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We construct a relativistic model for bulk viscosity and heat conduction in a superfluid. Building on the
principles of unified extended irreversible thermodynamics, the model is derived from Carter’s multifluid
approach for a theory with 3 four-currents: particles, entropy, and quasiparticles. Dissipation arises directly
from the fact that the quasiparticle four-current is an independent degree of freedom that does not
necessarily comove with the entropy. For small deviations from local thermodynamic equilibrium, the
model provides an extension of the Israel-Stewart theory to superfluid systems. It can, therefore, be made
hyperbolic, causal, and stable if the microscopic input is accurate. The nondissipative limit of the model is
the relativistic two-fluid model of Carter, Khalatnikov, and Gusakov. The Newtonian limit of the model is
an extended-irreversible-thermodynamic extension of Landau’s two-fluid model. The model predicts the
existence of four bulk viscosity coefficients and accounts for their microscopic origin, providing their exact
formulas in terms of the quasiparticle creation rate. Furthermore, when fast oscillations of small amplitude
around the equilibrium are considered, the relaxation-time term in the telegraph-type equations for the bulk
viscosities accounts directly for their expected dependence on the frequency.
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I. INTRODUCTION

A complete model for neutron star hydrodynamics
should account consistently for both superfluidity and
dissipation [1]. Combining these two phenomena in a
mathematical formulation that is causal and stable—so
that it is well-suited for numerical implementation—is still
an open problem. The challenge is to formulate a relativ-
istic description of a multicomponent system with identi-
fiable relative flows (a “multifluid”), and to give a clear
microscopic meaning to the input of such a hydrodynamic
theory. However, some recent advancements regarding heat
conduction [2], bulk viscosity [3], and multifluid thermo-
dynamics [4]—just to list the most relevant to the present
work—unveiled the physical content of the phenomeno-
logical multifluid hydrodynamics developed by Carter [5]
(see also [6]). Here, we show that these ideas can be used to
produce a self-consistent, causal, and stable model for
heat-conducting bulk-viscous superfluids. We do not
include shear-viscosity effects, which will be the object
of future study.
The multifluid approach of Carter and Khalatnikov [7] is

a variational technique to derive hydrodynamic theories for
conducting media, where an arbitrary number of currents
can flow relatively to each other. Its effectiveness in
describing nondissipative superfluid systems has been
widely explored, e.g., [8–10]. In the absence of dissipation,

it has been shown in [4] that the phenomenological
multifluid of Carter and Khalatnikov is an exact reformu-
lation of the more fundamental models for a relativistic
superfluid of Son [11] and Gusakov [12]. Moreover,
Carter’s multifluid is a convenient formalism to describe
neutron stars [13,14], notably their structure [15,16], the
oscillations [17–19], and the phenomenon of pulsar
glitches [20–23].
Apart from neutron star applications, attempts to use

Carter’s approach as a general tool for modeling dissipation
in relativistic fluids have not yet received the same level of
attention. Most interest has been directed toward the theory
of Israel and Stewart [24], which has been shown to have a
great predictive power, especially in modeling heavy-ion
collisions [25]. In fact, after the works of Olson and
Hiscock [26] and Priou [27], who showed that, close to
local thermodynamic equilibrium, Carter’s variational
approach leads to a theory which is indistinguishable from
that of Israel and Stewart, it seemed natural to opt for using
the latter, as it is of more direct physical interpretation and
its formal structure can be justified directly from kinetic
theory.
The formalisms of Carter and Israel-Stewart, however,

are two particular cases of a larger class of classical
effective field theories for dissipation, arising from the
principles of unified extended irreversible thermodynamics
(UEIT) described in [28]. If we look at the two approaches
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under this light, what distinguishes them is just the choice
of variables (currents in the first, conserved fluxes in the
second). This is the reason why, in the regime of simulta-
neous validity of both theories, they share a common
backbone [2,3,28].
In this work, we extend the Israel-Stewart hydrodynam-

ics to superfluid systems by employing the aforementioned
connection with the multifluid formalism of Carter, which
was especially developed for conductive media, such as
superfluids. This strategy is sketched in Fig. 1. The formal
simplicity of the multifluid approach allows us to make sure
that our final superfluid model is consistent with the
principles of UEIT [28].
It is well known that a relativistic version of the Tisza-

Landau two-fluid model of a simple superfluid (e.g.,
Helium-II) can be rewritten as a Carter multifluid with
two currents: particles and entropy. However, such a theory
is valid in the nondissipative limit. In order to account for
dissipation coming from heat conduction and bulk viscosity
we add another nonconserved current (that we interpret as
the current of quasiparticles) to the Tisza-Landau
model, similar to the fact that to model heat conduction
in a normal fluid one can modify the perfect fluid by
promoting the entropy current to a new degree of freedom
[2,5]; see Fig. 1.
The final result is a fully relativistic1 hydrodynamic

description of a superfluid, where dissipation is linked to
the presence of quasiparticle reactions (bulk viscosity) and
to the fact that the quasiparticles do not necessarily comove
with the entropy flow (heat conduction).

We also perform a change of variables (from currents to
dissipative fluxes) and a perturbative expansion near local
thermodynamic equilibrium to translate our multifluid
model into its Israel-Stewart counterpart. We use this
equivalent Israel-Stewart formulation to verify that the
infrared Eckart-type limit of our three-fluid hydrodynamics
is the superfluid model of Gusakov [12].
Throughout the paper we adopt the spacetime signature

ð−;þ;þ;þÞ and work in natural units c ¼ G ¼ kB ¼ 1.
The Planck constant is hp ¼ 2πℏ.

II. THREE CURRENTS FLUID

In this section we derive the constitutive relations [28] of
the model directly from the variational approach of Carter
and Khalatnikov [7]. The superfluid will be assumed to be
bosonic; extensions of the model beyond this assumption
will be presented in Sec. X.

A. Fundamental variables: Relation between Carter
and Israel-Stewart formulations

Let nν be the conserved particle current of the superfluid,

∇νnν ¼ 0; ð1Þ

and sν the entropy current density [29], which obeys the
second law of thermodynamics [30]:

∇νsν ≥ 0: ð2Þ

We keep track of the evolution of the elementary excita-
tions in the superfluid phase by introducing an additional
quasiparticle current zν, which is not conserved

FIG. 1. Some fluid models related to our superfluid version of Israel-Stewart hydrodynamics (equivalent to the Carter’s three-fluid
model developed in this work). The dashed green arrows indicate the evolution of the dissipative models toward the corresponding
nondissipative limit as the fluid naturally relaxes to equilibrium. On the other hand, to upgrade the nondissipative model to a dissipative
one, new degrees of freedom are introduced. For example, promoting all the components of the entropy current to independent degrees
of freedom leads to Carter’s two-fluid model for heat conducting fluids developed in [2,5]. Similarly, adding a nonconserved
quasiparticle current to the relativistic version of the Tisza-Landau model—Carter’s dissipationless two-fluid model (see, e.g., [4])—
provides a way to construct the superfluid version of Israel-Stewart hydrodynamics via the multifluid approach.

1We do not invoke any assumption on the smallness of the
relative speed between the currents of the model.

L. GAVASSINO, M. ANTONELLI, and B. HASKELL PHYS. REV. D 105, 045011 (2022)

045011-2



∇νzν ≠ 0; ð3Þ

because reactions of the type (the superfluid is bosonic2)

zþ z⇌ zþ zþ z ð4Þ

are allowed [34]. For simplicity, we assume that all the
quasiparticles are of only one kind z. In the case that two or
more species of quasiparticles are present (such as phonons
and rotons in 4He), it would be possible to construct a
slightly different theory, as discussed in Sec. X A.
If every volume element of the superfluid is in local

thermodynamic equilibrium, the two currents nν and sν are
all the information needed to identify the local thermody-
namic state [10]. This implies that zν is not an independent
field, but it is given in every point by an equilibrium
constitutive relation of the kind

zν ¼ zνeqðnρ; sρÞ: ð5Þ

When dissipative processes are at work, the fluid elements
can also explore macrostates that are out of equilibrium.
Contrary to what happens in the nonrelativistic Navier-
Stokes hydrodynamics, in a relativistic framework this
leads necessarily to an enlargement of the number of
degrees of freedom of the dissipative hydrodynamic model
[28,35]: since we aim to describe bulk viscosity and heat
conduction, we need to include at least four new indepen-
dent algebraic degrees of freedom, the scalar viscous stress
Π and the heat flux3 Qν. Treating these dissipative fluxes as
independent variables would directly lead us to an Israel-
Stewart-type model. We prefer, however, the more deduc-
tive approach of Carter, but first we have to identify its
natural variables. To move from the independent degrees of
freedom nρ, sρ, Π, and Qν of an Israel-Stewart model to
those of Carter’s approach, we need to perform a change of
variables, as outlined below.
Assume that nρ, sρ, Π, and Qρ are the full set of

algebraically independent variables [28] of an Israel-
Stewart-type model. Hence, there must be a nonequilibrium
constitutive relation that generalizes (5),

zν ¼ zνðnρ; sρ;Π; QρÞ; ð6Þ

where, since in equilibrium Π ¼ Qρ ¼ 0, the functions in
(5) and (6) are related by the condition

zνðnρ; sρ; 0; 0Þ ¼ zνeqðnρ; sρÞ: ð7Þ

Since the components of zν are 4, we can assume that it is
possible to invert the relation (6) to obtain

Π ¼ Πðnρ; sρ; zρÞ; Qν ¼ Qνðnρ; sρ; zρÞ: ð8Þ

This allows us to make the desired change of variables:

ðnρ; sρ;Π; QρÞ → ðnρ; sρ; zρÞ: ð9Þ

Now that the degrees of freedom are 3 independent four-
currents, it is possible to model the system using the
approach of Carter and Khalatnikov [7], which is entirely
based on currents: we have shown that bulk viscosity and
heat conduction in a superfluid can be implemented by
promoting the four-current of quasiparticles to an indepen-
dent current of the theory. This is a generalization to
superfluid systems of the multifluid models proposed by
Carter [5] for heat conduction and in [3] for bulk viscosity.

B. Advantages of a three-currents formulation
à la Carter

Before moving on with the general discussion it is worth
commenting on the advantages of a formulation based on
three-currents with respect to an Israel-Stewart model.
In the Israel-Stewart framework, the dissipative fluxes Π

and Qρ are defined as deviations from a reference value
(typically zero) that is attained at thermodynamic equilib-
rium. This implies that a formalism based on the dissipative
fluxes is structurally perturbative. On the other hand, a
theory based on the physical currents nρ, sρ, and zρ—which
can also be defined arbitrarily far from equilibrium through
kinetic theory [34,36]—does not need to make explicit
reference of an equilibrium state in the constitutive rela-
tions. Clearly, for this hydrodynamic model to have
physical significance, in the end one needs to impose a
near-equilibrium assumption, but this is not directly
encoded into the mathematical structure of the equations:
Carter’s theory does not invoke any separation between an
equilibrium and a nonequilibrium part. This makes the
formalism easier to handle, and independent from the
problem of the choice of a so-called hydrodynamic frame
[37], at least at the level of the constitutive relations.

C. Carter’s prescription for the
energy-momentum tensor

Following Carter and Khalatnikov [7], we assume that all
the information about the state of the fluid is contained in a
hydrodynamic scalar field Λ. By Lorentz invariance, Λ can
be written as a function of the local Lorentz scalars of the
fluid:

Λ ¼ Λðn2; s2; z2; n2ns; n2nz; n2szÞ; ð10Þ

2For simplicity, we consider a superfluid of interacting Bosons:
its elementary excitations have Bosonic character and (4) is valid.
In a Fermionic system, the reaction (4) is still valid for possible
low-energy phonon-like collective modes [31,32], but (depend-
ing on the exact definition of quasi-particle that one is adopting)
there can be additional Fermionic branches of the excitation
spectrum [33], for which (4) should be replaced by a different
process.

3The flux Qν adds only 3 degrees of freedom because of an
orthogonality condition to be discussed later.
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where

n2 ¼ −nνnν; s2 ¼ −sνsν; z2 ¼ −zνzν; ð11Þ

and

n2ns ¼ −nνsν; n2nz ¼ −nνzν; n2sz ¼ −sνzν: ð12Þ

The infinitesimal variation of (10) has the form

δΛ ¼ −
Y−1

2
δðn2Þ − C

2
δðs2Þ − Bz

2
δðz2Þ

−Ansδðn2nsÞ −Anzδðn2nzÞ −Aszδðn2szÞ: ð13Þ

It is convenient to introduce the chemical labels x, y which
run over n, s, z and the symmetric 3 × 3 entrainment matrix

Kxy ¼

2
64
Y−1 Ans Anz

Ans C Asz

Anz Asz Bz

3
75 ð14Þ

that can be used to rewrite the differential (13) in the more
compact form [7]

δΛ ¼ 1

2

X
x;y

KxyδðnνxnyνÞ: ð15Þ

Assuming that the variation is arbitrary (involving also the
metric), we can make the substitution

δðnνxnyνÞ ¼ nxνδnνy þ nyνδnνx þ nνxn
ρ
yδgνρ; ð16Þ

which allows us to rewrite (15) as

δΛ ¼
X
x

�
μxνδnνx þ

1

2
nνxμxρδgνρ

�
; ð17Þ

where we have introduced the canonical momenta

μxν ¼
X
y

Kxynyν: ð18Þ

In what follows, we adopt the more physical names for the
momenta

μnν ¼ μν; μsν ¼ Θν; μzν ¼ −Aν; ð19Þ

and we call μν, Θν, andAν, respectively, chemical, thermal,
and affinity momentum [3,4]. In this way, Eq. (18) explic-
itly reads

μν ¼ Y−1nν þAnssν þAnzzν;

Θν ¼ Ansnν þ Csν þAszzν;

−Aν ¼ Anznν þAszsν þ Bzzν: ð20Þ

The coefficients Axy are responsible for the noncollinearity
between the currents and the respective momenta (for this
reason they are sometimes called “anomalies” or “entrain-
ment” coefficients).
The central postulate of Carter’s approach is that all the

components of the stress-energy tensor Tνρ, which obeys
the conservation law

∇νTνρ ¼ 0; ð21Þ

can be computed directly from Λ by using the prescription

Tνρ ¼ 2ffiffiffiffiffijgjp ∂ð ffiffiffiffiffijgjp
ΛÞ

∂gνρ
���� ffiffiffiffi

jgj
p

nσx

; ð22Þ

where
ffiffiffiffiffijgjp

is the square root of the absolute value of the
determinant of the metric. The partial derivative appearing
on the right-hand side of (22) can be computed explicitly
from the differential (17), giving

Tν
ρ ¼ Ψδνρ þ nνμρ þ sνΘρ − zνAρ; ð23Þ

where δνρ ¼ gνρ is the identity tensor and

Ψ ¼ Λ − nνμν − sνΘν þ zνAν ð24Þ

can be interpreted as a generalized pressure.4

There is consensus on the idea of using an equation of
the kind (22) to prescribe the energy-momentum tensor for
a superfluid in the nondissipative limit [7,13]. This may be
justified in view of the formal equivalence between this
phenomenological approach and the more fundamental
derivations of superfluid hydrodynamics proposed by
Lebedev and Khalatnikov [8], Son [11], and Gusakov
[38], referred to as “LAB” in [4]. However, it is not
guaranteed that it is possible to extrapolate this principle to
a dissipative context. Although we do not provide a
rigorous derivation of (22) from kinetic theory, in the
following we will show that the predictions made by using
a dissipative model based on (22) are substantially indis-
tinguishable from those of a hypothetical “exact” theory.

D. Landau representation

The system we have presented in the previous subsection
describes a generic three-component multifluid. To make

4The thermodynamic potential Ψ is the pressure exerted by the
fluid in the direction which is orthogonal to the three currents nρ,
sρ, zρ (see [4]).
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contact with the physics of superfluids we need to connect
it to Landau’s dissipative two-fluid model. Generalizing
what has been done in the nondissipative theory by Carter
and Langlois [10], we postulate that

μν ¼ ℏ∇νϕ; ð25Þ

where ϕ is the gradient of the phase of the order parameter
and ℏ is the reduced Planck’s constant. Equation (25) leads
to the irrotationality condition

∇½ρμν� ¼ 0: ð26Þ

Thus, also in the present dissipative scheme, the chemical
momentum μν is the relativistic generalization of Landau’s
superfluid velocity (within an overall constant which in the
Newtonian limit coincides with the mass of the
constituents).
In the usual hydrodynamic description of Newtonian

superfluids, the so-called superfluid velocity (in our case
the chemical momentum μν) is treated as a primary degree
of freedom, leading to a particular case of hybrid (or
“mongrel”) representation where some variables are
momenta and some are currents [4,39]. Thus, to explore
the bridge with the Landau theory and its relativistic LAB
extension, it is useful to make the change of variables
(compare with [10])

ðnρ; sρ; zρÞ → ðμρ; sρ; zρÞ ð27Þ

and, consequently, to write nν, Θν, and Aν as linear
combinations of μν, sν, and zν. To do this we invert the
first equation of (20), obtaining

nν ¼ Yμν −Dnssν −Dnzzν; ð28Þ

where we have defined the coefficients

Dns ¼ YAns; Dnz ¼ YAnz: ð29Þ

Then, the second and the third equations of (20) become

Θν ¼ Dnsμν þMsssν þMszzν;

−Aν ¼ Dnzμν þMszsν þMzzzν; ð30Þ

with

Mss ¼ C − YðAnsÞ2;
Mzz ¼ Bz − YðAnzÞ2;
Msz ¼ Asz − YAnsAnz: ð31Þ

The formulas (28) and (30) can be represented in the more
compact form

0
B@

−nν

Θν

−Aν

1
CA ¼

2
64
−Y Dns Dnz

Dns Mss Msz

Dnz Msz Mzz

3
75
0
B@

μν

sν

zν

1
CA; ð32Þ

which is the analog of (18), written in terms of the new
degrees of freedom of the LAB description.
It is useful to know that all the coefficients of the 3 × 3

symmetric matrix introduced in (32) can be obtained as
partial derivatives of a function X , just as the entrainment
matrix Kxy can be computed directly from Λ. To show this,
we write explicitly the differential (17) working at fixed
metric components (i.e., imposing δgνρ ¼ 0):

δΛ ¼ μνδnν þ Θνδsν −Aνδzν: ð33Þ

We can implement the change of variables (27) by defining
the new quantity X as the Legendre transform of Λ with
respect to nν,

X ¼ Λ − μνnν: ð34Þ
Therefore, X contains the same amount information as Λ
[40], and its variation is

δX ¼ −nνδμν þ Θνδsν −Aνδzν: ð35Þ

Analogously to (10), we can write X as a function of six
local scalars:

X ¼ Xðμ2; s2; z2; y2ns; y2nz; n2szÞ; ð36Þ

where

μ2 ¼ −μνμν; y2ns ¼ −μνsν; y2nz ¼ −μνzν: ð37Þ

With steps which are analogous to those which led us from
(15) to (17), it is possible to show that the only way for (36)
to be consistent with (32) is that the infinitesimal variation
of (36) is given by

δX ¼ þY
2
δðμ2Þ −Mss

2
δðs2Þ −Mzz

2
δðz2Þ

−Dnsδðy2nsÞ −Dnzδðy2nzÞ −Mszδðn2szÞ: ð38Þ
Thus, we have shown that, to compute all the coefficients
appearing in the Landau representation, it is enough to
know the thermodynamic potential X .
Finally, we can rewrite the energy-momentum tensor of

the superfluid in the Landau representation. Introducing the
“chemical” labels A; B ∈ fs; zg, Eq. (23) can be recast into
the form

Tνρ ¼ Ψgνρ þ Yμνμρ þ nνAM
ABnρB: ð39Þ

In this representation the superfluid and normal contribu-
tions to the stress-energy tensor are automatically
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separated. This also shows that Y is the relativistic
generalization of Landau’s superfluid density, within a
square-mass factor [10].

E. The generating function approach

Carter’s approach is constructed as a variational
approach, where the scalar field Λ plays the role of the
Lagrangian density of the matter sector. This point of view
is very convenient when one is dealing with a nondissi-
pative system, because it produces the full set of equations
of the system (including both the constitutive relations and
the field equations) (see, e.g., [4,7,10] and references
therein).
However, in a dissipative context one is usually forced to

rely on an “incomplete” variational approach, where the
constitutive relations are derived from the action principle,
while the dissipative hydrodynamic equations are
“guessed” by appropriately modifying the (nondissipative)
Euler-Lagrange equations [5,6,20]. This converts the scalar
field Λ into a sort of “generating function” for the
dissipative theory, namely a function which can be used
to compute all the relevant tensors of the theory as partial
derivatives but that does not contain the whole information
needed to write down the full dynamics.
Within this “generating function” point of view, all the

equations of this entire section can be summarised into two
fundamental relations:

Λ ¼ Tν
ν − 3Ψ;

δð ffiffiffiffiffijgjp
ΛÞffiffiffiffiffijgjp ¼

X
x

μxν
δð ffiffiffiffiffijgjp

nνxÞffiffiffiffiffijgjp þ Tνρ

2
δgνρ; ð40Þ

which can be proved by combining (17), (22), (23), and
(24), but they are also true for a generic multifluid
constructed using Carter’s approach.
The first equation in (40) tells us that the scalar field Λ is

not just a mathematical device. Instead, it is a physical
observable, which is uniquely determined for a given fluid,
independently from which choice of degrees of freedom we
make. In particular, −Λ, −Ψ, and −X are thermodynamic
potentials that are all linked to the internal energy via the
Legendre transform5 (see [4]).
The second equation in (40) collects together all the

relevant constitutive relations in a single differential,

δð ffiffiffiffiffijgjp
ΛÞffiffiffiffiffijgjp ¼ μν

δð ffiffiffiffiffijgjp
nνÞffiffiffiffiffijgjp þ Θν

δð ffiffiffiffiffijgjp
sνÞffiffiffiffiffijgjp

−Aν
δð ffiffiffiffiffijgjp

zνÞffiffiffiffiffijgjp þ Tνρ

2
δgνρ: ð41Þ

This formula will be useful later, as it allows us to keep
track directly of all the transformations that occur whenever
we decide to make a change of degrees of freedom.
To give an idea of how this works in practice, we

consider the following application: if one works in the
Landau representation (which we introduced in the pre-
vious subsection), is there an analog of Eq. (22) for
computing Tμν directly from X? The answer is yes: first,
we use (34) to prove the identity

δð ffiffiffiffiffijgjp
XÞffiffiffiffiffijgjp ¼ δð ffiffiffiffiffijgjp

ΛÞffiffiffiffiffijgjp − μν
δð ffiffiffiffiffijgjp

nνÞffiffiffiffiffijgjp − nνδμν: ð42Þ

Then, from (41) we obtain

δð ffiffiffiffiffijgjp
XÞffiffiffiffiffijgjp ¼ −nνδμν þ Θν

δð ffiffiffiffiffijgjp
sνÞffiffiffiffiffijgjp

−Aν
δð ffiffiffiffiffijgjp

zνÞffiffiffiffiffijgjp þ Tνρ

2
δgνρ; ð43Þ

which implies that the analog of (22) is

Tνρ ¼ 2ffiffiffiffiffijgjp ∂ð ffiffiffiffiffijgjp
XÞ

∂gνρ
����
μσ ;

ffiffiffiffi
jgj

p
sσ ;

ffiffiffiffi
jgj

p
zσ
: ð44Þ

Indeed, if one takes the generic variation (38) and uses it to
compute the partial derivative (44), one obtains directly
formula (39) for the stress-energy tensor (see Appendix A 1
for the proof). This result (which is straightforward in a
generating function approach) is at the origin of the
equivalence between the potential [8], the convective [9],
and the hybrid [10] variational derivations of covariant
superfluid dynamics [7].

F. Field equations

Now that the constitutive relations and a physical
interpretation of the hydrodynamic fields have been fixed,
we need to derive the field equations [28]. It is possible to
show that [see, e.g., Eq. (141) in [4]]

∇νTν
ρ ¼ Rn

ρ þRs
ρ þRz

ρ; ð45Þ

where the canonical hydrodynamic forces Rx
ρ are

Rn
ρ ¼ 2nν∇½νμρ� þ μρ∇νnν;

Rs
ρ ¼ 2sν∇½νΘρ� þ Θρ∇νsν;

Rz
ρ ¼ −2zν∇½νAρ� −Aρ∇νzν: ð46Þ

From the conservation (1) and irrotationality (26) condi-
tions, we obtain

Rn
ρ ¼ 0: ð47Þ

5In particular, −X has been called J in [4], and it is the
thermodynamic potential that naturally arises when constructing
an equation of state from microscopic calculations.
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Therefore, recalling (21), Eq. (45) implies

Rz
ρ ¼ −Rs

ρ: ð48Þ

Now, let us see how many equations are needed to close the
system. The model builds on 3 independent four-currents,
so it has 4þ 4þ 4 ¼ 12 algebraic degrees of freedom. The
energy-momentum conservation gives four equations and
the particle conservation 1. The irrotationality conditions
(26) are six equations; however, three of them are con-
straints on the initial conditions, and therefore only three
are proper equations of motion. Thus, we have a total of
4þ 1þ 3 ¼ 8 hydrodynamic equations. We need other
12 − 8 ¼ 4 equations to close the system: to complete the
model we only need to give a prescription for the four-force
Rs

ρ from kinetic theory. It has been shown that, in general,
there is no universal prescription for the structure of a force
of this kind [41]. In fact, this force may, or may not, involve
derivatives of the hydrodynamic fields and it cannot be
constrained further using purely geometrical and thermo-
dynamic arguments.
Following the approach of Carter [5], in Sec. VII we will

choose the simplest possible prescription for Rs
ρ, which

contains all the physics we need. With this specific
construction, we will have at our disposal a minimal model
for bulk viscosity and heat conduction. However, before
making this choice, it is convenient to see what we can
conclude on general grounds, without selecting any par-
ticular formula for Rs

ρ.

III. OUT-OF-EQUILIBRIUM EVOLUTION OF
HOMOGENEOUS STATES

A common feature of relativistic hydrodynamic theories
for dissipation is the existence of a dynamical evolution
also in the homogeneous limit (in which the spatial
gradients are zero), which manifests itself in the existence
of gapped dispersion relations in the spectrum of the linear
theory [37]. Within UEIT, this intrinsic evolution is
interpreted as the point of contact of the model with
nonequilibrium thermodynamics [28]. Therefore, it is
important to see how the present hydrodynamic model
behaves in the homogeneous limit, as this is the configu-
ration in which the bridge with statistical mechanics must
become evident [4].
Throughout this section, we will assume that the space-

time is Minkowski and that all the states under consid-
eration (both the perturbed and the unperturbed ones) are
homogeneous in the adopted global inertial frame.

A. Equilibration dynamics and equilibrium conditions

Our first task is to see if the fluid admits a homogeneous
equilibrium state, and if the properties of this state are
consistent with microphysics.

We start from the observation that in the homogeneous
limit equations (1), (2), (21), and (25) take the simpler form

∂tn0 ¼ 0; ∂ts0 ≥ 0; ∂tT0ρ ¼ 0; ∂tμj ¼ 0:

ð49Þ
If we find a state that maximizes s0 at constant particle
density, energy-momentum per unit volume, and spatial
part of the superfluid momentum, then this is necessarily an
equilibrium state of the system and, since s0 can only grow
or stay constant, it is automatically a Lyapunov-stable
equilibrium [28,35].
Let φ and φþ δφ be the values of a generic observable

(φ, in this example), respectively, at equilibrium and in a
perturbed state; both states are homogeneous. Then, the
first-order variation of (23) reads (the metric is fixed)

δTν
ρ ¼ δνρδΨþ

X
x

ðμxρδnνx þ nνxδμxρÞ: ð50Þ

Considering that Eq. (24) can be written in the compact
form

Ψ ¼ Λ −
X
x

nνxμxν; ð51Þ

the variation δΨ, recalling (17), is

δΨ ¼ −
X
x

nνxδμxν: ð52Þ

So, contracting Eq. (50) with the inverse-temperature
vector [10,42] (not to be confused with the thermal
covector Θν)

βρ ≔ −sρ=ðΘλsλÞ; ð53Þ

we obtain

βρδTν
ρ ¼

X
x

ðβρμxρδnνx þ 2n½νx βρ�δμxρÞ: ð54Þ

From the definition (53) it follows

βρΘρ ¼ −1; s½νβρ� ¼ 0; ð55Þ

so that we can isolate the variation of the entropy current in
(54), obtaining

δsν ¼ −βρδTνρ þ βρμρδnν − βρAρδzν

þ 2n½νβρ�δμρ − 2z½νβρ�δAρ: ð56Þ

We need to maximize s0 at constant particle density,
energy-momentum per unit volume, and spatial part of
the superfluid momentum [4]. Thus, taking the component
ν ¼ 0 of Eq. (56) and imposing
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δT0ρ ¼ 0; δn0 ¼ 0; δμj ¼ 0; ð57Þ

we have to set to zero the variation

δs0 ¼ −βρAρδz0 − 2z½0βρ�δAρ ¼ 0: ð58Þ

This provides four equilibrium conditions, which allow us
to find the functions zνeqðnρ; sρÞ introduced in Eq. (5).
Imposing the stationarity with respect to processes of
quasiparticle creation and annihilation, associated with
the variation δz0 in (58), we obtain the chemical equilib-
rium condition

sρAρ ¼ 0: ð59Þ

This is simply the requirement that the affinity of the
reaction (4), as measured in the frame of the entropy [4],
vanishes. Therefore, we have shown that the model predicts
that the chemical potential of the quasiparticles in equi-
librium is zero, in agreement with the statistical mechanics
of a superfluid [34].
Imposing the stationarity of s0 with respect to variations

of the momentum per quasiparticleAj, we obtain from (58)
the collinearity condition

z½νsρ� ¼ 0: ð60Þ

We have found that in thermodynamic equilibrium the
quasiparticle current is locked to the entropy current, or, in
other words, the entropy is transported by the excitations, in
agreement with the Landau theory of superfluidity [43] [see
Eqs. (8–24), (21-3), and (21-4) of Khalatnikov [34]]. The
two equilibrium conditions (59) and (60) are also in
accordance with the derivation of the thermodynamics of
a generic multifluid presented in [4].
We remark that we have not verified under which con-

ditions the state given byEqs. (59) and (60) is a realmaximum
of the entropy, and not just a saddle point or a minimum.
Addressing this issue would lead us to a stability analysis of
the kind performed byHiscock andLindblom [44] for normal
Israel-Stewart fluids, producing several thermodynamic
inequalities for the equation of state (10). Such inequalities
generalize the Gibbs stability criterion to superfluid systems
[35,45–48]. This analysis is beyond the scope of the present
paper, but it will be addressed in future work.

B. Thermodynamics of the three-current model

It is interesting to analyze in more detail the properties of
the equilibrium states. To do so, let us restrict the generic
differential (56) to equilibrium configurations: we have to
impose the two equilibrium conditions (59) and (60),
obtaining

δsν ¼ −βρδTνρ þ βρμρδnν þ 2n½νβρ�δμρ: ð61Þ

This is the thermodynamic differential of a relativistic
superfluid in local thermodynamic equilibrium proposed by
Lebedev and Khalatnikov [8]; see Eq. (43) therein.6 In
addition, in Appendix A 2 we prove that the Newtonian
limit of this differential, for ν ¼ 0, is Eq. (4) of Andreev and
Melnikovsky [46], which constitutes the Galilean-covariant
thermodynamic differential of a Newtonian superfluid.
Equation (61) is naturally presented in a form which

reminds us of the covariant Gibbs relation given by Israel in
[30], which we will refer to from now on as Israel’s
covariant Gibbs relation, including, however, a further term
2n½νβρ�δμρ associated with the variation of the superfluid
momentum. Indeed, if the irrotationality constraint (26) did
not hold, then we would not be allowed to impose the
conservation law ∂tμj ¼ 0 and we would obtain a further
equilibrium condition

n½νsρ� ¼ 0: ð62Þ

In this case, the superfluid and normal components move
together and (61) would reduce exactly to Israel’s covariant
Gibbs relation

δsν ¼ −βρδTνρ þ βρμρδnν: ð63Þ

This shows that the possibility of having a relative motion
between the superfluid and the normal component is only
the result of the conservation of the superfluid momentum
on very long timescales (or Landau superfluid velocity). In
this sense, the states in which (62) does not hold may be
considered as long-lived metastable states with an effec-
tively infinite lifetime, which exist as a result of the
presence of three constants of motion which break the
ergodicity of the system [4,49]. The unique state given by
(62) would, in this case, be interpreted as the absolute
equilibrium state7 fulfilling Israel’s covariant Gibbs relation
exactly. In a hydrodynamic framework, since the conser-
vation of μj is given as an exact constraint, it is more
convenient to consider these metastable states as genuine
equilibrium states and to regard (61) as an equilibrium
thermodynamic differential, which includes the superfluid
momenta as free variables (for a microscopic counterpart of
this discussion see Huang [50]).
This interpretation also allows us to extend the zeroth

law of thermodynamics—when two bodies are in thermal
equilibrium with each other, they have the same inverse-
temperature vector [49]—to relativistic superfluid systems.

6Lebedev and Khalatnikov [8] adopt the signature ðþ − −−Þ.
7The absolute equilibrium (in which there is no relative

current) and the metastable equilibria (that carry persistent
superfluid currents) are separated by a free-energy barrier [4].
Changing the superfluid velocity, so that the metastable equilib-
rium can decay into the absolute one, requires a collective
transition involving a macroscopic number of particles, a very
low probability event.
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Assume that the superfluid is weakly interacting with a
homogeneous nonsuperfluid substanceH, which carries no
conserved charges and whose Israel’s Gibbs relation—
compare with (61)—is

δsνH ¼ −βHρ δT
νρ
H ; ð64Þ

where sνH, β
H
ρ , and T

νρ
H are, respectively, the entropy current,

inverse-temperature vector, and energy-momentum tensor
of H. We assume that

sνtot ¼ sν þ sνH; Tνρ
tot ¼ Tνρ þ Tνρ

H ; ð65Þ

so that we can treat the substance H as an ideal thermom-
eter. The hydrodynamic evolution is, then, subject to the
constraints

∂tn0¼0; ∂tμj¼0; ∂tT
0ρ
tot¼0; ∂ts0tot≥0; ð66Þ

which implies that to find the maximum entropy state we
need to maximize s0tot imposing

δn0 ¼ 0; δμj ¼ 0; δT0ρ ¼ −δTνρ
H : ð67Þ

This gives the equilibrium condition

βρ ¼ βHρ ; ð68Þ

a result that generalizes the relativistic zeroth law to
superfluid systems. In thermal equilibrium, the superfluid
component is allowed to flow with respect to the ther-
mometer, but the normal component is not. In fact, for the
substance H (which is not superfluid), it is in general true
that

βHρ ¼ uHρ

ΘH
; ð69Þ

where uνH is the fluid velocity of H and ΘH is its temper-
ature. Therefore, the zeroth law (68) is equivalent to

s½νuρ�H ¼ 0; sρΘρ ¼ −sΘH: ð70Þ

The first condition states that the normal component of the
superfluid is subject to friction with the environment and
has, therefore, a tendency to stick to it. The second equation
is the rigorous definition of the temperature of the super-
fluid as the zeroth component of the thermal momentum
measured in the normal rest frame (in agreement
with [4,8,9]).

IV. NONDISSIPATIVE HYDRODYNAMICS

Let us move back to the inhomogeneous case, in an
arbitrary spacetime. The next step of our study consists of
verifying that our model admits the correct nondissipative

limit. We can use the two equations (59) and (60) to define
the local thermodynamic equilibrium state of the fluid
elements. Our task is to verify explicitly that, if we impose
these conditions as dynamical restraints on the fluid
motion, this gives rise to a nondissipative hydrodynamic
model (∇νsν ¼ 0). Furthermore, we aim to verify that the
two-fluid model that emerges coincides with the one of
Carter and Langlois [10]. The analysis is analogous8 to the
one presented in Sec. IV of Carter and Khalatnikov [9],
apart from the fact that we prefer using a generating
function approach.

A. Reduction to a two-component model

First of all, we define precisely the physical setting we
adopt to study the nondissipative limit of the three-
current model.
We consider a relativistic superfluid whose physical

tensors can be computed via the generating function
approach by using the model in Sec. II. Assume that the
processes driving the fluid elements to local thermodynamic
equilibrium are so fast, compared to the timescale of the
hydrodynamic process under consideration, that the equi-
librium conditions (59) and (60) are approximately valid on
every spacetime point. This means that we are in the so-
called equilibrium regime (see, e.g., Sec. II-D in [3]). Then,
we can impose that (5) is approximately valid everywhere,

zν ≈ zνeqðnρ; sρÞ: ð71Þ

This reduces the algebraic degrees of freedom from 12 (nρ,
sρ, zρ) to 8 (nρ, sρ), producing a two-fluid model: our goal is
to verify that the physical quantity Λ ¼ Tν

ν − 3Ψ still plays
the role of generating function for this two-fluid model.
First, we need to restrict the generic variation (41) to the

state space of the two-fluid model, which, according to
the equilibrium condition (60), must satisfy a constraint of
the form

zνeq ¼ yzsν: ð72Þ

The coefficient yz is a non-negative function of the local
thermodynamic state,

yz ¼ yzðn2; s2; n2nsÞ; ð73Þ

and has to be the solution of Eq. (59), to ensure local
equilibrium with respect to quasiparticle production/anni-
hilation processes. Thus, any term proportional to Aνsν

must vanish, and we can impose

8Despite the formal similarity, our quasiparticle current zν and
the “would-be-normal” current s̃ν of Carter and Khalatnikov [9]
have completely different physical meanings.
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−Aν

δð ffiffiffiffiffijgjp
zνeqÞffiffiffiffiffijgjp ¼ −yzAν

δð ffiffiffiffiffijgjp
sνÞffiffiffiffiffijgjp ; ð74Þ

which, plugged into (41), gives

δð ffiffiffiffiffijgjp
ΛÞffiffiffiffiffijgjp ¼μν

δð ffiffiffiffiffijgjp
nνÞffiffiffiffiffijgjp þ Θ̌ν

δð ffiffiffiffiffijgjp
sνÞffiffiffiffiffijgjp þTνρ

2
δgνρ; ð75Þ

with

Θ̌ν ¼ Θν − yzAν: ð76Þ

Therefore, the restriction of Λ to local thermodynamic
equilibrium states produces, according to the prescription
(40), the generating function of a two-component fluid with
primary currents nν and sν, having as conjugate momenta
the covectors μν and Θ̌ν, respectively. This implies that our
definition of the superfluid momentum (25) reduces to the
one of Carter and Langlois [10] in local thermodynamic
equilibrium. Furthermore, in local thermodynamic equilib-
rium

sνΘ̌ν ¼ sνΘν; ð77Þ

which implies that the ordinary temperature of our three-
component model coincides with the one of Carter and
Khalatnikov [9].
Finally, as a consequence of (75), the restriction of the

stress-energy tensor (23) to the states of the two-fluid
model must necessarily have the two-fluid canonical form

Tν
ρ ¼ Ψδνρ þ nνμρ þ sνΘ̌ρ; ð78Þ

with generalized pressure

Ψ ¼ Λ − nνμν − sνΘ̌ν: ð79Þ

This can also be verified explicitly.
In conclusion, we have shown that the constitutive

relations of the two-fluid model of Carter and Langlois
[10] emerge directly from our three-component model if we
impose the local thermodynamic equilibrium condition as a
dynamical constraint. An analogous mechanism has also
been discussed in detail in [41].

B. Entrainment coefficients of the nondissipative theory

We can now obtain the entrainment coefficients (indi-
cated with a hat) of the two-component model from the
matrix (14) arising from our dissipative three-current
model. We only need to plug (20) into (76), using the
constraint (72) to get rid of zν as a degree of freedom:

μν ¼ Y−1nν þ ðAns þ yzAnzÞsν;
Θ̌ν ¼ ðC þ 2yzAsz þ y2zBzÞsν þ ðAns þ yzAnzÞnν: ð80Þ

This allows us to make the identifications

B̌n ¼ Y−1; Č ¼ C þ 2yzAsz þ y2zBz; ð81Þ

and

Ǎns ¼ Ǎsn ¼ Ans þ yzAnz: ð82Þ

Now, there is an interesting remark to make. Imagine a
situation in which all the contributions coming from the
entropy in the three-component model where negligibly
small

C ≈Asz ≈Ans ≈ 0: ð83Þ

Then, we would have

Č ≈ y2zBz; Ǎns ¼ Ǎsn ≈ yzAnz: ð84Þ

Since the quasiparticles are excitations carrying quanta of
energy and momentum, the coefficients Bz and Anz are in
general non-negligible. This implies that, even in the case
in which the entropy current constitutes a negligible
contribution to the total energy-momentum balances, it
acquires inertia in the two-component model, when the
degrees of freedom are reduced and zν transfers its entrain-
ment to sν. This fact is the key to understand the connection
of the nondissipative theory of Carter with the Landau two-
fluid model. In fact, in Newtonian physics, the entropy is
always considered to be “massless,” in the sense that it does
not carry rest mass. However, in the Newtonian limit of
Carter’s theory the entropy does contribute to the total mass
current through the entrainment [51,52]. This arises from
the fact that the entropy (in the nondissipative limit) is
advected by the normal component, which is a gas of
quasiparticles. Thus the mass flow associated with the
entropy flux is, in reality, due to the momentum of
the excitations, which are hidden in the formalism through
the relation (5).
To show this more explicitly, we consider the stress-

energy tensor in the Landau representation (39). The last
term in the right-hand side can be rewritten using the local
thermodynamic equilibrium condition (72) as

nνAM
ABnρB ¼ ðMss þ 2yzMsz þ y2zMzzÞsνsρ: ð85Þ

Therefore, using (31), we obtain

Tνρ ¼ Ψgνρ þ Yμνμρ þ M̌sνsρ ð86Þ

with
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M̌ ¼ Č − YðǍnsÞ2: ð87Þ

This shows that M̌ can be interpreted—as also pointed out
by Carter and Langlois [10]—as the normal density divided
by the entropy density squared. We see that if we impose
(83) we obtain

M̌ ≈ y2z ½Bz − YðAnzÞ2�; ð88Þ

proving that in this case all the normal density is due to the
quasiparticle contribution.

C. Nondissipative limit of the hydrodynamic equations

The hydrodynamic equations of the nondissipative limit
of our three-component model reduce automatically to the
hydrodynamic equations of Carter’s two-component model
regardless of the choice that we make forRs

ρ. This is due to
the fact that Eqs. (1), (21), and (25) need to be exactly
respected in any hydrodynamic regime. Since these are 8
equations and in the two-component model the algebraic
degrees of freedom are 8 (nρ, sρ), the evolution is
completely determined.
We can verify this explicitly by taking the four-diver-

gence of (78) and imposing the validity of (1), (21), and
(25) to obtain

2sν∇½νΘ̌ρ� þ Θ̌ρ∇νsν ¼ 0; ð89Þ

which is the evolution equation of the thermal component
given by Carter and Langlois [10]. This equation confirms
that the convector Θ̌ν given in Eq. (76) really is the thermal
momentum in the nondissipative limit. Furthermore, the
nondissipative nature of the limit is proved noting that,
contracting (89) with sρ, we obtain

∇νsν ¼ 0: ð90Þ

V. NORMAL AND SUPERFLUID
REFERENCE FRAMES

Let us go back to the dissipative three-component model
of Sec. II. In the description of superfluid systems there are,
usually, at least two preferred reference frames which are
convenient to consider: the rest frame of the so-called
“normal” component and the rest frame of the “superfluid”
component that is typically identified with the frame
defined by the Landau superfluid velocity [43]. In this
section we study their generalization to relativistic dis-
sipative systems, and we study how the hydrodynamic
fields can be geometrically decomposed in these reference
frames. This will allow us to set up some convenient
notation and to start building a bridge with the dissipative
dynamics of a relativistic superfluid developed by
Gusakov [12].

A. Normal reference frame:
The Eckart frame of quasiparticles

Following Gusakov [12], in the presence of dissipation
we may define the normal rest frame as the frame identified
by the average velocity uν of the quasiparticles,

uν ≔ zν=
ffiffiffiffiffiffiffiffiffiffiffiffi
−zρzρ

p
: ð91Þ

The field uν represents the Eckart fluid velocity of the gas of
excitations, and for this reason we label the quantities
measured in this reference frame by E. Note that, in the
superfluid case,we need to consider the thermal excitations—
not the conserved constituents of the fluid—as the chemical
species which generalizes the particle current in the Eckart
approach.This is due to the fact that dissipation ismediatedby
collisions between quasiparticles and not by collisions of
constituent particles. In fact, in local thermodynamic equi-
librium we observe collinearity between sν and zν [see (60)],
and not between sν and nν.
In order to perform the decomposition of the hydro-

dynamic tensors in the normal rest frame we define the
normal-frame densities

nE ¼ −uνnν; sE ¼ −uνsν; zE ¼ −uνzν; ð92Þ

where zE ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
−zρzρ

p
. The normal-frame chemical poten-

tial, temperature, and affinity are, respectively,

μE ¼ −μνuν; ΘE ¼ −Θνuν; AE ¼ −Aνuν: ð93Þ

Analogous to the Newtonian theory, we define the heat flux
Qν via the relations

sν ¼ sEuν þ Qν

ΘE
; Qνuν ¼ 0: ð94Þ

Although in the absence of superfluidity the heat flux is
usually defined as the energy flux measured in the rest
frame of the particles [44], this definition is not natural in
superfluid hydrodynamics, because some flow of energy
exists also in all the equilibria that carry a persistent
current. In view of this, the most convenient superfluid
generalization of Qν is (94): if we compare (94) with
the equilibrium condition (60), we see that it implies that
Qν ¼ 0 in local thermodynamic equilibrium, consistently
with the physical interpretation of Qν as a dissipative flux.
We can also decompose the superfluid momentum μν as

μν ¼ μEuν þ wν; wνuν ¼ 0: ð95Þ

The vector wν represents the spatial part of the Landau
superfluid velocity (we can identify it with the superfluid
three-velocity, apart from prefactors) measured in the
normal rest frame. To better understand the physical
meaning of the decomposition (95), which has been
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suggested by Gusakov [12], we can consider that in a local
Lorentz frame defined by uν (i.e., such that uν ¼ δνt), we
can locally approximate the order parameter’s phase ϕ as

ϕ ≈ ϕ0 − ωtþ kjxj; ð96Þ

which, compared with (26) and (95), implies

ω ¼ μE=ℏ; kj ¼ wj=ℏ: ð97Þ

The first equation is the Josephson relation for a neutral
superfluid, and the second equation shows us that wj points
in the direction of maximum growth of the phase ϕ in the
normal rest frame. The modulus of the three-vector wj,
apart from an overall factor, counts the number of phase
windings per unit length in the normal rest frame [4].
Equations (94) and (95) can be used to study the

decomposition of the particle current nν. Taking Eq. (28),
it is easy to verify that

nν ¼ nEuν þ Y

�
wν −

Ans

ΘE
Qν

�
; ð98Þ

with nE ¼ YðμE −AnssE −AnzzEÞ. We see that this
expression for the particle current differs from the one
of Gusakov [12] by a term proportional to Qν, which is
absent also in the Newtonian model of Khalatnikov [34].
Indeed, we will show that the key assumption to recover the
standard theory of dissipation in superfluids presented in
Khalatnikov [34] and Landau and Lifshitz [43] is to assume
that it is possible to set Ans to zero.
We can, now, move to the energy-momentum tensor. Let

us define the Eckart-frame internal energy as

ρ ≔ Tνρuνuρ; ð99Þ

which, from (23), gives the Euler-type relation

ρ ¼ −Ψþ nEμE þ sEΘE − zEAE: ð100Þ

Then, the energy-momentum tensor can always be decom-
posed into

Tνρ ¼ Ψgνρ þ ðρþΨÞuνuρ
þ Yðwνwρ þ μEwνuρ þ μEwρuνÞ
þ ZðuνQρ þ uρQνÞ þ JQνQρ; ð101Þ

where we have defined the coefficients

Z ¼ 1 −AnsY
μE
ΘE

; J ¼ Mss

Θ2
E
: ð102Þ

We see that the heat flux Qν defined in (94) is not
guaranteed to coincide with the first-order nonequilibrium

correction to the energy flux, because of the factor Z.
However, again, we note that in the case in whichAns ¼ 0,
we obtain Z ¼ 1, and the agreement with the standard
Newtonian theory of Khalatnikov [34] and Landau and
Lifshitz [43] is restored.
Finally, introducing the decomposition of the thermal

momentum

Θν ¼ ΘEuν þ Θ⊥
ν Θ⊥

ν uν ¼ 0; ð103Þ

it is possible to show that

δρ ¼ μEδnE þ ΘEδsE −AEδzE

þ Y

�
wν −

Ans

ΘE
Qν

�
δwν þ

Qν

ΘE
δΘ⊥

ν ; ð104Þ

for any variation which conserves the components of the
metric; see Appendix B.

B. Superfluid reference frame:
The Landau-Lifshitz frame

We define the “superfluid” frame9 via the four-velocity

vν ≔ μν=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−μρμρ

p
: ð105Þ

In this frame, the phase of the order parameter ϕ has, locally,
no spatial gradients. For a single superfluid (and only in this
case), this reference frame represents the most natural frame
for making microphysical calculations at low temperature.
This is due to the fact that the spectrum of the excitations is
much simpler (namely, it is isotropic) if the order parameter
is uniform. We can think of vν as a sort of generalization of
the Landau-Lifshitz fluid velocity (defined by the total
momentum of the fluid) to relativistic superfluid systems:
instead of the total momentum, we are setting to zero the
superfluid momentum in the Landau-Lifshitz frame. In
accordance with this convenient identification, we use the
label L to label quantities measured in this frame.
Similar to what we did in the previous subsection, we

may decompose every tensor into space and time compo-
nents in the Landau-Lifshitz frame. However, since the
superfluid frame is considered mainly to make a bridge
with microphysical calculations (of which we will show an
example in Sec. VIII), we will focus here only on the
variation of the entropy density.
Introducing a local inertial frame aligned with vν, we

select the component ν ¼ 0 of Eq. (56), and we work at
fixed particle density (δn0 ¼ 0) and vν (δμj ¼ 0). Hence,
we can write

9As also stressed in other works, this is not the rest frame of the
superfluid substance under consideration (a superfluid substance,
being conductive, has no clear rest frame, except at absolute
equilibrium). Rather, it is just a historical name, useful to make
connection with the language of Landau and Lifshitz [43].
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δs0 ¼ −βνδT0ν − βνAνδz0 − 2z½0βj�δAj: ð106Þ

Since there are no variations of n0 and μj, Eq. (106) is only
concerned with the thermodynamic sector associated with
the presence of excitations. Now, introducing the notation

s0 ¼ sL; z0 ¼ zL; T0ν ¼ Pν; ð107Þ

we find the thermodynamic differential

δsL ¼ −βνδPν − βνAνδzL − 2z½0βj�δAj: ð108Þ

This can be seen as the fundamental relation for the
nonequilibrium generalized ensemble of the quasiparticle
gas, on a timescale on which the quasiparticle number is
conserved and an initial heat flux has had no time to relax to
zero through collisions.
In the limit where the superfluid is in thermodynamic

equilibrium, applying the constraints (59) and (60), we find

δU ¼ ΘLδsL þ Δ̄jδPj; ð109Þ

where

U ≔ Tρνvρvν ¼ P0;

ΘL ≔ −
1

β0
;

Δ̄j ≔ ΘLβj: ð110Þ

Equation (109) is the relativistic version of the thermody-
namic differential which is considered by Landau and
Lifshitz [43], Eq. (139.9), and Carter and Langlois [10],
Eq. (6.17), establishing a bridge between the different
approaches.
At this point, it is important to comment on the physical

meaning of the quantities we have introduced. Clearly, sL,
zL, U, and Pj are the densities of entropy, quasiparticles,
internal energy, and momentum in the superfluid reference
frame. The three-vector Δ̄j is the three-velocity of the
entropy; see (53) and Sec. VIII A for its microscopic
interpretation as a weighted average of the quasiparticles’
velocities.
We stress that ΘL is not the Landau-frame analogous of

ΘE (for this reason we have raised its reference frame
index). In fact, since ΘL ≠ −Θνvν, it is not a temperature of
the type presented in Appendix B. The reason for this is that
in the differential of U we are taking the momentum density
Pj as an independent variable, in place ofΘj. This choice is
more convenient in microscopic calculations, because in
the homogeneous limit Pj is a conserved quantity; there-
fore, it represents the natural parameter of a statistical
ensemble describing the quasiparticle distribution.

VI. NEAR-EQUILIBRIUM EXPANSION

Since we are also aiming to construct the Israel-Stewart
formulation of a relativistic superfluid, it is important to
analyze the structure of the constitutive relations close to
local thermodynamic equilibrium. In this section, we
expand the hydrodynamic fields of theory for small
deviations from equilibrium, with reference to the Eckart
frame E. This procedure is the generalization to the
superfluid case of the techniques developed in [3].

A. A preliminary assumption

To recover the structure of the Newtonian theory of
Khalatnikov [34] and of the relativistic model of Gusakov
[12], we will make the simplifying assumption

Ans ¼ 0; ð111Þ

which immediately implies

nν ¼ nEuν þ Ywν; Z ¼ 1: ð112Þ

It is known that, after arbitrarily setting to zero some
entrainment coefficients, one might compromise the sta-
bility and causality properties of the theory [26]. However,
in Appendix C we show with a concrete example that,
luckily, the condition (111) is not an intrinsically patho-
logical choice, in the sense that it is not impossible to
construct causal and stable models in which Ans ¼ 0.
Under the assumption (111), one can easily check from

the second equation of (20) that

Θ⊥
ν ¼ C

Qν

ΘE
: ð113Þ

The variation (104), then, becomes

δρ ¼ μEδnE þ ΘEδsE − AEδzE

þ Ywνδwν þ
Qν

ΘE
δ

�
C
Qν

ΘE

�
: ð114Þ

We see that, if we take the equation of state for ρ as our
fundamental relation, the 12 natural primary variables of
the theory are �

uν; nE; sE; zE; wν;
CQν

ΘE

�
: ð115Þ

However, since in equilibrium AE ¼ Qν ¼ 0 [see Eqs. (59)
and (60)], it is more convenient, for the purpose of making
the near-equilibrium expansions, to change variables and
work with the following degrees of freedom:�

uν; nE; sE;AE; wν;
Qν

ΘE

�
: ð116Þ
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We, therefore, define a new thermodynamic potential

G ¼ ρþ AEzE − C
QνQν

Θ2
E

; ð117Þ

whose infinitesimal variation is

δG ¼ μEδnE þ ΘEδsE þ zEδAE

þ Y
2
δðwνwνÞ −

C
2
δ

�
QνQν

Θ2
E

�
: ð118Þ

Note that Eq. (111) allows us to decouple the contributions
associated with wν from those associated with Qν in the
variation of G. In this way, the heat flux produces only
second-order contributions to the thermodynamic variables,
and its presence can be neglected in a first-order expansion
of G. The entrainment between the entropy and the particle
current, instead, would produce coupling terms of the kind
wνδQν and Qνδwν. These are first-order corrections in Qν,
which would affect every thermodynamic quantity.

B. How does the expansion work?

First of all, let us explain how the expansion is
performed. We consider an arbitrary spacetime point x,
and we imagine measuring all the fields given in (116) on
x.10 Then, we introduce a fiducial equilibrium state on x, by
making the transformation

�
uν; nE; sE;AE; wν;

Qν

ΘE

�
→ ðuν; nE; sE; 0; wν; 0Þ: ð119Þ

In other words, we are imagining to construct a hypotheti-
cal alternative fluid element on x, which is in a state of local
thermodynamic equilibrium (AE ¼ Qν ¼ 0) and which has
the same fluid velocity, particle density, entropy density,
and winding vector as the “real” fluid element. The
physical value of every relevant quantity can, then, be
expanded to first order in the deviation from the value
assumed in this reference equilibrium state.
In practice, consider the example of the pressure we

introduced in Eq. (24). Its physical value at x isΨ, while we
can call Ψeq its value on the fiducial equilibrium state,

Ψ ¼ Ψ
�
nE; sE;AE; wνwν;

QνQν

Θ2
E

�
;

Ψeq ¼ ΨðnE; sE; 0; wνwν; 0Þ: ð120Þ

The expansion, then, consists of writing

Ψ ¼ Ψeq þ Π; ð121Þ

where Π, which can be interpreted as the bulk-viscous
stress, is modeled as a first-order correction:

Π ¼ AE
∂Ψ
∂AE

: ð122Þ

The partial derivatives are performed with respect to the
free variables used in (120). As we anticipated, if Ans ¼ 0,
no contribution to the thermodynamic potentials (such as ρ,
G, or Ψ) can come from Qν to first order, as we show in the
next subsection.
Note that the equilibrium state introduced in Eq. (119) is

not the only possible reference equilibrium state one can
use. The choice of which equilibrium state to consider for
making a near-equilibrium expansion is not always unique
and constitutes the so-called hydrodynamic frame choice
[37]. We have selected this particular hydrodynamic frame
because it turns out to be particularly convenient for our
purposes. Furthermore, it somehow extends the Eckart
approach to the superfluid case, facilitating the contact with
the Newtonian two-fluid model (strictly speaking, the
Eckart frame fixes ρ instead of sE in the transformation
(119), but, as we shall see below (127), to first order the
result is the same).

C. First-order expansion

Let us, first of all, expand the potential G to the first
order,

G ¼ ρeq þ AEzEeq: ð123Þ

The label “eq” indicates that the quantity is evaluated on the
fiducial equilibrium state. Any hydrodynamic scalar field
(e.g., a thermodynamic potential) which carries the label
“eq” can be written as a function of

ðnE; sE; wνwνÞ; ð124Þ

see also [38]. In the following, partial derivatives of “eq”
fields—e.g., the ones in (129)—will be computed accord-
ing to this convention.
The fact that the zeroth order term of G coincides with

ρeq, namely

Geq ¼ ρeq; ð125Þ

can easily be proved by evaluating the Legendre trans-
formation (117) in equilibrium. The first-order contribu-
tion, on the other hand, is zEeqAE because

10The fields presented in (116), namely uν, nE, sE, AE, wν, and
Qν=ΘE, are going to be the primary variables of the model, across
both Secs. VI and VII. Using the terminology of UEIT, we may
interpret uν, nE, sE, and wν as the dynamical fluid fields and the
fields AE and Qν=ΘE as the dissipation fields, subject to a
superfluid analog of Lindblom’s relaxation effect [53].
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zE ¼ ∂G
∂AE

����
nE;sE;wν;Qν=ΘE

ð126Þ

[see Eq. (118)]. No first-order contribution comes fromQν.
By direct comparison between (117) and (123), we can
obtain the first-order expansion of the energy density:

ρ ¼ ρeq: ð127Þ

The fact that ρ does not have any first-order correction is
due to the equivalence between the maximum entropy
principle and the minimum energy principle [40], which
states that the equilibrium state, identified as the maximum
of sE at constant ðnE; ρ; wνwνÞ, is also the minimum of ρ at
constant ðnE; sE; wνwνÞ. This is also why our choice of
hydrodynamic frame is the natural superfluid generaliza-
tion of the Eckart frame, to the first order.
Now, we can insert the expansion (123) into the differ-

ential (118), obtaining

μE ¼ μeqE þAE
∂zEeq
∂nE ;

ΘE ¼ Θeq
E þ AE

∂zEeq
∂sE ;

Y ¼ Yeq þ 2AE
∂zEeq

∂ðwνwνÞ
: ð128Þ

Introducing the coefficients

χ ¼ AE
∂zEeq
∂nE ; Y ¼ 2AE

∂zEeq
∂ðwνwνÞ

; ð129Þ

we can obtain from (95) and (112) the expanded expression
for the superfluid momentum and the particle current,

μν ¼ ðμeqE þ χÞuν þ wν;

nν ¼ nEuν þ ðYeq þ YÞwν: ð130Þ

We see that nonequilibrium effects produce a correction χ
to the superfluid momentum which is proportional to the
affinity AE of the quasiparticle creation processes.
This term is also present in the model of Gusakov [12]
[see Eq. (15) therein], and in the Newtonian theory of
Khalatnikov [34] [see the term h in Eq. (9-3)].
The contribution to the particle current given by Y, on

the other hand, is usually neglected [12,34]. This is due to
the fact that typically one also makes the assumption that
wν is small, implying that terms proportional to AEwν are
effectively of the second order and can be considered
negligible; see the discussion at the end of Sec. 140 of
Landau and Lifshitz [43]. However, since till now no
assumption on the magnitude of wν was made, we will
retain all these contributions for completeness and internal
consistency.

We can use the Euler-type relation (100) to expand the
pressure (to first order) near equilibrium:

Ψ ¼ −ρeq þ nEðμeqE þ χÞ þ sE
�
Θeq

E þ AE
∂zEeq
∂sE

�
− zEeqAE:

ð131Þ
This equation can be compared with (121), from which we
find a formula for the equilibrium pressure,

Ψeq ¼ −ρeq þ nEμeqE þ sEΘeq
E ; ð132Þ

in agreement with Gusakov [12], and a formula for the
bulk-viscous stress,

Π ¼ −AE

�
zEeq − nE

∂zEeq
∂nE − sE

∂zEeq
∂sE

�
: ð133Þ

If we constrain wν to zero, removing the effects of super-
fluidity, the expression for Π becomes a particular case of
Eq. (65) of [3].
Recalling the decomposition (101), we are, finally, able

to write the near-equilibrium expansion of the energy-
momentum tensor as

Tνρ ¼ Tνρ
eq þTνρ; ð134Þ

where

Tνρ
eq ¼ Ψeqgνρ þ ðρeq þ ΨeqÞuνuρ

þ Yeqðwνwρ þ μeqE w
νuρ þ μeqE w

ρuνÞ ð135Þ

is the equilibrium contribution and

Tνρ¼ΠðgνρþuνuρÞþuνQρþuρQν

þYeqχðwνuρþwρuνÞ
þYðwνwρþμeqE w

νuρþμeqE w
ρuνÞ ð136Þ

is the first-order dissipative contribution. In deriving the
foregoing formula we have employed Eq. (112), and we
have neglected the second-order terms JQνQρ and
Yχðwνuρ þ wρuνÞ.
The terms appearing on the first line of (136) are the

ordinary bulk-viscosity and heat-conduction corrections.
The second and the third lines have been neglected by
Gusakov [12], consistent with the methodology of treating
terms proportional to AEwν as higher-order contributions.
However, it is interesting to note that, although Khalatnikov
[34] works under the same assumption (namely small wν),
he chooses to retain also the second line. The reason is that
in this way, in the Newtonian model, the positivity of the
entropy production (2) is ensured as an exact mathematical
condition that is valid also outside the regime of validity of
the theory.
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VII. DERIVATION OF THE HYDRODYNAMIC
EQUATIONS

As anticipated in Sec. II F, to complete the hydrody-
namic model we need to provide a constitutive relation for
the force Rs

ρ. Such a prescription, to be rigorously derived,
would require us to explicitly match the predictions of the
hydrodynamic model with quasiparticle kinetic theory, a
task that is beyond the scope of the paper. However, using a
technique similar to the one adopted by Carter [6], it is
possible to construct a simple generic expression for Rs

ρ,
which contains the relevant physics required to model bulk
viscosity and heat conduction. Below we introduce this
technique, and we examine its implications.

A. The simplest model for the hydrodynamic force

Let us make the normal-frame decomposition

Rs
ρ ¼ Rs

Euρ þ fρ; fρuρ ¼ 0: ð137Þ

Contracting the third equation of (46) with uρ we immedi-
ately obtain

Rs
E ¼ AE∇νzν: ð138Þ

This implies that imposing a constitutive relation for Rs
E is

equivalent to providing a formula for the reaction rate

rz ¼ ∇νzν ð139Þ

of quasiparticle creation processes, such as (4).
Using the decomposition (137), the second equation of

(46) assumes the form

AErzuρ þ fρ ¼ 2sν∇½νΘρ� þ Θρ∇νsν; ð140Þ

which, contracted with sρ, gives

∇νsν ¼ −
sEAE

sρΘρ
rz þ

fνQν

sρΘρΘE
≥ 0: ð141Þ

Following a common approach of dissipative hydro-
dynamics [13], we note that the simplest way of ensuring
the non-negativity of the entropy production consists of
requiring that

rz ¼ ΞAE; fν ¼ −
sE

k
Qν; Ξ; k > 0: ð142Þ

Furthermore, taking a near-equilibrium expansion, we can
assume Ξ and k to be just functions of ðnE; sE; wνwνÞ, and
we can make the approximation

−sρΘρ ≈ sEΘE; ð143Þ

which implies

∇νsν ≈ ½∇νsν�bulk þ ½∇νsν�heat;

½∇νsν�bulk ¼
ΞA2

E

ΘE
; ½∇νsν�heat ¼

QνQν

kΘ2
E
: ð144Þ

By comparison with the Eckart theory for heat conduction,
we are immediately led to interpret the quantity k as the
heat conductivity coefficient.
We remark that this construction is just one of the several

possible choices for the four-force. In fact, as proposed by
Lopez-Monsalvo and Andersson [2] and Andersson and
Comer [54] (and later verified by Gavassino et al. [41]
with a concrete example), one cannot a priori exclude
the possibility that four-forces of this kind may depend
also on the derivatives of the hydrodynamic fields. In
this sense, the prescription for the force given above,
namely

Rs
ρ ¼ ΞA2

Euρ −
sE

k
Qρ; ð145Þ

produces a minimal model, in which Rs
ρ depends only on

ðnρ; sρ; zρÞ, and not on their gradients. Nevertheless, this
simple model contains all the physics we need.

B. Telegraph-type evolution of the affinity

Starting from the first equation in (142), we now derive a
telegraph-type equation for the evolution of the scalar field
AE. To simplify the calculations and maintain direct contact
with the approaches of Khalatnikov [34] and Gusakov [12],
we adopt the near-equilibrium expansion outlined in
Sec. VI.
First, we recall that (91) and (92) imply that

zν ¼ zEuν: ð146Þ

Using this fact in (139), together with the first equation in
(142), gives

_zE þ zE∇νuν ¼ ΞAE; ð147Þ

where we used the notation _X ≔ uν∇νX, which will be
used for any tensor X. Moreover, we also know from (118)
that

zE ¼ zEðnE; sE;AE; wνwνÞ; ð148Þ

where the dependence on the heat flux is neglected since it
is a second-order correction: this implies that

_zE ¼ ∂zE
∂nE _nE þ ∂zE

∂sE _sE þ ∂zE
∂AE

_AE

þ ∂zE
∂ðwνwνÞ

uρ∇ρðwνwνÞ: ð149Þ
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Now, taking the four-divergence of nν and sν, and noting
that the entropy production is of the second order in the
deviations from equilibrium, we obtain

_nE þ nE∇νuν þ∇νðYwνÞ ¼ 0;

_sE þ sE∇νuν þ∇ν

�
Qν

ΘE

�
≈ 0: ð150Þ

Combining (147), (149), and (150), we can obtain the
evolution equation for the affinity AE,

∂zE
∂AE

_AE þ
�
zE − nE

∂zE
∂nE − sE

∂zE
∂sE

�
∇νuν

¼ ∂zE
∂sE∇ν

�
Qν

ΘE

�
−

∂zE
∂ðwνwνÞ

uρ∇ρðwνwνÞ

þ ∂zE
∂nE ∇νðYwνÞ þ ΞAE: ð151Þ

If we introduce the relaxation timescale (that is non-
negative due to the minimum energy principle)

τA ¼ −
1

Ξ
∂zE
∂AE

����
AE¼0

≥ 0 ð152Þ

and the coefficients

ξu ¼
1

Ξ

�
zEeq − nE

∂zEeq
∂nE − sE

∂zEeq
∂sE

�
;

ξw ¼ −
1

Ξ
∂zEeq
∂nE ;

ξQ ¼ −
1

Ξ
∂zEeq
∂sE ;

ξww ¼ 1

Ξ
∂zEeq

∂ðwνwνÞ
; ð153Þ

we can rewrite (151) in the telegraph form

τA _AE þAE ¼ ξw∇νðYwνÞ þ ξu∇νuν

þ ξQ∇ν

�
Qν

Θeq
E

�
þ ξwwuρ∇ρðwνwνÞ: ð154Þ

We employed a leading-order truncation in the deviations
from equilibrium to place a label “eq” where possible.
Equation (154) is the superfluid analog of the telegraph-
type equation for the affinities in normal fluids proposed in
[3]. The only difference introduced by superfluidity is that
the source terms on the right-hand side of (154) are now
four, instead of just one. This accounts explicitly for the
anisotropies of the fluid elements, which arise either from
the presence of a superflow, Ywν, or from the possible
existence of anisotropic nonequilibrium deviations of the
quasiparticle distribution function, modeled by Qν.

It is important to remark that, in the Navier-Stokes-
Fourier approach, the near-equilibrium expansion is a
derivative expansion [37,55,56]. According to this pre-
scription, all the dissipative corrections to the perfect-fluid
state (e.g.,Qν) scale as the gradients of the primary perfect-
fluid fields (e.g., ∇νΘE), and the gradients are assumed
small. This implies that ∇νðQν=Θeq

E Þ is considered a
second-order correction and should therefore be negligible.
This is due to the fact that in first-order theories dissipation
is interpreted to arise from inhomogeneities, seen as
deviations from global thermodynamic equilibrium.
On the other hand, from the point of view of UEIT, the

perturbative expansion is performed in the deviations from
local thermodynamic equilibrium, modeled as the reference
state introduced in (119). No expansion is made in the
gradients.11 This implies that ∇νðQν=Θeq

E Þ is formally
treated as of first order; see Hiscock and Lindblom [44].
However, for the sake of simplicity and with the goal of
connecting the present model with Gusakov [12], we will
nevertheless neglect it.
If, in addition, we include the requirement of

Khalatnikov [34] that wν is small (which is not a near-
equilibrium assumption; see Sec. III B), the terms
uρ∇ρðwνwνÞ and ∇νðYwνÞ can also be neglected. As a
result, plugging AE into (133) and into the first equation of
(129), we obtain

τA _Πþ Π ¼ −ζ1∇νðYeqwνÞ − ζ2∇νuν;

τA _χ þ χ ¼ −ζ3∇νðYeqwνÞ − ζ4∇νuν: ð155Þ

Note also that to first order in both wν and in the devia-
tions from local thermodynamic equilibrium, Eq. (136)
reduces to

Tνρ ¼ Πðgνρ þ uνuρÞ þ uνQρ þ uρQν: ð156Þ

Hence, Eqs. (155) and (156) are the “Israel-Stewart”
analogs of Eqs. (20) and (21) of Gusakov [12]. The
coefficients ζ1, ζ2, ζ3, and ζ4 can be written in terms of
Ξ and zEeq as

11In UEIT the Fick-type relations between the dissipative
fluxes and the gradients emerge dynamically as a late-time
behavior of the system [53]. Therefore, expanding in the
gradients is not equivalent to expanding in the dissipative fluxes
in UEIT.
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ζ1 ¼ −
1

Ξ
∂zEeq
∂nE

�
zEeq − nE

∂zEeq
∂nE − sE

∂zEeq
∂sE

�
;

ζ2 ¼
1

Ξ

�
zEeq − nE

∂zEeq
∂nE − sE

∂zEeq
∂sE

�
2

;

ζ3 ¼
1

Ξ

�∂zEeq
∂nE

�
2

;

ζ4 ¼ ζ1: ð157Þ

It is easy to show that the above expressions coincide with
the ones given by Khalatnikov [34] and Escobedo et al.
[57]: we have to assume that in our case there is a single
quasiparticle species and then perform a rescaling with the
mass of the constituents according to the prescriptions of
Gusakov [12].
We note that at the end of our derivation we obtained

the Onsager reciprocal relation [43], namely ζ1 ¼ ζ4.
Moreover, the Newtonian conditions of non-negative
entropy production,

ζ2 ≥ 0; ζ3 ≥ 0; ζ21 ≤ ζ2ζ3; ð158Þ

always hold also in our case. More precisely, in our case the
third inequality is saturated, in the sense that

ζ21 ¼ ζ2ζ3: ð159Þ

This happens just because we are working with a single
species of quasiparticles, which causes the bulk viscosity
contribution ½∇νsν�bulk to the entropy production in (144) to
be the square of only one affinity [12].
In the late-time asymptotic behavior of the fluid, when

we can neglect the terms proportional to τA in (155) [53],
the entropy production due to bulk viscosity can be written
as follows:

Θeq
E ½∇νsν�bulk ¼ 2ζ1∇νuν∇ρðYeqwρÞ

þ ζ2ð∇νuνÞ2 þ ζ3½∇νðYeqwνÞ�2; ð160Þ

in agreement with Landau and Lifshitz [43].

C. High-frequency oscillations

Before obtaining the telegraph-type equation for the heat
flux, it is interesting to study in more detail the effect of the
presence of the term τA _A in Eq. (154). Let us consider a
superfluid which is oscillating, with frequency ω, around an
equilibrium configuration. If the effect of dissipation is
small, we can approximate the evolution to a slowly
damped quasiperiodic oscillation, which implies that (in
a timescale that is shorter than the damping time) we can
impose

AEðtÞ ¼ A0
Ee

−iωt; ω ∈ R: ð161Þ

Plugging this time dependence into (154), neglecting the
second line, and assuming that uν ≈ δνt , we obtain

AE ¼ ξw∇νðYeqwνÞ þ ξu∇νuν

1 − iωτA
: ð162Þ

When we compute the average entropy production during
one oscillation (which contains information about the long-
term damping effect of viscosity on the mode) from (144),
it is easy to verify that ½∇νsν�bulk acquires again the generic
form (160), with three effective bulk viscosity coefficients
ζeffi , given by

ζeffi ¼ ζi
1þ ω2τ2A

: ð163Þ

We see that the telegraph-type equation (154) accounts
directly (at the hydrodynamic level) for the frequency
dependence of the bulk viscosity coefficients predicted
byMannarelli and Manuel [58]. This is the manifestation of
a general rule: for small oscillations, the Israel-Stewart
theory for bulk viscosity is formally equivalent to the
Eckart theory, with a frequency-dependent bulk viscosity
coefficient; such frequency dependence becomes important
when ωτA ≳ 1 [3].
In the limit ωτA → 0, the evolution is slow and we

recover the prescription of Khalatnikov [34]. However, in
the opposite limit, ωτA → þ∞, in which the oscillations
are fast compared to the relaxation timescale τA, we obtain

ζeff2 ≈
Ξ
ω2

�∂AE

∂zE
�

2
�
zEeq − nE

∂zEeq
∂nE − sE

∂zEeq
∂sE

�
2

;

ζeff3 ≈
Ξ
ω2

�∂AE

∂zE
�

2
�∂zEeq
∂nE

�
2

: ð164Þ

Defining the fractions

xs ¼
sE

nE
; xz ¼

zE

nE
; ð165Þ

we show in Appendix A 3 that (164) can be recast into the
simpler form

ζeff2 ¼ Ξ
ω2

�
nE

∂AE

∂nE
����
xs;xz

�
2

;

ζeff3 ¼ Ξ
ω2

�∂AE

∂nE
����
sE;zE

�
2

: ð166Þ

This limit cannot be fully self-consistently explored by
first-order theories for dissipation (i.e., with the Navier-
Stokes-Fourier approach), as first-order theories are valid
by construction only in the limit ω → 0 (see [37]). On the
other hand, our model—which is a second-order theory
[35]—can explore also regimes with large ω.
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Concerning bulk viscosity, there is a final point we
would like to stress: our model is the first entirely self-
consistent model for superfluid hydrodynamics which
produces Eqs. (155), (157), and (163) as rigorous pre-
dictions, instead of adopting them as additional prescrip-
tions. This is one of the reasons why we decided, in Sec. II,
to take zρ as the fundamental degree of freedom, rather than
using directly Π and Qν.

D. Telegraph-type equation for the heat

The second equation in (142) can be used to obtain a
telegraph-type equation for the heat flux. If we contract
(140) with the projector

Tρ
ν ¼ δρν þ uρuν; ð167Þ

orthogonal to uν, we obtain

fν ¼ 2sλhρν∇½λΘρ� þ Θ⊥
ν ∇λsλ: ð168Þ

Considering that the last term is of third order in the
deviations from equilibrium (due to the factor ∇λsλ), we
can neglect it. Therefore, recalling the decomposition in
(94) and (103), we use (142) to obtain

−
sE

k
Qν¼2

�
sEuλþQλ

ΘE

�
hρνð∇½λðΘEuρ�Þþ∇½λΘ⊥

ρ�Þ: ð169Þ

Splitting all the brackets and the antisymmetrizations
appearing on the right-hand side, one can cast Eq. (169)
into the form

Qν ¼ khνρ
X8
i¼1

QðiÞ
ρ ; ð170Þ

with

Qð1Þ
ρ ¼uλ∇ρðΘEuλÞ; Qð2Þ

ρ ¼−uλ∇λðΘEuρÞ;

Qð3Þ
ρ ¼uλ∇ρ

�
CQλ

ΘE

�
; Qð4Þ

ρ ¼−uλ∇λ

�
CQρ

ΘE

�
;

Qð5Þ
ρ ¼ Qλ

sEΘE
∇ρðΘEuλÞ; Qð6Þ

ρ ¼ −Qλ

sEΘE
∇λðΘEuρÞ;

Qð7Þ
ρ ¼ Qλ

sEΘE
∇ρ

�
CQλ

ΘE

�
; Qð8Þ

ρ ¼ −Qλ

sEΘE
∇λ

�
CQρ

ΘE

�
; ð171Þ

where we have used (113) to write Θ⊥
ν explicitly.

Let us examine the contributions QðiÞ
ρ one by one. We

note thatQð7Þ
ρ andQð8Þ

ρ are second-order corrections; hence

we can neglect them. The terms Qð1Þ
ρ and Qð2Þ

ρ can be
written in the more transparent form

Qð1Þ
ρ ¼ −∇ρΘE; Qð2Þ

ρ ¼ − _ΘEuρ − ΘE _uρ: ð172Þ

These constitute the “Eckart part” of Eq. (170). It can be
verified that, if these were the only contributions appearing
on the right-hand side of (170), we would directly recover

the model of Gusakov [12]. The contributions Qð3Þ
ρ , Qð4Þ

ρ ,

Qð5Þ
ρ , and Qð6Þ

ρ should, therefore, play the role of the
remaining “Israel-Stewart part.” In particular, we expect
to find the typical relaxation-term proportional to _Qρ

introduced by Cattaneo [59], which stabilizes the equation
and makes it causal [60]. Indeed, this is contained inside

Qð4Þ
ρ :

Qð4Þ
ρ ¼ −

C
ΘE

_Qρ −Qρuλ∇λ

�
C
ΘE

�
: ð173Þ

The contributions Qð5Þ
ρ and Qð6Þ

ρ can be combined to give

hνρðQð5Þ
ρ þQð6Þ

ρ Þ ¼ 2hνρ
Qλ

sE
ωλρ; ð174Þ

where

ωλρ ¼ hμλhσρ∇½σuμ� ð175Þ

is the kinematic vorticity [60]. Couplings of the dissipation
fields with the vorticity are usually neglected in the
standard Israel-Stewart approach [24], but can appear in
approaches which are more kinetic-theory-based [61].

Finally, the term Qð3Þ
ρ can be written as

Qð3Þ
ρ ¼ −

C
ΘE

Qλ∇ρuλ: ð176Þ

Combining all these results, we can rewrite (170) in the
final form

τQhνρ _Q
ρ þQν ¼ −khνρ

�
∇ρΘE þ ΘE _uρ þ

C
ΘE

Qλ∇ρuλ

þQρuλ∇λ

�
C
ΘE

�
− 2

Qλ

sE
ωλρ

�
; ð177Þ

where

τQ ¼ k
C
ΘE

≥ 0 ð178Þ

is the heat relaxation timescale. Similar to (152), this
timescale is also non-negative due to the minimum energy
principle.

E. Heat conduction: Comparison with other works

Equation (177) is the telegraph-type equation for the heat
flux predicted by our model and constitutes the superfluid
analog of Eq. (22) of Hiscock and Lindblom [44]. Of

EXTENDING ISRAEL AND STEWART HYDRODYNAMICS TO … PHYS. REV. D 105, 045011 (2022)

045011-19



course, one should keep in mind that it has been derived
under two simplifying assumptions: Ans ¼ 0 and the
second condition in (142). However, it still contains all
the physical insight of a (potentially) causal and stable
hyperbolic model for heat conduction. It is interesting to
compare our results with nonsuperfluid systems and with a
recent model for heat conduction in superfluid neutron-star
matter.
In the theory of Israel and Stewart [24], the heat flux is

subject to a telegraph equation, with relaxation timescale

τQ ¼ kΘEβ
IS
1 ; ð179Þ

where βIS1 is the second-order expansion coefficient12 of the
entropy density in terms of Qν. On the other hand, Priou
[27] showed that Carter’s model (for small deviations from
equilibrium) of heat conduction is equivalent to the Israel-
Stewart theory, provided that one makes the identification

βIS1 ¼ C
Θ2

E
; ð180Þ

where C, in a normal fluid, has exactly the same meaning as
in the superfluid case:

C ¼ −2
∂Λ
∂s2 : ð181Þ

This tells us that, interestingly, the heat relaxation timescale
(178) is identical to the one of Israel-Stewart for a normal
fluid. The similarities between our model for heat con-
duction in superfluids and the nonsuperfluid case are due to
the fact that, if we set Ans ¼ 0, Eq. (169) is formally
indistinguishable from Eq. (2.32) of Carter [5], which is a
model for heat conduction in normal fluids.
Finally, it is interesting to compare our model for heat

conduction in (177) with the one proposed by Rau and
Wasserman [62] in the context of superfluid neutron-star
matter. Correcting some typos, Eq. (81) of [62] reads

τ̃Qð _Qν þQλ∇νuλÞ þQν ¼ −k̃hνρð∇ρΘE þ ΘE _uνÞ; ð182Þ

where

τ̃Q ¼ τQ

�
1þ kuλ∇λ

�
C
ΘE

��
−1
;

k̃ ¼ k

�
1þ kuλ∇λ

�
C
ΘE

��
−1
: ð183Þ

We can rewrite our (177) in a form which is identical to
(182), but with one additional term on the right-hand side:

2
k̃
sE

Qλω
λν: ð184Þ

The fact that there is a difference between the two
approaches is expected. In fact, as we said, we are adopting
a prescription for fν which is the superfluid analog of the
model of Carter [5]. On the other hand, Rau and
Wasserman [62] are following the approach of Lopez-
Monsalvo and Andersson [2], who proposed a slightly
different prescription for fν.
Both these prescriptions produce simple models which

contain all the physical insight we need13 and give the same
predictions on the regimes of interest. In fact, for small
deviations from local thermodynamic equilibrium and
small gradients (both in space and time) they both reduce
to Gusakov [12], avoiding, however, its instabilities and its
causality violations. On the other hand, if we linearize them
around a homogeneous equilibrium state, they both reduce
to the (superfluid analog of the) Cattaneo equation, also at
high frequencies.
As discussed in [41], there is no point to argue on which

model is the “correct” one, as we know that both are just
simplified prescriptions, which are not based on micro-
physics. To obtain a more realistic formula for fν (which
for most practical applications is probably not needed), one
should start from the kinetic equation for the quasiparticles
[36] and follow the same procedure as Denicol et al. [63],
to work out the hydrodynamic equations directly (a task
that is beyond the scope of the present paper).

VIII. STATISTICAL MECHANICS OF THE
QUASIPARTICLES: BULK VISCOSITY

The bulk-viscosity coefficients ζ1, ζ2, and ζ3 have been
explicitly computed for several different fluids [12,58,64].
On the other hand, Eqs. (155) are an “extended-irreversible-
thermodynamic modification” [65] to the corresponding
“Navier-Stokes-type” constitutive relations [34]: as always
happens when one moves from Navier-Stokes to UEIT, a
new relaxation time τA appears, which is necessary for
making the theory causal [60]. Finding the value of τA, by
means of Eq. (152), requires the computation of the
thermodynamic derivative

∂zE
∂AE

����eq
nE;sE;wνwν

; ð185Þ

which is the main goal of the present section. We also take
the opportunity to discuss in more detail the points of

12Not to be confused with the first component of the inverse-
temperature covector βν.

13Note that, if we contract (184) with Qν, the result is zero,
meaning that the presence of this term does not affect the entropy
production (141). Therefore, the models of Carter [5] and Lopez-
Monsalvo and Andersson [2] are just two alternative ways of
enforcing the second law.
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contact between the hydrodynamic formalism and kinetic
theory.

A. The microscopic interpretation of the entropy and
quasiparticle currents

We adopt a low-temperature approach, in which we are
allowed to treat the excitations as a noninteracting gas. All
the calculations are performed in the superfluid reference
frame L (see Sec. V B). In L, a quasiparticle of momentum
pj has an energy ϵ given by an isotropic dispersion relation

ϵ ¼ ϵðpÞ ≥ 0; p ≔
ffiffiffiffiffiffiffiffiffiffi
pjpj

q
: ð186Þ

The exact form of the excitation spectrum ϵðpÞ can change
for different substances: we do not assume any particular
form, but we assume that ϵðpÞ fulfills the Landau criterion
for superfluidity [33],

Δc ≔ min
p≥0

ϵðpÞ
p

> 0; ð187Þ

where Δc is Landau’s critical speed. In the next subsection,
we will verify that if the drift speed of the quasiparticles is
larger than Δc, the model breaks down and the superflow
is destroyed. An important implication of the Landau
criterion, which we will use later, is that

ϵ ≥ Δcp; ð188Þ

which implies that for large momenta ϵ grows at least
linearly in p. Let us introduce the quasiparticle four-
momentum

pν ¼ ðϵ; p1; p2; p3Þ ð189Þ

and the quasiparticle three-velocity Δj, which is given by
the Hamilton equation

Δj ¼ ∂ϵ
∂pj

: ð190Þ

From this formula we immediately see that the (timelike)
worldlines that the quasiparticles draw in the spacetime are
not tangent to the four-momentum (189), which is often
spacelike. This has the striking implication that there can be
branches of the spectrum (such as the one connecting the
“maxon” maximum to the “roton” minimum in 4He) in
which the quasiparticle three-velocity points in the direc-
tion opposite to the spatial momentum.
It is useful to introduce the mean occupation number

NðpjÞ of the excitation modes, which gives the average
number of quasiparticles in the single-quasiparticle state
(i.e., the excitation mode) of momentum pj. The quasi-
particle distribution function (counting the number of

excitations per unit single-particle phase-space volume)
is given by

gNðpjÞ
h3p

; ð191Þ

where hp is the Planck constant and g is a possible discrete
degeneracy (e.g., spin). It follows that the four-momentum
density Pν ¼ −vρTρν [see Eq. (107)] is given by

Pν ¼ UGSδ
ν
0 þ

Z
Npν gd3p

h3p
; ð192Þ

where UGS ¼ UGSðnLÞ is the ground-state energy density,
i.e., the energy density that the superfluid would have if
there were no excitations, at fixed constituent-particle
density nL.
The four components of the quasiparticle current are

zL ¼
Z

N
gd3p
h3p

; zj ¼
Z

NΔj gd3p
h3p

: ð193Þ

Introducing the single-mode entropy contribution [66]

σðNÞ ¼ −N logN þ ð1þ NÞ logð1þ NÞ; ð194Þ

the four components of the entropy current are given by

sL ¼
Z

σ
gd3p
h3p

; sj ¼
Z

σΔj gd3p
h3p

; ð195Þ

where σðNÞ is interpreted as a function of the single-mode
label pj once the distribution NðpjÞ is assigned.

B. Incomplete-equilibrium distribution

As we anticipated, we are focusing on the problem of
calculating the thermodynamic properties of a superfluid in
which we can neglect the heat conduction, but not the
bulk viscosity. From a microscopic point of view, this is
equivalent to assuming that the collisions which conserve
the quasiparticle number (e.g., zþ z⇌zþ z) are much
more frequent than the processes which modify it (e.g.,
zþ z⇌ zþ zþ z). Therefore, we can deal with a situation
of incomplete equilibrium [28,66], where N is in equilib-
rium only with respect to quasiparticle-conserving proc-
esses. In practice, this means that we can assume that the
superfluid occupies the state that maximizes the entropy at
constant integrals of motion (four-momentum and con-
stituent-particle number) and zL.
This state can be obtained by imposing the extremality

condition [10]

δsL þ αδzL þ βνδPν ¼ 0; ð196Þ

EXTENDING ISRAEL AND STEWART HYDRODYNAMICS TO … PHYS. REV. D 105, 045011 (2022)

045011-21



where α and βν are five Lagrange multipliers, encoding the
constraints of quasiparticles and four-momentum conser-
vation. By comparison with (108), we immediately see that
for the microscopic description to be consistent with the
hydrodynamic model, we need to identify the Lagrange
multiplier βν with the vector introduced in Eq. (53).
Furthermore, the multiplier α (which would be zero in
complete equilibrium) must be identified with

α ¼ βνAν: ð197Þ

Note that the term −2z½0βj�δAj does not appear in
Eq. (196), consistent with the assumption that, since the
heat flux vanishes, z½0βj� should vanish (we will prove this
rigorously in Sec. VIII C).
Inserting equations (192), (193), and (195) into (196),

and imposing its validity for any variation δN, we obtain
the Bose-Einstein equilibrium occupation law

N ¼ 1

eψ − 1
with ψ ¼ −βνðpν þ AνÞ: ð198Þ

This expression for N can be used to compute all the
thermodynamic variables of the theory directly from a
microscopic model.
It is clear that, for (198) to make sense, we need to

require ψ > 0. This condition, if accepted rigorously,
would lead (if the spectrum is such that ϵ → 0 for small
pj) to the requirement α < 0. However, as has been pointed
out by Landau [67], the typical magnitudes of α are usually
extremely small, implying that the possibility of having
ψ ≤ 0 due to a positive value of α can be realized only on
quasiparticle modes with extremely minute energy
(ϵ ≪ ΘE). But the number of such modes is so small that
we can work as if these energy levels were effectively
absent, without changing the final outcome. Therefore, we
can allow α to have an arbitrary sign.
The condition ψ > 0 can, therefore, be effectively

replaced by the requirement

−βνpν > 0; ð199Þ

which, using the notation (110), can easily be shown to be
equivalent to

Δ̄ < Δc; Δ̄ ≔
ffiffiffiffiffiffiffiffiffiffiffi
Δ̄jΔ̄j

q
; ð200Þ

which is nothing but Landau’s microscopic criterion for the
long life of superfluid currents. Therefore, the whole theory
breaks down when (200) is not respected.
On the other hand, if (200) holds, we can plug (188) into

the definition of ψ (neglecting α), obtaining

ψ ≥
Δc − Δ̄
ΘL p ≥ 0: ð201Þ

Comparing this with (200), we find that, as p → þ∞, ψ
diverges at least linearly in p. This implies that for large
momenta the mean occupation number decays at least
exponentially,

N ∼ e−ψ ≤ exp

�
−
Δc − Δ̄
ΘL p

�
; ð202Þ

which ensures the convergence of the integrals presented in
the previous subsection.

C. The collinearity conditions

In Sec. III Awe have shown from purely thermodynamic
arguments that, if the heat flux vanishes, then it must be true
that

zνffiffiffiffiffiffiffiffiffiffiffiffi
−zρzρ

p ¼ βνffiffiffiffiffiffiffiffiffiffiffiffiffi
−βρβρ

p ¼ sνffiffiffiffiffiffiffiffiffiffiffiffi
−sρsρ

p : ð203Þ

These collinearity constraints can be proved directly using
the distribution (198). In order to do it, let us first prove that

Z
N

∂ψ
∂p1

gd3p
h3p

¼ 0: ð204Þ

This can easily be done defining the function

FðψÞ ≔
Z

ψ
Nðψ 0Þdψ 0; ð205Þ

where the lower integration extremum is an arbitrary
constant, and noting that the left-hand side of Eq. (204)
is equal to

Z ∂F
∂p1

gd3p
h3p

¼
Z

lim
p1→þ∞

FðψðpjÞÞjp1

−p1

gdp2dp3

h3p
: ð206Þ

However, we have shown that, for large momenta, ψ
diverges. The functionFðψÞ, on the other hand, approaches
a finite value for large ψ , as a result of the fact thatN decays
exponentially in ψ . Therefore, we obtain

lim
p1→þ∞

FðψðpjÞÞjp1

−p1 ¼ Fðþ∞Þ −Fðþ∞Þ ¼ 0; ð207Þ

which proves Eq. (204).
Now, from the definition (198) we obtain

∂ψ
∂p1

¼ β0Δ1 − β1; ð208Þ

which, plugged into (204), gives

β0z1 − β1z0 ¼ 0: ð209Þ

L. GAVASSINO, M. ANTONELLI, and B. HASKELL PHYS. REV. D 105, 045011 (2022)

045011-22



The same argument applies to the other two components,
leading us to the first collinearity constraint

β½0zj� ¼ 0 ⇔
zνffiffiffiffiffiffiffiffiffiffiffiffi
−zρzρ

p ¼ βνffiffiffiffiffiffiffiffiffiffiffiffiffi
−βρβρ

p : ð210Þ

On the other hand, when the mean occupation number N
is given by (198), σ can be equivalently rewritten as

σ ¼ ψ

eψ − 1
− lnð1 − e−ψ Þ: ð211Þ

For large ψ , also σ decays exponentially. Therefore, a
completely analogous argument for the collinearity
between sν and βν can be made, just by replacing N with
σ in Eqs. (204) and (205). This completes our proof.
We remark that, while our result is valid for any

dispersion relation satisfying Landau’s criterion (187), in
the particular case of a linear dispersion relation the
collinearity condition (203) can also be elegantly proved
using an analog model of gravity; see Eqs. (65) and (73) of
Mannarelli and Manuel [68].

D. Evaluation of the thermodynamic derivative (185)

We are finally able to give a prescription for (185) in
terms of the quasiparticle dispersion relation. For most
practical purposes, it is a good approximation to compute
the coefficient under the simplifying assumption

uν ¼ vν; ð212Þ

so that wν ¼ 0, and ψ becomes simply

ψ ¼ ϵþ AE

ΘE
; ð213Þ

in agreement with Khalatnikov [34], section “The absorp-
tion and emission of rotons and phonons” (make the
identification AE ¼ −μph). When we impose (212), the
superfluid and the normal reference frame coincide, so that
zE ¼ zL and sE ¼ sL and we can use the first equations of
(193) and (195) directly. In particular, the formula for zE

reduces to

zEðnE;ΘE;AEÞ ¼
4πg
h3p

Z þ∞

0

p2dp

eðϵþAEÞ=ΘE − 1
: ð214Þ

The dependence of zE on nE is hidden inside the dispersion
relation. The formula for sE is analogous, just replacing
(198) with (211).
Now, to compute (185), one needs to be careful, because

zE is naturally given as a function of the temperature ΘE,
while we are interested in computing the derivative at
constant entropy sE. This forces us to use the chain rule

∂zE
∂AE

����
sE

¼ ∂zE
∂AE

����
ΘE

þ ∂zE
∂ΘE

����
AE

∂ΘE

∂AE

����
sE
; ð215Þ

where the dependence on nE is understood. The last partial
derivative on the right-hand side can be rewritten in a more
convenient way. Take the relation

sE ¼ sEðnE;ΘE;AEÞ ð216Þ

and derive it along a curve at constant nE and sE, para-
metrized with AE. It immediately produces the relation

∂ΘE

∂AE

����
sE

¼ −
�∂sE
∂ΘE

����
AE

�
−1 ∂sE

∂AE

����
ΘE

: ð217Þ

All these derivatives need, then, is to be evaluated in
equilibrium.
In the particular case of a linear dispersion relation

ϵ ¼ csp, where cs ¼ csðnEÞ is the speed of sound, one
obtains14

∂zE
∂AE

����
sE

¼ 4gΘ2
E½405ζð3Þ2 − π6�
3π3c3sh3p

≈ −16.2
gΘ2

E

c3sh3p
: ð218Þ

Inserting this formula into Eq. (152) we obtain the general
rule

ΞτA ≈ 0.54
zE

ΘE
; ð219Þ

which is a refinement of Eq. (26) of Mannarelli and Manuel
[58] (make the identifications τA ¼ τrel, Ξ ¼ Γph=ΘE), and
is valid for approximately linear dispersion relations.

IX. IS THE QUASIPARTICLE CURRENT
NECESSARY?

In Sec. II Awe started from the assumption that the fluid
has 12 degrees of freedom, and then we performed the
change of variables (9). This allowed us to use the
quasiparticle current zν as a primary current in Carter’s
approach. Although using the quasiparticle current as a
third current may seem rather natural, in principle, an
analogous change of variables could be performed again,
allowing one to choose as third primary current any
conceivable hydrodynamic vector field that is algebraically
independent from nν and sν and having four independent,
i.e., unconstrained, components. For example, one may
consider

14Note that, in order to have a nonvanishing bulk viscosity in
the first place, there need to be some deviations from a perfectly
linear dispersion relation [58]. On the other hand, for the precise
purpose of computing the thermodynamic derivative under
consideration, the linear approximation can be safely adopted.
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Πuν þQν or nν þ sν þ zν; ð220Þ

or any nonequilibrium generalization of Landau’s normal (or
superfluid) mass current, and treat any of them as a primary
current to be used in Carter’s approach. Starting from this
premise, in this section we address two questions:

(i) Would it make any difference, at the formal level, if in
all the foregoing sections (apart from Sec. VIII) we
replace zν with a generic “auxiliary” field z̃ν?

(ii) If yes,what are the criteria to select the “correct”primary
degrees of freedom to be used in Carter’s approach?

A. What is a current?

As discussed in [3], only a certain type of hydrodynamic
vector field can be genuinely considered as a “current”:
only a chemical-type variable can be used as a fundamental
degree of freedom in Carter’s approach, not any generic
thermodynamic variable. Contrary to what one might
expect, such a chemical-type vector field does not neces-
sarily need to quantify the flux of a corresponding particle-
like “worldline swarm” to play the role of a current in
Carter’s approach. For example, the entropy current has, in
general, no associated particle (in many situations one
cannot uniquely define a notion of “entropon”).
A formal procedure for constructing a current byusingonly

arguments of self-consistency of the hydrodynamic theory
has been proposed in [3]. We now adapt it to the superfluid
scenario. First, consider again all the steps of Sec. II, but
replacing everywhere zνwith a generic vector z̃ν: our goal is to
see if the assumption that z̃ν can play the role of a primary
current in Carter’s approach (namely, that its associated
density can be held constant in the partial derivative (22),
which defines the stress-energy tensor of the model) has any
important consequence on the dynamics of this vector field.
Equation (48) now reads (we place a “tilde” also on top of
each momentum because a different choice of currents
produces different conjugate momenta)

2sν∇½νΘ̃ρ� þ Θ̃ρ∇νsν − 2z̃ν∇½νÃρ� − Ãρ∇νz̃ν ¼ 0: ð221Þ

Let us focus on a situation inwhich all the currents of the fluid
are collinear. Then, if we contract (221) with the collective
four-velocity, we find

Θ̃E∇νsν ¼ ÃE∇νz̃ν ≥ 0: ð222Þ
Independently from themeaning of z̃ν, in the comoving limit it
is possible to construct a field equation for the rate∇νz̃ν of the
form15

∇νz̃ν ¼ r̃zðnE; sE; ÃE;∇νuνÞ: ð223Þ

Since the equilibrium condition (59) holds independently
from both the interpretation of z̃ν and the details of the
hydrodynamic equations, then (59) remains true also if we
replaceAρwith Ãρ. In fact, Eq. (59) is a direct consequence of
the constitutive relations (23) and (24), combined with the
fundamental conservation laws (1), (21), (25) and the second
law (2). Hence, recalling that all the currents are collinear, we
need to require

r̃zðnE; sE; 0; 0Þ ¼ 0: ð224Þ

Expanding for small values of ÃE and ∇νuν, we get

∇νz̃ν ¼ Ξ̃ÃE þϒ∇νuν; ð225Þ

and, inserting it into (222), we obtain

Θ̃E∇νsν ¼ Ξ̃Ã2
E þϒÃE∇νuν ≥ 0: ð226Þ

However, for the second law to always be satisfied for any
small value of AE and ∇νuν, we must require

ϒ ¼ 0; ð227Þ

which implies

∇νz̃ν ¼ Ξ̃ÃE: ð228Þ
This equation is the dynamical condition which distinguishes
a genuine current from a generic hydrodynamic vector field
[28]: it states that, for small deviations from local thermo-
dynamic equilibrium and slow expansions, the divergence of
a current is determined only by the instantaneous displace-
ment (ÃE) from local thermodynamic equilibrium and not by
the expansion rate ∇νuν.
To understand the implications of this result, take, as an

example, the first alternative to zν proposed in (220),
namely z̃ν ≔ Πuν þQν. In the collinear limit, its diver-
gence becomes

∇νz̃ν ¼ _Πþ Π∇νuν: ð229Þ

Imposing the telegraph-type equation (155) we obtain

∇νz̃ν ¼ −
Π
τA

−
ζ2
τA

∇νuν þ Π∇νuν; ð230Þ

which implies that (to first order)

ϒ ¼ −
ζ2
τA

≠ 0: ð231Þ

Therefore, the vector field Πuν þQν is not a current; i.e., it
cannot be used as a primary vector field in Carter’s

15The conservation laws (1) and (21) are 5 first-order differ-
ential equations. The degrees of freedom of the model in the
comoving limit are 6. Therefore, Eq. (223) must be a first-order
differential equation. We can use Eqs. (1) and (222) to remove the
possible dependence of r̃z on _nE and _sE.
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approach without producing a contradiction with the
second law of thermodynamics.
Applying this same approach, it is possible to show that

nonequilibrium generalizations of Landau’s superfluid and
normal mass current cannot be employed as primary
currents in Carter’s approach, because their four-divergence
is in general a complicated expression involving, e.g., the
time derivative of the temperature, which, in turn, depends
explicitly on the expansion rate

_ΘE ≈
∂ΘE

∂zE
����
nE;xs

ΞAE − nE
∂ΘE

∂nE
����
xs;xz

∇νuν: ð232Þ

The quasiparticle current zν, on the other hand, is a perfect
candidate to be a current in Carter’s approach. In fact, from
kinetic theory we know that ∇νzν is nonzero only if the
distribution function (191) is out of local thermodynamic
equilibrium [34,36], and this depends only on AE being
nonzero and not on the value of ∇νuν [see Eqs. (197)
and (198)].

B. What is a normal current?

The argument presented in the previous subsection gives
us a criterion to select which hydrodynamic vector fields
can be used as a primary current in Carter’s approach. It is,
however, still not enough to completely identify the
quasiparticle current as the best available choice. For
example, consider the second alternative to zν proposed
in (220), namely z̃ν ≔ nν þ sν þ zν. Its divergence reads (to
the first order in the deviation from local thermodynamic
equilibrium)

∇νz̃ν ≈∇νzν ¼ ΞAE: ð233Þ

According to the fundamental criterion (228), this choice of
z̃ν may seem to be an eligible “current-type” degree of
freedom. However, let us consider also the equilibrium
condition (60). If we assume that it is valid “with a
tilde,” then, recalling that z½νsρ� ¼ 0 must hold in
equilibrium [see Eq. (203) and its proof from statistical
mechanics], it follows that in equilibrium we must always
have

n½νsρ� ¼ 0; ð234Þ

which is in contradiction with the macroscopic defining
property of superfluidity.
To understand better what went wrong with this choice

of z̃ν, we can consider again the variation (41) and perform
the change of variables

ðnν; sν; zνÞ → ðnν; sν; z̃νÞ; ð235Þ

which leads us to the differential

δð ffiffiffiffiffijgjp
ΛÞffiffiffiffiffijgjp ¼ μ̃ν

δð ffiffiffiffiffijgjp
nνÞffiffiffiffiffijgjp þ Θ̃ν

δð ffiffiffiffiffijgjp
sνÞffiffiffiffiffijgjp

−Aν
δð ffiffiffiffiffijgjp

z̃νÞffiffiffiffiffijgjp þ Tνρ

2
δgνρ; ð236Þ

with

μ̃ν ¼ μν þAν; Θ̃ν ¼ Θν þAν: ð237Þ

This allows us to connect the constitutive relations that we
obtained choosing zν as the primary degree of freedom with
those that are produced if one replaces it with z̃ν. We note
that the stress-energy tensor is unaffected by this change of
chemical basis. This is true any time the linear combination
coefficients cxy of a transformation ñνy ¼

P
x c

x
ynνx are

constant [7]. On the other hand, the fact that a change of
chemical basis produces different conjugate momenta is not
unexpected if we interpret the momenta as the four-dimen-
sional generalizations of the chemical potentials. The
problem, however, is that, since

μ̃ν ≠ μν; ð238Þ

the identification (25) cannot be true for both μν and μ̃ν
without leading us to a contradiction. This is what
originates the unphysical constraint (234) and shows us
that we need an additional criterion to select the “correct”
current among the various possibilities.
Such a criterion is offered by the multifluid thermody-

namic theory constructed in [4], which formalizes a
physical idea which can be traced back to [39]: it should
always be possible to group the relevant degrees of freedom
of a multifluid into two disconnected sets, the so-called
superfluid currents and the normal currents. This distinc-
tion is physical: a current is called superfluid when its
conjugate momentum obeys a covariant Josephson relation
of the kind (25), possibly with a different prefactor. A
normal current, instead, is simply a current that in local
thermodynamic equilibrium is always collinear to the
entropy current (the so-called s-locking; see [4]). Every
current that is employed as a primary degree of freedom in
Carter’s approach must belong to one and only one of these
two sets, because, otherwise, there would be a contradiction
between the predictions of the theory and the minimum free
energy principle [4].
Applying this result to our case of interest, we see that

(contrary to zν, which is clearly a normal current) the
current nν þ sν þ zν is not eligible to be a fundamental
degree of freedom of Carter’s model, as it is neither
superfluid (its conjugate momentum is not irrotational)
nor normal (it is not locked to the entropy current in
equilibrium). On the contrary, any current of the form
c1sν þ c2zν, where c1 and c2 are two constant coefficients,
is a normal current. It can, thus, be used as a fundamental
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degree of freedom of the theory, producing a model that is
completely equivalent to the one we presented in this paper
(in the sense that we have some “gauge freedom” when
defining the normal currents that leads to the same physical
predictions [4]).

X. BEYOND THE HYPOTHESES OF THE MODEL

Our results might seem to be of very limited scope (we
are dealing with a bosonic superfluid with a single
species of quasiparticles). In addition, our description
applies only at the intervortex separation scale, where
the superfluid momentum is strictly irrotational. This
section is devoted to proposing some extensions of the
present model to more physically interesting situations. In
fact, most of our results have a much broader range of
applicability and are relevant for application to neutron star
hydrodynamics.

A. Heat conduction in helium: Phonon-roton model

Andersson and Comer [52] informally suggested that it
is possible to model the nonrelativistic heat flux in super-
fluid 4He through the introduction of a third current,
representing the roton excitations. The construction they
suggest differs in some aspects from the one we proposed
so far, but it is interesting to analyze their alternative idea.16

Andersson and Comer [52] considered the following
logical path:
(1) Kinetic theory tells us that for a phononic quasi-

particle dispersion relation ϵ ¼ csp the heat con-
ductivity coefficient vanishes identically [34].

(2) Therefore, the phenomenon of heat conduction
cannot occur if there are only ideal phonons.

(3) On the other hand, in 4He, the most important
contribution to the heat conductivity coefficient
comes from phonon-roton collisions [34].

(4) It follows that heat conduction in 4He arises when we
allow phonons and rotons to drift at different rates.
Dissipation is due to a sort of friction between the
flows of these two quasiparticle species (which are
locked together in equilibrium).

This scheme should not be interpreted too strictly, since, in
principle, any deviation of the dispersion relation from csp
can result in a nonvanishing heat conductivity, without the
need of splitting the excitation spectrum into two discon-
nected parts. However, the intuition of using both rotons
and phonons is physically appealing.
In order to do this, we need to first formalize the idea that

phonons and rotons can behave as two independent fluxes
(when they are, actually, different branches of the same
excitation spectrum). A straightforward way of doing this

consists of assuming that the mean occupation number N
takes the analytical form

N ≈

(
½expð−βphν pνÞ − 1�−1 for p ≤ pM;

½expð−βrνpνÞ − 1�−1 for p > pM;
ð239Þ

where pM is the momentum of the maxon maximum. In
words, we are assuming that the two branches of the
spectrum are in thermodynamic equilibrium within them-
selves (so that we can assign to each of them an inverse-
temperature covector βphν , βrν), but not between each other,
so that we may have

βphν ≠ βrν: ð240Þ

For Eq. (239) to make sense, the temperatures should be
sufficiently low that we can assume the maxon states to
have a negligible occupation number,

N ≈ 0 for p ≈ pM; ð241Þ

otherwise there would be an unphysical discontinuity of the
distribution function on pM. This also allows us to
decompose every kinetic integral presented in Sec. VIII
A into two contributions (g ¼ 1):Z

d3p
h3p

¼
Z
p≤pM

d3p
h3p

þ
Z
p>pM

d3p
h3p

; ð242Þ

which can be interpreted, respectively, as the phonon and
the roton part of the integral. In particular, this division can
be applied to the entropy current, which is then split into a
phonon and a roton contribution,

sν ¼ sνph þ sνr; ð243Þ

which obey the collinearity constraints

s½νphβ
phρ� ≈ 0; s½νr βrρ� ≈ 0: ð244Þ

This can be shown by changing the boundary in the
integrals studied in Sec. VIII C and invoking the condition
(241).
Going through some tedious calculations of kinetic

theory that we do not report here, one can show that, if
we can assume that Eqs. (239) and (241) are both valid,
then the creation rates ∇νsνph and ∇νsνr are independent
from the gradients of the hydrodynamic fields and can be
written as pure functions of the local thermodynamic state
of the fluid. Coherently with our discussion of Sec. IX A,
we can thus conclude that sνph and sνr are genuine currents.
Furthermore, from (244) we know that, in local thermo-
dynamic equilibrium (i.e., when βphν ¼ βrν ¼ βν), these two
currents are collinear with each other, and are therefore

16In [52] the authors did not formalize their intuition in precise
mathematical terms. We try to do it here by taking inspiration
from the comments present in their original work.
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both collinear with sν. This implies that sνph and sνr are
normal currents, in the sense of Sec. IX B.
The foregoing observations allow us to use the set of

currents

ðnρ; sρph; sρrÞ ð245Þ

as primary degrees of freedom of a three-component model,
with constitutive relations

δð ffiffiffiffiffijgjp
ΛÞffiffiffiffiffijgjp ¼ μν

δð ffiffiffiffiffijgjp
nνÞffiffiffiffiffijgjp þ Θph

ν

δð ffiffiffiffiffijgjp
sνphÞffiffiffiffiffijgjp

þ Θr
ν
δð ffiffiffiffiffijgjp

sνrÞffiffiffiffiffijgjp þ Tνρ

2
δgνρ: ð246Þ

The structure of this model does not seem to have much in
common with our original three-component model.
However, the similarities become immediately evident if
one makes the change of chemical basis

ðnρ; sρph; sρrÞ → ðnρ; sρ; sρrÞ; ð247Þ

so that the differential (246) becomes

δð ffiffiffiffiffijgjp
ΛÞffiffiffiffiffijgjp ¼ μν

δð ffiffiffiffiffijgjp
nνÞffiffiffiffiffijgjp þ Θν

δð ffiffiffiffiffijgjp
sνÞffiffiffiffiffijgjp

−Ar
ν
δð ffiffiffiffiffijgjp

sνrÞffiffiffiffiffijgjp þ Tνρ

2
δgνρ; ð248Þ

where

Θν ¼ Θph
ν ; Ar

ν ¼ Θph
ν − Θr

ν: ð249Þ

The structure of (248) is identical to (41), just with

zν → sνr; Aν → Ar
ν: ð250Þ

This implies that all the calculations performed in this paper
apply also to this model. For example, the thermodynamic
equilibrium condition (59) takes the form of a temperature
balance:

sρΘph
ρ ¼ sρΘr

ρ: ð251Þ

Furthermore, coherently with the intuition of Andersson
and Comer [52], heat conduction emerges from the non-
collinearity between the phonon and the roton entropy
current:

Qν ¼ ΘEhνρs
ρ
ph; hνρ ¼ gνρ þ sνrs

ρ
r

s2r
; ð252Þ

see (91), (94), and (167).
Although our original purpose was only to model heat

conduction as the dissipative interaction between sνph and
sνr, we necessarily obtained also a bulk-viscosity effect (see
Sec. VII B), due to the creation rate

∇νsνr ¼ ΞrðΘph
E − Θr

EÞ; Ξr ≥ 0; ð253Þ

that is the analog of the first condition in (142).
The presence of an additional bulk viscosity term is not

unexpected: the inclusion of a new current produces 4
nonequilibrium degrees of freedom, while the algebraically
independent components of Qν are only 3. Equation (253)
has a deep thermodynamic origin. In fact, according to
relativistic thermodynamics [49,69,70], friction (intended
as the force that tries to lock together the currents) and heat
exchange (intended as the exchange of energy that tries to
equalize the temperatures) are indivisible manifestations of
the same entropic process (the four-momentum exchange
that tends to equalize the inverse-temperature vectors βν).
Therefore, the assumption that phonons and rotons can be
treated as two distinct gases, which interact with each other,
must also result in an energy transfer equation of the form
(253). An analogous mechanism also occurs in radiation
hydrodynamics [28,41,71].
Although we found that, within this description based on

sνph and sνr, a bulk-viscosity effect emerges as a mathemati-
cal necessity, the model does not account correctly for the
real bulk viscosity coefficients of 4He, which should be
given by Eq. (157), modified to treat phonon and roton
contributions separately [34]. The reason is that equa-
tion (239) would be rigorously justified only if the phonon-
phonon and the roton-roton collisions (including those that
do not conserve their numbers) were much more frequent
than the phonon-roton collisions. This in general is not the
case, and to properly account also for the main contribu-
tions to bulk viscosity described in Khalatnikov [34], one
needs to further increase the number of degrees of freedom:

ðnρ; sρph; zρph; sρr ; zρrÞ: ð254Þ

This would allow us to accurately model both the phonon
and the roton creation rates (∇νzνph;∇νzνr) and to reproduce,
in the parabolic limit, the exact formulas found by
Khalatnikov [34], plus an additional contribution coming
from (253) that is usually neglected. The interesting point,
however, is that the corresponding telegraph-type equations
for bulk viscosity would involve three independent affin-
ities, instead of just one, making the number of degrees of
freedom exceed that of an Israel-Stewart theory. Hence, this
five-component model would not admit an Israel-Stewart
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analog (it would, instead, be the superfluid analog of a
l ¼ 4 model, as described in [3]).

B. Macroscopic superfluid vorticity

Let us go back to our original three-component model
based on ðnρ; sρ; zρÞ. To simplify the hydrodynamic equa-
tions and to isolate the phenomena of bulk viscosity and
heat conduction we assumed the validity of the property
(26) that is a direct consequence of the Josephson relation
(25) valid at the intervortex separation scale. At larger
scales we should allow for a nonzero macroscopic dynamic
vorticity [72]

ϖνρ ≔ 2∇½νμρ� ≠ 0; ð255Þ

not to be confused with the kinematic vorticity ωνρ

introduced in (175); see also [60].
In this case, the three equations (46) remain unchanged,

but we are not allowed to setRn
ρ ¼ 0 anymore. On the other

hand, the conservation laws (1) and (21) still hold, and we
can also still assume a continuity equation for the quasi-
particles of the form ∇νzν ¼ ΞAE, with Ξ > 0. Therefore,
we can write the system (46) in the more convenient form

nνϖνρ −Rn
ρ ¼ 0;

2sν∇½νΘρ� þ Θρ∇νsν ¼ ΞA2
Euρ þ fρ − nνϖνρ;

2zν∇½νAρ� þAρ∇νzν ¼ ΞA2
Euρ þ fρ; ð256Þ

where fρuρ ¼ 0. We recognize the first equation as the
mutual friction equation [20,23,38,73,74], the second as
the energy-momentum conservation, and the third as the
dynamical equation for the heat flux and the viscous stress.
Since the degrees of freedom of the theory are 12, and we
have five field equations from the conservation laws, we
need another seven independent inputs to close the system.
These are precisely the constitutive relations for Rn

ρ, fρ,
and Ξ, which need to be provided from the physics at
smaller scales.
If we contract the second equation of (256) with sρ, and

we assume that the system is close to local thermodynamic
equilibrium, we obtain the entropy production formula

ΘE∇νsν ¼ ΞA2
E −

ðfρ − nνϖνρÞQρ

sEΘE
þϖνρnνuρ: ð257Þ

We recognize the same terms that appear in (141), plus a
vorticity-induced dissipation term ϖνρnνuρ (see, e.g., [74])
and a coupling between the vorticity and the heat flux
proportional to ϖνρQρ. Again, there are infinite possible
prescriptions for fρ, but a straightforward way of ensuring
the strict positivity of the entropy production rate is to
postulate

hρλðfρ − nνϖνρÞ ¼ −
sE

k
Qλ; ð258Þ

which allows us to rewrite Eq. (257) as

ΘE∇νsν ¼ ΞA2
E þQρQρ

kΘE
þϖνρnνuρ: ð259Þ

The assumption (258) has the convenient feature that, if we
project the second equation of (256) orthogonally to uν and
neglect second-order deviations from local thermodynamic
equilibrium, we recover directly (169), which implies that
the telegraph-type equation for the heat flux (177) is left
unchanged. Furthermore, also Eq. (147), and consequently
the telegraph-type equation (154) for the affinity, is
unaffected by the introduction of the vorticity. We can,
thus, conclude that with this choice of forces the presence
of the vorticity has no direct influence on the dynamics of
the dissipative fluxes, consistent with the Newtonian
formulation of the viscous Hall-Vinen-Bekarevich-
Khalatnikov hydrodynamics of Hills and Roberts [75].
To complete the system of equations one needs also to

provide the hydrodynamic force Rn
ρ . This is most easily

done in the nonturbulent case, where the vortices are locally
parallel. Formally, asking that the vortices are aligned at the
mesoscopic scale is equivalent to requiring the algebraic
degeneracy condition [20]

ϖ½νρϖσλ� ¼ 0: ð260Þ

In this case, it is standard to assume a phenomenological
equation of vortex motion (PEVM) of the form

fJρ ¼ fDρ ; ð261Þ

where fJρ and fDρ are, respectively, the total Joukowski lift
force and total drag force per unit volume acting on a vortex
line, whose general form is [74]

fJρ ¼
�
nν þ Cs

hp
sν þ Cz

hp
zν
�
ϖνρ;

fDρ ¼ ðRnnν þRssν þRzzνÞhpN⊥νρ; ð262Þ

where

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖνλϖνλ

2h2p

s
; ⊥ν

ρ ¼
ϖνλϖρλ

ðhpNÞ2 ð263Þ

are, respectively, the vortex density per unit area and the
projector orthogonal to the vortex world sheet [20]. The
five phenomenological coefficientsCs, Cz,Rn,Rs, andRz

need to be determined from mesoscopic models of vortex
motion. By appropriately fixing them, one can also decide
to include (or not) possible Iordanskii-type forces or
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additional transverse drag effects.17 In principle, it is also
possible to include in the PEVM some extra terms to
account for a possible effect of the heat flux on the vortices,
but for most practical purposes one can impose the
approximations

sν ≈ sEuν; zν ≈ yzsEuν; ð264Þ

which reduce the PEVM to that of the two-fluid model [74]

�
nν þ Čs

hp
sEuν

�
ϖνρ ¼ ðRnnν þ ŘssEuνÞhpN⊥νρ; ð265Þ

with

Čs ¼ Cs þ yzCz; Řs ¼ Rs þ yzRz: ð266Þ

The two simplest PEVMs discussed in the literature are the
Thouless-Wexler model and the Sonin-Stone model [74],
which in their minimal formulation read

Yμνϖνρ ¼ ηNuν⊥νρ ðThouless-WexlerÞ;
nνϖνρ ¼ ηNuν⊥νρ ðSonin-StoneÞ; ð267Þ

with η ¼ ŘssEhp ≥ 0, as demanded by the second law.

C. Neutron star hydrodynamics

The results of this paper can also be applied to model
neutron star hydrodynamics and allow us to reinterpret the
standard neutron star fluid models in an alternative (for-
mally equivalent, but physically more clear) way.
A minimal model of a superfluid neutron star assumes

that dense matter can be described as a mixture of two
species: protons, with four-current nνp, and neutrons, with
four-current nνn [1,76]. Leaving aside the possible impli-
cations of a superconducting proton phase, the electrons are
assumed to neutralize the protons (nνe ¼ nνp); hence their
current is not a degree of freedom of the system and they
can be modeled just as additional mass energy transported
by the proton current.
Following Langlois et al. [20], the neutrons are treated as

a superfluid current (namely, a current whose conjugate
momentum μν obeys the Josephson relation), while the
electron-proton flow gives a normal current (namely, a
current that is locked with the entropy current in local
thermodynamic equilibrium; see Sec. IX B), at least in the
inner crust (this is also the setting considered in [74]).
Hence, we have a three-component model, with degrees of
freedom

ðnρn; sρ; nρpÞ; ð268Þ

and constitutive relations

δð ffiffiffiffiffijgjp
ΛÞffiffiffiffiffijgjp ¼ μν

δð ffiffiffiffiffijgjp
nνnÞffiffiffiffiffijgjp þ Θν

δð ffiffiffiffiffijgjp
sνÞffiffiffiffiffijgjp

þ χν
δð ffiffiffiffiffijgjp

nνpÞffiffiffiffiffijgjp þ Tνρ

2
δgνρ; ð269Þ

where, at the mesoscopic scale, we can impose that (the 1=2
factor accounts for neutron Cooper pairing)

μν ¼
ℏ
2
∇νϕ: ð270Þ

From these premises it is easy to recover the same formal
structure of the three-component model introduced in
Sec. II A: we just need to consider that beta reactions of
the kind (electrons and neutrinos are understood)

n⇌p ð271Þ

generate baryon transfusion. This implies that the total
baryon current

bν ¼ nνp þ nνn ð272Þ

is the only conserved current. Thus, it can be convenient to
use bρ as one of Carter’s primary currents, provided that we
do not slip into the problem (238). Indeed, under the change
of variables

ðnρn; sρ; nρpÞ → ðbρ; sρ; nρpÞ; ð273Þ

the differential (269) transforms into

δð ffiffiffiffiffijgjp
ΛÞffiffiffiffiffijgjp ¼ μν

δð ffiffiffiffiffijgjp
bνÞffiffiffiffiffijgjp þ Θν

δð ffiffiffiffiffijgjp
sνÞffiffiffiffiffijgjp

−AðβÞ
ν

δð ffiffiffiffiffijgjp
nνpÞffiffiffiffiffijgjp þ Tνρ

2
δgνρ; ð274Þ

where we have the defined the affinity covector [3]

AðβÞ
ν ¼ μν − χν: ð275Þ

Contrary to what happens in the example (237), the
superfluid momentum μν that is now conjugate to the
baryon current bν is preserved under (273). Therefore, all
the formal results discussed so far for the model with
primary currents ðnρ; sρ; zρÞ are also valid for this system,
provided that one makes the replacements

nν → bν; zν → nνp; Aν → AðβÞ
ν ; ð276Þ

17For example, in the three-component model we presented in
a previous subsection, in which zν was replaced by sνr, one is able
to model the roton-mediated transverse drag force as an inde-
pendent contribution to the total Joukowski lift force ∝ sνrϖνρ.
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and ℏ → ℏ=2 in (25). For example, bulk viscosity in the
present model is described as due to the β-type reaction
(271), in agreement with the early studies of Sawyer [77],
Haensel and Schaeffer [78]. In fact, if we apply the
correspondence (276) to the rate equation (142), we have

∇νnνp ¼ −∇νnνn ¼ ΞðμE − χEÞ ¼ −Ξuνðμν − χνÞ: ð277Þ

This is exactly Eq. (44) of Langlois et al. [20] for chemical
transfusion mediated by β-reactions, in full accordance
with the general principles of multifluid chemistry [4].
As an immediate application of the formal correspon-

dence (276), we map the formulas for the high-frequency
bulk viscosities (166) into their neutron star analogs:

ζeff2 ¼ Ξ
ω2

�
bE

∂AðβÞ
E

∂bE
����
xs;xe

�
2

;

ζeff3 ¼ Ξ
ω2

�∂AðβÞ
E

∂bE
����
sE;nEe

�
2

; ð278Þ

which, using Maxwell’s relations, are exactly Eqs. (73) and
(75) of Gusakov [12] (to facilitate the comparison, we have
used the constraint nνe ¼ nνp to convert the dependence on
the proton density into a dependence on the electron
density).
In conclusion, the standard three-component model for

neutron-star hydrodynamics of Langlois et al. [20] can be
mapped into a dissipative model for a single-species
superfluid. The baryon current bρ plays the role of the
constituent-particle current nρ; the proton current nρp
replaces the quasiparticle current zρ as the nonequilibrium
degree of freedom, responsible for heat conduction and
bulk viscosity. This works also at the macroscopic scale,
where the irrotationality condition drops [74].
Finally, it is worthwhile to stress how the model of

Sec. II A, governing a one-species superfluid, is formally
identical to those of a superfluid-normal mixture such as
the neutron star matter. The trick is that, following a
somewhat standard practice in relativistic neutron star
models [12–14,20–23,74], we did not include the current
zνn of elementary excitations (intended as quasiparticle/
quasihole couples [33] or phononlike collective modes
[31,32]) of the neutron fluid. Its inclusion as an additional
normal primary current (analogous to the introduction of zν

in the single-species superfluid) would increase the number
of algebraic degrees of freedom from 12 to 16,

ðbρ; sρ; nρp; zρnÞ: ð279Þ

However, for most practical applications, it is more con-
venient just to work with the simplified three-component
model (268), which already accounts for the most important
contributions to bulk viscosity, heat conduction, and, pos-
sibly, mutual friction.

XI. CONCLUSIONS

Building on Carter’s multifluid approach, we constructed
a causal model for bulk viscosity and heat conduction in a
relativistic superfluid. In contrast to the common practice of
adding dissipative phenomena by hand as additional
corrections to the stress-energy tensor, we have promoted
the quasiparticle current to a degree of freedom of the
theory. Heat conduction and bulk viscosity, then, emerge
naturally from the dissipative interaction of this additional
current with the other two currents (particles and entropy).
The most attractive features of the resulting model are the
following:
(1) It is consistent with the zeroth, first, and second law

of thermodynamics in their relativistic formu-
lation [30,49].

(2) It is consistent with the principles of relativistic
multifluid thermodynamics [4] and fulfills all the
mathematical requirements for being a UEIT
model [28].

(3) Close to local thermodynamic equilibrium, dissipa-
tion is modeled in the same way as it is done in the
Israel and Stewart [24] theory: the dissipative fluxes
obey telegraph-type equations that are constructed to
strictly guarantee the non-negativity of entropy
production. Therefore, this model is the superfluid
extension of the Israel-Stewart theory.

(4) If the microscopic input is accurate, the model can
be made hyperbolic, causal, and stable (the exact
causality/stability conditions will be computed in a
future work).

(5) In the parabolic limit, i.e., when we neglect the
relaxation effect, we recover the model of Gusakov
[12] for dissipation in relativistic superfluids.

(6) The nondissipative limit is the relativistic two-fluid
model of Carter and Khalatnikov [8], Lebedev and
Khalatnikov [7], Son [11], Gusakov [38], and its
thermodynamic interpretation is consistent with the
one given in [4].

(7) The Newtonian limit of the three-current model is an
extended-irreversible-thermodynamic extension of
Landau’s dissipative two-fluid model. This implies
that we recover the standard Newtonian theory of
Khalatnikov [34] and Landau and Lifshitz [43] in the
slow limit. The thermodynamic interpretation is
consistent with the one given by Andreev and
Melnikovsky [46]; see Appendix A 2.

(8) The model automatically provides the exact thermo-
dynamic formulas (in terms of quasiparticle produc-
tion rates) for all four bulk viscosity coefficients
given by Khalatnikov [34].

(9) The dependence of the bulk viscosity coefficients on
the frequency of oscillation, as described by, e.g.,
Escobedo et al. [57], is reproduced by the model as a
direct consequence of the Israel-Stewart relaxation-
time effect. This is a superfluid generalization of the
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results of Gavassino et al. [3] for normal fluids. For
high frequencies, we also recover the reaction-
mediated bulk viscosities of Gusakov [12], propor-
tional to ω−2.

(10) Apart from higher-order effects, which should play
no role close to equilibrium, our telegraph-type
equation for the heat flux is equivalent to the causal
and stable theory for heat conduction of Lopez-
Monsalvo and Andersson [2].

(11) It is straightforward to include in our three-current
model the effects of a nonvanishing macroscopic
vorticity, accounting for the possible presence of
vortices as in the two-current models of [20,38,74].

To the best of our knowledge, this is the first hydrodynamic
model of a relativistic superfluid which includes dissipation
(due to bulk viscosity, heat conduction, and, possibly, vortex-
mediated mutual friction) consistently and is well-suited for
numerical implementation and application to the neutron star
context: the bridge with the work of Gusakov [12] ensures a
transparent contact with microphysics, while the formal
analogy with Israel and Stewart [24] guarantees the “good
behavior” of the equations. The only missing element is a
consistent inclusion of shear-viscous effects, which is left as
the subject of future investigation.
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APPENDIX A: THERMODYNAMIC
CALCULATIONS

This appendix is devoted to presenting in more detail
some thermodynamic calculations which were omitted
from the main text.

1. Computing the stress-energy tensor in the Landau
representation

To compute the partial derivative (22) we can specialize
the generic differential (38) to variations obeying the
constraints

δμσ ¼ δð
ffiffiffiffiffi
jgj

p
sσÞ ¼ δð

ffiffiffiffiffi
jgj

p
zσÞ ¼ 0: ðA1Þ

Then, using the relations

δ
ffiffiffiffiffi
jgj

p
¼ 1

2

ffiffiffiffiffi
jgj

p
gνρδgνρ;

δgαβ ¼ −gανgβρδgνρ; ðA2Þ

we can write all six variations appearing on the right-hand
side of (38) in terms of variations of the components of the
metric:

δðμ2Þ ¼ μνμρδgνρ;

δðs2Þ ¼ −sνsρδgνρ þ sλsλgνρδgνρ;

δðz2Þ ¼ −zνzρδgνρ þ zλzλgνρδgνρ;

δðy2nsÞ ¼ μλsλgνρδgνρ=2;

δðy2nzÞ ¼ μλzλgνρδgνρ=2;

δðn2szÞ ¼ −sνzρδgνρ þ sλzλgνρδgνρ: ðA3Þ

In this way we can prove that

2
∂X
∂gνρ ¼ Yμνμρ þMABnνAn

ρ
B

− ðMABnλAnBλ þDnAμλnλAÞgνρ; ðA4Þ

where we recall that the partial derivative is at constant μσ,ffiffiffiffiffijgjp
sσ ,

ffiffiffiffiffijgjp
zσ . On the other hand, one can employ the

first relation of (A2) to verify that

2ffiffiffiffiffijgjp ∂ð ffiffiffiffiffijgjp
XÞ

∂gνρ ¼ 2
∂X
∂gνρ þ Xgνρ: ðA5Þ

Hence, inserting (A4) into (A5), we see that Eq. (22)
reduces to (39) provided that

Ψ ¼ X −MABnλAnBλ −DnAμλnλA: ðA6Þ

However, if we compare (24) with (34), we can conclude
that

Ψ ¼ X − sνΘν þ zνAν; ðA7Þ

which can be shown with a little algebra to be equivalent to
(A6), completing our proof.

2. Newtonian limit of the thermodynamic differential

For ν ¼ 0, we may rewrite Eq. (61) in the following
form:

δT00¼δs0

β0
−
μρβ

ρ

β0
δn0þβj

β0
δT0jþ

�
nj−n0

βj

β0

�
δμj: ðA8Þ

Sticking to the notation of Andreev and Melnikovsky [46],
we can make the Newtonian decomposition

βν¼ 1

T
ð1;vnÞ; sν¼Sð1;vnÞ; nν¼ 1

m
ðρ;jÞ; ðA9Þ

where m is the rest mass of the constituents. Furthermore,
we need to remember that the relativistic energy density
contains a rest mass contribution and that in Newtonian
physics the momentum density coincides with the mass
current:
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T00 ¼ ρþ E; T0j ¼ jj: ðA10Þ

Finally, the momentum covector can be split as

μν ¼ ð−μ0; mvsÞ: ðA11Þ

Rewriting μ0 in the formalism of Andreev andMelnikovsky
[46] requires a slightly more elaborate procedure. One
needs to consider that Landau’s Newtonian chemical
potential μLN is defined through the condition

mþ μLN ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−μνμν

p
; ðA12Þ

which, using (A11), implies

ðμ0Þ2 ¼ m2 þ 2mμLN þ ðμLNÞ2 þm2v2s : ðA13Þ

Extracting the square root and taking the Newtonian limit
we find

μ0 ¼ m

�
1þ μLN

m
þ v2s

2

�
: ðA14Þ

Using all the correspondence relation we have introduced,
we can rewrite (A8) as follows:

δE ¼ TδSþ
�
μLN
m

þ v2s
2
− vsvn

�
δρþ vnδjþ ðj − ρvnÞδvs;

ðA15Þ

which is Eq. (4) of Andreev and Melnikovsky [46].

3. High frequency bulk viscosities

In the following calculations we will constrain wνwν to
be constant, so that we can ignore it as a variable while
performing the derivatives. Consider the equation

xeqz ¼ zEeqðnE; sEÞ
nE

: ðA16Þ

Deriving it with respect to nE at constant xs we find

−ðnEÞ2 ∂x
eq
z

∂nE
����
xs

¼ zEeq − nE
∂zEeq
∂nE

����
sE
− sE

∂zEeq
∂sE

����
nE
: ðA17Þ

Thus, the first equation of (164) can be rewritten as

ζeff2 ¼ Ξ
ω2

ðnEÞ2
�∂AE

∂xz
����
nE;xs

�
2
�∂xeqz
∂nE

����
xs

�
2

; ðA18Þ

where we have also used the relation

∂AE

∂zE
����
nE;sE

¼ 1

nE
∂AE

∂xz
����
nE;xs

: ðA19Þ

Now, let us focus on the equilibrium condition (for small
heat flux) which defines xeqz ðnE; xsÞ implicitly:

AEðnE; xs; xeqz ðnE; xsÞÞ ¼ 0: ðA20Þ

If we derive it along a curve, parametrized with nE, at
constant xs, we immediately obtain the identity

∂AE

∂nE
����
xs;xz

þ ∂AE

∂xz
����
nE;xs

∂xeqz
∂nE

����
xs

¼ 0; ðA21Þ

where all the quantities are evaluated at equilibrium.
Comparing (A18) with (A21) we obtain the first equation
in (166). To obtain the second equation in (166) we just
need to consider the equilibrium condition which defines
zEeqðnE; sEÞ implicitly:

AEðnE; sE; zEeqðnE; sEÞÞ ¼ 0: ðA22Þ

Taking its derivative with respect to nE at constant sE we
obtain the equilibrium relation

∂AE

∂nE
����
sE;zE

þ ∂AE

∂zE
����
nE;sE

∂zEeq
∂nE

����
sE

¼ 0: ðA23Þ

Comparing this equation with the second formula of (164),
we obtain the second expression of (166).

APPENDIX B: DIFFERENTIAL OF THE ENERGY
DENSITY IN A GENERIC REFERENCE FRAME

In this appendix we show how to obtain a thermody-
namic differential of the kind (104) from (52).

1. Setting the stage

We consider a generic multifluid with l independent
components. We introduce a mute chemical index x ¼
1;…; l and we use the Einstein summation convention with
it. The energy-momentum tensor has the usual canonical
form

Tν
ρ ¼ Ψδνρ þ nνxμxρ: ðB1Þ

Let us introduce a local observer O with four-velocity uνO
and let us make the decomposition

nνx ¼ nOx uνO þ Jνx; JνxuOν ¼ 0;

μxν ¼ μxOuOν þ wx
ν; wx

νuνO ¼ 0: ðB2Þ

Then, Eq. (B1) can be decomposed into
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Tν
ρ ¼ Ψδνρ þ nOx μxOu

ν
OuOρ

þ nOx uνOw
x
ρ þ JνxμxOuOρ þ Jνxwx

ρ: ðB3Þ

The symmetry condition

Tνρ ¼ Tρν ðB4Þ

implies

Jνxwxρ ¼ Jρxwxν;

μxOJ
ν
x ¼ nOx wxν: ðB5Þ

The energy density measured by O is

ρO ¼ TνρuνOu
ρ
O; ðB6Þ

thus, by comparison with (B3), we obtain

ρO ¼ −Ψþ nOx μxO: ðB7Þ

2. Variations

Now, we make a generic variation (at constant metric
components) of all the currents nνx and of uνO independently.
Hence, the degrees of freedom of the variation are 3þ 4l.
By making this choice we ensure the full generality of our
study. In fact, to obtain the case considered in Sec. VA, in
which uνO is not an independently chosen four-velocity, but
a hydrodynamic field of the theory itself, it is sufficient to
impose a constraint on uνO (a condition which can safely be
imposed at the end of the calculations we are making here).
According to (52), the variation of the pressure is

δΨ ¼ −nνxδμxν: ðB8Þ

Invoking the decomposition (B2), we obtain

δΨ ¼ −nOx uνOδðμxOuOνÞ − nOx uνOδw
x
ν

− JνxδðμxOuOνÞ − Jνxδwx
ν: ðB9Þ

The variations must conserve the normalization condition
uνOuOν ¼ −1 and the orthogonality of the decompositions
(B2). This produces the constraints

uνOδuOν ¼ 0;

uOνδJνx ¼ −JνxδuOν;

uνOδw
x
ν ¼ −wx

νδuνO; ðB10Þ

which, plugged into (B9), give

δΨ ¼ nOx δμxO þ ðnOx wxν − μxOJ
ν
xÞδuOν − Jνxδwx

ν: ðB11Þ

By comparison with (B5), we see that the second term
vanishes, leaving

δΨ ¼ nOx δμxO − Jνxδwx
ν: ðB12Þ

Now we see that (B7) describes a Legendre transformation
of Ψ with respect to μxO, and thus we immediately obtain

δρO ¼ μxOδn
O
x þ Jνxδwx

ν; ðB13Þ

which is what we wanted to prove.

APPENDIX C: THE ROLE OF ENTRAINMENT:
A CAUSAL AND STABLE TOY-MODEL

Consider the special three-component model given by an
equation of state of the form

Λ ¼ Λnðn2Þ þ Λsðs2; z2; n2szÞ: ðC1Þ

By construction, we have

Ans ¼ Anz ¼ 0: ðC2Þ

This model is clearly not realistic, because even in the
nondissipative limit there is no entrainment between the
entropy and the particle current [see (82)], while it is a well-
known fact that Ǎns ≠ 0 also in laboratory superfluids [52].
However, Eq. (C1) produces a simple toy-model, whose
stability and causality properties are easy to study. In fact,
since the current nν is completely decoupled from sν and zν,
the energy-momentum tensor splits into two pieces,

Tνρ ¼ Tνρ
n þ Tνρ

s ; ðC3Þ

where the first contribution is a barotropic perfect fluid

Tνρ
n ¼ Pngνρ þ ð−Λn þ PnÞvνvρ;
Pn ¼ Λn − nνμν; ðC4Þ

which is a function of nν only, while the second constitutes
a two-component model

Tνρ
s ¼ Ψsgνρ þ sνΘρ − zνAρ;

Ψs ¼ Λs − sνΘν þ zνAν; ðC5Þ

which depends only on sν and zν. Now, if we insert Eq. (47)
into the first definition of (46), we obtain in the present toy-
model the separate energy-momentum conservation

∇νT
νρ
n ¼ 0: ðC6Þ

Since these are four equations (in which sν and zν do not
appear) for the 4 degrees of freedom nν, we have found that
the particle current evolves as a stand-alone barotropic
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prefect fluid. Its dynamics is, therefore, always causal and
stable, provided that the equation of state Λnðn2Þ obeys the
standard thermodynamic causality and stability condi-
tions [48].
From (C6) and (46), one can immediately verify that the

equations of motion for sν and zν can be written in the form

Rs
ρ ¼ 2sν∇½νΘρ� þ Θρ∇νsν; ∇νT

νρ
s ¼ 0: ðC7Þ

Now, if we assume that the expression forRs
ρ, which is still

not specified, does not depend on nν, then the currents sν

and zν evolve independently from nν. Their dynamics is
governed by a stand-alone two-component model for heat
conduction of the type described by Carter [5] and Lopez-
Monsalvo and Andersson [2]. This model has been shown
by Priou [27] to be equivalent, for small deviations from
equilibrium, to the Israel-Stewart theory and therefore to
share its causality and stability properties. As a conse-
quence, if the appropriate microscopic input for Λs andRs

ρ

is given, it is always possible to make the evolution causal
and stable.

We remark that there is a fundamental difference
between setting the entrainment between nν and sν to zero
in our three-component model and making Carter’s regular
assumption for heat-conducting normal fluids. In fact, in
Carter’s regular model nν and sν interact through Rs

ρ, and
therefore Carter was removing the entrainment between
two species that exchange momentum dissipatively. On the
other hand, in our three-component model the current nν

does not take active part in the dissipation, as it represents
just a spectator current. The proper analog of Carter’s
regular model in superfluid dissipative hydrodynamics
would be the postulate

Asz ¼ 0: ðC8Þ

In fact, as discussed in Sec. VA, zν (and not nν) is the
proper superfluid equivalent of the particle current in the
Eckart framework. Indeed, taking the example of this
appendix, we see that the assumption (C8) does lead to
pathology, as it converts (C5) into Carter’s regular heat-
conducting fluid.
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