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We present a continuous tensor-network construction for the states of quantum fields called continuous
projected entangled pair state (cPEPS), which enjoys the same spatial and global symmetries of ground
states of relativistic field theories. We explicitly show how such a state can approximate and eventually
converge to the free field theory vacuum and suggest a regularization-independent way of estimating the
convergence via a universal term in the fidelity per site. We also present a detailed bottom-up construction
of the cPEPS as the continuum limit of the conventional lattice projected entangled pair state.
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I. INTRODUCTION

Tensor network states have proven to be a prolific
theoretical and numerical framework for advancement in
the understanding of many-body quantum systems. These
states, which are constructed by contractions of local tensors,
capture very well the physics of ground states, low lying
excited states, and thermal states of local Hamiltonians [1–5].
By construction, they have the relevant physical properties,
including the right entanglement structure (area law [6]), the
possibility to encode symmetries–both global [7,8] and local
[9–11], topological properties [12], and, of course, a large set
of numerical methods applicable to different scenarios and
purposes—e.g., [13–17] andmore. These approaches, includ-
ing the 1þ 1 dimensional matrix product states (MPSs) and
their higher dimensional extension projected entangled pair
states (PEPS) [5], are almost entirely restricted to lattice
models, with very few extensions, so far, to quantum field
theories defined in the continuum.
Originally, tensor network state methods were mostly

applied to condensed matter problems. In the recent years,
however, there has been a growing effort in applying them
also to high energy physics, in particular for the study of
lattice gauge theories. That includes the benchmarking of
known results, as well as computations that go beyond the
state of the art of conventional, Monte Carlo methods (see,
e.g., [18] for a contemporary review of this field). Tensor
network contractions of path integrals, rather than states,
have also been introduced and successfully applied to these
models, using the tensor renormalization group (TRG)
toolbox [19]. However, as the fundamental field theories
of particle physics are continuous, it is also interesting to
develop tensor network formulations enabling their study
directly, without applying any lattice discretization schemes.
Continuous tensor network states (cTNS) were first

introduced in [20], in the form of continuous matrix

product states (cMPS). This formalism was further devel-
oped in later works [21], including higher dimensional
extensions [22,23], and was even used as a numerical
ansatz [24]. However, as these constructions rely on Fock
space concepts, they are seemingly less equipped to deal
with relativistic problems. Recently, aiming at extending
the cMPS to a relativistic setting, the one-dimensional
construction of relativistic cMPS (RcMPS) was introduced
[25]. It uses a different operator basis, with respect to the
particle creation and annihilation operators, which is more
adequate for dealing with relativistic problems. In other
tensor network techniques involving continuous fields, one
may use continuous fields to contract lattice tensor net-
works for spin models [26]. Finally, another type of
tensor network states, multiscale entanglement renormal-
ization ansatz (MERA) [27] has its continuum version—
cMERA—too [28,29]. But in general, the field of con-
tinuous tensor network states is still far from being fully
studied and understood, in spite of its obvious importance
and relevance, and hence it provides an interesting and
challenging scientific playground.
In this work, we present a continuous, field-theoretic

version of PEPS which is built from quantum fields. We
therefore refer to them as continuous PEPS (cPEPS). The
reason this construction sheds new light on continuous
tensor networks is twofold. To begin with, these states are
well defined in any dimension, and they are well suited to
deal with relativistic field theories simply from the way
they are formalized. Moreover, they inherit many of the
appealing attributes of the PEPS such as their ability to
account for symmetries. Second, the cPEPS are formalized
in a field-theoretic way. This simple fact is crucial as it
brings this particular manifestation of a continuous tensor-
network closer in spirit to relativistic quantum field theory,
which has its own wide array of computational techniques
[30,31]—specifically also of quantum informational
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calculations (see [32] and references therein). Thus, it may
hopefully serve as a bridge for implementing tensor-
network techniques in quantum field theories and vice versa.
In Sec. II, we present the cPEPS construction in detail, and

it is rigorously demonstrated how the ground state of a free
scalar field (Klein-Gordon) theory can be obtained from it,
both exactly (with unlimited computational resources) or
approximately. We study the accuracy of the approximation,
show that it depends on the choice of a regularization
scheme and propose a universal (regularization-independent)
approach for tackling this problem. In Sec. III, we present a
bottom-up construction of the cPEPS as the continuum limit
of a conventional, lattice PEPS construction, and explain
how a cPEPS with continuous translational and rotational
symmetry can be built. Finally, in Sec. IV we explain in
detail how states that are invariant under a general global
symmetry can be directly constructed.
In what follows we adhere to the common choice of

dimensions ℏ ¼ c ¼ 1. The Einstein summation conven-
tion where repeated indices are being summed over is
assumed.

II. CPEPS

We will begin our discussion of cPEPS by showing its
construction for, perhaps, the simplest possible physical
case, of a real scalar field in a dþ 1 dimensional flat
(Minkowski) spacetime. The Hilbert space of the field
theory is constructed by choosing a foliation of space, and
by defining the field and its respective conjugate momen-
tum field over each slice (equal time surface), where the
two satisfy the canonical commutation algebra. Dictated by
the dynamics of the theory, there is then a unitary evolution
from one slice to the other (time evolution). We choose
the standard foliation in which spacetime is divided into
constant d dimensional (spatial) time slices.
On each slice of constant time t0 we introduce the field

operator ϕðx; t0Þ, and its conjugate momentum operator
Πðx; t0Þ, satisfying the canonical commutation relation

½ϕðx; t0Þ; πðy; t0Þ� ¼ iδðdÞðx − yÞ: ð1Þ

Choosing an arbitrary time slice (that is, fixing the time)
we denote by jfϕðxÞgi a field configuration state:

jfϕðxÞgi ¼ ⊗
x
jϕðxÞi ð2Þ

—that is, a product of eigenstates of the field operator
everywhere. The field configuration states form a basis, in
which one can span any field state. In particular, we choose
to express our cPEPS in this basis and define it as

jψi ¼
Z

DϕðxÞ
Z

DvαðxÞe
R

ddxA½vα;∇vα;ϕ;∇ϕ�jfϕðxÞgi;

ð3Þ

where

A ¼ −
1

2
Zαβ∇vα∇vβ þ V½vα;∇vα;ϕ;∇ϕ�: ð4Þ

Here ϕðxÞ is a real scalar field—the physical field of
interest. Additionally, fvαðxÞgDα¼1 is a set ofD fields which
are called henceforth virtual fields and are being integrated
over (their role is to allow for a locally contracted state
of the physical field, in full analogy with lattice PEPS
contractions, as we shall later show). As ϕ, the virtual fields
are also real scalars. Zαβ is a D ×D matrix whose
eigenvalues have a non-negative real part and V is a
general analytic functional of the fields and their first
derivatives. Following previous papers [20–25], we shall
call D the (generalized) bond dimension.
Note that these states may be expressed as the CTNS

introduced in [23], and vice versa (see the Appendix A for
further details on the equivalence).
To demonstrate what could be done with such states,

we will restrict ourselves now to a case that can be handled
analytically: Gaussian states, in which A is quadratic in
both the physical and the virtual fields and their first
derivatives (other than being analytically tractable,
Gaussian states are interesting in their own right as they
serve as the ground states of noninteracting theories). The
most general A of such a state may be written as follows:

A ¼ −
1

2
Zαβ∇vαðxÞ∇vβðxÞ −

1

2
AαβvαðxÞvβðxÞ

þ zα∇vαðxÞ∇ϕðxÞ þ aαvαðxÞϕðxÞ −
c
2
ϕ2ðxÞ: ð5Þ

Although one could, in principle, choose fZαβ; Aαβ; zα;
aα; cg to be position dependent, we did not do this, and
thus the above expression is translationally invariant. Thus,
it is natural from this point onward to work in Fourier
(momentum) space. using the Fourier transform

ϕðkÞ ¼
Z

ddke−ik·xϕðxÞ ð6Þ

(and similarly for the virtual fields), we obtain

jψi ¼
Z

DϕðkÞDvαðkÞe
R

ddk
ð2πÞdA½vαðkÞ;ϕðkÞ�jfϕðkÞgi;

A ¼ −
1

2
ðAαβ þ Zαβk2Þv̄αðkÞvβðkÞ −

c
2
ϕ̄ðkÞϕðkÞ

þ 1

2
ðaα þ zαk2Þðv̄αðkÞϕðkÞ þ ϕ̄ðkÞvαðkÞÞ: ð7Þ

Since these are real fields, they additionally satisfy
ϕ̄ðkÞ ¼ ϕð−kÞ, even though it shall not be of importance
for this paper. After integrating out the virtual fields we will
end with a Gaussian state jψDi, quadratic in ϕ:
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jψDi ¼
Z

Dϕe
−1
2

R
ddk
ð2πÞdωDðkÞϕ̄ðkÞϕðkÞjfϕðkÞgi; ð8Þ

where we assume that aα and zα are real; otherwise, the
generalization is straightforward):

ωDðkÞ ¼ cþ 1

2
ðaα þ zαk2ÞðAþ Zk2Þ−1αβ ðaβ þ zβk2Þ: ð9Þ

A. Approximation of the free vacuum

A more explicit expression for ωDðkÞ can be put forth by
using the matrix inversion formula

ðAþ Zk2Þ−1αβ ¼ adjðAþ Zk2Þαβ
det ðAþ Zk2Þ ; ð10Þ

where adjðMÞ is the adjugate matrix of M. From that we
can tell that ωDðkÞ is a rational function in the argument k2,
of order D over D. The parameters that appear in the
Gaussian cPEPS (3) will collectively be denoted by
P ¼ fZαβ; Aαβ; zα; aα; cg. We thus write

ωDðkÞ ¼
p0ðPÞ þ p1ðPÞk2 þ � � � þ pDðPÞk2D

1þ q1ðPÞk2 þ � � � þ qDðPÞk2D
: ð11Þ

We have used the freedom to set one of the parameters
of the rational function to 1. pαðPÞ and qαðPÞ are nonlinear
maps which are noninjective; note that while 2D − 1
parameters uniquely determine ωD, the number of param-
eters in the set P is of order D2. This redundancy can be
eliminated by “gauge-fixing” conditions, common for
tensor networks that are usually redundant constructions
[5], as addressed in previous continuum works [23–25].
Yet this will not be necessary for our purposes.
With (8) being a Gaussian state, it is natural to inspect

how well it approximates the ground state (vacuum) of a
free field theory, which is given by the Hamiltonian (see
Appendix B for more details)

Hf ¼ 1

2

Z
ddk
ð2πÞd ðΠ̄ðkÞΠðkÞ þ ω2

fðkÞϕ̄ðkÞϕðkÞÞ; ð12Þ

with the relativistic dispersion relation

ω2
fðkÞ ¼ m2 þ k2: ð13Þ

The free vacuum jΩfi is given by

jΩfi ¼
Z

DϕðkÞe−
1
2

R
ddk
ð2πÞdωfðkÞϕ̄ðkÞϕðkÞjfϕðkÞgi: ð14Þ

Given the functional form of ωDðkÞ, the approximation
to some desired dispersion relation such as ωf is an
approximation by a rational function, known as the Padé

approximant of a function [33]. There are infinitely many
different approximations that converge toωfðkÞ asD → ∞.
This fact can be seen, for instance, by noting that the Padé
approximant, such as the Taylor series it is based on, is
localized around a particular base point of momentum k0,
and the choice of such a base point is, of course, arbitrary.
Nevertheless, there is both a theoretical and effective
difference between these distinct approximations, which
will be addressed in the following subsection.
It is of importance in rigorously demonstrating how the

dispersion relation of a free relativistic field theory can be
obtained from the Gaussian cPEPS (3). In Appendix A we
concretely construct such a state with mass m using the
continued fraction representation of the square root:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
¼ mþ k2

2mþ k2

2mþk2

. .
.

; ð15Þ

which is satisfied by choosing

Aα;β ¼
�
2mδα;β α even

0 α odd
;

Zα;β ¼
1

2
ðδα;β−1 þ δα;βþ1Þ þ

�
2mδα;β α odd

0 α even
;

aα ¼ 0; zα ¼
ffiffiffi
2

p
δα;1; c ¼ m ð16Þ

for an even D → ∞.
Note that in the numerical-variational approach to such

Gaussian states, described in [24], the zα coupling between
the gradients of virtual and physical fields was not required,
while in the approach presented here, which is different and
rather analytical, it is required.
We see that when D is infinite, the ground state can be

constructed as a cPEPS, exactly: the continued fraction is
known to converge to ωfðkÞ as D → ∞. However, what if
the continued fraction is truncated after D steps?

B. Quantum fidelity and universality

We would like to inquire how well the Gaussian cPEPS
(5) with a finite D approximates the free vacuum jΩfi
(which is also a Gaussian cPEPS, but with an infinite D).
A natural probe that we explore for that task is the quantum
fidelity, which is defined for two pure states as

FðΩf;ψD;ΛÞ ¼ jhψDjΩfij: ð17Þ

To compute this quantity, we have chosen a Wilsonian
regularization where the momentum modes are truncated at
a cutoff k ¼ Λ. The fidelity depends also on the cutoff Λ.
The two states are assumed to be normalized, which bounds
the fidelity from above and below: 0 ≤ FðΩf;ψD;ΛÞ ≤ 1.
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The fidelity takes maximal value, 1, only when the two
states jψDi and jΩfi are exactly identical [and hence the
two functions ωDðkÞ and ωfðkÞ]. Since the fidelity is
bounded, any difference between the two functions must
result in a smaller value for the fidelity. Assuming the
fidelity is also a smooth functional of ωDðkÞ and ωfðkÞ
(which holds true in this particular case, as to be shown
below), it will increase as the two functions ωDðkÞ
and ωfðkÞ get closer to each other within the interval
0 ≤ k ≤ Λ. Hence we can choose ωDðkÞ to be the Padé
approximant of ωfðkÞ around some chosen base point k0.
The approximant diverges from the original function for
large values of k ≫ k0 in this case. This can be seen as
ωfðkÞ asymptotically behaves as k, a behavior which a
rational function in k2 can ever achieve. On the interval
0 ≤ k ≤ Λ the convergence to ωfðkÞ is uniform, although,
since the approximation is local, the rate of convergence
does not depend on Λ. In conclusion, the fidelity increases
when D is increased while Λ is kept fixed and decreases
when D is kept fixed while Λ is increased.
This may be alarming since it seems that as the cutoff

grows, a larger and larger bond dimension will be required
to sustain a reasonable overlap between the two states.
Furthermore, it implies that the bond dimension has no
physical significance as it depends on the way the theory is
regularized. However, in case we allow the parameters P of
the approximation to depend upon the cutoff themselves, it
allows for the rate of convergence to depend on Λ as
well. In this case, it enables one, as the cutoff is sent to
infinity, to tune the parameters in a way that makes the
fidelity decay much less quickly, or perhaps even saturate
to a nonzero value.
Given the Gaussianity of the particular case of study,

the fidelity can be explicitly calculated (and even later
expanded around the large cutoff limit). The cPEPS jψDi
and the free ground state jΩfi both factorize into tensor
products over momentum modes of harmonic oscillator
ground states:

jΩfi ¼
YΛ
k

jΩfðkÞi

¼
YΛ
k

�
ωfðkÞ
π

�
1=4 Z

dϕðkÞe−1
2
ωfðkÞϕ̄ðkÞϕðkÞjϕðkÞi;

jψDi ¼
YΛ
k

jψDðkÞi

¼
YΛ
k

�
ωDðkÞ
π

�
1=4
Z

dϕðkÞe−1
2
ωDðkÞϕ̄ðkÞϕðkÞjϕðkÞi:

ð18Þ

The fidelity therefore factorizes as well:

hψDðkÞjΩfðkÞi

¼
�
ωfðkÞωDðkÞ

π2

�1
4

Z
dϕðkÞe−1

2
ðωfðkÞþωDðkÞÞϕ̄ðkÞϕðkÞ

¼
�
ωfðkÞωDðkÞ

π2

�1
4

�
2π

ωfðkÞ þ ωDðkÞ
�1

2

: ð19Þ

We finally obtain

FðΩf;ψD;ΛÞ ¼
YΛ
k

jhψDðkÞjΩfðkÞij

¼
YΛ
k

 
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijωDðkÞjωfðkÞ

p
jωDðkÞ þ ωfðkÞj

!1
2

: ð20Þ

In order to deal with the product inside (20) in the
continuum limit Λ → ∞, we need to be more precise with
the definition of the Wilsonian regularization. We begin
from regularizing the field theory by placing it on a lattice
with N sites and spacing 1

Λ. The volume V ¼ N
Λd of the

d-dimensional spatial space is taken to be finite yet
arbitrarily large and likewise the cutoff Λ is kept fixed.
Consequently, upon taking the logarithm the sum can be
turned into an integral:

logF ¼ V
2

Z
ΩΛ

ddk
ð2πÞd log

 
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijωDðkÞjωfðkÞ

p
jωDðkÞ þ ωfðkÞj

!
; ð21Þ

where
R
ΩΛ

is an integral in the domain 0 ≤ k ≤ Λ. The
scaling of the problem becomes more transparent by using
the dimensionless variable k̄ ¼ k

Λ:

logF ¼ N
2

Z
Ω1

ddk̄
ð2πÞd log

0
B@2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jωDðk̄Þjωfðk̄Þ

q
jωDðk̄Þ þ ωfðk̄Þj

1
CA; ð22Þ

where Ω1 is the unit sphere. It is then seen that the fidelity
decays exponentially with the system’s size (as what
multiplies N must be a negative number since each
harmonic ground state of a single mode k was taken to
be normalized). Such behavior between two distinguished
states of a quantum many-body system is known to hold in
many examples (e.g., [34,35]) and in particular has been
shown to also be generic for MPS [36] (other possibilities
may also occur [35,37]). In principle, the fidelity would go
to zero as Λ → ∞ or V → ∞ even if the two dispersion
relations are infinitesimally close to each other but not
exactly equal (this phenomenon is also known as
Anderson’s orthogonality catastrophe [38]). In this case,
we see that a relatable quantity that bears its own signifi-
cance exists, and this is the fidelity per site, defined by
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F ¼ lim
N→∞

F
1
N: ð23Þ

This may be defined alternatively in terms of the loga-
rithm: logF ðΩf;ψD;ΛÞ ¼ limN→∞

1
N logFðΩf;ψD;ΛÞ.

The fidelity per site F is well defined in the continuum
limit Λ → ∞; V → ∞ as it has no dependence on the
volume or the cutoff—unless inserted explicitly through
ωD through the parameters P. We now explore this option,
and for that we shall rescale the dispersion relations ωDðkÞ
and ωfðkÞ in the dimensions of the cutoff, similar to the
definition of k̄. Hence we define

ωfðk̄Þ ¼ Λω̃fðk̄Þ;
ωDðk̄Þ ¼ Λω̃Dðk̄Þ: ð24Þ

We see that we may expand ω̃fðkÞ around Λ → ∞:

ω̃fðk̄Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̄2 þ

�
m
Λ

�
2

s
¼ k̄þ 1

2k̄2

�
m
Λ

�
2

þO

��
m
Λ

�
4
�

ð25Þ

and

ω̃Dðk̄Þ ¼
p̃0ðPÞ þ p̃1ðPÞk̄2 þ ::p̃DðPÞk̄2D

1þ q̃1ðPÞk̄2 þ ::q̃DðPÞk̄2D
: ð26Þ

The rescaled parameters can be related back to the
original ones by

pαðPÞ ¼ Λ1−2αp̃αðPÞ;
qαðPÞ ¼ Λ−2αq̃αðPÞ: ð27Þ

We note that this is an arbitrary choice, since the extra
power of Λ could have been otherwise extracted from the
denominator. Similar to (25), an expansion around Λ → ∞
for ω̃Dðk̄Þ can be made as well. The form of this expansion
will depend, of course, on the way we have chosen the
parameters P to depend on the cutoff Λ. We therefore chose
p̃α and q̃α to be separated very generally into a cutoff
independent term and an irrelevant term:

p̃αðPÞ ¼ p̃ð0Þ
α ðPÞ þ p̃ðirrÞ

α ðP;ΛÞ;
q̃αðPÞ ¼ q̃ð0Þα ðPÞ þ q̃ðirrÞα ðP;ΛÞ: ð28Þ

p̃ðirrÞ
α and q̃ðirrÞα are defined to vanish as Λ → ∞. This

definition is necessary since the fidelity is bounded for
normalized states, and therefore the parameters P cannot be
chosen in such a way that the fidelity diverges.
Since the decay of ω̃fðk̄Þ in Λ is polynomial, it is an

evident choice to let ω̃Dðk̄Þ decay polynomially as well;
thus an expansion in powers of 1

Λ for ω̃Dðk̄Þ is possible as

well, similar to (25). However, the decay can be in principle
of a different class instead, such as an exponential one.
Derived from this assumption, ω̃Dðk̄Þ may be expanded

in the same way around Λ → ∞,

ω̃Dðk̄Þ ¼ ω̃ð0Þ
D ðk̄Þ þ ω̃ðirrÞ

D ðk̄;ΛÞ; ð29Þ

where

ω̃ð0Þ
D ðk̄Þ ¼ p̃ð0Þ

0 ðPÞ þ p̃ð0Þ
1 ðPÞk̄2 þ ::p̃ð0Þ

D ðPÞk̄2D
1þ q̃ð0Þ1 ðPÞk̄2 þ ::q̃ð0ÞD ðPÞk̄2D

: ð30Þ

To conclude, putting together (25) and (26) yields

logF ¼ 1

2

Z
Ω1

ddk̄
ð2πÞd log

0
B@2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jω̃ð0Þ

D ðk̄Þjk̄
q
jω̃ð0Þ

D ðk̄Þ þ k̄j

1
CAþ F ðirrÞðΛÞ:

ð31Þ

The first term has no dependence inΛ at all, andF ðirrÞðΛÞ is
a function that vanishes as Λ → ∞.
In summary, we deduce that while in this particular

example the fidelity itself is doomed to vanish in the
continuum limit, there exists a quantity with a universal
term that can in principle be variationally optimized.

III. CPEPS FROM PEPS

A. PEPS with fields

Starting from the lattice, we use the PEPS formalism to
construct a state whose continuum limit is the cPEPS (3) or
a generalization thereof. We will first show how to do it for
the simple case of a single scalar field, and then generalize
to more possibilities, including scenarios with global
symmetries.
On a constant time slice where the Hilbert space is

defined, we consider a spatial lattice Zd, whose sites are
labeled by vectors of the form x ∈ ϵZd ≡ L, where ϵ > 0 is
the lattice spacing. We use fêigdi to denote the unit vectors
in all the positive directions. Thus, for example, the sites x
and xþ ϵêi are nearest neighbors in the 1 ≤ i ≤ d direc-
tion, separated by a single unit of lattice spacing, ϵ.
We would like to construct a PEPS for the state of a

lattice scalar field ϕðxÞ: on each lattice site x, we introduce
a physical Hilbert space, HphysðxÞ, spanned by eigenstates
of the on-site field operator ϕðxÞ. This can be either a real
scalar field (as before) or a complex one (corresponding, as
usual, to a pair of real scalar fields). Thus, a good basis for
the local physical Hilbert space is jϕðxÞi in the real case
and jϕðxÞ; ϕ̄ðxÞi in the complex one (where z̄ represents
complex conjugation). Below, we will adapt the notation of
the complex case, and the real case will follow from it in a
straightforward manner.
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The physical Hilbert space of the whole system is

Hphys ¼ ⊗
x∈L

HphysðxÞ: ð32Þ

However, as usual in the construction of PEPS, the physical
degrees of freedom are not sufficient: to contract the local
ingredients together, we have to introduce auxiliary or
virtual fields to our system. That is, on each lattice site
x ∈ L, we introduce 2d extra Hilbert spaces, associated
with the legs going out of and into it. On each outgoing leg,
in direction i, we define the virtual fields fχαi ðxÞgDα¼1, while
on each ingoing leg we introduce similar fields fηαi ðxÞgDα¼1.
All virtual fields are either real or complex scalars, depend-
ing on the nature of the physical field ϕðxÞ. As in the
physical case, we will generally treat them as complex
below. The number of fields we introduce on each leg,D, is
nothing but the bond dimension mentioned above; we are
free to choose anyD ≥ 1 that we want to build our PEPS—
increasing D will allow our PEPS to depend on more
parameters—which implies more freedom for the optimi-
zation problem whose solution is sought with the PEPS.
Different physical scenarios will impose different con-
straints on the required minimal bond dimension, and we
have seen an example for that in our previous construction.
However, whatever D is, we unite the Hilbert spaces of
all the virtual fields of x ∈ L to HvirtðxÞ. We denote its
configuration states by

jχ ðxÞ; ηðxÞi ≔ d
⊗

i¼1
jχiðxÞijηiðxÞi ð33Þ

(where the α indices were omitted for simplicity). In a sense,
χ ðxÞ ¼ ðχ1ðxÞ;…; χdðxÞÞ and ηðxÞ ¼ ðη1ðxÞ;…; ηdðxÞÞ
can be thought of as spatial vector fields.

On each site x ∈ L we can therefore define the local
Hilbert space

HðxÞ ¼ HphysicalðxÞ ⊗ HvirtðxÞ; ð34Þ

involving both the physical and virtual degrees of freedom.
Any state jAðxÞi ∈ HðxÞ may be expanded as

jAðxÞi ¼
Z Y

i

ðdχiðxÞdηiðxÞÞdϕðxÞAðϕðxÞ; χ ðxÞ; ηðxÞÞjϕðxÞi ⊗ jχ ðxÞ; ηðxÞi ð35Þ

(where integration on complex conjugates and/or different α components of the virtual fields is implicitly assumed).
⊗
x∈L

jAðxÞi is not the state we need: it is both a product state, with no correlations among the lattice sites, and it also

involves some virtual degrees of freedom which have nothing to do with the physical Hilbert space Hphys. Both issues are
addressed, as usual, by projecting the virtual degrees of freedom onto maximally entangled pair states, connecting the
virtual fields of both sides of each link; in our case, we choose

jLiðxÞi ¼
Z

dχiðxÞdηiðxþ ϵêiÞδðχiðxÞ − ηiðxþ ϵêiÞÞδðχ̄iðxÞ − η̄iðxþ ϵêiÞÞjχiðxÞijηiðxþ ϵêiÞi ð36Þ

defined on each link. The extension to D > 1 is straight-
forward, and in the real field case the second delta
function(s) are removed.
The PEPS is obtained by projecting ⊗

x∈L
jAðxÞi onto the

maximally entangled states on all the links:

jψi ¼ ⊗
x∈L;i¼1;…;d

hLiðxÞj ⊗
x∈L

jAðxÞi ∈ Hphys: ð37Þ

A two-dimensional example for the construction detailed
above is depicted in Fig. 1.

FIG. 1. An example of a two-dimensional PEPS with fields.
The lattice sites are marked with the black dots and the virtual
fields with the ingoing and outgoing blue lines to each site. Two
outgoing and ingoing virtual fields of two neighboring sites are
contracted by the links Li, which are illustrated by the ovals
connecting the two lines.
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We have not only eliminated the virtual degrees of
freedom, we actually used them for inducing correlations
among the lattice sites. Furthermore, this state will satisfy
the area law, since for any bipartition we wish to make,
we will get that the entanglement entropy comes from the
maximally entangled states on the links that cross the
boundary, all contributing the same.

B. Spatial symmetries

We would like to require the PEPS jψi to be invariant
under translations and under the transformations which
preserve the lattice (its point group). This is a reasonable
condition if we wish the state to become invariant under
continuous translations and rotations SOðdÞ in the con-
tinuum limit (the rest of the Poincaré group is explicitly
broken by the choice of the quantization scheme). To that
end we require the PEPS jψi to be invariant under discrete
lattice translations and also under rotations preserving the
lattice. As for the latter, where it is for the simple choice of
a square lattice we will suffice to require invariance under
rotations of π

2
in all possible planes (we do not make any

prior demands regarding reflections and parity).
The discrete translations TðaÞ for some displacement

vector a on the lattice are defined to act in a very simple
way on both the physical and the virtual fields,

TðaÞjϕðxÞi ¼ jϕðxþ aÞi: ð38Þ

It acts exactly the same on the virtual fields χi and ηi. If not
broken to begin with, the discrete translational symmetry
on the lattice will be straightforwardly enhanced to a
continuous translational symmetry in the continuum
limit. Imposing translation symmetry on the PEPS is very
simple, and can be done by requiring all the functions
AðϕðxÞ; χ ðxÞ; ηðxÞÞ from (35) to be the same all around
the lattice (independent of the coordinates). Similarly, we
use the same jLiðxÞi states on all the links in the same
direction.
Next we consider lattice rotations. Denote byΛij rotations

of π
2
in the plane spanned by êi and êj (with no loss of

generality, we assume that i < j). The coordinate rotation is
given by

Λijx ¼ Λijðx1;…; xi;…; xj;…; xdÞ
¼ ðx1;…;−xj;…; xi;…; xdÞ: ð39Þ

The physical field is scalar and thus its eigenstates
transform as

jϕðxÞi → jϕðΛijxÞi: ð40Þ

Nevertheless, the virtual fields must transform in a
different manner:

jχiðxÞi → jχjðΛijxÞi;
jχjðxÞi → j − ηiðΛijxÞi;
jηiðxÞi → jηjðΛijxÞi;
jηjðxÞi → j − χiðΛijxÞi: ð41Þ

To explain why, we recall that these fields are associated
with directions—they are components of spatial vector
fields. Therefore, they must follow the rotation of links,
giving rise to the above rotation rules.
Requiring the fiducial state jAðxÞi to be invariant under

(41) is equivalent to requiring the wave function in (35),
AðϕðxÞ; χ ðxÞ; ηðxÞÞ to be symmetric under the permuta-
tions of the virtual fields dictated by (41) for all i < j:

Aðϕ;…; χi;…; χj;…; ηi;…; ηj;…Þ
¼ Aðϕ;…; χj;…;−ηi;…nηj;…;−χi;…Þ
¼ Aðϕ;…;−ηi;…;−ηj;… − χi;…;−χj;…Þ
¼ Aðϕ;…;−ηj;…; χi;…;−χj;…; ηi;…Þ: ð42Þ

One also has to make sure that the maximally entangled
states on the links, jLiðxÞi, are rotated in an invariant way
(in this case, we need to demand that in an i − j rotation,
the states belonging to these two directions are exchanged,
and the others are left intact; overall, the product of all link
states remains the same). This is satisfied by the states we
picked for our demonstration above.
In order to obtain the desired form of the cPEPS (3) in

the continuum limit, we write Aðϕ; χ ; ηÞ as an exponential:

Aðϕ; χ ; ηÞ ¼ eAðϕ;χ ;ηÞ: ð43Þ

Here, A respects the spatial symmetries (38) and (42).
We will now focus on a more specific ansatz,

A ¼ Kðχ ; ηÞ þ V0ðχ ; η;ϕÞ; ð44Þ

where V0 is a general analytic function of the fields that is
required to be invariant under (42). K is defined by

Kðχ ; ηÞ ¼ −
Z0

2

Xd
i

jχiðxÞ − ηiðxÞj2: ð45Þ

C. The continuum limit

The projection onto the maximally entangled link states
jLiðxÞi allows us to use the delta functions, eliminate the ηi
Hilbert spaces, and exchange any appearance of ηiðxÞ by
χiðx − ϵêiÞ. Collecting all of the above, the physical state
may then be written as (here D ¼ 1 but the generalization
to higher bond dimensions is straightforward)

APPROXIMATING RELATIVISTIC QUANTUM FIELD THEORIES … PHYS. REV. D 105, 045016 (2022)
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jψi ¼
Z

Π
x
dϕðxÞΠ

x;i
dχiðxÞe

P
x
AðϕðxÞ;χ ðxÞÞΠ

x
jϕðxÞijχ ðxÞi:

ð46Þ

In the above expression appears the same function A as it
was presented previously, only now with the insertions of
ηiðxÞ replaced with χiðx − ϵêiÞ as explained.
From this point the continuum limit is taken in the

conventional way. That is, the dimensionless fields and
parameters are exchanged by their continuum counterparts
which obtain their mass dimension by an appropriate
power of ϵ.
Namely, the fields ϕ; χi that appear in (46) are defined on

the lattice and are dimensionless. For taking the continuum
limit, we need to exchange summation by integration in the
exponent of (46). Since the integration measure is dimen-
sionful, this requires the introduction of dimensionful
fields to compensate for the originally dimensionless
expression. ½ϕ�, the dimension of the physical field ϕ, is
chosen to have the standard dimension for the free
relativistic field [39]: ½ϕ� ¼ d−1

2
. This is a necessary choice

as this degree of freedom also serves in a physical state such
as the free vacuum (14).
We define the “renormalized” physical field ϕðRÞðxÞ ¼

ϵ−½ϕ�ϕðxÞ. Since the virtual fields are eventually integrated
out, there exists a freedom in choosing their dimension
(see Appendix B for more details). We hence do not
commit to a specific choice and denote their dimension

by [χ]. We define χðRÞi ðxÞ ¼ ϵ−½χ�χiðxÞ accordingly.
Define Z ¼ ϵ2−dþ2½χ�Z0. We tune Z0 such that Z will be

finite in the continuum limit ϵ → 0. This immediately gives
rise to the kinetic term

X
x

Kðχ Þ → −
1

2
Z
Z

ddx
Xd
i¼1

j∇iχ
R
i ðxÞj2: ð47Þ

We further introduce the virtual field vðxÞ,

χðRÞi ðxÞ≡ v

�
xþ ϵ

2
êi

�
; ð48Þ

which turns (47) into the standard kinetic term for scalar
fields. Finally, as was done in detail for K, the function
V0ðχi; ηi;ϕÞ similarly becomes, by following all the steps
described above, the functional V½v;∇v;ϕðRÞ� [in fact,
Eq. (3) also depends on ∇ϕ, and we will show how this
is achieved in the end of this section].
The mapping between the two can be defined in a formal

way through the series expansion of V in powers of the
fields in their first derivatives and then identifying vðxÞ
with χiðxÞ and ∇ivðxÞ with χiðxÞ − ηiðxÞ. For example,
V ¼ að∇vÞ2v can be constructed from V0 ¼ a0jχiðxÞ−
ηiðxÞj2χi þ ðpermutationsÞ. The permutations under (46)

ensure the rotational symmetry. Similar to before, the
connection between the parameters is given by a ¼
1
4
ϵ2−dþ3½χ�a0; the factor of 1

4
comes to account for the four

terms connected by the rotational transformation that
collapse into a single one in the continuum limit.
Now that we are fully done, we can conveniently drop

the R superscript. Additional virtual fields can easily be
added by following the same steps above, so we may
consider a general bond dimension D > 1. We then arrive
to the continuum limit of (46) which is the desired cPEPS:

jψi ¼
Z

DϕðxÞDvαðxÞe
R

ddxA½vα;∇vα;ϕ�jfϕðxÞgi;

A ¼ −
1

2
Zαβ∇iv̄α∇ivβ þ V½vα;∇vα;ϕ�: ð49Þ

In fact, Eq. (3) has a dependence on ∇ϕ, too. We close
this section by showing how this and generalization thereof
is achieved. The local physical Hilbert space Hphys may be
defined on a block of lattice sites rather than on a single
point, as illustrated in Fig. 2,

HphysðxÞ ¼ ⊗
â∈block

HϕðxþâÞ: ð50Þ

The larger the block, the higher derivative terms for the
physical field ϕ that can be written. We now make the
observation that the virtual and physical fields do not have

FIG. 2. An example for a two-dimensional square lattice with a
Hphys of larger support. The block is of size 2 × 2 and is marked
by a dashed blue line. The black dots stand for the lattice sites
which host the physical fields, whereas the solid blue lines stand
for the four virtual fields of the ingoing and outgoing directions to
the block.
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to lay on the same lattice—the virtual fields after all
connect between the physical Hilbert spaces which may
contain more than one lattice site.
It is interesting to note that this simple operation cannot

be applied to the virtual fields since they are restricted to lay
on the boundary of the block rather then inside its bulk.
This fact seems to hinder the ability to construct higher
derivatives for the virtual fields.

IV. SYMMETRIES

PEPS are well known for the ease of describing sym-
metries with them: one can parametrize families of PEPS
which will be invariant under some symmetry group [5,7,8].
Consider, at first, the case of a complex scalar field. We

can define a global Uð1Þ transformation on it, such that

UðθÞjfϕðxÞgi ¼ jfeiθϕðxÞgi ð51Þ

for any θ ∈ ½0; 2πÞ. If we wish our PEPS to be invariant
under the symmetry operation, we will need to define some
transformation rules for the virtual fields, too, e.g.,

vαðxÞ → eiθvαðxÞ: ð52Þ

Changing the integration variables [the integration measure
DϕðxÞ is invariant under a unitary change of variables],
we will get that UðθÞjψi ¼ jψi if

V½vα;∇vα;ϕ� ¼ V½eiθvα; eiθ∇vα; eiθϕ�: ð53Þ

If, for example, we construct a Gaussian cPEPS, this will
be satisfied if we pick

A ¼ −
1

4
Zαβ∇v̄αðxÞ∇vβðxÞ −

1

4
Aαβv̄αðxÞvβðxÞ

þ zα∇v̄αðxÞ∇ϕðxÞ þ aαv̄αðxÞϕðxÞ −
c
4
jϕðxÞj2 þ c:c:

ð54Þ

This can also be achieved through the PEPS construc-
tion, by properly parametrizing the states jAðxÞi and
jLiðxÞi (see, e.g., [10]); but it can also be done directly
in the continuum.
We can think of more general settings. Suppose that

instead of the field ϕðxÞ we introduce a vector, or a
multiplet of fields, either real or complex, fϕaðxÞgra¼1,
transforming as some representation j of dimension r of
some group G; that is, for each group element g ∈ G, we
define the unitary transformation

UðgÞjfϕaðxÞgi ¼ jfDj
abðgÞϕbðxÞgi; ð55Þ

where Dj
abðgÞ is the j representation matrix of g (of

size r × r).

If we wish to construct a cPEPS jψi with the symmetry
property

UðgÞjψi ¼ jψi ∀ g ∈ G; ð56Þ

wewill need to use virtual fields that are also charged under
this group; that is, the v fields will have to carry an a index,
forming multiplets of the group G. One can use several
multiplets and copies thereof, as long as the multiplets are
fully included. The virtual and physical representations do
not even have to be the same, as long as they are coupled
properly. Thus, in general, the virtual fields transform as

vα;aðxÞ → DJ
abðgÞvα;bðxÞ ð57Þ

with some (irreducible or reducible) representation J. Our
cPEPS will be defined with

A ¼ −
1

2
Zαβ∇iv̄α;a∇ivβ;a þ V½vα;a;∇vα;a;ϕa�; ð58Þ

and the symmetry condition will be

V½vα;a;∇vα;a;ϕa�¼V½DJ
abðgÞvα;b;DJ

abðgÞ∇vα;b;Dj
abðgÞϕb�;

ð59Þ

which can also be simplified, in a straightforward manner,
in the Gaussian case (it can also be seen as a continuum
limit of the case studied in [40], when changing to scalar
fields).
Finally, if we keep A real, we will also have a charge-

conjugation symmetry in the case of complex fields.

V. DISCUSSION

We have developed a cPEPS for quantum fields and
explicitly shown how such a state can approach the free
field theory vacuum as the bond dimension is increased.
In addition, we have tackled the question on whether
this approximation has a regularization independent
(universal) significance. To that end we have used the
quantum fidelity as a measure of distinguishability
between the cPEPS and the real physical state that it
approximates, and found that it encapsulates a universal
term that is independent on the short-scale behavior of
the problem.
Subsequently we have built the cPEPS in a bottom-up

approach. Starting from the lattice, a PEPS paired with a
unique ansatz was used to produce the wanted result in the
continuum. A central feature of the cPEPS is that it enjoys a
global symmetry under any desired symmetry group of
interest, as well as translational and continuous rotational
symmetries.
While we have focused on scalars, fields with higher spin

may also be taken in consideration. A similar construction
as the one done in Sec. III is expected to be possible for
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physical and virtual fields with higher spin, albeit left
beyond the scope of this paper. In fact, only two general-
izations are required for spin 1 vector fields and spin 1

2

fermions. Once they are laid down, higher integer or,
respectively, half-integer spin fields can be constructed by
taking tensor products and symmetrizing/antisymmetrizing.
Furthermore, an important benefit of this bottom-up

construction is that tools and ideas that apply for PEPSs are
transferred to cPEPSs—Sec. IV is an important example
for that. The PEPS framework has been elevated to include
physical gauge fields as well [10,40], with a very clear
prescription on how to do so. We expect that following
through this procedure to the continuum will result in
“minimal coupling” of (49) (in the same sense that an
action is minimally coupled). Nevertheless we leave this to
a more thorough investigation in the future.
The fidelity was used for estimating the accuracy of the

cPEPS approximation to the real, physical ground state. In
most cases, however, the exact form of the ground state is
unknown, and hence it is the tensor-network state that
serves as an ansatz that is designed to capture most of the
ground states important properties. If so, one immediate
implementation of the cPEPS is to serve as a variational
ansatz which is numerically adjusted to give a minimal
expectation value for some Hamiltonian of interest. To deal
with the usual divergences that appear in the ground state
energy of quantum field theories, it was demonstrated to be
efficient to minimize the normal-ordered/renormalized
Hamiltonian instead of the bare one [25,41]. If a different
renormalization scheme would be used, will a smaller bond
dimension be able to yield a similar result? In our non-
interacting example, we have found that, indeed, there is a
universal term (which does not depend on the cutoff)

appearing in the fidelity per site, yet the larger picture
remains open for future study.
Along with this, there is another context to which the

cPEPS can be closely related. A tensor-network state can be
thought of as a representative of a class of states with a
specific structure of symmetry and entanglement. Since the
critical properties of phase transitions are normally depen-
dent upon the robust features of the two phases, one can
build tensor-network states that lay in the universality class
of each phase and in that way “engineer" a quantum phase
transition [42]. There is then great merit in calculating the
fidelity of two nonidentical cPEPSs belonging to different
symmetry classes—which can easily be created with the
tools portrayed in this paper.
Fidelity of many-body quantum states as a probe for

quantum phase transitions has been a popular source of
research (see [35] and references therein). The quantum
fidelity has proven to be a useful analytical tool for gaining
insight about the characteristics of the phase transition, and
it has a unique critical behavior around the transition point
on its own. The exact form of the fidelity is in general not
easily calculable, and known examples exist in large for
integrable models in where the ground state has a known
form. We therefore hope that the cPEPS together with
standard perturbative techniques can open a way to a new
class of phase transitions that can be studied via the fidelity
approach, and we leave that to future work.
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APPENDIX A: EQUIVALENCE WITH CTNS

In [23], the following CTNS were defined for real scalar fields (rewritten for infinite spaces and using our notation
conventions):

jCTNSi ¼
Z

Dv exp

�
−
Z

ddx

�
1

2

XD
α¼1

ð∇vαðxÞÞ2 þ V½fvαg� − f½fvαg�Ψ†ðxÞ
��

j0i; ðA1Þ

where V and f are some functionals of the virtual fields; Ψ†ðxÞ is a local field (bosonic) creation operator, defined at x, as

Ψ†ðxÞ ¼ 1ffiffiffi
2

p ðΦðxÞ − iΠðxÞÞ; ðA2Þ

and j0i is the Fock vacuum annihilated by all ΨðxÞ, rather than the ground state of some relativistic (even free) field theory,
such as what we denote in the main text by jΩfi. For this reason, we can also write

jCTNSi ¼
Z

Dv exp

�
−
Z

ddx

�
1

2

XD
α¼1

ð∇vαðxÞÞ2 þ V½fvαg� − f½fvαg�Ψ†ðxÞ
��

exp

�Z
ddxf½fvαg�ΨðxÞ

�
j0i: ðA3Þ
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Furthermore, thanks to the canonical commutation relation of Eq. (1), we find that

½ΨðxÞ;Ψ†ðyÞ� ¼ δðdÞðx − yÞ; ðA4Þ

and thus

jCTNSi ¼
Z

Dv exp

�
−
Z

ddx

�
1

2

XD
α¼1

ð∇vαðxÞÞ2 þ V½fvαg� þ
1

2
f2½fvαg� − f½fvαg�ðΨ†ðxÞ þΨðxÞÞ

��
j0i: ðA5Þ

Next, using

ΦðxÞ ¼ 1ffiffiffi
2

p ðΨ†ðxÞ þ ΨðxÞÞ; ðA6Þ

I ¼
Z

DϕjfϕðxÞgihfϕðxÞgj ðA7Þ

(with field operators eigenstates), and

hfϕðxÞgj0i ∝ exp

�
−
1

2

Z
ddxϕ2ðxÞ

�
; ðA8Þ

we finally obtain

jCTNSi ¼
Z

DϕDv exp

�
−
Z

ddx

�
1

2

XD
α¼1

ð∇vαðxÞÞ2 þ V½fvαg� þ
1

2
f2½fvαg� −

ffiffiffi
2

p
f½fvαg�ϕðxÞ þ

1

2
ϕ2ðxÞ

��
jfϕðxÞgi

ðA9Þ

—that is, the CTNS expressed in a cPEPS form.
The other direction is true as well: it is also possible to express any cPEPS (3) in the CTNS form (A). To do that, we recall

the definition of field coherent states,

jfαðxÞgi ¼ e
R

ddxαðxÞΨ†ðxÞj0i ðA10Þ

—eigenstates of the field annihilation operator ΨðxÞ, with the overcompleteness relation

I ¼
Z

DαðxÞDᾱðxÞe−
R

ddxjαðxÞj2 jfαðxÞgihfαðxÞgj: ðA11Þ

The overlap between a coherent state and a field configuration state is given by

hfαðxÞgjfϕðxÞgi ¼ h0je
R

ddxᾱðxÞΨðxÞjfϕðxÞgi ¼ h0je
R

ddxᾱðxÞΨ†ðxÞe
R

ddxᾱðxÞΨðxÞjfϕðxÞgi
¼ e−

R
ddxð1

2
ᾱ2ðxÞ− ffiffi2p

ᾱðxÞϕðxÞÞh0jfϕðxÞgi ∝ e−
R

ddxð1
2
ϕ2ðxÞþ1

2
ᾱ2ðxÞ− ffiffi2p

ᾱðxÞϕðxÞÞ: ðA12Þ

Along with the overcompleteness relation (A11), this gives rise to

jfϕðxÞgi ∝
Z

DαðxÞDᾱðxÞe−
R

ddxð1
2
ϕ2ðxÞþ1

2
ᾱ2ðxÞ− ffiffi2p

ᾱðxÞϕðxÞþᾱðxÞαðxÞÞjfαðxÞgi

¼
Z

DαðxÞDᾱðxÞe−
R

ddxð1
2
ϕ2ðxÞþ1

2
ᾱ2ðxÞ− ffiffi2p

ᾱðxÞϕðxÞþᾱðxÞαðxÞÞe
R

ddxαðxÞΨ†ðxÞj0i: ðA13Þ

Plugging this into Eq. (3), we obtain a CTNS form for the CPEPS, introducing three more virtual fields, αðxÞ, ᾱðxÞ,
and ϕðxÞ. This completes the proof of equivalence between the states.
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APPENDIX B: CONTINUED FRACTION
APPROXIMATION

Hereby we shall introduce a specific and simpler choice
of the more general Gaussian cPEPS (3) which enables the
presentation of ωDðkÞ in the form of a continued fraction. It
allows for a rather elegant representation of the ground state
of a free field theory. Furthermore, continued fractions in
general have many appealing properties, allowing one to
gain more knowledge about the convergence. Given that,
we narrow down to the parameter choice of Eq. (16):

Aαβ þZαβk2 ¼ 2mδα;β

�
1 α even

k2 α odd
þ k2ffiffiffi

2
p ðδα;β−1 þ δα;βþ1Þ

ðB1Þ

¼

0
BBBBBBBB@

2mk2 k2=
ffiffiffi
2

p

k2=
ffiffiffi
2

p
2m k2=

ffiffiffi
2

p

k2=
ffiffiffi
2

p
2mk2 k2=

ffiffiffi
2

p

k2=
ffiffiffi
2

p . .
.

k2=
ffiffiffi
2

p

k2=
ffiffiffi
2

p
2m

1
CCCCCCCCA

ðB2Þ

and aα ¼ 0; zα ¼
ffiffiffi
2

p
δα;1; c ¼ m.

We first need to take care of the fact that there is more
than one way of fixing the mass dimension [χ] of the virtual
fields χα. We find it useful to choose the dimension to be
the same as that of the physical field ϕ: ½χ� ¼ ½ϕ� ¼ d−1

2
.

Recall that the dimension of the physical field ½ϕ� is
completely set by the Klein-Gordon action. Under this
convention the dimensions of the parameters defined in (3)
are as follows:

½c�¼1; ½Aαβ�¼ ½aα�¼1; ½Zαβ�¼ ½zα�¼−1: ðB3Þ

Notice that we have set the physical mass m which appears
in ωf as a single energy scale and used it to fix the
dimensions of all of the rest of the parameters. Thus Bα, Zα,
and Aα are dimensionless. Integrating out the virtual fields
(as we show below) results in

ωDðkÞ ¼ mþ k2

2mþ k2

2mþ k2

2mþ��� k2

2mþ k2
2m:

ðB4Þ

In this form it is a rather simple task to make the cPEPS
(B2) approach the vacuum state of a free field theory jΩfi:

jΩfi ¼
Z

DϕðkÞe−1
2
ωfðkÞϕ̄ðkÞϕðkÞjfϕðkÞgi: ðB5Þ

ωfðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
has a continued fraction

representation:

ωfðkÞ ¼ mþ k2

2mþ k2

2mþk2

. .
.

: ðB6Þ

ωDðkÞ approaches ωfðkÞ as D grows. The convergence,
however, is not uniform as the remainder diverges as k
increases. This can be seen by the fact that ωDðkÞ asymp-
totically behaves for large values of k as k2 or as a constant
depending if the truncation of the continued fraction is even
or odd, whereas ωfðkÞ asymptotically behaves as k.
In fact, the continued fraction representation is not

unique. This is not surprising given the fact that so is
the more general Padé approximant.
Equation (B4) is obtained inductively. To that end we

integrate out the virtual fields one by one, and it is useful to
present the following notation:

jψi ¼
Z

DϕðkÞ
YD
α¼1

DvαðkÞe
R

ddk
ð2πÞdAD½vαðkÞ;ϕðkÞ�jfϕðkÞgi

¼
Z

DϕðkÞ
YD−1

α¼1

DvαðkÞe
R

ddk
ð2πÞdAD−1½vαðkÞ;ϕðkÞ�jfϕðkÞgi

¼ � � � : ðB7Þ

For obtaining (B4) we start by integrating vα¼DðkÞ. To
clarify that, we first write (B7) in a form where vα¼DðkÞ is
separated from the rest of the virtual fields:

AD ¼ −
2m
2

jvDðkÞj2

þ k2ffiffiffi
2

p ðv̄DðkÞvD−1ðkÞ þ v̄D−2ðkÞvDðkÞÞ

−
1

2

XD−1

α;β

ðZ þ Ak2Þαβv̄αðkÞvβðkÞ

þ k2ffiffiffi
2

p ðv̄1ðkÞϕðkÞ þ ϕ̄ðkÞv1ðkÞÞ −
m
2
jϕðkÞj2: ðB8Þ

Integrating out vD leads to
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AD−1 ¼ −
1

2

�
2mk2 þ k4

2m

�
jvD−1ðkÞj2

þ k2ffiffiffi
2

p ðv̄D−1ðkÞvD−2ðkÞ þ v̄D−1ðkÞvD−2ðkÞÞ

−
1

2

XD−2

α;β

ðZ þ Ak2Þαβv̄αðkÞvβðkÞ

þ k2ffiffiffi
2

p ðv̄1ðkÞϕðkÞ þ ϕ̄ðkÞv1ðkÞÞ −
m
2
jϕðkÞj2:

ðB9Þ

Next, integrating vD−1 out leads to

AD−2 ¼ −
1

2

�
2mþ k2

2mþ k2
2m

�
jvD−1ðkÞj2

þ k2ffiffiffi
2

p ðv̄D−1ðkÞvD−2ðkÞ þ v̄D−1ðkÞvD−2ðkÞÞ

−
1

2

XD−2

α;β

ðZ þ Ak2Þαβv̄αðkÞvβðkÞ

þ k2ffiffiffi
2

p ðv̄1ðkÞϕðkÞ þ ϕ̄ðkÞv1ðkÞÞ −
m
2
jϕðkÞj2:

ðB10Þ

The emergence of the continued fraction after integrating
out all the (even) D virtual fields can be clearly seen.

Note that the above derivation holds for k ≠ 0; in the
k ¼ 0 case, we see that all the virtual fields are decoupled
from one another and from the physical field, and separate
integrations will give rise to the expected result.

APPENDIX C: A NOTE ON PARENT
HAMILTONIANS

A natural question put in the context of tensor networks
is about the properties and uniqueness (or nonuniqueness)
of a local parent Hamiltonian HD, whose ground state is
the tensor-network state—in our case, Eq. (5). Since Eq. (5)
is a Gaussian state, there must exist a quadratic parent
Hamiltonian, and, in fact, there is a family of these with the
following form:

HDðϕ; πÞ ¼
1

2

Z
ddk
ð2πÞd ðaðkÞΠ̄ðkÞΠðkÞ

þ bðkÞϕ̄ðkÞϕðkÞÞ; ðC1Þ

where ω2
DðkÞ ¼ bðkÞ

aðkÞ. In this aspect, ωDðkÞ may be inter-

preted as a dispersion relation, obviously depending on the
bond dimension D and the parameters that appear in the
Gaussian cPEPS (8).
All the Hamiltonians (C1) have the same spectrum as

they are canonically equivalent to each other by such
transformations which preserve the locality. However, since
we would like the parent Hamiltonian (C1) to be local, we
narrow down to cases where the functions aðkÞ and bðkÞ
are finite polynomials of k.
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