, the latter equation can be rewritten as uxx ¼ − dVðuÞ
du ,

i.e., as the Newtonian equation of motion in x, playing the
role of time, for a particle with position u in the following
potential:

VðuÞ ¼ κu4 − Cu: ð4:25Þ
When κ > 0 (the focusing case), this potential grows for
large values of juj, and therefore prevents the existence of
blowup solutions.14 Technically, if we look for blowup
solutions of the type (4.22), one finds that the blowup
exponent αmust be equal to α ¼ −1 and that the coefficient
β must satisfy the cubic equation βð2κβ2 þ 1Þ ¼ 0. When
κ < 0 (the defocusing case), there exist possible nontrivial
(real) blowup solutions with β ¼ �ð−2κÞ−1

2. [These sol-
utions correspond to the “fall” of the u particle down the
unstable quartic potential −jκju4 − Cu.] By contrast, when
κ > 0, the only real solution of the cubic equation of β is
β ¼ 0. In other words, there exists no real blowup solutions
of the type indicated in Eq. (4.22).15

A different (though related) analytic argument indicating
the absence of real blowup solutions comes from the
analysis of the scaling properties of the modified KdV
equation. It is easily seen that Eq. (4.10) is invariant under
the rescalings u ¼ λuū, x ¼ λxx̄, t ¼ λtt̄ if

λt ¼ λ3x; λu ¼ λ−1x : ð4:26Þ

The quantities xu and x
t1=3

are invariant under these rescal-
ings. Using also the space and time translational invariance
of the modified KdV equation, we can look for scaling
solutions of the type,

uðt; xÞ ¼ α

½3ðt − t0Þ�1=3
wðzÞ; ð4:27Þ

where

z≡ x − x0
½3ðt − t0Þ�1=3

: ð4:28Þ

Inserting the ansatz (4.27) in Eq. (4.10) and choosing the
normalization constant α ¼ 1ffiffi

2
p , it is easily checked that the

function wðzÞ must satisfy the equation

12We hasten to comment, however, that higher derivatives do
not necessarily entail such an instability. For example, it does not
show up in the equations of motion for the Pais-Uhlenbeck
system (1.1).

13Nader Masmoudi confirmed (private communication to TD)
that it was likely that taking Cauchy data in the s ¼ 3 Gevrey
class would suffice for local existence of the solution of the x
evolution. This would still leave open the issue of finding
adequate function spaces for global existence.

14By contrast, for the ordinary KdV, one obtains a non-
confining cubic potential, and the corresponding equations of
motion admit the singular run-away solutions (4.9). General
modified KdV equations with the nonlinearity nðn − 1Þκuðn−2Þux
give rise to a potential VðuÞ ¼ κun − Cu, which is confining if n
is even and κ > 0.

15We are aware that the ansatz (4.22) might be too restrictive. It
was shown in Ref. [27] that, in the formally confining case n ¼ 6
with κ > 0, a blowup can occur in the t evolution for data close to
the corresponding soliton.

DYNAMICAL SYSTEMS WITH BENIGN GHOSTS PHYS. REV. D 105, 045018 (2022)

045018-11



0¼w000 þð6κw2−zÞw0−w¼ d
dz

½w00 þ2κw3−zw�: ð4:29Þ

Denoting as C the constant value of the bracket in the last
right-hand side, we conclude that wðzÞ satisfies a second-
order equation of the type

w00 ¼ −2κw3 þ zwþ C: ð4:30Þ

This is a Painlevé II equation [28]. In general, Painlevé
equations have (moving) pole singularities. And indeed, a
local analysis of Eq. (4.30) (keeping the leading-order
terms,16 w00 ≈ −2κw3) shows that (4.30) admits simple
poles, wðzÞ ¼ R=ðz − z0Þ, as local singularities if the
residue R satisfies the equation κR2 ¼ −1. When κ < 0,
the residue R will be real, so that real solutions of Painlevé
II can have (and generally do have) poles on the real z axis.
The existence of a real simple pole at z ¼ z0 would then
correspond to a singular (blowup) behavior of uðt; xÞ of
the form uðt; xÞ ∝ ½x − x0 − z0½3ðt − t0Þ�1=3�−1. However,
when κ > 0, real solutions cannot have real poles. This
excludes the existence of (real) singular scaling solutions.
Another way to understand why the negative-κ modified

KdV equation has blowup solutions is to use its relation
with the usual KdV equation (4.3) (which admits real
blowup solutions, as we emphasized above). Indeed, it is
well-known that the Miura transformation,

u ¼ −ð2v2 þ
ffiffiffi
2

p
vxÞ; ð4:31Þ

transforms the ordinary KdV equation (4.3) for uðt; xÞ into
the equation,

vt − 12v2vx þ vxxx ¼ 0; ð4:32Þ

which coincides with the modified KdVequation (4.10) for
vðt; xÞ, with κ ¼ −1.
To confirm our conjecture that the x evolution of

sufficiently smooth Cauchy data (4.7) stays bounded when
evolved with the modified KdV equation with κ > 0,
we have performed some numerical simulations (done
with Mathematica) for the case κ ¼ þ1. To simplify the
numerical analysis, we imposed [as is allowed by
Eq. (4.10)] periodicity along the t direction Using scaling
invariance, we can assume 2π periodicity,

uðtþ 2π; xÞ ¼ uðt; xÞ: ð4:33Þ

In order to study the effect of the nonlinear term 12u2ux, we
used t-periodic Cauchy data for which the nonlinear term is
initially (i.e., at x ¼ 0) larger than the linear term ut. In
particular, we used the Cauchy data,

uðt;0Þ¼ cost; uxðt;0Þ¼ cost; uxxðt;0Þ¼0: ð4:34Þ

We first checked that the use of such Cauchy data for the
modified KdVequation with κ ¼ −1 was leading quite fast
(namely at x ¼ 0.887717) to a singularity. By contrast, our
numerical simulations of the x evolution of the κ ¼ þ1
modified KdVequation showed that uðt; xÞ stayed bounded
for all the values of x that we explored. This is illustrated in
Fig. 2, which displays the solution uðt; xÞ generated by the
Cauchy data (4.34) in the domain 0 ≤ t ≤ 2π, 0 ≤ x ≤ 15.
Figure 2 illustrates the benign nature of the ghostful x

dynamics of the modified KdV equation in the positive-κ
case. The presence (when neglecting the term ut) of an
approximate x dynamics governed by the confining poten-
tial (4.25) reflects itself in the oscillations in the x evolution
of uðt; xÞ, i.e., in the “stormy-sea” aspect of uðt; xÞ
in the x > 5 part of Fig. 2. Note that we have taken here
analytic (Cω) data, which generate (at least locally) an
analytic solution. We leave to future work to clarify how
less regular Cauchy data (e.g., taken in Gevrey classes, or
suitable Sobolev-type spaces) would evolve under the x
evolution.
We expect generic Cauchy data (4.7) for the x evolution

to evolve into stormy-sea solutions similar to the one
illustrated in Fig. 2. However, there will also exist special
(measure-zero) Cauchy data that will evolve into much
tamer solutions. Indeed, if we start with a smooth function
of x, say vðxÞ, and use it as unique Cauchy datum at t ¼ 0
[namely, uðt ¼ 0; xÞ ¼ vðxÞ], its t evolution will define a
smooth solution uv solðt; xÞ. The restriction to the x ¼ 0 axis
of uv sol, uv solx , and uv solxx will then define Cauchy data for the
x evolution that generate the smooth solution uv solðt; xÞ.

FIG. 2. Solution uðt; xÞ of the κ ¼ þ1 modified KdV equa-
tion (4.10) corresponding to the t periodicity (4.33) and the x ¼ 0
Cauchy data (4.34).

16Note in passing that this leading-order equation describe the
dynamics of a particle in the potential VðwÞ ¼ 1

2
κw4.
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We have numerically checked this fact by using solitonic
solutions of the modified KdV equation.
Let us recall that, like the ordinary KdV equation, the

modified equation (4.10) admits solitonic solutions.
Indeed, one can look for traveling-wave solutions uðt; xÞ ¼
uðxþ ctÞ, moving with some celerity c, by inserting the
ansatz uðt; xÞ ¼ uðx̄Þ, with x̄≡ xþ ct, in Eq. (4.10). It is
easily seen that this yields the equation,

∂
∂x̄ ½cuþ 4κu3 þ ux̄ x̄� ¼ 0: ð4:35Þ

Denoting as C0 the constant quantity within the bracket,
we then get the following second-order equation for the
function uðx̄Þ:

ux̄ x̄ ¼ −
d
du

VðuÞ; ð4:36Þ

with a potential function VðuÞ now given by

VðuÞ ¼ κu4 þ 1

2
cu2 − C0u: ð4:37Þ

We are again reduced to the dynamics of a particle moving
in the confining quartic potential VðuÞ, considered for some
fixed κ > 0 (say, κ ¼ þ1). The general solutions of this
problem then depend on three parameters: the celerity c, the
constant C0, and the constant energy of the x̄ dynamics,

E ¼ 1

2
u2x̄ þ VðuÞ: ð4:38Þ

The usually considered solitonic solutions [such that uðx̄Þ
tend to zero when x̄ → �∞] are obtained by taking c < 0,
C0 ¼ 0 and E ¼ 0. This gives a symmetric double-well
potential: κu4 − 1

2
jcju2. The zero-energy solution then

describes a u motion, which starts, at “time” x̄ ¼ −∞, at
u ¼ 0 with zero “velocity” ux̄, glides down (say) to the
right, reflects on the right wall of the double well and then
turns back to end up again at u ¼ 0 when x̄ ¼ þ∞. The
explicit form of the corresponding solution is

uðx̄Þ ¼
ffiffiffiffiffi
jcj
2κ

r
1

coshð ffiffiffiffiffijcjp
x̄Þ : ð4:39Þ

Here, we are interested in constructing periodic
traveling-wave solutions satisfying uðx̄þ T̄Þ ¼ uðx̄Þ for
some T̄. Such solutions can be easily constructed by
considering bounded mechanical motions in the potential
VðuÞ having a nonzero energy. We have already given such
oscillatory solutions in a (symmetric) quartic potential
(i.e., for C0 ¼ 0) in Eq. (2.16) above. The corresponding
periodic traveling-wave soliton is then of the form,

uðx̄Þ ¼ x0cn½Ωðx̄ − x̄0Þ; k�; ð4:40Þ

as simply obtained by using in Eqs. (2.13), (2.16), (2.17)
the replacements

x → u; t → x̄;ω2 → c; λ → 4κ; N → E: ð4:41Þ

We have used the t-periodic Cauchy data defined by
restricting uðxþ ctÞ, and its first two x derivatives, to x ¼ 0
to check the accuracy of our numerical simulations. The
numerical solution generated from these Cauchy data
agreed well with the analytical solution for values of x
of order T̄. For larger values, they exhibited some numerical
noise. The specific form of the numerical noise depended
on the numerical scheme used. When using the
same scheme as the one used to produce Fig. 2, the noise
stayed at low frequencies. This gives us confidence that
Fig. 2 yields a reasonably accurate picture of the
benign nature of the x evolution of smooth Cauchy
data.

V. DISCRETE NONLINEAR SYSTEMS WITH
BENIGN GHOSTS

In this final section, we define some higher-derivative
dynamical models having only a finite number of degrees
of freedom and exhibiting a benign behavior in their
evolution. These models are constructed by discretizing
the modified KdV equation in the t direction, keeping
continuous the x evolution. [We recall that x is our timelike
evolution variable.] This will replace the partial differential
equation (4.10) by a system of coupled ODEs with respect
to x.
Similarly to the derivation of the ordinary KdVequation

from the Lagrangian (4.4), the modified KdV equa-
tion (4.10) follows from the two-dimensional action
S ¼ R

dtdxL½ψðt; xÞ�, with the field-theory Lagrangian
density,

L½ψðt; xÞ� ¼ 1

2
ψ2
xx − κψ4

x −
1

2
ψxψ t: ð5:1Þ

After varying the action with respect to ψðt; xÞ, one gets
Eq. (4.10) by substituting ψxðt; xÞ → uðt; xÞ.
We can then define a discretized version of the modified

KdV dynamics by assuming that the variable t takes only
the discrete values t ¼ h; 2h;…; Nh, for some integer
N ≥ 2, and by replacing the continuous time derivative

ψ t by a discrete (symmetric) time derivative ψðtþh;xÞ−ψðt−h;xÞ
2h .

This yields an action of the form SN ¼ R
dxLN , where the

Lagrangian LN is given by a sum of N terms,

LN ¼
Xt¼Nh

t¼h

�
1

2
½ψxxðt; xÞ�2 − κ½ψxðt; xÞ�4

−
1

2
ψxðt; xÞ

ψðtþ h; xÞ − ψðt − h; xÞ
2h

�
: ð5:2Þ
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To define the model, we further need to specify boundary
conditions. Namely, we need to define ψð0h; xÞ and
ψ ½ðN þ 1Þh; x�, which enter the discrete t derivative for t ¼
h and t ¼ Nh, respectively. This can be done in two
different ways: (i) we can use Dirichlet-type boundary
conditions, namely ψð0h; xÞ ¼ 0 and ψ ½ðN þ 1Þh; x� ¼ 0
or (ii) periodic boundary conditions, ψð0h; xÞ ¼ ψðNh; xÞ,
and ψ ½ðN þ 1Þh; x� ¼ ψðh; xÞ. The periodicity condition
can only be imposed when N ≥ 3.
We expect that taking larger and larger values of N

would allow one to simulate better and better the continu-
ous theory (though the presence of chaos might make such
a convergence nonuniform in x).
The simplest discretized model is obtained by choosing

N ¼ 2 and taking Dirichlet-type boundary conditions. This
model has only two dynamical variables: ψðxÞ≡ ψðh; xÞ
and χðxÞ≡ ψð2h; xÞ. We recall that x is playing the role of
time. The Lagrangian L2 ≡ LN¼2 reads

L2¼
1

2
ψ2
xxþ

1

2
χ2xx−κψ4

x−κχ4x−
1

4h
ψxχþ

1

4h
χxψ : ð5:3Þ

Adding a total x derivative, the last two terms can be
traded for þ 1

2h χxψ. Using suitable rescalings, we can set
κ ¼ 1 and h ¼ 1

2
. For simplicity, we will use these values in

the following.
Defining the two new dynamical variables aðxÞ≡ ψx;

bðxÞ≡ χx, the equations of motion derived from the
Lagrangian (5.3) read

axxx þ 12a2ax þ b ¼ 0;

bxxx þ 12b2bx − a ¼ 0: ð5:4Þ

This is a system of two coupled higher-order evolution
equations. The important point is that, while we had
technical difficulties in numerically simulating in a stable
manner the x evolution of the (periodic) modified KdV
equation (4.10), we could easily perform long-term inte-
grations of the coupled system (5.4) up to x ¼ 10000 and
more in a numerically stable manner. And though the
conserved energy of the system, namely,

E ¼ 1

2
ðψ2

xx þ χ2xxÞ − 3ðψ4
x þ χ4xÞ − ψxψxxx − χxχxxx

¼ 1

2
ða2x þ b2xÞ − 3ða4 þ b4Þ − aaxx − bbxx ð5:5Þ

[which is a discrete version of the conserved current on the
right-hand side of Eq. (4.12)], is not positive-definite and
can take arbitrarily positive or negative values, our numeri-
cal simulations indicate that the classical motions have a
benign behavior, without any blowup. In other words, the
simple discrete model L2, Eq. (5.3), provides a nontrivial
example of an interacting higher-derivative system with
benign ghosts.

One can also write the corresponding Ostrogradsky
Hamiltonian. It reads

H¼1

2
ðP2

ψ þP2
χÞþpψψxþpχχxþψ4

xþχ4x−ψχx; ð5:6Þ

where ψ , ψx, χ, χx should all be treated as independent
variables with corresponding canonical momenta pψ , Pψ ,
pχ and Pχ , respectively. The Hamilton equations of motion
following from (5.6) coincide with (5.4).
For completeness, let us also write the periodic, discrete

dynamics defined by LN, Eq. (5.2), with N ≥ 3. Setting as
before κ ¼ 1 and h ¼ 1

2
and defining the N x-evolving

discrete variables akðxÞ≡ ψðkh; xÞx, with k ¼ 1;…; N,
and the periodicity conditions, a0 ≡ aN and aNþ1 ≡ a1,
the equations of motion following from Eq. (5.2) read

akxxx þ 12ðakÞ2akx þ ðakþ1 − ak−1Þ ¼ 0: ð5:7Þ

The conserved energy is

E ¼
XN
k¼1

�
1

2
ðakxÞ2 − 3ðakÞ4 − akakxx

�
: ð5:8Þ

The periodic systems with N ≥ 3 enjoy also a second
integral of motion (linked to the periodicity in tk ¼ kh),

Q ¼
XN
k¼1

½akxx þ 4ðakÞ3�: ð5:9Þ

In the continuous theory, this follows from integrating over
the periodic variable t the current in the right-hand side of
Eq. (4.11). By contrast, the currents in the higher con-
servation laws of the modified KdV equation, starting with
Eq. (4.13), do not translate into integrals of motion of the
discrete systems.
The Nth periodic discrete system has only two integrals

of motion, Eqs. (5.8), (5.9), and 2N pairs of phase space
variables. [For N ¼ 2, one had only one integral of motion
for four pairs of phase space variables.] The systems (5.2)
are thus not integrable, and their trajectories are expected to
exhibit a chaotic behavior. Our numerical simulations did
confirm this expectation.
The numerical confirmations of the benign nature of the

discrete systems up to rather large values of x can be
considered as a further argument in favor of the conjecture
that the continuous modified KdV system (4.10) is also
benign.

VI. CONCLUSIONS

We presented several nontrivial examples of higher-
derivative systems including ghosts, but where the ghosts
are of benign nature; i.e., they do not lead to a blowup in the
classical case (and hence will not give rise to unitarity
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violation in the quantum case). The most interesting example
is the two-dimensional modified KdV system (5.1) (with
κ > 0), viewed as a higher-derivative evolution in the x
variable. We presented several arguments strongly indicating
that this system does not involve any blowup during its x
evolution. Mathematically proving that this is the case (for
smooth enough data) is a challenge for the future.
In the last section, we presented mechanical systems,

with a finite number of degrees of freedom, which are
t-discretized avatars of the modified KdV system (5.1).
These systems are of interest on their own, notably

because they provide a set of nontrivial interacting higher
derivative systems with benign ghosts. Such systems were
not known before.
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495 (2009).

[22] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure
of Space-Time (Cambridge University Press, Cambridge,
England, 1973).

[23] C. W. Misner, Taub-NUT space as a counterexample to
almost anything, in Relativity Theory and Astrophysics I:
Relativity and Cosmology, edited by J. Ehlers, Lectures in
Applied Mathematics, Vol. 8 (American Mathematical
Society, Providence, RI, 1967), pp. 160–169.

[24] A. V. Smilga, On exactly solvable ghost-ridden systems,
Phys. Lett. A 389, 127104 (2021).

[25] C. E. Kenig, G. Ponce, and L. Vega, Well-posedness of the
initial value problem for the Korteweg-de Vries equation,
J. Am. Math. Soc. 4, 323 (1991).

[26] L. Rodino, Linear Partial Differential Operators in Gevrey
Spaces (World Scientific, Singapore, 1993), p. 264.

[27] Y. Martel, F. Merle, and P. Raphaël, Blow up for the critical
generalized Korteweg-de Vries equation. I: Dynamics near
the soliton, Acta. Math. 212, 59 (2014).

[28] See e.g., P. A. Clarkson, Painlevé equations—nonlinear
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