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We construct a relativistic model for bulk viscosity and heat conduction in a superfluid. Building on the
principles of unified extended irreversible thermodynamics, the model is derived from Carter’s multifluid
approach for a theory with 3 four-currents: particles, entropy, and quasiparticles. Dissipation arises directly
from the fact that the quasiparticle four-current is an independent degree of freedom that does not
necessarily comove with the entropy. For small deviations from local thermodynamic equilibrium, the
model provides an extension of the Israel-Stewart theory to superfluid systems. It can, therefore, be made
hyperbolic, causal, and stable if the microscopic input is accurate. The nondissipative limit of the model is
the relativistic two-fluid model of Carter, Khalatnikov, and Gusakov. The Newtonian limit of the model is
an extended-irreversible-thermodynamic extension of Landau’s two-fluid model. The model predicts the
existence of four bulk viscosity coefficients and accounts for their microscopic origin, providing their exact
formulas in terms of the quasiparticle creation rate. Furthermore, when fast oscillations of small amplitude
around the equilibrium are considered, the relaxation-time term in the telegraph-type equations for the bulk

viscosities accounts directly for their expected dependence on the frequency.
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I. INTRODUCTION

A complete model for neutron star hydrodynamics
should account consistently for both superfluidity and
dissipation [1]. Combining these two phenomena in a
mathematical formulation that is causal and stable—so
that it is well-suited for numerical implementation—is still
an open problem. The challenge is to formulate a relativ-
istic description of a multicomponent system with identi-
fiable relative flows (a “multifluid”), and to give a clear
microscopic meaning to the input of such a hydrodynamic
theory. However, some recent advancements regarding heat
conduction [2], bulk viscosity [3], and multifluid thermo-
dynamics [4]—just to list the most relevant to the present
work—unveiled the physical content of the phenomeno-
logical multifluid hydrodynamics developed by Carter [5]
(see also [6]). Here, we show that these ideas can be used to
produce a self-consistent, causal, and stable model for
heat-conducting bulk-viscous superfluids. We do not
include shear-viscosity effects, which will be the object
of future study.

The multifluid approach of Carter and Khalatnikov [7] is
a variational technique to derive hydrodynamic theories for
conducting media, where an arbitrary number of currents
can flow relatively to each other. Its effectiveness in
describing nondissipative superfluid systems has been
widely explored, e.g., [8—10]. In the absence of dissipation,
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it has been shown in [4] that the phenomenological
multifluid of Carter and Khalatnikov is an exact reformu-
lation of the more fundamental models for a relativistic
superfluid of Son [11] and Gusakov [12]. Moreover,
Carter’s multifluid is a convenient formalism to describe
neutron stars [13,14], notably their structure [15,16], the
oscillations [17-19], and the phenomenon of pulsar
glitches [20-23].

Apart from neutron star applications, attempts to use
Carter’s approach as a general tool for modeling dissipation
in relativistic fluids have not yet received the same level of
attention. Most interest has been directed toward the theory
of Israel and Stewart [24], which has been shown to have a
great predictive power, especially in modeling heavy-ion
collisions [25]. In fact, after the works of Olson and
Hiscock [26] and Priou [27], who showed that, close to
local thermodynamic equilibrium, Carter’s variational
approach leads to a theory which is indistinguishable from
that of Israel and Stewart, it seemed natural to opt for using
the latter, as it is of more direct physical interpretation and
its formal structure can be justified directly from kinetic
theory.

The formalisms of Carter and Israel-Stewart, however,
are two particular cases of a larger class of classical
effective field theories for dissipation, arising from the
principles of unified extended irreversible thermodynamics
(UEIT) described in [28]. If we look at the two approaches
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Some fluid models related to our superfluid version of Israel-Stewart hydrodynamics (equivalent to the Carter’s three-fluid

model developed in this work). The dashed green arrows indicate the evolution of the dissipative models toward the corresponding
nondissipative limit as the fluid naturally relaxes to equilibrium. On the other hand, to upgrade the nondissipative model to a dissipative
one, new degrees of freedom are introduced. For example, promoting all the components of the entropy current to independent degrees
of freedom leads to Carter’s two-fluid model for heat conducting fluids developed in [2,5]. Similarly, adding a nonconserved
quasiparticle current to the relativistic version of the Tisza-Landau model—Carter’s dissipationless two-fluid model (see, e.g., [4])—
provides a way to construct the superfluid version of Israel-Stewart hydrodynamics via the multifluid approach.

under this light, what distinguishes them is just the choice
of variables (currents in the first, conserved fluxes in the
second). This is the reason why, in the regime of simulta-
neous validity of both theories, they share a common
backbone [2,3,28].

In this work, we extend the Israel-Stewart hydrodynam-
ics to superfluid systems by employing the aforementioned
connection with the multifluid formalism of Carter, which
was especially developed for conductive media, such as
superfluids. This strategy is sketched in Fig. 1. The formal
simplicity of the multifluid approach allows us to make sure
that our final superfluid model is consistent with the
principles of UEIT [28].

It is well known that a relativistic version of the Tisza-
Landau two-fluid model of a simple superfluid (e.g.,
Helium-II) can be rewritten as a Carter multifluid with
two currents: particles and entropy. However, such a theory
is valid in the nondissipative limit. In order to account for
dissipation coming from heat conduction and bulk viscosity
we add another nonconserved current (that we interpret as
the current of quasiparticles) to the Tisza-Landau
model, similar to the fact that to model heat conduction
in a normal fluid one can modify the perfect fluid by
promoting the entropy current to a new degree of freedom
[2,5]; see Fig. 1.

The final result is a fully relativistic' hydrodynamic
description of a superfluid, where dissipation is linked to
the presence of quasiparticle reactions (bulk viscosity) and
to the fact that the quasiparticles do not necessarily comove
with the entropy flow (heat conduction).

'We do not invoke any assumption on the smallness of the
relative speed between the currents of the model.

We also perform a change of variables (from currents to
dissipative fluxes) and a perturbative expansion near local
thermodynamic equilibrium to translate our multifluid
model into its Israel-Stewart counterpart. We use this
equivalent Israel-Stewart formulation to verify that the
infrared Eckart-type limit of our three-fluid hydrodynamics
is the superfluid model of Gusakov [12].

Throughout the paper we adopt the spacetime signature
(=, +,4+,+) and work in natural units ¢ = G = kg = 1.
The Planck constant is h, = 2zh.

II. THREE CURRENTS FLUID

In this section we derive the constitutive relations [28] of
the model directly from the variational approach of Carter
and Khalatnikov [7]. The superfluid will be assumed to be
bosonic; extensions of the model beyond this assumption
will be presented in Sec. X.

A. Fundamental variables: Relation between Carter
and Israel-Stewart formulations

Let n¥ be the conserved particle current of the superfluid,
V,n¥ =0, (1)

and s* the entropy current density [29], which obeys the
second law of thermodynamics [30]:

V,s* >0. (2)
We keep track of the evolution of the elementary excita-

tions in the superfluid phase by introducing an additional
quasiparticle current z¥, which is not conserved
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V.2 #0, (3)
because reactions of the type (the superfluid is bosonic?)

z+zs=z+z+z (4)

are allowed [34]. For simplicity, we assume that all the
quasiparticles are of only one kind z. In the case that two or
more species of quasiparticles are present (such as phonons
and rotons in “He), it would be possible to construct a
slightly different theory, as discussed in Sec. X A.

If every volume element of the superfluid is in local
thermodynamic equilibrium, the two currents n* and s* are
all the information needed to identify the local thermody-
namic state [10]. This implies that z” is not an independent
field, but it is given in every point by an equilibrium
constitutive relation of the kind

2 =2 (n, s"). (5)

When dissipative processes are at work, the fluid elements
can also explore macrostates that are out of equilibrium.
Contrary to what happens in the nonrelativistic Navier-
Stokes hydrodynamics, in a relativistic framework this
leads necessarily to an enlargement of the number of
degrees of freedom of the dissipative hydrodynamic model
[28,35]: since we aim to describe bulk viscosity and heat
conduction, we need to include at least four new indepen-
dent algebraic degrees of freedom, the scalar viscous stress
IT and the heat flux’ Q. Treating these dissipative fluxes as
independent variables would directly lead us to an Israel-
Stewart-type model. We prefer, however, the more deduc-
tive approach of Carter, but first we have to identify its
natural variables. To move from the independent degrees of
freedom n”, s, I1, and QY of an Israel-Stewart model to
those of Carter’s approach, we need to perform a change of
variables, as outlined below.

Assume that n”, s, II, and Q” are the full set of
algebraically independent variables [28] of an Israel-
Stewart-type model. Hence, there must be a nonequilibrium
constitutive relation that generalizes (5),

¥ =z¢(n", 5", 11, Q), (6)

where, since in equilibrium I1 = Q” = 0, the functions in
(5) and (6) are related by the condition

*For simplicity, we consider a superfluid of interacting Bosons:
its elementary excitations have Bosonic character and (4) is valid.
In a Fermionic system, the reaction (4) is still valid for possible
low-energy phonon-like collective modes [31,32], but (depend-
ing on the exact definition of quasi-particle that one is adopting)
there can be additional Fermionic branches of the excitation
spectrum [33], for which (4) should be replaced by a different
process.

The flux Q¥ adds only 3 degrees of freedom because of an
orthogonality condition to be discussed later.

(n”,57,0,0) = z¢,(n”, s"). (7)

Since the components of z* are 4, we can assume that it is
possible to invert the relation (6) to obtain

I =T1I(n",s", ), QY =0Q"(n",s",2"). (8)
This allows us to make the desired change of variables:
(. 5”11, Q%) — (n”, 5", 2°). 9)

Now that the degrees of freedom are 3 independent four-
currents, it is possible to model the system using the
approach of Carter and Khalatnikov [7], which is entirely
based on currents: we have shown that bulk viscosity and
heat conduction in a superfluid can be implemented by
promoting the four-current of quasiparticles to an indepen-
dent current of the theory. This is a generalization to
superfluid systems of the multifluid models proposed by
Carter [5] for heat conduction and in [3] for bulk viscosity.

B. Advantages of a three-currents formulation
a la Carter

Before moving on with the general discussion it is worth
commenting on the advantages of a formulation based on
three-currents with respect to an Israel-Stewart model.

In the Israel-Stewart framework, the dissipative fluxes I1
and Q7 are defined as deviations from a reference value
(typically zero) that is attained at thermodynamic equilib-
rium. This implies that a formalism based on the dissipative
fluxes is structurally perturbative. On the other hand, a
theory based on the physical currents n”, s”, and z”7—which
can also be defined arbitrarily far from equilibrium through
kinetic theory [34,36]—does not need to make explicit
reference of an equilibrium state in the constitutive rela-
tions. Clearly, for this hydrodynamic model to have
physical significance, in the end one needs to impose a
near-equilibrium assumption, but this is not directly
encoded into the mathematical structure of the equations:
Carter’s theory does not invoke any separation between an
equilibrium and a nonequilibrium part. This makes the
formalism easier to handle, and independent from the
problem of the choice of a so-called hydrodynamic frame
[37], at least at the level of the constitutive relations.

C. Carter’s prescription for the
energy-momentum tensor

Following Carter and Khalatnikov [7], we assume that all
the information about the state of the fluid is contained in a
hydrodynamic scalar field A. By Lorentz invariance, A can
be written as a function of the local Lorentz scalars of the
fluid:

A=A 5% 2% ngs.ni i), (10)
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where

n> = —nn,, §2 = —s¥s,, 2?2 =-7z, (11)
and
n%s = _nysw n%tz = _nyzw n%z = _SUZV' (12)

The infinitesimal variation of (10) has the form

oy c, B,
- Ans&(n%‘y) - Anzé("%z) - A‘Yzé(ngz)' (13)

It is convenient to introduce the chemical labels x, y which
run over n, s, z and the symmetric 3 x 3 entrainment matrix

Y~ 1 Ams Az
v = | Ans C A2 ( 14)
Anz Asz Bz

that can be used to rewrite the differential (13) in the more
compact form [7]

Z/cxns niny,) (15)

Assuming that the variation is arbitrary (involving also the
metric), we can make the substitution

8(n¥ny,) = ny,ony + ny,on% + n¥niég,,, (16)

which allows us to rewrite (15) as

SA = Z( A nXMXP(SgW) (17)
where we have introduced the canonical momenta

pr=> K9ny,. (18)

y

In what follows, we adopt the more physical names for the
momenta

Hy = Hys = ®w W =—A,, (19)
and we call y,, ®,, and A, respectively, chemical, thermal,
and affinity momentum [3,4]. In this way, Eq. (18) explic-
itly reads

Hy = Y_lnv + A¥s, + A"z,
0, = A"n, +Cs, + A%z,
A, = Amin, + A%, + Bz, (20)

The coefficients A" are responsible for the noncollinearity
between the currents and the respective momenta (for this
reason they are sometimes called “anomalies” or “entrain-
ment” coefficients).

The central postulate of Carter’s approach is that all the
components of the stress-energy tensor 7%”, which obeys
the conservation law

Vv, T =0, (21)
can be computed directly from A by using the prescription

2 a(/lglA)

N

where \/H is the square root of the absolute value of the
determinant of the metric. The partial derivative appearing
on the right-hand side of (22) can be computed explicitly
from the differential (17), giving

l91A)

T —
99y lglng

, (22)

T, =Y, + n"u, + s*0, — A, (23)
where 6", = ¢¥, is the identity tensor and
¥ =A-n"u,—s'0, + A, (24)

can be interpreted as a generalized pressure.4

There is consensus on the idea of using an equation of
the kind (22) to prescribe the energy-momentum tensor for
a superfluid in the nondissipative limit [7,13]. This may be
justified in view of the formal equivalence between this
phenomenological approach and the more fundamental
derivations of superfluid hydrodynamics proposed by
Lebedev and Khalatnikov [8], Son [11], and Gusakov
[38], referred to as “LAB” in [4]. However, it is not
guaranteed that it is possible to extrapolate this principle to
a dissipative context. Although we do not provide a
rigorous derivation of (22) from kinetic theory, in the
following we will show that the predictions made by using
a dissipative model based on (22) are substantially indis-
tinguishable from those of a hypothetical “exact” theory.

D. Landau representation

The system we have presented in the previous subsection
describes a generic three-component multifluid. To make

“The thermodynamic potential ¥ is the pressure exerted by the
fluid in the direction which is orthogonal to the three currents n”,
sP, ¥ (see [4]).
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contact with the physics of superfluids we need to connect
it to Landau’s dissipative two-fluid model. Generalizing
what has been done in the nondissipative theory by Carter
and Langlois [10], we postulate that

Hy = flqub, (25)

where ¢ is the gradient of the phase of the order parameter
and 7 is the reduced Planck’s constant. Equation (25) leads
to the irrotationality condition

V[pﬂv] = 0. (26)

Thus, also in the present dissipative scheme, the chemical
momentum g, is the relativistic generalization of Landau’s
superfluid velocity (within an overall constant which in the
Newtonian limit coincides with the mass of the
constituents).

In the usual hydrodynamic description of Newtonian
superfluids, the so-called superfluid velocity (in our case
the chemical momentum g, ) is treated as a primary degree
of freedom, leading to a particular case of hybrid (or
“mongrel”) representation where some variables are
momenta and some are currents [4,39]. Thus, to explore
the bridge with the Landau theory and its relativistic LAB
extension, it is useful to make the change of variables
(compare with [10])

(n*.s7.27) = (4, 8", 2) (27)
and, consequently, to write n”, ®,, and A, as linear
combinations of yu,, s*, and z¥. To do this we invert the
first equation of (20), obtaining

nl/ — YMD _ Dn.\'sy _ Dnzzy’ (28)
where we have defined the coefficients
DS = YA, D = Y A=, (29)

Then, the second and the third equations of (20) become

©, = D"y, + M”s, + Mz,
_Ay = Dnzﬂu + M‘stu + MZZZD’ (30)

with

Mss =C— Y(Ans)Z’
ME = B — Y(.A”Z)Z,
MEE = A5% = Y AP A, (31)

The formulas (28) and (30) can be represented in the more
compact form

—nv -Y pns prz ’uu
@D — Dns Mss Msz sY , (32)
—AY Dnz Msz MZZ Zu

which is the analog of (18), written in terms of the new
degrees of freedom of the LAB description.

It is useful to know that all the coefficients of the 3 x 3
symmetric matrix introduced in (32) can be obtained as
partial derivatives of a function X, just as the entrainment
matrix £ can be computed directly from A. To show this,
we write explicitly the differential (17) working at fixed
metric components (i.e., imposing 6g,, = 0):

SA = p,on* + ©,5s" — A, 57" (33)

We can implement the change of variables (27) by defining
the new quantity X as the Legendre transform of A with
respect to n”,

X=A-pn’. (34)

Therefore, X’ contains the same amount information as A
[40], and its variation is

SX = —n*Su, + ©,55" — A5 (35)

Analogously to (10), we can write X as a function of six
local scalars:

X = X(ﬂz’szv Zz’y%.\" y%z’n%z)v (36)

where

W= =,

y%s = _/“lbsD1 y%lz = _ﬂvzy' (37)
With steps which are analogous to those which led us from
(15) to (17), it is possible to show that the only way for (36)
to be consistent with (32) is that the infinitesimal variation
of (36) is given by

_ Z 2 _MSS 2 _M 2
SX = +25(%) = =5~ 8(s%) = =5~ 8()

- D”Sﬁ(y%w) - D"Z5(y%z) - M'\‘Zé(n%z)' (38)

Thus, we have shown that, to compute all the coefficients
appearing in the Landau representation, it is enough to
know the thermodynamic potential X

Finally, we can rewrite the energy-momentum tensor of
the superfluid in the Landau representation. Introducing the
“chemical” labels A, B € {s, z}, Eq. (23) can be recast into
the form

T = W + Yl + ni MAB 1t (39)

In this representation the superfluid and normal contribu-
tions to the stress-energy tensor are automatically
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separated. This also shows that Y is the relativistic
generalization of Landau’s superfluid density, within a
square-mass factor [10].

E. The generating function approach

Carter’s approach is constructed as a variational
approach, where the scalar field A plays the role of the
Lagrangian density of the matter sector. This point of view
is very convenient when one is dealing with a nondissi-
pative system, because it produces the full set of equations
of the system (including both the constitutive relations and
the field equations) (see, e.g., [4,7,10] and references
therein).

However, in a dissipative context one is usually forced to
rely on an “incomplete” variational approach, where the
constitutive relations are derived from the action principle,
while the dissipative hydrodynamic equations are
“guessed” by appropriately modifying the (nondissipative)
Euler-Lagrange equations [5,6,20]. This converts the scalar
field A into a sort of “generating function” for the
dissipative theory, namely a function which can be used
to compute all the relevant tensors of the theory as partial
derivatives but that does not contain the whole information
needed to write down the full dynamics.

Within this “generating function” point of view, all the
equations of this entire section can be summarised into two
fundamental relations:

A=T, -39,

o(+/lg L0V lglny) T
<||):Z/‘D<H) 5

74_ p
Vi & Vg 2

which can be proved by combining (17), (22), (23), and
(24), but they are also true for a generic multifluid
constructed using Carter’s approach.

The first equation in (40) tells us that the scalar field A is
not just a mathematical device. Instead, it is a physical
observable, which is uniquely determined for a given fluid,
independently from which choice of degrees of freedom we
make. In particular, —A, =¥, and —A&" are thermodynamic
potentials that are all linked to the internal energy via the
Legendre transform’ (see [4]).

The second equation in (40) collects together all the
relevant constitutive relations in a single differential,

8(\/IgIN) &

My
Vgl

_AU

(40)

) ¢ 3

lgls*)
Vil "Vl
5(vlglz") | T

o9

Vi 27

(41)

’In particular, —X has been called J in [4], and it is the
thermodynamic potential that naturally arises when constructing
an equation of state from microscopic calculations.

This formula will be useful later, as it allows us to keep
track directly of all the transformations that occur whenever
we decide to make a change of degrees of freedom.

To give an idea of how this works in practice, we
consider the following application: if one works in the
Landau representation (which we introduced in the pre-
vious subsection), is there an analog of Eq. (22) for
computing 7* directly from A'? The answer is yes: first,
we use (34) to prove the identity

5(\/19lX)  8(+/]gIA) 5(+/Igln*)

= — 4y — n¥op,. (42
Jd - d g W

Then, from (41) we obtain

o(/1%) _
Vsl

5(/lgls")
Vil

g S0/l | T

_nuéﬂu + 81/

’ + 560, (43)
Vigh 27"
which implies that the analog of (22) is
2 X
2 00/l @

Vgl 0% gy i

Indeed, if one takes the generic variation (38) and uses it to
compute the partial derivative (44), one obtains directly
formula (39) for the stress-energy tensor (see Appendix A 1
for the proof). This result (which is straightforward in a
generating function approach) is at the origin of the
equivalence between the potential [8], the convective [9],
and the hybrid [10] variational derivations of covariant
superfluid dynamics [7].

F. Field equations

Now that the constitutive relations and a physical
interpretation of the hydrodynamic fields have been fixed,
we need to derive the field equations [28]. It is possible to
show that [see, e.g., Eq. (141) in [4]]

V,TV, = R, + R} + R}, (45)
where the canonical hydrodynamic forces R are
Ry =21V, + pu,V,n",
R;, = 2SDV[U®p] + @l,vysb,
R; = =22"V, A, = AV, 2" (46)

From the conservation (1) and irrotationality (26) condi-
tions, we obtain

R =0. (47)
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Therefore, recalling (21), Eq. (45) implies
R; = —-R;. (48)

Now, let us see how many equations are needed to close the
system. The model builds on 3 independent four-currents,
so it has 4 + 4 4 4 = 12 algebraic degrees of freedom. The
energy-momentum conservation gives four equations and
the particle conservation 1. The irrotationality conditions
(26) are six equations; however, three of them are con-
straints on the initial conditions, and therefore only three
are proper equations of motion. Thus, we have a total of
4+ 1+ 3 =8 hydrodynamic equations. We need other
12 — 8 = 4 equations to close the system: to complete the
model we only need to give a prescription for the four-force
R, from kinetic theory. It has been shown that, in general,
there is no universal prescription for the structure of a force
of this kind [41]. In fact, this force may, or may not, involve
derivatives of the hydrodynamic fields and it cannot be
constrained further using purely geometrical and thermo-
dynamic arguments.

Following the approach of Carter [5], in Sec. VII we will
choose the simplest possible prescription for R, which
contains all the physics we need. With this specific
construction, we will have at our disposal a minimal model
for bulk viscosity and heat conduction. However, before
making this choice, it is convenient to see what we can
conclude on general grounds, without selecting any par-
ticular formula for ;.

III. OUT-OF-EQUILIBRIUM EVOLUTION OF
HOMOGENEOUS STATES

A common feature of relativistic hydrodynamic theories
for dissipation is the existence of a dynamical evolution
also in the homogeneous limit (in which the spatial
gradients are zero), which manifests itself in the existence
of gapped dispersion relations in the spectrum of the linear
theory [37]. Within UEIT, this intrinsic evolution is
interpreted as the point of contact of the model with
nonequilibrium thermodynamics [28]. Therefore, it is
important to see how the present hydrodynamic model
behaves in the homogeneous limit, as this is the configu-
ration in which the bridge with statistical mechanics must
become evident [4].

Throughout this section, we will assume that the space-
time is Minkowski and that all the states under consid-
eration (both the perturbed and the unperturbed ones) are
homogeneous in the adopted global inertial frame.

A. Equilibration dynamics and equilibrium conditions

Our first task is to see if the fluid admits a homogeneous
equilibrium state, and if the properties of this state are
consistent with microphysics.

We start from the observation that in the homogeneous
limit equations (1), (2), (21), and (25) take the simpler form

on’ =0, d,5° >0, 0,T” =0, O = 0.

(49)

If we find a state that maximizes s° at constant particle
density, energy-momentum per unit volume, and spatial
part of the superfluid momentum, then this is necessarily an
equilibrium state of the system and, since s” can only grow
or stay constant, it is automatically a Lyapunov-stable
equilibrium [28,35].

Let ¢ and ¢ + d¢ be the values of a generic observable
(p, in this example), respectively, at equilibrium and in a
perturbed state; both states are homogeneous. Then, the
first-order variation of (23) reads (the metric is fixed)

5T, = &, 0% + ) _(uiont + nkous).  (50)

Considering that Eq. (24) can be written in the compact
form

W= A=) n (51)
the variation 6%, recalling (17), is

O == ntop. (52)

So, contracting Eq. (50) with the inverse-temperature
vector [10,42] (not to be confused with the thermal
covector ©,)

pr=—s/(0,s5%), (53)

we obtain

poTe, =3 (Pusont + 2k pley).  (54)

X

From the definition (53) it follows

pe, = -1, S[Vﬂﬂ] =0, (55)
so that we can isolate the variation of the entropy current in
(54), obtaining

os" = —=p,6T + pu,én” — p°A,67"

+ 2nlplop, — 2z P16, (56)
We need to maximize s” at constant particle density,
energy-momentum per unit volume, and spatial part of
the superfluid momentum [4]. Thus, taking the component
v =0 of Eq. (56) and imposing
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8T% =0, on® =0, Su; =0, (57)

we have to set to zero the variation
850 = —prA 620 — 2:08715A, = 0. (58)

This provides four equilibrium conditions, which allow us
to find the functions z{,(n”,s”) introduced in Eq. (5).
Imposing the stationarity with respect to processes of
quasiparticle creation and annihilation, associated with
the variation 6z° in (58), we obtain the chemical equilib-
rium condition

A, = 0. (59)

This is simply the requirement that the affinity of the
reaction (4), as measured in the frame of the entropy [4],
vanishes. Therefore, we have shown that the model predicts
that the chemical potential of the quasiparticles in equi-
librium is zero, in agreement with the statistical mechanics
of a superfluid [34].

Imposing the stationarity of s” with respect to variations
of the momentum per quasiparticle A ;, we obtain from (58)
the collinearity condition

s = 0. (60)

We have found that in thermodynamic equilibrium the
quasiparticle current is locked to the entropy current, or, in
other words, the entropy is transported by the excitations, in
agreement with the Landau theory of superfluidity [43] [see
Eqgs. (8-24), (21-3), and (21-4) of Khalatnikov [34]]. The
two equilibrium conditions (59) and (60) are also in
accordance with the derivation of the thermodynamics of
a generic multifluid presented in [4].

We remark that we have not verified under which con-
ditions the state given by Egs. (59) and (60) is a real maximum
of the entropy, and not just a saddle point or a minimum.
Addressing this issue would lead us to a stability analysis of
the kind performed by Hiscock and Lindblom [44] for normal
Israel-Stewart fluids, producing several thermodynamic
inequalities for the equation of state (10). Such inequalities
generalize the Gibbs stability criterion to superfluid systems
[35,45-48]. This analysis is beyond the scope of the present
paper, but it will be addressed in future work.

B. Thermodynamics of the three-current model

It is interesting to analyze in more detail the properties of
the equilibrium states. To do so, let us restrict the generic
differential (56) to equilibrium configurations: we have to
impose the two equilibrium conditions (59) and (60),
obtaining

85" = —P,6T + P, én* + 2nlplop,.  (61)

This is the thermodynamic differential of a relativistic
superfluid in local thermodynamic equilibrium proposed by
Lebedev and Khalatnikov [8]; see Eq. (43) therein.® In
addition, in Appendix A 2 we prove that the Newtonian
limit of this differential, for v = 0, is Eq. (4) of Andreev and
Melnikovsky [46], which constitutes the Galilean-covariant
thermodynamic differential of a Newtonian superfluid.

Equation (61) is naturally presented in a form which
reminds us of the covariant Gibbs relation given by Israel in
[30], which we will refer to from now on as Israel’s
covariant Gibbs relation, including, however, a further term
2n[”/}/’]5,up associated with the variation of the superfluid
momentum. Indeed, if the irrotationality constraint (26) did
not hold, then we would not be allowed to impose the
conservation law 9,u; = 0 and we would obtain a further
equilibrium condition

nlstl = 0. (62)

In this case, the superfluid and normal components move
together and (61) would reduce exactly to Israel’s covariant
Gibbs relation

8¢ = =B, + P, on". (63)

This shows that the possibility of having a relative motion
between the superfluid and the normal component is only
the result of the conservation of the superfluid momentum
on very long timescales (or Landau superfluid velocity). In
this sense, the states in which (62) does not hold may be
considered as long-lived metastable states with an effec-
tively infinite lifetime, which exist as a result of the
presence of three constants of motion which break the
ergodicity of the system [4,49]. The unique state given by
(62) would, in this case, be interpreted as the absolute
equilibrium state’ fulfilling Israel’s covariant Gibbs relation
exactly. In a hydrodynamic framework, since the conser-
vation of u; is given as an exact constraint, it is more
convenient to consider these metastable states as genuine
equilibrium states and to regard (61) as an equilibrium
thermodynamic differential, which includes the superfluid
momenta as free variables (for a microscopic counterpart of
this discussion see Huang [50]).

This interpretation also allows us to extend the zeroth
law of thermodynamics—when two bodies are in thermal
equilibrium with each other, they have the same inverse-
temperature vector [49]—to relativistic superfluid systems.

®Lebedev and Khalatnikov [8] adopt the signature (+ — ——).

"The absolute equilibrium (in which there is no relative
current) and the metastable equilibria (that carry persistent
superfluid currents) are separated by a free-energy barrier [4].
Changing the superfluid velocity, so that the metastable equilib-
rium can decay into the absolute one, requires a collective
transition involving a macroscopic number of particles, a very
low probability event.
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Assume that the superfluid is weakly interacting with a
homogeneous nonsuperfluid substance H, which carries no
conserved charges and whose Israel’s Gibbs relation—
compare with (61)—is

08y = —ﬁ,’féT;f, (64)

where s%;, ﬂf,’ ,and T/ are, respectively, the entropy current,
inverse-temperature vector, and energy-momentum tensor
of H. We assume that
st =" +sy, Tg=T"+Ty, (65)
so that we can treat the substance H as an ideal thermom-

eter. The hydrodynamic evolution is, then, subject to the
constraints

0,n° =0, O =0, 0,T?£:0, 0,80 20, (66)

which implies that to find the maximum entropy state we
need to maximize s, imposing
6n® =0,

Su; =0, 8T =—5T. (67)

This gives the equilibrium condition

B, =8, (68)

a result that generalizes the relativistic zeroth law to
superfluid systems. In thermal equilibrium, the superfluid
component is allowed to flow with respect to the ther-
mometer, but the normal component is not. In fact, for the
substance H (which is not superfluid), it is in general true
that

qu
 ——_l 69
P @[-[ ( )

where u%, is the fluid velocity of H and @y is its temper-
ature. Therefore, the zeroth law (68) is equivalent to
s[”u’,)} =0, 570, = —5s0y. (70)
The first condition states that the normal component of the
superfluid is subject to friction with the environment and
has, therefore, a tendency to stick to it. The second equation
is the rigorous definition of the temperature of the super-
fluid as the zeroth component of the thermal momentum

measured in the normal rest frame (in agreement
with [4,8,9]).

IV. NONDISSIPATIVE HYDRODYNAMICS

Let us move back to the inhomogeneous case, in an
arbitrary spacetime. The next step of our study consists of
verifying that our model admits the correct nondissipative

limit. We can use the two equations (59) and (60) to define
the local thermodynamic equilibrium state of the fluid
elements. Our task is to verify explicitly that, if we impose
these conditions as dynamical restraints on the fluid
motion, this gives rise to a nondissipative hydrodynamic
model (V, s = 0). Furthermore, we aim to verify that the
two-fluid model that emerges coincides with the one of
Carter and Langlois [10]. The analysis is analogous® to the
one presented in Sec. IV of Carter and Khalatnikov [9],
apart from the fact that we prefer using a generating
function approach.

A. Reduction to a two-component model

First of all, we define precisely the physical setting we
adopt to study the nondissipative limit of the three-
current model.

We consider a relativistic superfluid whose physical
tensors can be computed via the generating function
approach by using the model in Sec. II. Assume that the
processes driving the fluid elements to local thermodynamic
equilibrium are so fast, compared to the timescale of the
hydrodynamic process under consideration, that the equi-
librium conditions (59) and (60) are approximately valid on
every spacetime point. This means that we are in the so-
called equilibrium regime (see, e.g., Sec. II-D in [3]). Then,
we can impose that (5) is approximately valid everywhere,

¥R zgg(n”, 7). (71)

This reduces the algebraic degrees of freedom from 12 (n”,
s, 77) to 8 (n”, s”), producing a two-fluid model: our goal is
to verify that the physical quantity A = 7%, — 3W still plays
the role of generating function for this two-fluid model.

First, we need to restrict the generic variation (41) to the
state space of the two-fluid model, which, according to
the equilibrium condition (60), must satisfy a constraint of
the form

Zeg = Yo" (72)

The coefficient y, is a non-negative function of the local
thermodynamic state,

Yz :yz(nzvsz’n%ts)’ (73)

and has to be the solution of Eq. (59), to ensure local
equilibrium with respect to quasiparticle production/anni-
hilation processes. Thus, any term proportional to A, s”
must vanish, and we can impose

8Despite the formal similarity, our quasiparticle current z“ and
the “would-be-normal” current ¥ of Carter and Khalatnikov [9]
have completely different physical meanings.
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_a 0Wldlt) |y 8/lls)

\/m Yz DW7 (74)
which, plugged into (41), gives
SN _, 50/ Ig) | S0/l T o
VIl VIl Vil 27"
with
0, =0, - yA,. (76)

Therefore, the restriction of A to local thermodynamic
equilibrium states produces, according to the prescription
(40), the generating function of a two-component fluid with
primary currents n* and s¥, having as conjugate momenta
the covectors u, and @y, respectively. This implies that our
definition of the superfluid momentum (25) reduces to the
one of Carter and Langlois [10] in local thermodynamic
equilibrium. Furthermore, in local thermodynamic equilib-
rium

5“0, = 5'0,, (77)

which implies that the ordinary temperature of our three-
component model coincides with the one of Carter and
Khalatnikov [9].

Finally, as a consequence of (75), the restriction of the
stress-energy tensor (23) to the states of the two-fluid
model must necessarily have the two-fluid canonical form

T, =W&, + n'u, + s*0,, (78)
with generalized pressure
¥ = A—n'y, —s0,. (79)

This can also be verified explicitly.

In conclusion, we have shown that the constitutive
relations of the two-fluid model of Carter and Langlois
[10] emerge directly from our three-component model if we
impose the local thermodynamic equilibrium condition as a
dynamical constraint. An analogous mechanism has also
been discussed in detail in [41].

B. Entrainment coefficients of the nondissipative theory

We can now obtain the entrainment coefficients (indi-
cated with a hat) of the two-component model from the
matrix (14) arising from our dissipative three-current
model. We only need to plug (20) into (76), using the
constraint (72) to get rid of z” as a degree of freedom:

Hy = Y_lnv + (Ans + yZAnZ>Sw
0, = (C+ 2y, A% + y2B8)s, + (A" +y. A")n,.  (80)

This allows us to make the identifications

B' =y, C=CH2y, A% +y2B,  (81)

and
Ans _ Asn = A" + yZAnZ' (82)

Now, there is an interesting remark to make. Imagine a
situation in which all the contributions coming from the
entropy in the three-component model where negligibly
small

Cr A%~ A 0. (83)
Then, we would have

CryB, A" = A" xy A% (84)
Since the quasiparticles are excitations carrying quanta of
energy and momentum, the coefficients B¢ and A" are in
general non-negligible. This implies that, even in the case
in which the entropy current constitutes a negligible
contribution to the total energy-momentum balances, it
acquires inertia in the two-component model, when the
degrees of freedom are reduced and z” transfers its entrain-
ment to s¥. This fact is the key to understand the connection
of the nondissipative theory of Carter with the Landau two-
fluid model. In fact, in Newtonian physics, the entropy is
always considered to be “massless,” in the sense that it does
not carry rest mass. However, in the Newtonian limit of
Carter’s theory the entropy does contribute to the total mass
current through the entrainment [51,52]. This arises from
the fact that the entropy (in the nondissipative limit) is
advected by the normal component, which is a gas of
quasiparticles. Thus the mass flow associated with the
entropy flux is, in reality, due to the momentum of
the excitations, which are hidden in the formalism through
the relation (5).

To show this more explicitly, we consider the stress-
energy tensor in the Landau representation (39). The last
term in the right-hand side can be rewritten using the local
thermodynamic equilibrium condition (72) as

P MAB iy = (M 4 23 M 4 yIME)shs, (85)
Therefore, using (31), we obtain
T = W + Yl + Ms*s? (86)

with
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M=C—Y(A™)2 (87)

This shows that M can be interpreted—as also pointed out
by Carter and Langlois [10]—as the normal density divided
by the entropy density squared. We see that if we impose
(83) we obtain

M 2B = Y (A=), (88)

proving that in this case all the normal density is due to the
quasiparticle contribution.

C. Nondissipative limit of the hydrodynamic equations

The hydrodynamic equations of the nondissipative limit
of our three-component model reduce automatically to the
hydrodynamic equations of Carter’s two-component model
regardless of the choice that we make for R;. This is due to
the fact that Egs. (1), (21), and (25) need to be exactly
respected in any hydrodynamic regime. Since these are 8
equations and in the two-component model the algebraic
degrees of freedom are 8 (n”, s”), the evolution is
completely determined.

We can verify this explicitly by taking the four-diver-
gence of (78) and imposing the validity of (1), (21), and
(25) to obtain

25*V,0, +0,V,s* =0, (89)
which is the evolution equation of the thermal component
given by Carter and Langlois [10]. This equation confirms
that the convector (:),, given in Eq. (76) really is the thermal
momentum in the nondissipative limit. Furthermore, the
nondissipative nature of the limit is proved noting that,
contracting (89) with s”, we obtain

V,s" = 0. (90)

V. NORMAL AND SUPERFLUID
REFERENCE FRAMES

Let us go back to the dissipative three-component model
of Sec. II. In the description of superfluid systems there are,
usually, at least two preferred reference frames which are
convenient to consider: the rest frame of the so-called
“normal” component and the rest frame of the “superfluid”
component that is typically identified with the frame
defined by the Landau superfluid velocity [43]. In this
section we study their generalization to relativistic dis-
sipative systems, and we study how the hydrodynamic
fields can be geometrically decomposed in these reference
frames. This will allow us to set up some convenient
notation and to start building a bridge with the dissipative
dynamics of a relativistic superfluid developed by
Gusakov [12].

A. Normal reference frame:
The Eckart frame of quasiparticles

Following Gusakov [12], in the presence of dissipation
we may define the normal rest frame as the frame identified
by the average velocity u” of the quasiparticles,

u =27V \/=7z,. (91)

The field u* represents the Eckart fluid velocity of the gas of
excitations, and for this reason we label the quantities
measured in this reference frame by E. Note that, in the
superfluid case, we need to consider the thermal excitations—
not the conserved constituents of the fluid—as the chemical
species which generalizes the particle current in the Eckart
approach. This is due to the fact that dissipation is mediated by
collisions between quasiparticles and not by collisions of
constituent particles. In fact, in local thermodynamic equi-
librium we observe collinearity between s and z* [see (60)],
and not between s* and n”.

In order to perform the decomposition of the hydro-
dynamic tensors in the normal rest frame we define the
normal-frame densities

E _ E _

nf = —u,n, sE = —u,s", 7E

=—-u,z", (92)

vyhere = =2z, Th.e.normal—frame .chemical poten-
tial, temperature, and affinity are, respectively,

HE = —MDMU, ®E = —®DMD, AE = —Ayu”. (93)
Analogous to the Newtonian theory, we define the heat flux
QY via the relations

12

s¥ = sFur + = Q%u, = 0. (94)
Of

Although in the absence of superfluidity the heat flux is
usually defined as the energy flux measured in the rest
frame of the particles [44], this definition is not natural in
superfluid hydrodynamics, because some flow of energy
exists also in all the equilibria that carry a persistent
current. In view of this, the most convenient superfluid
generalization of Q% is (94): if we compare (94) with
the equilibrium condition (60), we see that it implies that
0¥ =0 in local thermodynamic equilibrium, consistently
with the physical interpretation of Q" as a dissipative flux.
We can also decompose the superfluid momentum g, as
Hy = HEU, Wy, wyut = 0. (95)

The vector w, represents the spatial part of the Landau
superfluid velocity (we can identify it with the superfluid
three-velocity, apart from prefactors) measured in the
normal rest frame. To better understand the physical
meaning of the decomposition (95), which has been
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suggested by Gusakov [12], we can consider that in a local
Lorentz frame defined by u* (i.e., such that u* = &), we
can locally approximate the order parameter’s phase ¢ as

= Py — ot + kx!, (96)
which, compared with (26) and (95), implies

The first equation is the Josephson relation for a neutral
superfluid, and the second equation shows us that w; points
in the direction of maximum growth of the phase ¢ in the
normal rest frame. The modulus of the three-vector wj,
apart from an overall factor, counts the number of phase
windings per unit length in the normal rest frame [4].

Equations (94) and (95) can be used to study the
decomposition of the particle current n”. Taking Eq. (28),
it is easy to verify that

n = nFu + Y(w” - “gQV>, (98)

E
with nf =Y (up — A"st — A%zE). We see that this
expression for the particle current differs from the one
of Gusakov [12] by a term proportional to Q¥, which is
absent also in the Newtonian model of Khalatnikov [34].
Indeed, we will show that the key assumption to recover the
standard theory of dissipation in superfluids presented in
Khalatnikov [34] and Landau and Lifshitz [43] is to assume
that it is possible to set A" to zero.

We can, now, move to the energy-momentum tensor. Let
us define the Eckart-frame internal energy as

po=T . (99)
which, from (23), gives the Euler-type relation
p ==Y+ nfup+ st — FAL. (100)

Then, the energy-momentum tensor can always be decom-
posed into

7" =Yg + (p + ¥V)u*u’
+ Y(W'W + upw’u’ + ppw’u?)

+ 2w +w Q) + 70, (101)
where we have defined the coefficients
e M
Z=1-ABYy-—— =—. 102
o, Y=o (%

We see that the heat flux QY defined in (94) is not
guaranteed to coincide with the first-order nonequilibrium

correction to the energy flux, because of the factor Z.
However, again, we note that in the case in which A™ = 0,
we obtain Z = 1, and the agreement with the standard
Newtonian theory of Khalatnikov [34] and Landau and
Lifshitz [43] is restored.

Finally, introducing the decomposition of the thermal
momentum

0, = Opu, + 0 Otur =0, (103)
it is possible to show that
Op = upont + Opsst — ApdzE
Ans 12
Y(w/——0" |6 =50, (104
v(w =50 Jow,+ So0r. (104

for any variation which conserves the components of the
metric; see Appendix B.

B. Superfluid reference frame:
The Landau-Lifshitz frame

We define the “superfluid” frame’ via the four-velocity

SN RV

In this frame, the phase of the order parameter ¢ has, locally,
no spatial gradients. For a single superfluid (and only in this
case), this reference frame represents the most natural frame
for making microphysical calculations at low temperature.
This is due to the fact that the spectrum of the excitations is
much simpler (namely, it is isotropic) if the order parameter
is uniform. We can think of »* as a sort of generalization of
the Landau-Lifshitz fluid velocity (defined by the total
momentum of the fluid) to relativistic superfluid systems:
instead of the total momentum, we are setting to zero the
superfluid momentum in the Landau-Lifshitz frame. In
accordance with this convenient identification, we use the
label L to label quantities measured in this frame.

Similar to what we did in the previous subsection, we
may decompose every tensor into space and time compo-
nents in the Landau-Lifshitz frame. However, since the
superfluid frame is considered mainly to make a bridge
with microphysical calculations (of which we will show an
example in Sec. VIII), we will focus here only on the
variation of the entropy density.

Introducing a local inertial frame aligned with v¥, we
select the component v = 0 of Eq. (56), and we work at
fixed particle density (6n° = 0) and v* (Su ; = 0). Hence,
we can write

(105)

°As also stressed in other works, this is not the rest frame of the
superfluid substance under consideration (a superfluid substance,
being conductive, has no clear rest frame, except at absolute
equilibrium). Rather, it is just a historical name, useful to make
connection with the language of Landau and Lifshitz [43].
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850 = —p,6T% — prA,62° — 220815A ;. (106)
Since there are no variations of n° and u i» Eq. (106) is only
concerned with the thermodynamic sector associated with
the presence of excitations. Now, introducing the notation

sO = st 0 =zt % =P, (107)
we find the thermodynamic differential
Ssk = —B,6P" — p*A5zF —2Z0875A ;. (108)

This can be seen as the fundamental relation for the
nonequilibrium generalized ensemble of the quasiparticle
gas, on a timescale on which the quasiparticle number is
conserved and an initial heat flux has had no time to relax to
zero through collisions.

In the limit where the superfluid is in thermodynamic
equilibrium, applying the constraints (59) and (60), we find

SU = BLSst + 5_16797, (109)
where
U:=T"v,v, =P,
1
®L .= -,
Po

Equation (109) is the relativistic version of the thermody-
namic differential which is considered by Landau and
Lifshitz [43], Eq. (139.9), and Carter and Langlois [10],
Eq. (6.17), establishing a bridge between the different
approaches.

At this point, it is important to comment on the physical
meaning of the quantities we have introduced. Clearly, s*,
7k, U, and P/ are the densities of entropy, quasiparticles,
internal energy, and momentum in the superfluid reference
frame. The three-vector A j is the three-velocity of the
entropy; see (53) and Sec. VIII A for its microscopic
interpretation as a weighted average of the quasiparticles’
velocities.

We stress that @ is not the Landau-frame analogous of
®f (for this reason we have raised its reference frame
index). In fact, since @ # —@,1%, it is not a temperature of
the type presented in Appendix B. The reason for this is that
in the differential of / we are taking the momentum density
P/ as an independent variable, in place of ©® ;. This choice is
more convenient in microscopic calculations, because in
the homogeneous limit P/ is a conserved quantity; there-
fore, it represents the natural parameter of a statistical
ensemble describing the quasiparticle distribution.

VI. NEAR-EQUILIBRIUM EXPANSION

Since we are also aiming to construct the Israel-Stewart
formulation of a relativistic superfluid, it is important to
analyze the structure of the constitutive relations close to
local thermodynamic equilibrium. In this section, we
expand the hydrodynamic fields of theory for small
deviations from equilibrium, with reference to the Eckart
frame E. This procedure is the generalization to the
superfluid case of the techniques developed in [3].

A. A preliminary assumption

To recover the structure of the Newtonian theory of
Khalatnikov [34] and of the relativistic model of Gusakov
[12], we will make the simplifying assumption

Ams =0, (111)
which immediately implies
n* = nfu¥ + ywv, Z=1. (112)

It is known that, after arbitrarily setting to zero some
entrainment coefficients, one might compromise the sta-
bility and causality properties of the theory [26]. However,
in Appendix C we show with a concrete example that,
luckily, the condition (111) is not an intrinsically patho-
logical choice, in the sense that it is not impossible to
construct causal and stable models in which A™ = 0.

Under the assumption (111), one can easily check from
the second equation of (20) that

0
o =C=". 113
b=cg (113)
The variation (104), then, becomes

Sp = ppont + Opdst — ApszF

Q¥ o,
Yw'é =5 C=]. 114
+ Yw*éw, + o, < ®E> (114)

We see that, if we take the equation of state for p as our
fundamental relation, the 12 natural primary variables of

the theory are
co
<u”,nE,sE,zE,ww = ).
Op

However, since in equilibrium Ay = Q¥ = 0 [see Egs. (59)
and (60)], it is more convenient, for the purpose of making
the near-equilibrium expansions, to change variables and
work with the following degrees of freedom:

14

E E Q
u’,n", s, Ag,w,,— |.
Of

(115)

(116)
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We, therefore, define a new thermodynamic potential

00,

G=p+Agf -C=—~, (117)
O
whose infinitesimal variation is
8G = ppont + Opsst + E6A
Y c.[00
—o(w” —=0 Y. 118
yotew) -5o(%2). iy

Note that Eq. (111) allows us to decouple the contributions
associated with w, from those associated with Q" in the
variation of G. In this way, the heat flux produces only
second-order contributions to the thermodynamic variables,
and its presence can be neglected in a first-order expansion
of G. The entrainment between the entropy and the particle
current, instead, would produce coupling terms of the kind
w, 60" and Q"6w,. These are first-order corrections in Q*,
which would affect every thermodynamic quantity.

B. How does the expansion work?

First of all, let us explain how the expansion is
performed. We consider an arbitrary spacetime point x,
and we imagine measuring all the fields given in (116) on
x10 Then, we introduce a fiducial equilibrium state on x, by
making the transformation

14

E (E
ul/’n , 8 9AE’WU7_
Of

) — (u¥, nE, s£,0,w,,0). (119)

In other words, we are imagining to construct a hypotheti-
cal alternative fluid element on x, which is in a state of local
thermodynamic equilibrium (Az = Q¥ = 0) and which has
the same fluid velocity, particle density, entropy density,
and winding vector as the “real” fluid element. The
physical value of every relevant quantity can, then, be
expanded to first order in the deviation from the value
assumed in this reference equilibrium state.

In practice, consider the example of the pressure we
introduced in Eq. (24). Its physical value at x is ¥, while we
can call ¥, its value on the fiducial equilibrium state,

Y= ‘P<nE, sE Ap, ww,, QG)ZQ”),
E

Yo, = ¥(n*, 55,0, ww,.0). (120)

'"The fields presented in (116), namely u*, n®, s£, Ag, w,, and
Q" /Oy, are going to be the primary variables of the model, across
both Secs. VI and VII. Using the terminology of UEIT, we may
interpret u*, nf, s¥, and w, as the dynamical fluid fields and the
fields Ay and Q"/®f as the dissipation fields, subject to a
superfluid analog of Lindblom’s relaxation effect [53].

The expansion, then, consists of writing

V=Y, +1I, (121)
where II, which can be interpreted as the bulk-viscous
stress, 1S modeled as a first-order correction:

oY
M=Arga
E

(122)
The partial derivatives are performed with respect to the
free variables used in (120). As we anticipated, if A" = 0,
no contribution to the thermodynamic potentials (such as p,
G, or ¥) can come from Q" to first order, as we show in the
next subsection.

Note that the equilibrium state introduced in Eq. (119) is
not the only possible reference equilibrium state one can
use. The choice of which equilibrium state to consider for
making a near-equilibrium expansion is not always unique
and constitutes the so-called hydrodynamic frame choice
[37]. We have selected this particular hydrodynamic frame
because it turns out to be particularly convenient for our
purposes. Furthermore, it somehow extends the Eckart
approach to the superfluid case, facilitating the contact with
the Newtonian two-fluid model (strictly speaking, the
Eckart frame fixes p instead of sf in the transformation
(119), but, as we shall see below (127), to first order the
result is the same).

C. First-order expansion

Let us, first of all, expand the potential G to the first
order,

g= Peq T AEZeEq- (123)

The label “eq” indicates that the quantity is evaluated on the

fiducial equilibrium state. Any hydrodynamic scalar field

(e.g., a thermodynamic potential) which carries the label

“eq” can be written as a function of

(nE, s, ww,); (124)

see also [38]. In the following, partial derivatives of “eq”

fields—e.g., the ones in (129)—will be computed accord-

ing to this convention.

The fact that the zeroth order term of G coincides with
Peq» Namely

geq = Peq> (125)
can easily be proved by evaluating the Legendre trans-
formation (117) in equilibrium. The first-order contribu-
tion, on the other hand, is zquE because
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p_ 09

- (126)
aAE VlE,SE,W,,,QD/@E

Z

[see Eq. (118)]. No first-order contribution comes from Q”.
By direct comparison between (117) and (123), we can
obtain the first-order expansion of the energy density:
P = Peq- (127)

The fact that p does not have any first-order correction is
due to the equivalence between the maximum entropy
principle and the minimum energy principle [40], which
states that the equilibrium state, identified as the maximum
of s£ at constant (nf, p, w*w,), is also the minimum of p at
constant (n, sf,w*w,). This is also why our choice of
hydrodynamic frame is the natural superfluid generaliza-
tion of the Eckart frame, to the first order.

Now, we can insert the expansion (123) into the differ-
ential (118), obtaining

. oz
e = pg + AEWCE,
ozk
Op =07 + Ap—7.
E e+ AE OsE
0z
Y:qu+2AEa(w—jfv). (128)
Introducing the coefficients
07 07
=Ap—p. =2Ap——, (129
X E OnE Y Ea(w'w,) (129)

we can obtain from (95) and (112) the expanded expression
for the superfluid momentum and the particle current,

= (g +x)u, +w,,

n’ = nfu’ + (Yo + Y)0". (130)
We see that nonequilibrium effects produce a correction y
to the superfluid momentum which is proportional to the
affinity Ay of the quasiparticle creation processes.
This term is also present in the model of Gusakov [12]
[see Eq. (15) therein], and in the Newtonian theory of
Khalatnikov [34] [see the term % in Eq. (9-3)].

The contribution to the particle current given by ), on
the other hand, is usually neglected [12,34]. This is due to
the fact that typically one also makes the assumption that
w, is small, implying that terms proportional to Apw, are
effectively of the second order and can be considered
negligible; see the discussion at the end of Sec. 140 of
Landau and Lifshitz [43]. However, since till now no
assumption on the magnitude of w, was made, we will
retain all these contributions for completeness and internal
consistency.

We can use the Euler-type relation (100) to expand the
pressure (to first order) near equilibrium:

E

0z
¥ = —peg + (W + 1) +5° (@‘2‘* +Aro 7

> - ZeEqAE.
(131)

This equation can be compared with (121), from which we
find a formula for the equilibrium pressure,
Yoy = —peq + nEuy + sEOF, (132)

in agreement with Gusakov [12], and a formula for the
bulk-viscous stress,

7L 07
IM=-Ag (zfq —nf an,‘} —sF as‘;)' (133)

If we constrain w, to zero, removing the effects of super-
fluidity, the expression for IT becomes a particular case of
Eq. (65) of [3].

Recalling the decomposition (101), we are, finally, able
to write the near-equilibrium expansion of the energy-
momentum tensor as

T = T + I, (134)

where

ng = q}quup =+ (peq + \Peq)uyup

+ Yeq (W'W + piw ul + pgiwlu”)

(135)
is the equilibrium contribution and

Czyp:H(gu1)+uyup)+uuQﬂ+u/)Qu
+Yeqr(Wu +w'u¥)

+Y(WWP + pgwhul + pgwl u) (136)
is the first-order dissipative contribution. In deriving the
foregoing formula we have employed Eq. (112), and we
have neglected the second-order terms JQY(Q” and
Yy(wu’ +wlu).

The terms appearing on the first line of (136) are the
ordinary bulk-viscosity and heat-conduction corrections.
The second and the third lines have been neglected by
Gusakov [12], consistent with the methodology of treating
terms proportional to Agw, as higher-order contributions.
However, it is interesting to note that, although Khalatnikov
[34] works under the same assumption (namely small w,),
he chooses to retain also the second line. The reason is that
in this way, in the Newtonian model, the positivity of the
entropy production (2) is ensured as an exact mathematical
condition that is valid also outside the regime of validity of
the theory.
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VII. DERIVATION OF THE HYDRODYNAMIC
EQUATIONS

As anticipated in Sec. II'F, to complete the hydrody-
namic model we need to provide a constitutive relation for
the force R ;. Such a prescription, to be rigorously derived,
would require us to explicitly match the predictions of the
hydrodynamic model with quasiparticle kinetic theory, a
task that is beyond the scope of the paper. However, using a
technique similar to the one adopted by Carter [6], it is
possible to construct a simple generic expression for RS,
which contains the relevant physics required to model bulk
viscosity and heat conduction. Below we introduce this
technique, and we examine its implications.

A. The simplest model for the hydrodynamic force

Let us make the normal-frame decomposition

R) = Rgu, + ) fouw’ =0. (137)
Contracting the third equation of (46) with #” we immedi-
ately obtain
Ry = AV, 2% (138)
This implies that imposing a constitutive relation for R}, is
equivalent to providing a formula for the reaction rate
rZ = VUZD (139)
of quasiparticle creation processes, such as (4).
Using the decomposition (137), the second equation of
(46) assumes the form

Agru, + f, = 2S”V[D®/,] + G)/,Vys”, (140)
which, contracted with s”, gives
Vo SR, O (141)
sV =— r .
g $$0, ° 0,0

Following a common approach of dissipative hydro-
dynamics [13], we note that the simplest way of ensuring
the non-negativity of the entropy production consists of
requiring that

SE
AE? fv:_?Qw

[1]

rZ:

B k>0 (142)

Furthermore, taking a near-equilibrium expansion, we can

assume E and k to be just functions of (n%, s£, ww,), and

we can make the approximation
-5"0, ~ sE0p, (143)

which implies

vpsl/ ~ [vvsy]bulk + [vvsy]heav

EAZ 0,0
£ [vvsb]heat =

Vo5 loui = 0, = er (144)

By comparison with the Eckart theory for heat conduction,
we are immediately led to interpret the quantity k as the
heat conductivity coefficient.

We remark that this construction is just one of the several
possible choices for the four-force. In fact, as proposed by
Lopez-Monsalvo and Andersson [2] and Andersson and
Comer [54] (and later verified by Gavassino et al. [41]
with a concrete example), one cannot a priori exclude
the possibility that four-forces of this kind may depend
also on the derivatives of the hydrodynamic fields. In
this sense, the prescription for the force given above,
namely

SE

s _ mA2
R, =EAzu, ——Q,,

p (145)

produces a minimal model, in which R} depends only on
(n”,s”,z”), and not on their gradients. Nevertheless, this
simple model contains all the physics we need.

B. Telegraph-type evolution of the affinity

Starting from the first equation in (142), we now derive a
telegraph-type equation for the evolution of the scalar field
Ag. To simplify the calculations and maintain direct contact
with the approaches of Khalatnikov [34] and Gusakov [12],
we adopt the near-equilibrium expansion outlined in
Sec. VL.

First, we recall that (91) and (92) imply that

(146)

Using this fact in (139), together with the first equation in
(142), gives
ZE + 2BV, ¥ = BEA,, (147)
where we used the notation X := u’V, X, which will be
used for any tensor X. Moreover, we also know from (118)
that
ZF = 2E(nf, 5 Ap, wiw,), (148)

where the dependence on the heat flux is neglected since it
is a second-order correction: this implies that

0zF 0zF ozF .
£ 98 g 9% g 9L AE
CEamE™ TasE Tona,

0zF

+ ow'w,)

w’'V,(w'w,). (149)
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Now, taking the four-divergence of n* and s, and noting
that the entropy production is of the second order in the
deviations from equilibrium, we obtain

nf +nfV, ¥ +V,(Yw) =0,

SE 4+ sEV v +V, <g> ~0.

o, (150)

Combining (147), (149), and (150), we can obtain the
evolution equation for the affinity Ap,
ozt

. 0zF a7t
— A E_ )E~% _ (EZ% v v
A, E+<Z " onE asE> vt

ozF (0 ozF
= — v = | — ﬂv v
OsE ”<®E> a(w*w,) WV, (ww,)

7E -
+ o Y (Pn) + EAp,

(151)

If we introduce the relaxation timescale (that is non-
negative due to the minimum energy principle)

1 9zF
Ty = ————

>0 152
Z0A, (152)

Ap=0

and the coefficients

1 oz ozt
— E E”*¢q E eq
gu - Zeqg— N - ’

E ont OsF
. - _lazfq
v 2 ont’
1 8z§q
S0 = T EosE”
1 0z
fww = E@(w”vi ) s (153)

we can rewrite (151) in the telegraph form

TAAE + AE = ngD(YWy) + fuvyu”

L&Y, (%) eV, (0 w,). (154)
O

We employed a leading-order truncation in the deviations
from equilibrium to place a label “eq” where possible.
Equation (154) is the superfluid analog of the telegraph-
type equation for the affinities in normal fluids proposed in
[3]. The only difference introduced by superfluidity is that
the source terms on the right-hand side of (154) are now
four, instead of just one. This accounts explicitly for the
anisotropies of the fluid elements, which arise either from
the presence of a superflow, Yw”, or from the possible
existence of anisotropic nonequilibrium deviations of the
quasiparticle distribution function, modeled by Q”.

It is important to remark that, in the Navier-Stokes-
Fourier approach, the near-equilibrium expansion is a
derivative expansion [37,55,56]. According to this pre-
scription, all the dissipative corrections to the perfect-fluid
state (e.g., Q") scale as the gradients of the primary perfect-
fluid fields (e.g., V,0Of), and the gradients are assumed
small. This implies that V,(Q"/©%!) is considered a
second-order correction and should therefore be negligible.
This is due to the fact that in first-order theories dissipation
is interpreted to arise from inhomogeneities, seen as
deviations from global thermodynamic equilibrium.

On the other hand, from the point of view of UEIT, the
perturbative expansion is performed in the deviations from
local thermodynamic equilibrium, modeled as the reference
state introduced in (119). No expansion is made in the
gradients.'" This implies that V,(Q*/@5)) is formally
treated as of first order; see Hiscock and Lindblom [44].
However, for the sake of simplicity and with the goal of
connecting the present model with Gusakov [12], we will
nevertheless neglect it.

If, in addition, we include the requirement of
Khalatnikov [34] that w, is small (which is not a near-
equilibrium assumption; see Sec. IIIB), the terms
u’V,(w'w,) and V,(Yw") can also be neglected. As a
result, plugging A into (133) and into the first equation of
(129), we obtain

tall + T = =1V, (Yeow*) — oV, 0,

Ty +x =5V, (YeW) — GV, (155)

Note also that to first order in both w, and in the devia-
tions from local thermodynamic equilibrium, Eq. (136)
reduces to

T = TU(g” + u'u’) + uQ’ + urQ*.  (156)

Hence, Eqgs. (155) and (156) are the “Israel-Stewart”
analogs of Egs. (20) and (21) of Gusakov [12]. The
coefficients £y, {,, {3, and {, can be written in terms of
E and zfq as

"In UEIT the Fick-type relations between the dissipative
fluxes and the gradients emerge dynamically as a late-time
behavior of the system [53]. Therefore, expanding in the
gradients is not equivalent to expanding in the dissipative fluxes
in UEIT.
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105, (. 0z L0
G =-=Z3F S E"S :

Zont \“0 " GuE OsF
1 07k 0zE )\ 2
=g (g5
1 (0zEN\?2
= n
Ca= 101 (157)

It is easy to show that the above expressions coincide with
the ones given by Khalatnikov [34] and Escobedo et al.
[57]: we have to assume that in our case there is a single
quasiparticle species and then perform a rescaling with the
mass of the constituents according to the prescriptions of
Gusakov [12].

We note that at the end of our derivation we obtained
the Onsager reciprocal relation [43], namely {; = {,.
Moreover, the Newtonian conditions of non-negative
entropy production,

£ 20,

{320, & <68,

(158)
always hold also in our case. More precisely, in our case the
third inequality is saturated, in the sense that

& =618, (159)
This happens just because we are working with a single
species of quasiparticles, which causes the bulk viscosity
contribution [V, s*]; i to the entropy production in (144) to
be the square of only one affinity [12].

In the late-time asymptotic behavior of the fluid, when
we can neglect the terms proportional to z4 in (155) [53],
the entropy production due to bulk viscosity can be written
as follows:

®eEq [vusv]bulk = 22:1 vv I,t”vp ( quwp)

+é’2<vv”v)2 +CS[VU(quWD)]2’ (160)

in agreement with Landau and Lifshitz [43].

C. High-frequency oscillations

Before obtaining the telegraph-type equation for the heat
flux, it is interesting to study in more detail the effect of the
presence of the term TAA in Eq. (154). Let us consider a
superfluid which is oscillating, with frequency w, around an
equilibrium configuration. If the effect of dissipation is
small, we can approximate the evolution to a slowly
damped quasiperiodic oscillation, which implies that (in
a timescale that is shorter than the damping time) we can
impose

Ag(t) = AYeiot,

o€ R. (161)

Plugging this time dependence into (154), neglecting the
second line, and assuming that u” ~ 67, we obtain

_ ngv(yeqwb) + guvvuy

A
E 1 —iwty

(162)

When we compute the average entropy production during

one oscillation (which contains information about the long-

term damping effect of viscosity on the mode) from (144),

it is easy to verify that [V, s*],, acquires again the generic

form (160), with three effective bulk viscosity coefficients
off given by

gi

eff — 20 163
¢ 1 + 0’73 (163)

We see that the telegraph-type equation (154) accounts
directly (at the hydrodynamic level) for the frequency
dependence of the bulk viscosity coefficients predicted
by Mannarelli and Manuel [58]. This is the manifestation of
a general rule: for small oscillations, the Israel-Stewart
theory for bulk viscosity is formally equivalent to the
Eckart theory, with a frequency-dependent bulk viscosity
coefficient; such frequency dependence becomes important
when oty 2 1 [3].

In the limit wry — O, the evolution is slow and we
recover the prescription of Khalatnikov [34]. However, in
the opposite limit, @ty — 400, in which the oscillations
are fast compared to the relaxation timescale 74, we obtain

= 2 E EN 2
ot = OAE E _pE 0zeq _§E Dzeq
2 T2\ 97F e onf osE )’

- B (OAR\? (0252
eff o, = (9 eq
el (azb”) ( M) | (164)
Defining the fractions
sE zF
C=—, ==, 165
X nE Xz WE ( )

we show in Appendix A 3 that (164) can be recast into the
simpler form
) 2

off _ = <nE OAg

2 @? onf

) = /0A 2

off — = (L . 166
C3 0)2 <8n5 SE’ZE> ( )

This limit cannot be fully self-consistently explored by
first-order theories for dissipation (i.e., with the Navier-
Stokes-Fourier approach), as first-order theories are valid
by construction only in the limit @ — 0 (see [37]). On the
other hand, our model—which is a second-order theory
[35]—can explore also regimes with large .
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Concerning bulk viscosity, there is a final point we
would like to stress: our model is the first entirely self-
consistent model for superfluid hydrodynamics which
produces Egs. (155), (157), and (163) as rigorous pre-
dictions, instead of adopting them as additional prescrip-
tions. This is one of the reasons why we decided, in Sec. II,
to take z” as the fundamental degree of freedom, rather than
using directly IT and Q*.

D. Telegraph-type equation for the heat

The second equation in (142) can be used to obtain a
telegraph-type equation for the heat flux. If we contract
(140) with the projector

7°,=8,+vu,, (167)
orthogonal to u”, we obtain
fo= 2s1hf’DVM®,,] + 0LV, 5% (168)

Considering that the last term is of third order in the
deviations from equilibrium (due to the factor V,s%), we
can neglect it. Therefore, recalling the decomposition in
(94) and (103), we use (142) to obtain

SE Ql
—?Q,, =2 (sEu’1 —|—®—E> h* (Vi (©gu,) —i—VHG)j]). (169)

Splitting all the brackets and the antisymmetrizations
appearing on the right-hand side, one can cast Eq. (169)
into the form

Q" = kh* zgj QY (170)
i=1
with
OV =wiV,(Opu,), O =—1'V,(Opu,),
&= (8. - ()
Q/SS) _%VP(GE”/I)’ Q/(f) —%vl(®E”p),
Q) =~ EQ(;E v, (%—%) L oY= s:ng v, (%—%’) . (7

where we have used (113) to write ®; explicitly.
Let us examine the contributions Qp' one by one. We
note that ij) and Q,gg) are second-order corrections; hence

we can neglect them. The terms QS) and Qﬁz) can be
written in the more transparent form
QE)I) = _v/)®E )

Qf;z) = —éEup - @El:lp. (172)

These constitute the “Eckart part” of Eq. (170). It can be
verified that, if these were the only contributions appearing
on the right-hand side of (170), we would directly recover
the model of Gusakov [12]. The contributions QF(?), Q£,4>,
Q;S), and Q,(,f’) should, therefore, play the role of the
remaining “Israel-Stewart part.” In particular, we expect
to find the typical relaxation-term proportional to Q,
introduced by Cattaneo [59], which stabilizes the equation
and makes it causal [60]. Indeed, this is contained inside

o

4 C . C
Q/(J ) = _®_EQ/) - Q/)ullvﬁ <®_E> . (173)

The contributions QS) and Q,(f) can be combined to give

Qll

W(Q) + Q) =m0 Gy (174)

where

60/1[, = hﬂihGPV[ﬂuﬂ] (175)

is the kinematic vorticity [60]. Couplings of the dissipation
fields with the vorticity are usually neglected in the
standard Israel-Stewart approach [24], but can appear in
approaches which are more kinetic-theory-based [61].

Finally, the term Qf?) can be written as

C
o) = —@—EQ’IVPM. (176)

Combining all these results, we can rewrite (170) in the
final form

: . C
TQhD/)Qp + Q¥ = —kh*? |:v/;®E + @Eu/, + ®7E Q*V,,ui

C o
+ quivl (@—E) — 2S—E(A)ﬁp:| N (177)
where
C

is the heat relaxation timescale. Similar to (152), this
timescale is also non-negative due to the minimum energy
principle.

E. Heat conduction: Comparison with other works

Equation (177) is the telegraph-type equation for the heat
flux predicted by our model and constitutes the superfluid
analog of Eq. (22) of Hiscock and Lindblom [44]. Of
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course, one should keep in mind that it has been derived
under two simplifying assumptions: A™ =0 and the
second condition in (142). However, it still contains all
the physical insight of a (potentially) causal and stable
hyperbolic model for heat conduction. It is interesting to
compare our results with nonsuperfluid systems and with a
recent model for heat conduction in superfluid neutron-star
matter.
In the theory of Israel and Stewart [24], the heat flux is
subject to a telegraph equation, with relaxation timescale
7o = k@SS, (179)
where S is the second-order expansion coefficient'” of the
entropy density in terms of Q". On the other hand, Priou
[27] showed that Carter’s model (for small deviations from
equilibrium) of heat conduction is equivalent to the Israel-
Stewart theory, provided that one makes the identification

C
S =_—, 180
where C, in a normal fluid, has exactly the same meaning as
in the superfluid case:

OA

=-2—.
¢ Os?

(181)

This tells us that, interestingly, the heat relaxation timescale
(178) is identical to the one of Israel-Stewart for a normal
fluid. The similarities between our model for heat con-
duction in superfluids and the nonsuperfluid case are due to
the fact that, if we set A" =0, Eq. (169) is formally
indistinguishable from Eq. (2.32) of Carter [5], which is a
model for heat conduction in normal fluids.

Finally, it is interesting to compare our model for heat
conduction in (177) with the one proposed by Rau and
Wasserman [62] in the context of superfluid neutron-star
matter. Correcting some typos, Eq. (81) of [62] reads

10(0" + O, VPut) + 0¥ = —kh*(V, 05 + Opir,), (182)

where

(183)

We can rewrite our (177) in a form which is identical to
(182), but with one additional term on the right-hand side:

"Not to be confused with the first component of the inverse-
temperature covector f3,,.

k
2S—EQ1CU/1”. (184)

The fact that there is a difference between the two
approaches is expected. In fact, as we said, we are adopting
a prescription for f, which is the superfluid analog of the
model of Carter [5]. On the other hand, Rau and
Wasserman [62] are following the approach of Lopez-
Monsalvo and Andersson [2], who proposed a slightly
different prescription for f,.

Both these prescriptions produce simple models which
contain all the physical insight we need"” and give the same
predictions on the regimes of interest. In fact, for small
deviations from local thermodynamic equilibrium and
small gradients (both in space and time) they both reduce
to Gusakov [12], avoiding, however, its instabilities and its
causality violations. On the other hand, if we linearize them
around a homogeneous equilibrium state, they both reduce
to the (superfluid analog of the) Cattaneo equation, also at
high frequencies.

As discussed in [41], there is no point to argue on which
model is the “correct” one, as we know that both are just
simplified prescriptions, which are not based on micro-
physics. To obtain a more realistic formula for f, (which
for most practical applications is probably not needed), one
should start from the kinetic equation for the quasiparticles
[36] and follow the same procedure as Denicol et al. [63],
to work out the hydrodynamic equations directly (a task
that is beyond the scope of the present paper).

VIII. STATISTICAL MECHANICS OF THE
QUASIPARTICLES: BULK VISCOSITY

The bulk-viscosity coefficients {, {5, and {5 have been
explicitly computed for several different fluids [12,58,64].
On the other hand, Egs. (155) are an “extended-irreversible-
thermodynamic modification” [65] to the corresponding
“Navier-Stokes-type” constitutive relations [34]: as always
happens when one moves from Navier-Stokes to UEIT, a
new relaxation time 74 appears, which is necessary for
making the theory causal [60]. Finding the value of 74, by
means of Eq. (152), requires the computation of the
thermodynamic derivative

6zE eq
OAL| e & iy

SE whw,

(185)

which is the main goal of the present section. We also take
the opportunity to discuss in more detail the points of

BNote that, if we contract (184) with Q,, the result is zero,
meaning that the presence of this term does not affect the entropy
production (141). Therefore, the models of Carter [5] and Lopez-
Monsalvo and Andersson [2] are just two alternative ways of
enforcing the second law.
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contact between the hydrodynamic formalism and kinetic
theory.

A. The microscopic interpretation of the entropy and
quasiparticle currents

We adopt a low-temperature approach, in which we are
allowed to treat the excitations as a noninteracting gas. All
the calculations are performed in the superfluid reference
frame L (see Sec. V B). In L, a quasiparticle of momentum
p; has an energy e given by an isotropic dispersion relation

p=1/pP'p;.

The exact form of the excitation spectrum ¢(p) can change
for different substances: we do not assume any particular
form, but we assume that e(p) fulfills the Landau criterion
for superfluidity [33],

e=¢(p) =0, (186)

e(p)

A, :=min— > 0,

nin~ (187)

where A, is Landau’s critical speed. In the next subsection,
we will verify that if the drift speed of the quasiparticles is
larger than A, the model breaks down and the superflow
is destroyed. An important implication of the Landau
criterion, which we will use later, is that
€>A.p, (188)
which implies that for large momenta ¢ grows at least
linearly in p. Let us introduce the quasiparticle four-
momentum
p* = (e,p",p%p?) (189)
and the quasiparticle three-velocity A/, which is given by
the Hamilton equation

_ Oe

NN =2

(190)

From this formula we immediately see that the (timelike)
worldlines that the quasiparticles draw in the spacetime are
not tangent to the four-momentum (189), which is often
spacelike. This has the striking implication that there can be
branches of the spectrum (such as the one connecting the
“maxon” maximum to the “roton” minimum in “He) in
which the quasiparticle three-velocity points in the direc-
tion opposite to the spatial momentum.

It is useful to introduce the mean occupation number
N(p;) of the excitation modes, which gives the average
number of quasiparticles in the single-quasiparticle state
(i.e., the excitation mode) of momentum p;. The quasi-
particle distribution function (counting the number of

excitations per unit single-particle phase-space volume)
is given by

(191)

where £, is the Planck constant and g is a possible discrete
degeneracy (e.g., spin). It follows that the four-momentum
density P = —v,T" [see Eq. (107)] is given by

gdsp
n

,PD :L[Gsayo +/pr (192)

where Ugs = Ugs(nl) is the ground-state energy density,
i.e., the energy density that the superfluid would have if
there were no excitations, at fixed constituent-particle
density n’.

The four components of the quasiparticle current are

d . gd
zL:/Ngip, zf:/NA/ggp.
h, h

p
Introducing the single-mode entropy contribution [66]

(193)

6(N) =—-NlogN + (1 4+ N)log(1+N), (194)

the four components of the entropy current are given by

SL = /O'gd:;p s Sj = /GA]gdip’
hy, hy,

where o(N) is interpreted as a function of the single-mode
label p; once the distribution N(p;) is assigned.

(195)

B. Incomplete-equilibrium distribution

As we anticipated, we are focusing on the problem of
calculating the thermodynamic properties of a superfluid in
which we can neglect the heat conduction, but not the
bulk viscosity. From a microscopic point of view, this is
equivalent to assuming that the collisions which conserve
the quasiparticle number (e.g., z 4+ z =2z + z) are much
more frequent than the processes which modify it (e.g.,
z+ z = 7+ z + z). Therefore, we can deal with a situation
of incomplete equilibrium [28,66], where N is in equilib-
rium only with respect to quasiparticle-conserving proc-
esses. In practice, this means that we can assume that the
superfluid occupies the state that maximizes the entropy at
constant integrals of motion (four-momentum and con-
stituent-particle number) and z.

This state can be obtained by imposing the extremality
condition [10]

5st + aszt + 6P, =0, (196)
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where a and ¥ are five Lagrange multipliers, encoding the
constraints of quasiparticles and four-momentum conser-
vation. By comparison with (108), we immediately see that
for the microscopic description to be consistent with the
hydrodynamic model, we need to identify the Lagrange
multiplier f* with the vector introduced in Eq. (53).
Furthermore, the multiplier @ (which would be zero in
complete equilibrium) must be identified with
a=pA,. (197)
Note that the term —ZZ[OﬂﬂéAJ- does not appear in
Eq. (196), consistent with the assumption that, since the
heat flux vanishes, z[°4/ should vanish (we will prove this
rigorously in Sec. VIII C).
Inserting equations (192), (193), and (195) into (196),
and imposing its validity for any variation 6N, we obtain
the Bose-Einstein equilibrium occupation law

1
N = —— with W:_ﬁb(pv+Au)'

o (198)

This expression for N can be used to compute all the
thermodynamic variables of the theory directly from a
microscopic model.

It is clear that, for (198) to make sense, we need to
require y > 0. This condition, if accepted rigorously,
would lead (if the spectrum is such that ¢ — O for small
p;) to the requirement & < 0. However, as has been pointed
out by Landau [67], the typical magnitudes of a are usually
extremely small, implying that the possibility of having
w < 0 due to a positive value of a can be realized only on
quasiparticle modes with extremely minute energy
(e < ©F). But the number of such modes is so small that
we can work as if these energy levels were effectively
absent, without changing the final outcome. Therefore, we
can allow a to have an arbitrary sign.

The condition y > 0 can, therefore, be effectively
replaced by the requirement

—p.p* >0, (199)

which, using the notation (110), can easily be shown to be
equivalent to

A<Ac, A:= A] j,

5

(200)

which is nothing but Landau’s microscopic criterion for the
long life of superfluid currents. Therefore, the whole theory
breaks down when (200) is not respected.

On the other hand, if (200) holds, we can plug (188) into
the definition of y (neglecting &), obtaining

A.—A
/8P oL p =>0.

(201)

Comparing this with (200), we find that, as p — +o0, ¥
diverges at least linearly in p. This implies that for large
momenta the mean occupation number decays at least
exponentially,

A, —A
N ~eV <exp <— C®L p), (202)

which ensures the convergence of the integrals presented in
the previous subsection.

C. The collinearity conditions

In Sec. III A we have shown from purely thermodynamic
arguments that, if the heat flux vanishes, then it must be true
that

ZU ‘Bl/ sl/
V=2 /PP, B \/—s”s/,'

These collinearity constraints can be proved directly using
the distribution (198). In order to do it, let us first prove that

(203)

Oy gd
/N—"’lg 3. (204)
op' hy,
This can easily be done defining the function
4 / /
3= [N (205)

where the lower integration extremum is an arbitrary
constant, and noting that the left-hand side of Eq. (204)
is equal to

OF gdsp / ) i gdp*dp?
I8 95P _ [ fim )P 206
apl h% p]lm%(‘l/(l? ))|_p1 h% (206)

However, we have shown that, for large momenta, y
diverges. The function & (y), on the other hand, approaches
a finite value for large v, as a result of the fact that N decays
exponentially in y. Therefore, we obtain

lim Fy(p))IZ, = S(+oo) = F(+e0) =0, (207)
p —+oco
which proves Eq. (204).
Now, from the definition (198) we obtain
0
L= Al - p (208)
op
which, plugged into (204), gives
pz' - p% =o0. (209)
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The same argument applies to the other two components,
leading us to the first collinearity constraint
v v
‘- I 2
V=% PB,

On the other hand, when the mean occupation number N
is given by (198), ¢ can be equivalently rewritten as

—In(1 —e™¥).

o =
eV —1

(211)
For large w, also ¢ decays exponentially. Therefore, a
completely analogous argument for the collinearity
between s* and $” can be made, just by replacing N with
o in Egs. (204) and (205). This completes our proof.

We remark that, while our result is valid for any
dispersion relation satisfying Landau’s criterion (187), in
the particular case of a linear dispersion relation the
collinearity condition (203) can also be elegantly proved
using an analog model of gravity; see Egs. (65) and (73) of
Mannarelli and Manuel [68].

D. Evaluation of the thermodynamic derivative (185)

We are finally able to give a prescription for (185) in
terms of the quasiparticle dispersion relation. For most
practical purposes, it is a good approximation to compute
the coefficient under the simplifying assumption

u’ =", (212)
so that w, = 0, and y becomes simply
A
_ et e (213)
O

in agreement with Khalatnikov [34], section “The absorp-
tion and emission of rotons and phonons” (make the
identification Ap = —pu,,). When we impose (212), the
superfluid and the normal reference frame coincide, so that
7F =zl and s¥ = s* and we can use the first equations of
(193) and (195) directly. In particular, the formula for z*
reduces to

4rg [+ 2d

E(nE, O, Af) = h—;A %. (214)
The dependence of zF on n” is hidden inside the dispersion
relation. The formula for s¥ is analogous, just replacing
(198) with (211).

Now, to compute (185), one needs to be careful, because
zE is naturally given as a function of the temperature ©p,
while we are interested in computing the derivative at

constant entropy sZ. This forces us to use the chain rule

00~
Ag OAE

0zF
OAg

07
& OAg

N 0zF
o, 00

(215)

’
SE

where the dependence on n” is understood. The last partial
derivative on the right-hand side can be rewritten in a more
convenient way. Take the relation

st = sE(nf, 0, Ag) (216)
and derive it along a curve at constant n and sf, para-
metrized with Ag. It immediately produces the relation

8@E o E -19 E
P (& il I (217)
O0AE| 00 Ay OAg o,
All these derivatives need, then, is to be evaluated in
equilibrium.

In the particular case of a linear dispersion relation
€ = ¢,p, where ¢, = ¢,(nF) is the speed of sound, one
obtains'*

0zF | 4gO%[405((3)? — n]
OAg| s 3rcih,

99%
cihy’

~—162 (218)

Inserting this formula into Eq. (152) we obtain the general
rule

ZE
ETA ~ 0546— s
E

(219)
which is a refinement of Eq. (26) of Mannarelli and Manuel
[58] (make the identifications 74 = 7y, & = I[',;,/Op), and
is valid for approximately linear dispersion relations.

IX. IS THE QUASIPARTICLE CURRENT
NECESSARY?

In Sec. II A we started from the assumption that the fluid
has 12 degrees of freedom, and then we performed the
change of variables (9). This allowed us to use the
quasiparticle current z¥ as a primary current in Carter’s
approach. Although using the quasiparticle current as a
third current may seem rather natural, in principle, an
analogous change of variables could be performed again,
allowing one to choose as third primary current any
conceivable hydrodynamic vector field that is algebraically
independent from n* and s* and having four independent,
i.e., unconstrained, components. For example, one may
consider

"“Note that, in order to have a nonvanishing bulk viscosity in
the first place, there need to be some deviations from a perfectly
linear dispersion relation [58]. On the other hand, for the precise
purpose of computing the thermodynamic derivative under
consideration, the linear approximation can be safely adopted.
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My + QY or n'+s"+2, (220)
or any nonequilibrium generalization of Landau’s normal (or
superfluid) mass current, and treat any of them as a primary
current to be used in Carter’s approach. Starting from this
premise, in this section we address two questions:

(i) Would it make any difference, at the formal level, if in
all the foregoing sections (apart from Sec. VIII) we
replace z¥ with a generic “auxiliary” field z*?

(i1) Ifyes, what are the criteria to select the “correct” primary
degrees of freedom to be used in Carter’s approach?

A. What is a current?

As discussed in [3], only a certain type of hydrodynamic
vector field can be genuinely considered as a “current’:
only a chemical-type variable can be used as a fundamental
degree of freedom in Carter’s approach, not any generic
thermodynamic variable. Contrary to what one might
expect, such a chemical-type vector field does not neces-
sarily need to quantify the flux of a corresponding particle-
like “worldline swarm” to play the role of a current in
Carter’s approach. For example, the entropy current has, in
general, no associated particle (in many situations one
cannot uniquely define a notion of “entropon”).

A formal procedure for constructing a current by using only
arguments of self-consistency of the hydrodynamic theory
has been proposed in [3]. We now adapt it to the superfluid
scenario. First, consider again all the steps of Sec. II, but
replacing everywhere z¥ with a generic vector Z: our goal is to
see if the assumption that Z¥ can play the role of a primary
current in Carter’s approach (namely, that its associated
density can be held constant in the partial derivative (22),
which defines the stress-energy tensor of the model) has any
important consequence on the dynamics of this vector field.
Equation (48) now reads (we place a “tilde” also on top of
each momentum because a different choice of currents
produces different conjugate momenta)

25*V,0, +0,V,s* —22V, A, - A, V2 =0. (221)
Let us focus on a situation in which all the currents of the fluid
are collinear. Then, if we contract (221) with the collective
four-velocity, we find

0V,s" = AV, 7 > 0. (222)
Independently from the meaning of Z”, in the comoving limit it
is po§§ible to construct a field equation for the rate V,z* of the
form™

5The conservation laws (1) and (21) are 5 first-order differ-
ential equations. The degrees of freedom of the model in the
comoving limit are 6. Therefore, Eq. (223) must be a first-order
differential equation. We can use Egs. (1) and (222) to remove the
possible dependence of 7, on nf and §£.

V, 7 =7.(nf, s Ap, V,u"). (223)
Since the equilibrium condition (59) holds independently
from both the interpretation of Z¥ and the details of the
hydrodynamic equations, then (59) remains true also if we
replace A, with A ,- Infact, Eq. (59) is a direct consequence of
the constitutive relations (23) and (24), combined with the
fundamental conservation laws (1), (21), (25) and the second
law (2). Hence, recalling that all the currents are collinear, we
need to require

7. (nf,s£,0,0) = 0. (224)
Expanding for small values of A, and V,u*, we get
V7" =ZA; + YV, i, (225)
and, inserting it into (222), we obtain
0pV,s" = EAZ + YAV, u* > 0. (226)

However, for the second law to always be satisfied for any
small value of Ay and V,u”, we must require

T =0, (227)

which implies

V7 =EAg. (228)
This equation is the dynamical condition which distinguishes
a genuine current from a generic hydrodynamic vector field
[28]: it states that, for small deviations from local thermo-
dynamic equilibrium and slow expansions, the divergence of
a current is determined only by the instantaneous displace-
ment (A ;) from local thermodynamic equilibrium and not by
the expansion rate V, u".

To understand the implications of this result, take, as an
example, the first alternative to z“ proposed in (220),
namely Z":=Ilu* + Q" In the collinear limit, its diver-
gence becomes

V2" =11+ 1V, uv. (229)

Imposing the telegraph-type equation (155) we obtain

IT
V7" =—-—- éV,Ju” + 11V, i, (230)
A T4
which implies that (to first order)
T—_24 (231)
A

Therefore, the vector field [Tu* + Q% is not a current; i.e., it
cannot be used as a primary vector field in Carter’s
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approach without producing a contradiction with the
second law of thermodynamics.

Applying this same approach, it is possible to show that
nonequilibrium generalizations of Landau’s superfluid and
normal mass current cannot be employed as primary
currents in Carter’s approach, because their four-divergence
is in general a complicated expression involving, e.g., the
time derivative of the temperature, which, in turn, depends
explicitly on the expansion rate

£ 99

0 ~—8®E =A n
ER ZAE —
aZE nE~x.y 6nE Xy

v
V, u".

Xz

(232)

The quasiparticle current z”, on the other hand, is a perfect
candidate to be a current in Carter’s approach. In fact, from
kinetic theory we know that V, z¥ is nonzero only if the
distribution function (191) is out of local thermodynamic
equilibrium [34,36], and this depends only on Ag being
nonzero and not on the value of V, u* [see Egs. (197)
and (198)].

B. What is a normal current?

The argument presented in the previous subsection gives
us a criterion to select which hydrodynamic vector fields
can be used as a primary current in Carter’s approach. It is,
however, still not enough to completely identify the
quasiparticle current as the best available choice. For
example, consider the second alternative to z“ proposed
in (220), namely Z* := n* + s¥ 4 z*. Its divergence reads (to
the first order in the deviation from local thermodynamic
equilibrium)

V,7"~V, 7" = EAL. (233)
According to the fundamental criterion (228), this choice of
Z¥ may seem to be an eligible “current-type” degree of
freedom. However, let us consider also the equilibrium
condition (60). If we assume that it is valid “with a
tilde,” then, recalling that Zs?l =0 must hold in
equilibrium [see Eq. (203) and its proof from statistical
mechanics], it follows that in equilibrium we must always
have
nlstl =0, (234)
which is in contradiction with the macroscopic defining
property of superfluidity.

To understand better what went wrong with this choice
of Z¥, we can consider again the variation (41) and perform
the change of variables

(n*,s*,7%) = (n*, s, %), (235)

which leads us to the differential

3(v/191A) _ p S(Vlgln*) | & 5(\/lgls*)
V19l V19l va
S v TV
_a W) (236)
Vg2
with
Py =p, T A, (:)1/ =0, +A,. (237)

This allows us to connect the constitutive relations that we
obtained choosing z” as the primary degree of freedom with
those that are produced if one replaces it with z¥. We note
that the stress-energy tensor is unaffected by this change of
chemical basis. This is true any time the linear combination
coefficients ¢*, of a transformation 7 =) c*,n¥ are
constant [7]. On the other hand, the fact that a change of
chemical basis produces different conjugate momenta is not
unexpected if we interpret the momenta as the four-dimen-
sional generalizations of the chemical potentials. The
problem, however, is that, since

Ji, # My, (238)
the identification (25) cannot be true for both g, and f,
without leading us to a contradiction. This is what
originates the unphysical constraint (234) and shows us
that we need an additional criterion to select the “correct”
current among the various possibilities.

Such a criterion is offered by the multifluid thermody-
namic theory constructed in [4], which formalizes a
physical idea which can be traced back to [39]: it should
always be possible to group the relevant degrees of freedom
of a multifluid into two disconnected sets, the so-called
superfluid currents and the normal currents. This distinc-
tion is physical: a current is called superfluid when its
conjugate momentum obeys a covariant Josephson relation
of the kind (25), possibly with a different prefactor. A
normal current, instead, is simply a current that in local
thermodynamic equilibrium is always collinear to the
entropy current (the so-called s-locking; see [4]). Every
current that is employed as a primary degree of freedom in
Carter’s approach must belong to one and only one of these
two sets, because, otherwise, there would be a contradiction
between the predictions of the theory and the minimum free
energy principle [4].

Applying this result to our case of interest, we see that
(contrary to z¥, which is clearly a normal current) the
current n¥ 4 s¥ 4+ z¥ is not eligible to be a fundamental
degree of freedom of Carter’s model, as it is neither
superfluid (its conjugate momentum is not irrotational)
nor normal (it is not locked to the entropy current in
equilibrium). On the contrary, any current of the form
c18¥ 4 ¢,7%, where ¢ and ¢, are two constant coefficients,
1s a normal current. It can, thus, be used as a fundamental
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degree of freedom of the theory, producing a model that is
completely equivalent to the one we presented in this paper
(in the sense that we have some “gauge freedom” when
defining the normal currents that leads to the same physical
predictions [4]).

X. BEYOND THE HYPOTHESES OF THE MODEL

Our results might seem to be of very limited scope (we
are dealing with a bosonic superfluid with a single
species of quasiparticles). In addition, our description
applies only at the intervortex separation scale, where
the superfluid momentum is strictly irrotational. This
section is devoted to proposing some extensions of the
present model to more physically interesting situations. In
fact, most of our results have a much broader range of
applicability and are relevant for application to neutron star
hydrodynamics.

A. Heat conduction in helium: Phonon-roton model

Andersson and Comer [52] informally suggested that it
is possible to model the nonrelativistic heat flux in super-
fluid “He through the introduction of a third current,
representing the roton excitations. The construction they
suggest differs in some aspects from the one we proposed
so far, but it is interesting to analyze their alternative idea.'®
Andersson and Comer [52] considered the following
logical path:

(1) Kinetic theory tells us that for a phononic quasi-
particle dispersion relation ¢ = ¢,p the heat con-
ductivity coefficient vanishes identically [34].

(2) Therefore, the phenomenon of heat conduction
cannot occur if there are only ideal phonons.

(3) On the other hand, in “He, the most important
contribution to the heat conductivity coefficient
comes from phonon-roton collisions [34].

(4) Tt follows that heat conduction in “He arises when we
allow phonons and rotons to drift at different rates.
Dissipation is due to a sort of friction between the
flows of these two quasiparticle species (which are
locked together in equilibrium).

This scheme should not be interpreted too strictly, since, in
principle, any deviation of the dispersion relation from ¢, p
can result in a nonvanishing heat conductivity, without the
need of splitting the excitation spectrum into two discon-
nected parts. However, the intuition of using both rotons
and phonons is physically appealing.

In order to do this, we need to first formalize the idea that
phonons and rotons can behave as two independent fluxes
(when they are, actually, different branches of the same
excitation spectrum). A straightforward way of doing this

11 [52] the authors did not formalize their intuition in precise
mathematical terms. We try to do it here by taking inspiration
from the comments present in their original work.

consists of assuming that the mean occupation number N
takes the analytical form

~
~

{[exp(—/fﬁhw—l]-l PSPy

lexp(=g;p*) =171 for p > py,

where p,, is the momentum of the maxon maximum. In
words, we are assuming that the two branches of the
spectrum are in thermodynamic equilibrium within them-
selves (so that we can assign to each of them an inverse-
temperature covector ﬂ‘y’h, /), but not between each other,
so that we may have
h
B # By (240)
For Eq. (239) to make sense, the temperatures should be
sufficiently low that we can assume the maxon states to
have a negligible occupation number,
N=~0 for p=py; (241)
otherwise there would be an unphysical discontinuity of the
distribution function on p,,. This also allows us to

decompose every kinetic integral presented in Sec. VIII
A into two contributions (g = 1):

dsp - dsp dsp
W ey 15 oy 1
p p<pu "p p>py p

which can be interpreted, respectively, as the phonon and
the roton part of the integral. In particular, this division can
be applied to the entropy current, which is then split into a
phonon and a roton contribution,

(242)

Sl/ — Slfjh —|— sl;’ (243)
which obey the collinearity constraints
S R0, iR R0, (244)

This can be shown by changing the boundary in the
integrals studied in Sec. VIII C and invoking the condition
(241).

Going through some tedious calculations of kinetic
theory that we do not report here, one can show that, if
we can assume that Eqgs. (239) and (241) are both valid,
then the creation rates Vs, and Vs, are independent
from the gradients of the hydrodynamic fields and can be
written as pure functions of the local thermodynamic state
of the fluid. Coherently with our discussion of Sec. IX A,
we can thus conclude that sp, and sy are genuine currents.

Furthermore, from (244) we know that, in local thermo-
dynamic equilibrium (i.e., when S} h = pr = p,), these two
currents are collinear with each other, and are therefore
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both collinear with s¥. This implies that Sph and s¥ are

normal currents, in the sense of Sec. IX B.
The foregoing observations allow us to use the set of
currents

(1, Spps 57) (245)

as primary degrees of freedom of a three-component model,
with constitutive relations

5(V/1g1A) _  8(\/Igln*) | om0V I9ls)

=Hy +06,
Vgl Vgl Vgl
+—69,,-

s(v/lglsy) T
V19l 2

The structure of this model does not seem to have much in

common with our original three-component model.

However, the similarities become immediately evident if
one makes the change of chemical basis

+ 0 (246)

(0, sy 57) = (n”, 8, 57), (247)
so that the differential (246) becomes

8(v/IglA) _ 8

u
Vie

_A[/

), o o

Y lgls*)
V9l V19l
5(/lglsy) T

+ = 6gup7

Vgl 2

(248)

where

e,=0" Ar=e-eo. (249)

The structure of (248) is identical to (41), just with

st A > AL (250)

This implies that all the calculations performed in this paper
apply also to this model. For example, the thermodynamic
equilibrium condition (59) takes the form of a temperature
balance:

sO)" = 5@, (251)
Furthermore, coherently with the intuition of Andersson
and Comer [52], heat conduction emerges from the non-

collinearity between the phonon and the roton entropy
current:

0
sush

Ql/ = @Ehbpsgh, hl/p — gl/ﬂ +

e (252)
see (91), (94), and (167).

Although our original purpose was only to model heat
conduction as the dissipative interaction between Soh and
s¥, we necessarily obtained also a bulk-viscosity effect (see
Sec. VII B), due to the creation rate

V¢ =800 -0;), & >0, (253)
that is the analog of the first condition in (142).

The presence of an additional bulk viscosity term is not
unexpected: the inclusion of a new current produces 4
nonequilibrium degrees of freedom, while the algebraically
independent components of Q,, are only 3. Equation (253)
has a deep thermodynamic origin. In fact, according to
relativistic thermodynamics [49,69,70], friction (intended
as the force that tries to lock together the currents) and heat
exchange (intended as the exchange of energy that tries to
equalize the temperatures) are indivisible manifestations of
the same entropic process (the four-momentum exchange
that tends to equalize the inverse-temperature vectors ).
Therefore, the assumption that phonons and rotons can be
treated as two distinct gases, which interact with each other,
must also result in an energy transfer equation of the form
(253). An analogous mechanism also occurs in radiation
hydrodynamics [28,41,71].

Although we found that, within this description based on
son and s7, a bulk-viscosity effect emerges as a mathemati-

cal necessity, the model does not account correctly for the
real bulk viscosity coefficients of “He, which should be
given by Eq. (157), modified to treat phonon and roton
contributions separately [34]. The reason is that equa-
tion (239) would be rigorously justified only if the phonon-
phonon and the roton-roton collisions (including those that
do not conserve their numbers) were much more frequent
than the phonon-roton collisions. This in general is not the
case, and to properly account also for the main contribu-
tions to bulk viscosity described in Khalatnikov [34], one
needs to further increase the number of degrees of freedom:

(1, Sy 2 57 27).- (254)
This would allow us to accurately model both the phonon
and the roton creation rates (V,,z’f,h, V,z%) and to reproduce,
in the parabolic limit, the exact formulas found by
Khalatnikov [34], plus an additional contribution coming
from (253) that is usually neglected. The interesting point,
however, is that the corresponding telegraph-type equations
for bulk viscosity would involve three independent affin-
ities, instead of just one, making the number of degrees of
freedom exceed that of an Israel-Stewart theory. Hence, this
five-component model would not admit an Israel-Stewart
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analog (it would, instead, be the superfluid analog of a
[ = 4 model, as described in [3]).

B. Macroscopic superfluid vorticity

Let us go back to our original three-component model
based on (n”, s”, z°). To simplify the hydrodynamic equa-
tions and to isolate the phenomena of bulk viscosity and
heat conduction we assumed the validity of the property
(26) that is a direct consequence of the Josephson relation
(25) valid at the intervortex separation scale. At larger
scales we should allow for a nonzero macroscopic dynamic
vorticity [72]

ww, = ZV[D,M/,] ;é 0, (255)
not to be confused with the kinematic vorticity w,,
introduced in (175); see also [60].

In this case, the three equations (46) remain unchanged,
but we are not allowed to set R} = 0 anymore. On the other
hand, the conservation laws (1) and (21) still hold, and we
can also still assume a continuity equation for the quasi-
particles of the form V,z = EA, with E > 0. Therefore,
we can write the system (46) in the more convenient form

14 n __
n‘@,, — R, =0,

2SI/V[V®/)] + @,,Vysv = EA%”‘/) +f,—n'w
2ZDv[uAp] + A/)VUZ” = EA%”/} + f/)’

vps

(256)

where f,u” = 0. We recognize the first equation as the
mutual friction equation [20,23,38,73,74], the second as
the energy-momentum conservation, and the third as the
dynamical equation for the heat flux and the viscous stress.
Since the degrees of freedom of the theory are 12, and we
have five field equations from the conservation laws, we
need another seven independent inputs to close the system.
These are precisely the constitutive relations for Rj, f,,
and E, which need to be provided from the physics at
smaller scales.

If we contract the second equation of (256) with s”, and
we assume that the system is close to local thermodynamic
equilibrium, we obtain the entropy production formula

(fp - nyva>Qp

0.V, s = EAZ —
v E SE®E

(257)

v
+ @, ,n"u’.

We recognize the same terms that appear in (141), plus a
vorticity-induced dissipation term w,,n"u’ (see, e.g., [74])
and a coupling between the vorticity and the heat flux
proportional to w,,0”. Again, there are infinite possible
prescriptions for f,, but a straightforward way of ensuring
the strict positivity of the entropy production rate is to
postulate

sE

W (fp—n'm,) = ——

C0. (259

which allows us to rewrite Eq. (257) as

0,0’
kO,

OV, s = EAZ + +@,,n"u’. (259)

The assumption (258) has the convenient feature that, if we
project the second equation of (256) orthogonally to #* and
neglect second-order deviations from local thermodynamic
equilibrium, we recover directly (169), which implies that
the telegraph-type equation for the heat flux (177) is left
unchanged. Furthermore, also Eq. (147), and consequently
the telegraph-type equation (154) for the affinity, is
unaffected by the introduction of the vorticity. We can,
thus, conclude that with this choice of forces the presence
of the vorticity has no direct influence on the dynamics of
the dissipative fluxes, consistent with the Newtonian
formulation of the viscous Hall-Vinen-Bekarevich-
Khalatnikov hydrodynamics of Hills and Roberts [75].
To complete the system of equations one needs also to
provide the hydrodynamic force Rj. This is most easily
done in the nonturbulent case, where the vortices are locally
parallel. Formally, asking that the vortices are aligned at the
mesoscopic scale is equivalent to requiring the algebraic
degeneracy condition [20]
WypWesy = 0. (260)
In this case, it is standard to assume a phenomenological
equation of vortex motion (PEVM) of the form

J _— fD
p—Jpo

(261)
where f7 and f2 are, respectively, the total Joukowski lift

force and total drag force per unit volume acting on a vortex
line, whose general form is [74]

(08 (08
fi = (n"—}——s"—l——z”)wyp,

h, h,
/? _ (mnnlx T+ RS+ mzzv)hpmj_w, (262)
where
w”’lw A wbiw A
N — VA v = s 263
212 7 (h, ) 203

are, respectively, the vortex density per unit area and the
projector orthogonal to the vortex world sheet [20]. The
five phenomenological coefficients €, €%, R", R*, and R*
need to be determined from mesoscopic models of vortex
motion. By appropriately fixing them, one can also decide
to include (or not) possible lordanskii-type forces or
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additional transverse drag effects.'” In principle, it is also
possible to include in the PEVM some extra terms to
account for a possible effect of the heat flux on the vortices,
but for most practical purposes one can impose the
approximations

s¥ ~ sEu?, ' ry.sfu,

(264)

which reduce the PEVM to that of the two-fluid model [74]

<”U + h_SEMU> @, = (R"n” + mssE”U)hmevﬂ’ (265)
p
with
(Vs:.\' =65+ yz(gz’ ﬁ{s =R + yzmz. (266)

The two simplest PEVMs discussed in the literature are the
Thouless-Wexler model and the Sonin-Stone model [74],
which in their minimal formulation read

Y'w,, =nNu’'l,, (Thouless-Wexler),

n‘w,, =nMu’'l,, (Sonin-Stone), (267)

with n = RsER » = 0, as demanded by the second law.

C. Neutron star hydrodynamics

The results of this paper can also be applied to model
neutron star hydrodynamics and allow us to reinterpret the
standard neutron star fluid models in an alternative (for-
mally equivalent, but physically more clear) way.

A minimal model of a superfluid neutron star assumes
that dense matter can be described as a mixture of two
species: protons, with four-current n%, and neutrons, with
four-current n}, [1,76]. Leaving aside the possible impli-
cations of a superconducting proton phase, the electrons are
assumed to neutralize the protons (n; = n}); hence their
current is not a degree of freedom of the system and they
can be modeled just as additional mass energy transported
by the proton current.

Following Langlois et al. [20], the neutrons are treated as
a superfluid current (namely, a current whose conjugate
momentum 4, obeys the Josephson relation), while the
electron-proton flow gives a normal current (namely, a
current that is locked with the entropy current in local
thermodynamic equilibrium; see Sec. IX B), at least in the
inner crust (this is also the setting considered in [74]).
Hence, we have a three-component model, with degrees of
freedom

"For example, in the three-component model we presented in
a previous subsection, in which z¥ was replaced by s¥%, one is able
to model the roton-mediated transverse drag force as an inde-

pendent contribution to the total Joukowski lift force o sw,,.

(nh, s”, 1), (268)
and constitutive relations
o(lgln) _ , 8(/lglmy) | o 3(v/Igls")
Vil " Vid TV
b, 2 ) T, (269)

+ ,
Vi 2

where, at the mesoscopic scale, we can impose that (the 1/2
factor accounts for neutron Cooper pairing)

n

2v.0.

: (270)

Hy =

From these premises it is easy to recover the same formal

structure of the three-component model introduced in

Sec. II A: we just need to consider that beta reactions of

the kind (electrons and neutrinos are understood)

n=p (271)

generate baryon transfusion. This implies that the total
baryon current

b* = nt, + nj, (272)

is the only conserved current. Thus, it can be convenient to

use b” as one of Carter’s primary currents, provided that we

do not slip into the problem (238). Indeed, under the change
of variables

(nh, s?, 1) = (b?, 5", 1), (273)
the differential (269) transforms into
s(v/lgla) — - o(+/]glb") 5(v/1gls”)
=My +06,
V19l V19l Vgl
S v Tvr
—ap ) T,
Vgl 2
where we have the defined the affinity covector [3]
Afxﬁ) =Hy = Xv- (275)

Contrary to what happens in the example (237), the
superfluid momentum g, that is now conjugate to the
baryon current b* is preserved under (273). Therefore, all
the formal results discussed so far for the model with
primary currents (n”, s”, z7) are also valid for this system,
provided that one makes the replacements

n* — b, ¥ = nl, A, - AP,

(276)
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and & — fh/2 in (25). For example, bulk viscosity in the
present model is described as due to the S-type reaction
(271), in agreement with the early studies of Sawyer [77],
Haensel and Schaeffer [78]. In fact, if we apply the
correspondence (276) to the rate equation (142), we have
vunl;) = _vynz = E(”E _ZE) - _:ub(/‘v _Zv)' (277)
This is exactly Eq. (44) of Langlois et al. [20] for chemical
transfusion mediated by p-reactions, in full accordance
with the general principles of multifluid chemistry [4].
As an immediate application of the formal correspon-
dence (276), we map the formulas for the high-frequency
bulk viscosities (166) into their neutron star analogs:

= 8)
eff _ = (bEaAE )2’

2 @ Obf
2 (9AY 2
Cgff — E <(§)—b€5 i E) s (278)

which, using Maxwell’s relations, are exactly Egs. (73) and
(75) of Gusakov [12] (to facilitate the comparison, we have
used the constraint n; = n’, to convert the dependence on
the proton density into a dependence on the electron
density).

In conclusion, the standard three-component model for
neutron-star hydrodynamics of Langlois et al. [20] can be
mapped into a dissipative model for a single-species
superfluid. The baryon current 5” plays the role of the
constituent-particle current n”; the proton current ),
replaces the quasiparticle current z” as the nonequilibrium
degree of freedom, responsible for heat conduction and
bulk viscosity. This works also at the macroscopic scale,
where the irrotationality condition drops [74].

Finally, it is worthwhile to stress how the model of
Sec. II A, governing a one-species superfluid, is formally
identical to those of a superfluid-normal mixture such as
the neutron star matter. The trick is that, following a
somewhat standard practice in relativistic neutron star
models [12-14,20-23,74], we did not include the current
zv of elementary excitations (intended as quasiparticle/
quasihole couples [33] or phononlike collective modes
[31,32]) of the neutron fluid. Its inclusion as an additional
normal primary current (analogous to the introduction of z*
in the single-species superfluid) would increase the number
of algebraic degrees of freedom from 12 to 16,

(b?, 5P, 1y, 2h). (279)
However, for most practical applications, it is more con-
venient just to work with the simplified three-component
model (268), which already accounts for the most important
contributions to bulk viscosity, heat conduction, and, pos-
sibly, mutual friction.

XI. CONCLUSIONS

Building on Carter’s multifluid approach, we constructed
a causal model for bulk viscosity and heat conduction in a
relativistic superfluid. In contrast to the common practice of
adding dissipative phenomena by hand as additional
corrections to the stress-energy tensor, we have promoted
the quasiparticle current to a degree of freedom of the
theory. Heat conduction and bulk viscosity, then, emerge
naturally from the dissipative interaction of this additional
current with the other two currents (particles and entropy).
The most attractive features of the resulting model are the
following:

(1) It is consistent with the zeroth, first, and second law
of thermodynamics in their relativistic formu-
lation [30,49].

(2) It is consistent with the principles of relativistic
multifluid thermodynamics [4] and fulfills all the
mathematical requirements for being a UEIT
model [28].

(3) Close to local thermodynamic equilibrium, dissipa-
tion is modeled in the same way as it is done in the
Israel and Stewart [24] theory: the dissipative fluxes
obey telegraph-type equations that are constructed to
strictly guarantee the non-negativity of entropy
production. Therefore, this model is the superfluid
extension of the Israel-Stewart theory.

(4) If the microscopic input is accurate, the model can
be made hyperbolic, causal, and stable (the exact
causality/stability conditions will be computed in a
future work).

(5) In the parabolic limit, i.e., when we neglect the
relaxation effect, we recover the model of Gusakov
[12] for dissipation in relativistic superfluids.

(6) The nondissipative limit is the relativistic two-fluid
model of Carter and Khalatnikov [8], Lebedev and
Khalatnikov [7], Son [11], Gusakov [38], and its
thermodynamic interpretation is consistent with the
one given in [4].

(7) The Newtonian limit of the three-current model is an
extended-irreversible-thermodynamic extension of
Landau’s dissipative two-fluid model. This implies
that we recover the standard Newtonian theory of
Khalatnikov [34] and Landau and Lifshitz [43] in the
slow limit. The thermodynamic interpretation is
consistent with the one given by Andreev and
Melnikovsky [46]; see Appendix A 2.

(8) The model automatically provides the exact thermo-
dynamic formulas (in terms of quasiparticle produc-
tion rates) for all four bulk viscosity coefficients
given by Khalatnikov [34].

(9) The dependence of the bulk viscosity coefficients on
the frequency of oscillation, as described by, e.g.,
Escobedo et al. [57], is reproduced by the model as a
direct consequence of the Israel-Stewart relaxation-
time effect. This is a superfluid generalization of the
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results of Gavassino et al. [3] for normal fluids. For
high frequencies, we also recover the reaction-
mediated bulk viscosities of Gusakov [12], propor-
tional to w™2.

(10) Apart from higher-order effects, which should play
no role close to equilibrium, our telegraph-type
equation for the heat flux is equivalent to the causal
and stable theory for heat conduction of Lopez-
Monsalvo and Andersson [2].

(11) Tt is straightforward to include in our three-current
model the effects of a nonvanishing macroscopic
vorticity, accounting for the possible presence of
vortices as in the two-current models of [20,38,74].

To the best of our knowledge, this is the first hydrodynamic
model of a relativistic superfluid which includes dissipation
(due to bulk viscosity, heat conduction, and, possibly, vortex-
mediated mutual friction) consistently and is well-suited for
numerical implementation and application to the neutron star
context: the bridge with the work of Gusakov [12] ensures a
transparent contact with microphysics, while the formal
analogy with Israel and Stewart [24] guarantees the “good
behavior” of the equations. The only missing element is a
consistent inclusion of shear-viscous effects, which is left as
the subject of future investigation.
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APPENDIX A: THERMODYNAMIC
CALCULATIONS

This appendix is devoted to presenting in more detail
some thermodynamic calculations which were omitted
from the main text.

1. Computing the stress-energy tensor in the Landau
representation

To compute the partial derivative (22) we can specialize
the generic differential (38) to variations obeying the
constraints

Sus = 6(\/1gls?) = 8(\/|glz7) = 0. (A1)
Then, using the relations
Vgl =5 V1919789,
89 = —g“”gﬂ”rﬁgyp, (A2)

we can write all six variations appearing on the right-hand
side of (38) in terms of variations of the components of the
metric:

5(u*) = '8,

8(s*) = —s"578q,, + 5*5,9759,,,

8(2%) = —2'2°89,, + 22,4759,

5()’%9) /’l/ls g pégzxp/2

8(vi) = 12" 989,/ 2,

8(n5;) = —s"2784,, + 52,959, (A3)

In this way we can prove that
oX
2 = Yu'u’ + MABnynt,
99y,
— (M*Bnhng, + D4ynf)g”,  (A4)

where we recall that the partial derivative is at constant i,

V1915, v/]g|z°. On the other hand, one can employ the
first relation of (A2) to verify that

2

Vldl

Hence, inserting (A4) into (AS5), we see that Eq. (22)
reduces to (39) provided that

|91%) oX
=2 + Xgr.
99y, 99y

(AS)

¥ =X - M Bning, — D u;nt. (A6)
However, if we compare (24) with (34), we can conclude
that

¥Y=X-s0,+7"A,, (A7)
which can be shown with a little algebra to be equivalent to
(A6), completing our proof.

2. Newtonian limit of the thermodynamic differential

For v =0, we may rewrite Eq. (61) in the following
form:

0 »
5700~ _ ””ﬁé °+ﬂ15T01+<nf—n %)5"1 (A8)

A P

Sticking to the notation of Andreev and Melnikovsky [46],
we can make the Newtonian decomposition

periv), #=S0%). = (i), (A9
m

where m is the rest mass of the constituents. Furthermore,

we need to remember that the relativistic energy density

contains a rest mass contribution and that in Newtonian

physics the momentum density coincides with the mass

current:
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T =p +E, T = ji. (A10)
Finally, the momentum covector can be split as
wy, = (=p°, mvy). (A11)

Rewriting 4 in the formalism of Andreev and Melnikovsky
[46] requires a slightly more elaborate procedure. One
needs to consider that Landau’s Newtonian chemical
potential x4 is defined through the condition

m+py =\~ (A12)
which, using (A11), implies
(u0)? = m? + 2muk, + (uh)? + m*v:.  (A13)

Extracting the square root and taking the Newtonian limit
we find

L 2
0 — 1 N V_‘ Al4d
! m<+m+2 (Al14)

Using all the correspondence relation we have introduced,
we can rewrite (A8) as follows:

uk V2
SE =T8S + (—N + 3‘ - stn>5p +v,6§+ (j — pv,)ovs.
m
(A15)

which is Eq. (4) of Andreev and Melnikovsky [46].

3. High frequency bulk viscosities

In the following calculations we will constrain w*w, to
be constant, so that we can ignore it as a variable while
performing the derivatives. Consider the equation

o ")

z E

n (A16)

Deriving it with respect to n% at constant x, we find

E
E £ 92eq

=g T onkE

Xy

, OxZ1

7L
~(n") onf :

eq
)
E 6sE

s

(A17)

nt

Thus, the first equation of (164) can be rewritten as

2 (0
”E.xx 8I’LE

where we have also used the relation

= OA
3= (nf)? ( o

@

Z

1 0Ag

Ag|
nE sE I’lE 8)62

0zF

(A19)

nt x,

Now, let us focus on the equilibrium condition (for small
heat flux) which defines x:!(nf, x,) implicitly:

Ag(nf, x,, x2(nf, x;)) = 0. (A20)

If we derive it along a curve, parametrized with nf, at
constant x,, we immediately obtain the identity

OAL
Ox

Xg,X, z

o8,
onf

Ox3d

onk

=0, (A21)

nE.xS X

where all the quantities are evaluated at equilibrium.
Comparing (A18) with (A21) we obtain the first equation
in (166). To obtain the second equation in (166) we just
need to consider the equilibrium condition which defines
26y (nF, s%) implicitly:

Ag(nt, s, 25 (nf, sF)) = 0. (A22)
Taking its derivative with respect to n* at constant s* we
obtain the equilibrium relation

E
07eq
nf st on*

08
onf

OA
sE ZE 825

=0. (A23)

sE

Comparing this equation with the second formula of (164),
we obtain the second expression of (166).

APPENDIX B: DIFFERENTIAL OF THE ENERGY
DENSITY IN A GENERIC REFERENCE FRAME

In this appendix we show how to obtain a thermody-
namic differential of the kind (104) from (52).

1. Setting the stage
We consider a generic multifluid with / independent

components. We introduce a mute chemical index x =
1, ..., [ and we use the Einstein summation convention with
it. The energy-momentum tensor has the usual canonical
form

T, = Y&, + niu,. (B1)
Let us introduce a local observer O with four-velocity uf,
and let us make the decomposition

n% = nSut, + J, Joue, =0,

W= pbuo, Wi wiub=0.  (B2)

Then, Eq. (B1) can be decomposed into
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v v O, x v
17, =Y, + ny upupue,

+ nQubyws + Jophue, + Jiws.  (B3)
The symmetry condition
7% =T (B4)
implies
Jow? = Jiw,
wHJh = ndwv. (BS)
The energy density measured by O is
po = T,pupup; (B6)
thus, by comparison with (B3), we obtain
po =—-Y+n%u,. (B7)

2. Variations

Now, we make a generic variation (at constant metric
components) of all the currents n% and of ug, independently.
Hence, the degrees of freedom of the variation are 3 + 41.
By making this choice we ensure the full generality of our
study. In fact, to obtain the case considered in Sec. VA, in
which ug, is not an independently chosen four-velocity, but
a hydrodynamic field of the theory itself, it is sufficient to
impose a constraint on u, (a condition which can safely be
imposed at the end of the calculations we are making here).

According to (52), the variation of the pressure is

oW = —n¥ou;. (B8)
Invoking the decomposition (B2), we obtain
8 = —nQubd(phup,) — nuldws

= JiS(upuo,) = Jiow;. (B9)

The variations must conserve the normalization condition
upip, = —1 and the orthogonality of the decompositions
(B2). This produces the constraints

upoup, =0,

M@D&]; = —J;&MOV,

U oWy = —wyou,), (B10)
which, plugged into (B9), give
Y = n96ul, + (nSw™ — plyJ)Sup, — Juowy.  (B11)

By comparison with (B5), we see that the second term
vanishes, leaving

8 = n9sut, — J4owr. (B12)

Now we see that (B7) describes a Legendre transformation
of ¥ with respect to up,, and thus we immediately obtain
Spo = uHon + JLowy, (B13)

which is what we wanted to prove.

APPENDIX C: THE ROLE OF ENTRAINMENT:
A CAUSAL AND STABLE TOY-MODEL

Consider the special three-component model given by an
equation of state of the form

A=A, (n?) + Ay(s?. 2. n5,). (C1)
By construction, we have
AM = A" = 0. (C2)

This model is clearly not realistic, because even in the
nondissipative limit there is no entrainment between the
entropy and the particle current [see (82)], while it is a well-
known fact that A" # 0 also in laboratory superfluids [52].
However, Eq. (C1) produces a simple toy-model, whose
stability and causality properties are easy to study. In fact,
since the current n” is completely decoupled from s* and z*,
the energy-momentum tensor splits into two pieces,

T =T +TY, (C3)

where the first contribution is a barotropic perfect fluid

X = P,g” + (=A, + P,)v" 0",

P, =N\, —n"u,, (C4)
which is a function of n* only, while the second constitutes
a two-component model

TS =W, ¢ + s'& — “A’,
Y, =A; — 50, + YA, (C5)
which depends only on s* and z*. Now, if we insert Eq. (47)
into the first definition of (46), we obtain in the present toy-
model the separate energy-momentum conservation

v, T} =0. (Co)
Since these are four equations (in which s* and z* do not
appear) for the 4 degrees of freedom n”, we have found that
the particle current evolves as a stand-alone barotropic
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prefect fluid. Its dynamics is, therefore, always causal and
stable, provided that the equation of state A,,(n?) obeys the
standard thermodynamic causality and stability condi-
tions [48].
From (C6) and (46), one can immediately verify that the
equations of motion for s and z” can be written in the form
R;, =2s*V,0, +0,V,s", v, T =0. (C7)
Now, if we assume that the expression for R, which is still
not specified, does not depend on n*, then the currents s*
and z¥ evolve independently from »”. Their dynamics is
governed by a stand-alone two-component model for heat
conduction of the type described by Carter [5] and Lopez-
Monsalvo and Andersson [2]. This model has been shown
by Priou [27] to be equivalent, for small deviations from
equilibrium, to the Israel-Stewart theory and therefore to
share its causality and stability properties. As a conse-
quence, if the appropriate microscopic input for A, and R}
is given, it is always possible to make the evolution causal
and stable.

We remark that there is a fundamental difference
between setting the entrainment between n” and s* to zero
in our three-component model and making Carter’s regular
assumption for heat-conducting normal fluids. In fact, in
Carter’s regular model n” and s interact through R, and
therefore Carter was removing the entrainment between
two species that exchange momentum dissipatively. On the
other hand, in our three-component model the current n”
does not take active part in the dissipation, as it represents
just a spectator current. The proper analog of Carter’s
regular model in superfluid dissipative hydrodynamics
would be the postulate

A =0. (C8)
In fact, as discussed in Sec. VA, z¥ (and not n*) is the
proper superfluid equivalent of the particle current in the
Eckart framework. Indeed, taking the example of this
appendix, we see that the assumption (C8) does lead to
pathology, as it converts (C5) into Carter’s regular heat-
conducting fluid.
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