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We investigate, within the framework of quantum field theory in curved space, the correlations across the
horizon of a black hole in order to highlight the particle-partner pair creation mechanism at the origin of
Hawking radiation. The analysis concerns both acoustic black holes, formed by Bose-Einstein condensates,
and gravitational black holes. More precisely, we have considered a typical acoustic black hole metric with
two asymptotic homogeneous regions and the Schwarzschild metric as describing a gravitational black
hole. By considering equal-time correlation functions, we find a striking disagreement between the two
cases: the expected characteristic peak centered along the trajectories of the Hawking particles and their
partners seems to appear only for the acoustic black hole and not for the gravitational Schwarzschild one.
The reason for that is the existence of a quantum atmosphere displaced from the horizon as the locus of
origin of Hawking radiation together, and this is the crucial aspect, with the presence of a central singularity
in the gravitational case swallowing everything is trapped inside the horizon. Correlations, however, are not
absent in the gravitational case; to see them, one simply has to consider correlation functions at unequal
times, which indeed display the expected peak.
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I. INTRODUCTION

One of the most amazing properties of black holes (BHs)
is that, despite their name, they are not really black as they
emit thermal radiation. This is the spectacular result
reached by Hawking in 1974 [1], a milestone of modern
theoretical physics. Unfortunately, this radiation is so weak
that it is almost impossible (at least so far) to reveal it. More
precisely, the emission temperature for a solar mass BH is
of order 10−7 K (which should be compared to the 2.7 K of
the cosmic microwave background) and even lower for
more massive BHs since this temperature scales inversely
proportional to the mass. The only hope could come from
primordial BHs [2] whose mass can be significantly lower
than the solar mass, but so far, no evidence of such a kind of
signals has been revealed (see, for example, Ref. [3]).
The mechanism responsible for the Hawking radiation is

intrinsically quantummechanical, namely, the conversion of
quantum vacuum fluctuations in on-shell real particles.
More precisely, pairs of correlated particles are created,
onemember outside the BH horizon escaping to infinity and

constituting the thermal radiation and the other, called
partner [4], inside the horizon getting swallowed by the
interior singularity. Note that particle and partner have
opposite Killing energy, and this allows the mechanism
of pair creation to work even in static or stationary
space-times.
In 1981, Unruh [5] showed that the same quantum

mechanism could work in a fluid crossing the speed of
sound, opening the possibility of observing the analog of
Hawking radiation in systems less exotic than BHs and
manageable in a laboratory. This started the interest in the
so-called analog models, condensed matter systems which
mimic characteristic features of BHs and the early Universe
and which can be used as a laboratory to test the predictions
of quantum field theory (QFT) in curved space-times [6].
Most of the research has been concentrated to sonic analog
of BHs constructed from Bose-Einstein condensates
(BECs) [7] where the expected Hawking temperature
∼10 nK is only 1 order of magnitude less than the back-
ground (∼100 nK). Nevertheless, competing effects like
thermal emission can still cover the Hawking radiation. To
overcome this, it was realized that Hawking radiation has a
characteristic imprint on the equal-time density-density
correlation function when one point is taken outside the
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sonic horizon and the other is taken inside [8,9]. Once the
horizon is formed and a stationary regime is reached, a
well-defined peak appears, reflecting the correlation
between the Hawking particles and their partners. This is
the smoking gun of the presence of Hawking radiation.
Using this input, Steinhauer [10] and de Nova et al. [11], by
a series of experiments, were finally able to reveal it.
In recent time, the attention of the experimentalists has

been moved from the stationary regime, which is theoreti-
cally almost understood, to the dynamic formation of time-
dependent analog BH horizons, like the experiment
reported by Kolobov et al. [12]. They were able to follow
the ramp-up of Hawking radiation following the formation
of a sonic horizon in a BEC looking at the time evolution of
the in-out density correlation function. In this paper, we
will show how, using the powerful methods of QFT in
curved space-times, one can theoretically describe this
ramp-up. This is done in a simple toy model of the sonic
BH formation, which allows an analytical treatment able to
reproduce the qualitative features of the experiment [13].
The temporal evolution of the in-out correlation function
toward its stationary configuration we obtain will shed light
on when and where Hawking radiation emerges out of the
vacuum fluctuations.
Locating the origin of Hawking radiation in a BH is a

long-standing issue. It was first discussed by Unruh [14],
analyzing the propagation of the modes associated to a
quantum field in a BH space-time. Later, Giddings [15]
introduced the idea of a quantum atmosphere significantly
displaced from the horizon as the locus where Hawking
radiation emerges out of vacuum fluctuations. This work
was followed by other authors refining the analysis [16,17].
The results of these studies locate in a Schwarzschild black
hole the region where the Hawking particles emerge at a
distance Oð1=κÞ from the horizon, where κ is the horizon’s
surface gravity. We will see that our analysis based on
correlation across the horizon will give strong support on
the existence of a quantum atmosphere also for acous-
tic BHs.
Usually, the studies on Hawking radiation for gravita-

tional BHs focus on the region exterior to the horizon. One
looks, for example, to the particle spectrum revealed far
away from the BH, analyzing the modes of the quantum
field associated to the emitted particles and the related
Bogoliubov transformations [1]. At a deeper level, one
tries to get information on Hawking radiation by studying
the renormalized stress-energy tensor of the quantum
field [18].
Here, inspired by the work on acoustic BHs, we will also

study the particle-partner correlation across the horizon in
Hawking radiation for a BH formed by gravitational
collapse. Of course, one has no access to the region inside
the horizon since this surface is now a causal boundary
preventing the information from the inside from leaking
outside. So, this study has just a theoretical interest.

Nevertheless, the complete different pattern of the equal-
time in-out correlations, which will emerge compared to the
ones in acoustic BHs because of the presence of an interior
singularity, will help us to understand better the role of the
quantum atmosphere in the Hawking effect.
The paper is organized as follows. In Sec. II, we discuss

the correlations across the horizon of the density fluctua-
tions in an acoustic BH formed by a BEC. The toy model
used to mimic the horizon formation and the technical
details are left in Appendix A. In Sec. III, the same kind of
analysis is performed for a BH formed by gravitational
collapse of a null shell. Some mathematical details are
given in Appendix B. Section IV is devoted to the
conclusions.

II. IN-OUT CORRELATIONS IN BEC SONIC
BLACK HOLES

In Ref. [13], we have shown, using a simple model, how,
with the methods of QFT in curved space, one can describe
quite well the time evolution of the density-density corre-
lation function in a BEC once a sonic horizon is formed
(see also Refs. [19,20]). The goal was to locate where and
when the signal of the presence of Hawking radiation
appears.
In this paragraph, we review the model and discuss the

results. The technical details are given in Appendix A.
The model we use to mimic the BH formation is quite

simple so that a complete analytical treatment is possible.
However, we are confident that its outcomes describe, at
least qualitatively, correctly the physics of the ramp-up of
Hawking radiation toward the stationary regime charac-
terized by the peak in the correlation function mentioned in
the Introduction.
We assume a one-dimensional BEC flow, directed from

right to left along the x axis at a constant velocity Vð<0Þ;
the density n of the condensate is also constant. By properly
modulating the speed of sound c, we can generate the
formation of an acoustic BH. To this end, the profile of c is
assumed to vary in time as

(
c ¼ cin; t < 0

c ¼ jVj
�
1þ γ tanh κx

γjVj
�
; t > 0;

ð2:1Þ

where cinð>jVjÞ is constant like κ and γ ¼ 2
3
. The chosen

profile describes a uniform subsonic flow for t < 0. At
t ¼ 0, a sonic BH forms; the region x > 0 remains
subsonic, while for x < 0, the flow is supersonic. The
sonic horizon is located at x ¼ 0, and κ is its surface
gravity. We remark that modulations of the speed of sound
in a BEC, even suddenly, are now obtained with routine
procedures in laboratories: for example, using Feshbach
resonances to vary the atom-atom interaction coupling [21].
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The equal-time correlator Gð1Þ
2 ðt; x; x0Þ of the one-

dimensional (1D) density fluctuation operator can be
approximated within the gravitational analogy using the
methods of QFT in curved space as [8]

Gð1Þ
2 ðt; x; x0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðxÞnðx0Þ

m2c3ðxÞc3ðx0Þ

s
lim
t→t0

Dhδθ̂ð2Þδθ̂ð2Þi; ð2:2Þ

where nðxÞ is the 1D density of the condensate (constant in
our model),m is the mass of the single atom of the BEC, D
is the differential operator

D ¼ ð∂t þ V∂xÞð∂t0 þ V∂x0 Þ; ð2:3Þ

and hδθ̂ð2Þðt; xÞδθ̂ð2Þðt0; x0Þi is the two-point function of a
1þ 1-dimensional massless scalar field δθ̂ð2Þ, whose field
equation is

□̂δθ̂ð2Þ ¼ 0; ð2:4Þ

propagating in the 1þ 1D acoustic metric

ds2 ¼ −ðc2 − V2Þdt2 − 2Vdtdxþ dx2; ð2:5Þ

and □̂ is the covariant d’Alembert operator computed from
the above metric.
This approximation neglects backscattering of the modes

caused by the inhomogeneity of the BEC (i.e., curvature of

the acoustic metric) [22]. This backscattering produces two
secondary peaks in the correlation pattern besides the main
one referred to in the Introduction [23–25], but so far, no
experiment has been able to see them, given the much
weaker signature of these ones compared to the former. The
mathematical details of our construction are given in
Appendix A. Here, we discuss the results we have obtained.
In Fig. 1, we plot Gð1Þ

2 ðt; x; x0Þ for points x > 0 (outside the
horizon) and x0 < 0 (inside the horizon) at four increasing
times, t1 ¼ 1=κ, t2 ¼ 2=κ, t3 ¼ 4=κ, and t4 ¼ 5=κ.
At late time, once the stationary regime is achieved, a

peak at x0 ¼ −x is expected, signaling the correlation of the
Hawking particles and their partners. The signal is the one
that has been experimentally observed [10–12]. In our
model, the late-time limit is governed by the condition
e−κt sinh 3κjxj

2jVj ¼ cst ≪ 1 [see Eq. (A22)]. Note that this
condition is reached earlier in the near-horizon region and
then it spreads out. From Fig. 1, where we plot the absolute

value of Gð1Þ
2 ðt; x; x0Þ (the correlator is negative), one sees

indeed the formation of a peak located at x0 ¼ −x. Note,
however, that this holds for x ¼ −x0 sufficiently far away
from the horizon. To see this more clearly, in Fig. 2, we plot
the correlator evaluated at t ¼ 10

κ as a function of x for
various fixed points x0: x0 ¼ −5;−6;−7;−8. The peak is
located at x ¼ −x0 only for jx0j≳ 7jVj=4κ. For values of x0
closer to the horizon, the peak does not appear. So, there is
no sign of correlations in the near-horizon region.
Let us understand the reason. The correlator is given [see

Eq. (A19)] by

Gð1Þ
2 ðt; x; x0Þ ¼ −

ℏn

4πmcðxÞ1=2cðx0Þ1=2
�

1

ðcðxÞ − jVjÞðcðx0Þ − jVjÞ
duin
du

du0in
du0

1

ðuin − u0inÞ2

þ 1

ðcðxÞ þ jVjÞðcðx0Þ þ jVjÞ
dvin
dv

dv0in
dv0

1

ðvin − v0inÞ2
�����

t¼t0

≡ Gð1Þ
2;uðt; x; x0Þ þGð1Þ

2;vðt; x; x0Þ: ð2:6Þ

The relevant term is the first one in Eq. (2.6) describing
the correlations of the positive (Killing) energy Hawking
particles and their negative (Killing) energy partners. Let us
call this term Gð1Þ

2;uðt; x; x0Þ. The other one Gð1Þ
2;vðt; x; x0Þ is

related to the v sector.
At late advanced time, we have uin ¼ � e−κu

jAj [see
Eq. (A12)], where the minus sign refers to points outside
the horizon (x > 0) and the plus sign refers to points inside
the horizon (x < 0). In this limit, we have

Gð1Þ
2;uðt;x;x0Þ ¼−

ℏnκ2

4πmV2γ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðxÞcðx0Þp coshβxcoshβx0

ðsinhβx− sinhβx0Þ2 ;

ð2:7Þ

where β≡ κ
γjVj. For x and x0 far away from the horizon, the

absolute value of Gð1Þ
2;uðt; x; x0Þ has a local maximum at

x ¼ −x0, while for x; x0 → 0, we have

lim
x;x0→0

Gð1Þ
2;uðt; x; x0Þ ¼ −

ℏn
4πmjVj

1

ðx − x0Þ2
¼ lim

x;x0→0
Gð1Þ

2;vðt; x; x0Þ: ð2:8Þ

Away from the horizon, Gð1Þ
2;vðt; x; x0Þ rapidly decreases, see

Fig. 3, and becomes one order of magnitude smaller than

Gð1Þ
2;uðt; x; x0Þ.
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From these considerations, we can deduce that for x, x0
close to the horizon the light-cone singularity of the two-
point function starts dominating and the local minimum
disappears (see Fig. 2) [26]. The correlator describes just
diverging vacuum fluctuations as x ¼ −x0 → 0. So, we see
that the emergence of the Hawking’s particle-partner pair
creation out of vacuum fluctuations does not occur close to
the horizon but in a region, named “quantum atmosphere”
by Giddings [15], outside the horizon which within our
model can be located at x ¼ −x0 ∼ 7 and which corre-
sponds to a distance of 7jVj

4κ . One important aspect that also
emerges is that the peak signal does not appear immediately
after the formation of the horizon (t ¼ 0) but after a
characteristic time of the order 4=κ.

FIG. 1. Plots of the absolute value of Gð1Þ
2 ðt; x; x0Þ, for x > 0 (outside the horizon) and x0 < 0 (inside the horizon), at four increasing

times t1 ¼ 1=κ (a), t2 ¼ 2=κ (b), t3 ¼ 4=κ (c), t4 ¼ 5=κ (d). Here and in the figures that follow in this section, we plot the correlator up to
the overall factor ℏn

4πm and have chosen the values κ ¼ 1
4
; jVj ¼ 1; cin ¼ 3

2
.

FIG. 2. Plot of Gð1Þ
2 ðt; x; x0Þ at t ¼ 10

κ , as a function of x for
various (indicated) fixed x0.
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To reveal the correlations close to the horizon, one needs
to consider the correlator no longer at equal times. At late
time, we have

Gð1Þ
2;uðt; t0; x; x0Þ ¼ −

ℏnκ2

4πmV2γ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðxÞcðx0Þp

×
cosh βx cosh βx0

ðe−d sinh βx − ed sinh βx0Þ2 ; ð2:9Þ

where d ¼ κ
2
ðt − t0Þ≡ κ

2
Δt.

In Fig. 4, we plot the absolute value of the unequal time
correlator (2.9) at three increasing Δt (¼ 1=2κ; 1=κ; 3=2κ)
intervals and, in Fig. 5, we plot it as a function x for five
different values of x0.
One sees that the values of x0 at which the peak appears

decreases toward the horizon as Δt increases, while for
large enough x, x0, the peak is located at u ¼ u0, i.e.,

u ¼ t −
1

κ
ln sinh βx ¼ t0 −

1

κ
ln sinh jβx0j; ð2:10Þ

along the trajectories of the Hawking particle and its partner
as expected.
The analysis we have performed so far considered a BEC

whose temperature is zero. Experimentally, this is difficult
to achieve, so one should consider the case in which the
condensate has an initial temperature T ≠ 0. So, for t < 0,
we have a thermal distribution of phonons characterized by
an occupation number,

NωuðvÞ ¼
1

e
ℏωuðvÞ
kBT − 1

; ð2:11Þ

where
FIG. 4. Absolute value of the unequal-time correlator (2.9) at
three increasing Δt [¼ 1=2κ (a), 1=κ (b), 3=2κ (c)] intervals.

FIG. 3.
Gð1Þ

2;vðt;x;x0Þ
Gð1Þ

2;uðt;x;x0Þ
, defined by (2.6), at t ¼ 10

κ in the near-horizon
region.
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ωu ¼
ωcin

cin − jVj ; ωv ¼
ωcin

cin þ jVj ð2:12Þ

are the Doppler rescaled frequencies. The corresponding equal-time correlator is given now (see Appendix A) as

Gð1Þ
2T ðt; x; x0Þ ¼ −

ℏn

4πmcðxÞ1=2cðx0Þ1=2
�

1

ðcðxÞ − jVjÞðcðx0Þ − jVjÞ
duin
du

du0in
du0

A2
u

sinh2Auðuin − u0inÞ

þ 1

ðcðxÞ þ jVjÞðcðx0Þ þ jVjÞ
dvin
dv

dv0in
dv0

A2
v

sinh2Avðvin − v0inÞ
�����

t¼t0
; ð2:13Þ

where

AuðvÞ ¼
πkBTðcin ∓ jVjÞ

ℏcin
: ð2:14Þ

In Fig. 6, we have the three-dimensional plots of

Gð1Þ
2T ðt; x; x0Þ for T ¼ TH, and in Fig. 7, we have them

for T ¼ 10TH for the same times of Fig. 1.
We see that the ramp-up process to the stationary peaks

configuration is slower. The delay grows as the temperature
increases. For T ¼ 10TH, the signal appears at t ∼ 5=κ. In

Fig. 8, we show Gð1Þ
2T ðt; x; x0Þ, T ¼ TH in Fig. 8(a) and T ¼

10TH in Fig. 8(b), at t ¼ 10
κ as a function of x for various

values of x0 as we did in Fig. 2 for the T ¼ 0 case.
As shown in Appendix A [see Eq. (A35)], at late time,

the first term in Eq. (2.13), Gð1Þ
2T;uðt; x; x0Þ, which is the

dominant one giving the contribution of the u sector,
reduces to the corresponding one at T ¼ 0 in the same
limit. This is a manifestation of the quantum version of the
no-hair theorem for BHs (see, for example, Ref. [27]).
Hawking radiation at late times is unaffected by any
population in the initial state, which causes just a transient
stimulated emission [28]. This is because the modes
responsible for the late-time behavior in the u channel
are the ones with u → ∞; i.e., they propagate very close to
the horizon and are highly redshifted in their journey
toward the asymptotic region washing out any information
on the initial state. The temperature dependence at late

times comes only from the v channel, i.e., Gð1Þ
2T;vðt; x; x0Þ,

but its contribution to the total Gð1Þ
2T ðt; x; x0Þ is negligible

[for T ¼ TH, it is 1 order of magnitude smaller than

Gð1Þ
2T;uðt; x; x0Þ and decreases by increasing T]. Finite

temperature corrections are therefore small within the
gravitational approximation.

III. GRAVITATIONAL BLACK HOLES

In this section, in analogy with what we did for the
acoustic BEC BH, we shall investigate correlations
between the Hawking particles and their partners across
the horizon in a real gravitational BH. The striking
difference is that the horizon is now a causal boundary
preventing any information on inside events to leak

(a)

(b)

(c)

FIG. 5. Unequal-time correlator (2.9) as a function of x for five
different fixed values of x0 at three increasing Δt [¼ 1=2κ (a), 1=κ
(b), 3=2κ (c)] intervals.
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outside. The study of these correlations has therefore only
theoretical interest since one cannot perform experiments
(even “gedanken” ones) which require measurements
whose results can be exchanged by the observers both in
the exterior and in the interior of a BH. Nevertheless, as we
shall see, the theoretical results of our investigation will
turn out to be, at a preliminary inspection, rather unex-
pected and in strong disagreement with what one finds in
the BEC case reviewed in the previous section.
However, one should keep in mind that, although the

near-horizon geometry of an acoustic BH is similar to the
real one of a gravitational BH, the inner region of an
acoustic BH is, in principle (at least in the experiments
performed so far), infinite, while the one of a real BH
terminates rapidly in a singularity. This fact has a tremen-
dous impact on the correlation functions since these are

genuinely nonlocal quantum objects and as such they do
not probe just the local space-time geometry.
We shall begin by considering a very simple toy model

of BH formation widely used in the gravitational
literature, namely, the collapse of a null shell of radiation
(see, for example, Ref. [29]). The shell is located at v ¼ v0,
where v is an advanced null coordinate. The space-time
metric of this model can be given simply in the Vaidya
form

ds2 ¼ −
�
1−

2MðvÞ
r

	
dv2 þ 2dvdrþ r2ðdθ2 þ sin2 θdφ2Þ;

ð3:1Þ

where the mass function MðvÞ has the form

FIG. 6. Three-dimensional plots of the absolute value of Gð1Þ
2T ðt; x; x0Þ for T ¼ TH at the same different times of Fig. 1, i.e., t1 ¼ 1=κ

(a), t2 ¼ 2=κ (b), t3 ¼ 4=κ (c), t4 ¼ 5=κ (d).
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MðvÞ ¼ mθðv − v0Þ; ð3:2Þ

where m is a constant and θ is the Heaviside step function.
So, inside the shell (i.e., v < v0), we have Minkowski
space-time

ds2in ¼ −dv2 þ 2dvdrþ r2dΩ2; ð3:3Þ

where dΩ2 ¼ dθ2 þ sin2 θdφ2, while outside the shell (i.e.,
v > v0), the metric is the Schwarzschild one describing a
BH of mass m and horizon located at r ¼ 2m:

ds2 ¼ −
�
1 −

2m
r

	
dv2 þ 2dvdrþ r2dΩ2: ð3:4Þ

Continuity of the induced metric on the shell ensures that
the radial coordinate r is continuous across the shell. The
resulting Penrose diagram of our space-time is given
in Fig. 9.

In the interior region, we can introduce a retarded null
coordinate uin as

uin ¼ v − 2r ð3:5Þ

and write the Minkowski metric in a double-null form,

ds2 ¼ −duindvþ r2ðuin; vÞdΩ2; ð3:6Þ

where

rðuin; vÞ ¼
v − uin

2
: ð3:7Þ

Similarly, in the external region, we define the retarded
Eddington-Finkelstein null coordinate u as

u ¼ v − 2r�; ð3:8Þ

FIG. 7. Three-dimensional plots of the absolute value ofGð1Þ
2T ðt; x; x0Þ for T ¼ 10TH at the same different times of Fig. 1, i.e., t1 ¼ 1=κ

(a), t2 ¼ 2=κ (b), t3 ¼ 4=κ (c), t4 ¼ 5=κ (d).
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where r� is the tortoise Regge-Wheeler coordinate

r� ¼
Z

dr
1 − 2m

r

¼ rþ 2m ln

���� r
2m

− 1

���� ð3:9Þ

and the double-null form of the Schwarzschild metric reads

ds2 ¼ −
�
1 −

2m
r

	
dudvþ r2ðu; vÞdΩ2; ð3:10Þ

where rðu; vÞ is implicitly defined by

r� ¼ v − u
2

: ð3:11Þ

Along the shell, we have rðuin; v0Þ ¼ rðu; v0Þ, and this
leads to

u ¼ uin − 4m ln

���� v0 − 4m − uin
4m

����: ð3:12Þ

For simplicity, we set v0 ¼ 4m. This relation, once inverted
as uinðuÞ, allows us to extend the coordinate uin in the
exterior region. In particular, we have [30]

uin ¼ −4mWð�e−
u
4mÞ; ð3:13Þ

whereW is the Lambert function and þ holds in the region
exterior to the horizon and − in the interior one.

We consider now a quantized field ϕ̂ffiffiffiffi
4π

p
r
, for simplicity

scalar and massless, propagating in this space-time. The
modes associated to this field are assumed to have the form

e−iωvffiffiffiffi
4π

p ffiffiffiffiffiffi
2πω

p
r
on past null infinity I−, and in this way, the

quantum state of our field is Minkowski vacuum on I−; i.e.,
there are no incoming particles. We call this state jini. We
neglect backscattering of the modes induced by the
curvature of the space-time and simply impose reflecting
conditions on the origin r ¼ 0 in the Minkowski region
yielding uin ¼ v at r ¼ 0 [see Eq. (3.7)] and requiring
regularity of the modes there. This leads us to approximate
our (1þ 3)-dimensional theory as an effective (1þ 1)-
dimensional one describing a massless scalar field ϕ̂
propagating in the (1þ 1)-dimensional space-time section
of our space-time obtained by taking θ and φ constants, i.e.,

ds2ð2Þ ¼ −
�
1 −

2MðvÞ
r

	
dv2 þ 2dvdr: ð3:14Þ

This procedure is widely used in dealing with the Hawking
effect for the Schwarzschild BH, allowing an analytical
description which captures the essential physical features of
the process. See, for instance, Refs. [18,31,32].
The two-point function corresponding to our jini vac-

uum accounting for the boundary condition at r ¼ 0 in the
Minkowski region reads [33]

(a)

(b)

FIG. 8. Plots of Gð1Þ
2T ðt; x; x0Þ, T ¼ TH in (a) and T ¼ 10TH in

(b), at t ¼ 10
κ as a function of x for various values of x0 as we did in

Fig. 2 for the T ¼ 0 case.

FIG. 9. Penrose diagram of a Schwarzschild black hole formed
by a null shell collapse.
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hinjϕ̂ðxÞϕ̂ðx0Þjini ¼ −
ℏ
4π

ln
ðuin − u0inÞðv − v0Þ
ðuin − v0Þðu0in − vÞ : ð3:15Þ

In this section, we indicate with x the generic space-time
point ðt; rÞ. Unlike the previous case of an acoustic BH,
space-time is now really curved, and this is affecting not
just the quantum field ϕ̂ but also the observers which are
requested to probe it. So, we have to specify not only the
observable of the field ϕ̂wewant to measure but also which
observer is going to measure it.
In the acoustic BH, one considers the density fluctua-

tions measured by an observer at rest in the laboratory,
which is an inertial observer in that case. To be as close as
possible, we can choose the energy density of the field ϕ̂ as
quantum observable, but one cannot choose observers at
rest, since they do not exist inside the horizon and we are
interested in correlations across the horizon which require
measurements on both sides of it.
We therefore choose free-falling observers, moving on

radial geodesics for simplicity. These are local inertial
observers. So, our quantum observable is the scalar

ρ̂≡ T̂abuaub; ð3:16Þ

where

T̂abðϕ̂Þ ¼ ∂aϕ̂∂bϕ̂ −
gab
2

gcd∂cϕ̂∂dϕ̂ ð3:17Þ

is the two-dimensional energy-momentum operator of
the field ϕ̂ and ua is the 4-velocity of the free-falling
observer. Note that T̂ab is traceless due to the conformal
invariance of ϕ̂ so it has only two independent components.
The correlator we shall study is then

hinjρ̂ðxÞρ̂ðx0Þjini≡Gðx; x0Þ; ð3:18Þ

evaluated in the Schwarzschild region where one point (x)
is taken outside the horizon and the other (x0) is taken
inside.
Since in the acoustic BH the effective metric is given in

Painlevé coordinates, we use the same coordinates here,
transforming the original Schwarzschild metric (3.4) into

ds2ð2Þ ¼ −fdt2 − 2Vdtdrþ dr2; ð3:19Þ

where r ¼ 1 − 2m
r ≡ ð1 − V2Þ; V ¼ −

ffiffiffiffiffi
2m
r

q
, and the

Painlevé time t is given by

t ¼ vþ
Z � ffiffiffiffiffiffiffiffiffiffiffi

1 − f
p

f
−
1

f

	
dr: ð3:20Þ

The metric (3.19) holds for points (t, r) such that
vðt; rÞ > v0, where vðt; rÞ is obtained inverting (3.20).
t is a regular time coordinate across the horizon. With this

choice, we can slice the entire BH space-time by constant t
hypersurfaces similarly with what we did for the acous-
tic BH.1

As shown in Appendix B, the energy density measured
by a free-falling observer in Painlevé coordinates is simply

ρ̂ðt; rÞ ¼ T̂rrðϕ̂Þ: ð3:21Þ

Using Eq. (B7), we can write the density-density correla-
tor as

Gðx; x0Þ ¼ hinj T̂uuðxÞT̂u0u0 ðx0Þ
ð1þ VðxÞÞ2ð1þ Vðx0ÞÞ2

þ T̂uuðxÞT̂v0v0 ðx0Þ
ð1þ VðxÞÞ2ð1 − Vðx0ÞÞ2

þ T̂vvðxÞT̂u0u0 ðx0Þ
ð1 − VðxÞÞ2ð1þ Vðx0ÞÞ2

þ T̂vvðxÞT̂v0v0 ðx0Þ
ð1 − VðxÞÞ2ð1 − Vðx0ÞÞ2 jini: ð3:22Þ

In Fig. 10, we plot the correlator Gðt; r; t0; r0Þ at equal
Painlevé time (i.e., t ¼ t0) for 0<r0<2m and 2m<r<4m
outside the shell. The sequence of figures corresponds to
four increasing Painlevé times t ¼ 10m; 20m; 30m; 40m.
The result is quite surprising: no structure at all appears.2

The same conclusion is reached by representing the
correlator at t ¼ t0 ¼ 40m as a function of r for different
values of r0 < 2m: r0 ¼ 0.8m;m; 1.2m; 1.4m. See Fig. 11.
So, it seems that there is no signal in the equal-time

correlator (3.22) of the correlations between the Hawking
particles and their partners, and this is in striking contra-
diction with our naive expectation and with what we found
for the acoustic BH. A comparison of Figs. 1 and 2 of our
previous section with the actual ones is clearly illustrating
this discrepancy. For the acoustic BH, we found no sign of
the correlations close to the horizon because there the
correlator is dominated by the light cone (coincidence limit
in the case of equal-time) singularity. Correlations
appeared, however, well outside the horizon with the
characteristic peak we saw. So, our expectation was to
find a similar peak structure even in our gravitational BH
for points sufficiently away from the horizon, in the
quantum atmosphere region.

1Instead of t, we can use as time parameter Eddington-
Finkelstein time tEF ¼ v − r, which is also a regular time
coordinate across the horizon, and slice the space-time accord-
ingly. No qualitative difference emerges in the results we will
obtain.

2Although all Figs. 10 seem the same, differences nevertheless
exist away from the divergent coincident limit r ¼ r0 ¼ 2m, but
they are too small to be seen in these plots and are irrelevant for
our discussion.
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So, one has to understand why this feature does not show
up. At first sight, one could argue that this is an artifact
related to the motion of the observers (free falling in our
case) measuring the correlations affecting the result, while
in the acoustic case, measurements are made at fixed
laboratory coordinates. We do not think this is the case.
If one calculates the equal-time density-density correlator
of Eq. (2.6) for a hypothetical acoustic metric given by the
Schwarzschild one of Eq. (3.4) for which c ¼ 1 and the
velocity profile is V ¼ −

ffiffiffiffiffiffiffiffiffiffiffi
2m=r

p
(diverging at r ¼ 0) and

where the r ¼ 0 singularity is replaced by a sink absorbing
both the condensate atoms and the phonons, as discussed,
for example, in Ref. [34], one would obtain the plot
depicted in Fig. 12. The same negative result occurs: no
peak in the equal-time correlation function.

FIG. 11. Gðt; r; t0; r0Þ at t ¼ t0 ¼ 40m as a function of r at
values of r0 < 2m: r0 ¼ 0.8m;m; 1.2m; 1.4m.

FIG. 10. Plot of Gðt; r; t0; r0Þ (ℏ ¼ 1; m ¼ 1 in all plots of this section) at equal Painlevé time for 0 < r0 < 2m and 2m < r < 4m
outside the shell at four increasing Painlevé times t ¼ 10m (a), 20m (b), 30m (c), 40m (d).
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Now, the key ingredient for the description of these
correlations [see Eqs. (3.22), (B10), (B14)] is the correlator

∂u∂u0 hinjϕ̂ðxÞϕ̂ðx0Þjini
ð1þ VðrÞÞð1þ Vðr0ÞÞ

����
t¼t0

¼ −
ℏ

4πð1þ VðrÞÞð1þ Vðr0ÞÞ
uinu0in

ðuin − u0inÞ2

×
1

ðuin − 4mÞðu0in − 4mÞ
����
t¼t0

; ð3:23Þ

from which the relevant part of the density-density corre-
lations [Eq. (3.22)] is constructed. Note its similarity with
the Gð1Þ

2 ðt; x; x0Þ correlator of Eq. (2.6) in the acoustic case
discussed in the previous section.
At late retarded time (u → þ∞; uin → 0), we have, from

(3.12), that the relation between uin and u can be approxi-
mated as

uin ¼ �4me−
u
4m; ð3:24Þ

where uin < 0 for r > 2m and uin > 0 for r < 2m. Using
this, we get in this limit

∂u∂u0 hinjϕ̂ðxÞϕ̂ðx0Þjini
ð1þVðrÞÞð1þVðr0ÞÞ

����
t¼t0

¼ ℏ

4πð1−
ffiffiffiffiffi
2m
r

q
Þð1−

ffiffiffiffiffi
2m
r0

q
Þ

1

16m2

1

cosh2ðu−u0
8m Þ

����
t¼t0

; ð3:25Þ

which is extremized, for r, r0 sufficiently away from the
horizon, by u ¼ u0 (i.e., along the trajectories of the particle
and partner). Combining (3.8) and (3.20), we have

u ¼ t − r − 2
ffiffiffiffiffiffiffiffiffi
2mr

p
− 4m ln

����
ffiffiffiffiffiffiffi
r
2m

r
− 1

����; ð3:26Þ

and so the condition u ¼ u0 at equal times gives

rþ 2
ffiffiffiffiffiffiffiffiffi
2mr

p
þ 4m ln

� ffiffiffiffiffiffiffi
r
2m

r
− 1

	

¼ r0 þ 2
ffiffiffiffiffiffiffiffiffiffi
2mr0

p
þ 4m ln

�
1 −

ffiffiffiffiffiffiffi
r0

2m

r 	
: ð3:27Þ

So, in analogy with what we saw for the acoustic BH, one
would expect that at late time for r, r0 not sufficiently close
to the horizon the equal-time density correlator Gðt; x; x0Þ
should show a peak along (3.27). If we plot the two
functions entering the left- and right-hand sides of
Eq. (3.27), as shown in Fig. 13, we see the critical point
explaining the apparently absurd result of our Fig. 10:
Eq. (3.27) has a solution only for r≲ 2.6m for which the
corresponding r0 > 0. So, when the Hawking particle
emerges from the quantum atmosphere out of the vacuum
fluctuations, at a distance Oð1=κÞ (where κ ¼ 1

4m is the
surface gravity of the Schwarzschild black hole) from the
horizon, the corresponding partner has already been swal-
lowed by the singularity, and the correlations are lost. On
the other hand, for points (r, r0) correlated by (3.27) with a
nonvanishing r0 (<2m), the density correlator Gðx; x0Þ is
dominated by the coincidence limit, and as happens for
acoustic BHs, peaks do not appear. The behavior of
Gðx; x0Þ at equal times we found in Fig. 10 is completely
understandable. To better appreciate the difference with the
acoustic case, we have plotted in Fig. 14 the peak condition
u ¼ u0 for the acoustic metric (2.5), using Eq. (A9) at equal
time. This has to be compared with Fig. 13 for the
gravitational BH. The appearance at equal time of the peak
in the acoustic case and the nonappearance in the gravi-
tational case are self-evident.
To show the particle-partner correlation present in

Hawking radiation, we have to consider the correlator
Gðx; x0Þ no longer at equal time but at t sufficiently bigger

FIG. 12. Density correlator (2.6) for an hypothetical acoustic
Schwarzschild metric.

FIG. 13. Plot of the left- and right-hand sides of Eq. (3.27).
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than t0 so that the particle is sufficiently far away from the
horizon while the partner has not yet been swallowed by the
singularity. Indeed, we see in Fig. 15(a) the emergence of a
characteristic peak structure, the locus of the peak, see
Fig. 15(b), being compatible with the u ¼ u0 condition.

For a condensedmatter analog of this aspect, see Ref. [34],
in which a proposal for an analog Schwarzschild BH by
using condensates of light is made. That reference’s Fig. 4
describes the expected signals in the correlation functions at
unequal times.
For completeness, one has to say that if one considers just

the hinjTuuðxÞTu0u0 ðx0Þjini correlator one finds a maximum
confined close to the horizon. This very localized structure
emerges because this correlator, unlike Gðx; x0Þ, vanishes
when x or x0 is on the horizon [see Eqs. (B11) and (B14)] for
uin ¼ 0 or uin ¼ 0), see also Ref. [26]. This is due to the
pathological behavior of the u modes at the horizon.
A similar argument holds for the Tuu

f correlator.

IV. CONCLUSIONS

In this paper, we have used the methods of QFT in
curved space to investigate a characteristic feature of
Hawking BH radiation, namely, the quantum correlation
across the horizon between the Hawking particles and their
partners which should show the genuine pair creation
mechanism at the origin of this effect. The analysis
concerned both acoustic BHs formed by BECs, where
the predicted correlations have indeed been experimentally
observed [10,11], and the more standard BHs formed by
gravitational collapse. We considered not just the late-time
stationary regime, but following the time evolution of the
correlations, we were able to find, in the acoustic BH case,
where and when Hawking radiation appears once an
horizon has formed [13]. The gravitational BH led us to
a puzzling result: the characteristic peak in the equal-time
correlation function, signaling the particle-partner correla-
tions we found in the acoustic case, is absent here. The
reason for this unexpected result lies in the presence of the
BH central singularity. As we have seen, Hawking particles
are produced in a region displaced from the horizon, the so-
called quantum atmosphere. Once the Hawking particle
emerges out of this region, the corresponding partner has
already been swallowed by the singularity, and their mutual
correlations are lost. Despite this negative result, we
explicitly showed in Fig. 15 that the Hawking quanta-
partner peak does indeed show up if we consider correlators
at unequal times, allowing the Hawking particle to exit the
quantum atmosphere region before its partner has reached
the singularity.
Finally, as already mentioned in Sec. II, our results do

not take into account the backscattering of the modes
caused by the inhomogeneities in the metric. In the acoustic
case, the effects of these inhomogeneities are to slightly
alter (up to 10% [22]) the Hawking quanta-partner peak and
to cause the appearance of two other signals in the
correlation pattern related to the u-v scattering [23] and
significantly smaller than the main signal. Needless to say,
so far, only the signal corresponding to the Hawking
quanta-partner peak has been observed in a BEC acoustic

FIG. 14. Plot of the u ¼ u0 condition at t ¼ t0 in the acoustic
case, with u given in (A9).

FIG. 15. (a) Three-dimensional plot of Gðx; x0Þ at late time for
Δt ¼ 30m. (b) The same correlator for fixed r0 ¼ 0.8m;m;
1.2m; 1.4m.
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BH. To discuss these two additional correlation channels
for the Schwarzshild BH, a full four-dimensional analysis
would be needed, which requires heavy numerical work to
get the complete two-points function (see, for example,
Refs. [35,36]) and which is outside the scope of the
present paper.
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APPENDIX A: BEC BHS: DETAILS OF OUR
MATHEMATICAL CONSTRUCTION

In this Appendix, we give the details for the mathemati-
cal construction of our BEC BH model of Sec. II.
In the 1þ 1-dimensional space-time described by the

metric

ds2 ¼ −ðc2ðt; xÞ − V2Þdt2 − 2Vdtdxþ dx2 ðA1Þ
with the speed of sound profile given by Eq. (2.1), we
consider a massless scalar field δθ̂ð2Þðt; xÞ satisfying the
field equation

□̂δθ̂ð2Þ ¼ 0; ðA2Þ

where □̂ is the d’Alembert operator calculated from the
above metric. Since every (1þ 1) space-time is (locally)
conformally flat, one can introduce a set of null coordinates
ðxþ; x−Þ so that the metric can be written as

ds2 ¼ −C2ðxþ; x−Þdxþdx− ðA3Þ

and the wave equation (A2) reduces simply to

∂xþ∂x−δθ̂
ð2Þ ¼ 0: ðA4Þ

The field operator δθ̂ð2Þ can be expanded in modes as

δθ̂ð2Þ ¼
X
ω

�
âþω

e−iωx
þffiffiffiffiffiffiffiffiffi

2πω
p þ â−ω

e−iωx
−ffiffiffiffiffiffiffiffiffi

2πω
p þ H:c:

�
: ðA5Þ

The vacuum state j0i is defined as â�ω j0i ¼ 0, and the
corresponding two-point function reads

h0jδθ̂ð2ÞðxÞδθ̂ð2Þðx0Þj0i ¼ −
ℏ
4π

lnΔxþΔx−; ðA6Þ

where Δx� ¼ x� − x0�. In Eq. (A6), we have omitted a
diverging (irrelevant in our case) constant related to the IR

divergence of our (1þ 1) theory. The choice of null
coordinates selects the conformal vacuum.
In our space-time, the set of null coordinates we choose

for t < 0 is

uin ¼ t −
x

cin − jVj ; vin ¼ tþ x
cin þ jVj : ðA7Þ

The associated vacuum state, that we denote as jini,
represents a quantum state in which for t < 0 there are
no incoming quanta, both from left and right past null
infinity. The corresponding two-point function is then

h0jδθ̂ð2Þðt; xÞδθ̂ð2Þðt0; x0Þj0i

¼ −
ℏ
4π

½lnðuin − u0inÞ þ lnðvin − v0inÞ�; ðA8Þ

where t; t0 < 0. The decoupling of the advanced ðvinÞ and
retarded ðuinÞ sector is a consequence of the conformal
invariance of the (1þ 1) massless theory.
We have now to analytically extend the above expression

in the relevant BH region, i.e., for t; t0 > 0. This is done by
matching the null coordinates of Eq. (A7) with the
corresponding ones in the BH region, namely,

u ¼ t −
Z

dx
cðxÞ − jVj ¼ t −

1

κ
ln sinh

3κjxj
2jVj ; ðA9Þ

v ¼ tþ
Z

dx
cðxÞ þ jVj

¼ tþ 1

8κ

�
9κx
2jVj − ln cosh

�
3κx
2jVj þ tanh−1

1

3

	�
; ðA10Þ

along the discontinuity at t ¼ 0. See Fig. 16.
Starting with the retarded coordinates, from the first of

(A7) at t ¼ 0, we have

FIG. 16. Null coordinates matching (in the “in” and BH
regions) at the t ¼ 0 discontinuity.
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uin ¼ −
x

cin − jVj : ðA11Þ

Inserting this into (A9) evaluated at t ¼ 0, we get

−κu ¼ ln sinh jAuinj; ðA12Þ

where

A ¼ 3κ

2jVj ðjVj − cinÞ < 0: ðA13Þ

The relation can be inverted giving

juinAj ¼ ln
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e−2κu
p

þ e−κu
�
: ðA14Þ

We proceed similarly for the advanced null coordinates,
obtaining

vin ¼
4κv
B

þ 1

2B
ln
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

ffiffiffi
2

p
e−8κv

q �
; ðA15Þ

where

B ¼ 3κðcin þ jVjÞ
2jVj : ðA16Þ

So, the two-point function for t; t0 > 0 can be written
formally as

h0jδθ̂ð2Þðt; xÞδθ̂ð2Þðt0; x0Þj0i ¼ −
ℏ
4π

fln½uinðuðt; xÞÞ − u0inðu0ðt0; x0ÞÞ� þ ln½vinðvðt; xÞÞ − v0inðv0ðt0; x0ÞÞ�g; ðA17Þ

where uinðuðt; xÞÞ is given by Eqs. (A14) and (A9) and vinðvðt; xÞÞ is given by Eqs. (A15) and (A10).
We have, now, all that is needed to compute the density-density equal-time correlator [see Eq. (2.2)]

Gð1Þ
2 ðt; x; x0Þ ¼ nðxÞnðx0Þ

m2c2ðxÞc2ðx0Þ limt→t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2cðxÞcðx0Þ
nðxÞnðx0Þ

s
Dhδθ̂ð2Þðt; xÞδθ̂ð2Þðt0; x0Þi; ðA18Þ

where the differential operator D is defined in Eq. (2.3), giving

Gð1Þ
2 ðt; x; x0Þ ¼ −

ℏn

4πmcðxÞ1=2cðx0Þ1=2
�

1

ðcðxÞ − jVjÞðcðx0Þ − jVjÞ
duin
du

du0in
du0

1

ðuin − u0inÞ2

þ 1

ðcðxÞ þ jVjÞðcðx0Þ þ jVjÞ
dvin
dv

dv0in
dv0

1

ðvin − v0inÞ2
�����

t¼t0

≡ Gð1Þ
2;uðt; x; x0Þ þGð1Þ

2;vðt; x; x0Þ; ðA19Þ

where

Gð1Þ
2;uðt; x; x0Þ ¼ −

ℏn
4πm

κ2

jVj3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ 2
3
tanh 3κx

2jVjÞ
q

2
3
tanh 3κx

2jVj

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2

3
tanh 3κx0

2jVjÞ
q

2
3
tanh 3κx0

2jVj

×
e−2κt sinh 3κx

2jVj sinh
3κx0
2jVjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ e−2κt sinh2 3κx
2jVjÞð1þ e−2κt sinh2 3κx0

2jVjÞ
q 1�

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þe−2κt sinh2 3κx

2jVj
p

þe−κt sinh3κx
2jVjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þe−2κt sinh23κx
0

2jVj
p

þe−κt sinh3κx
0

2jVj

	
2

ðA20Þ

and
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Gð1Þ
2;vðt; x; x0Þ ¼ −

ℏn
4πm

1

jVj3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ 2
3
tanh 3κx

2jVjÞ
q

ð2þ 2
3
tanh 3κx

2jVjÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ 2
3
tanh 3κx0

2jVjÞ
q

ð2þ 2
3
tanh 3κx0

2jVjÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e−8κt−

9
2
κx
jVjð2e3κx

2jVj þ e−
3κx
2jVjÞ

q
þ 1þ 1

2
e−8κt−

9
2
κx
jVjð2e3κx

2jVj þ e−
3κx
2jVjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e−8κt−
9
2
κx
jVjð2e3κx

2jVj þ e−
3κx
2jVjÞ

q
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e−8κt−

9
2
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q
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þ 1
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q

!2
ðA21Þ

correspond to the u channel (where Hawking radiation appears) and the v channel, respectively.
We can characterize a late-time limit in which stationarity is achieved by

e−κt sinh
3κjxj
2jVj ≪ 1; ðA22Þ

i.e.,

tlate time ≫
1

κ
ln sinh

3κjxj
2jVj ; ðA23Þ

and it is clear that this time depends on the point chosen. One reaches a stationary regime earlier near the horizon (x ≃ 0) and
later away from it. The stationary limit of Eq. (A20) then reads

Gð1Þ
2;uðt; x; x0Þ ¼

ℏ
4πmn0

κ2

jVj3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ 2
3
tanh 3κx

2jVjÞ
q

2
3
tanh 3κx

2jVj

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2

3
tanh 3κx0

2jVjÞ
q

2
3
tanh 3κx0

2jVj

1

4 cosh2
�
1
2
ln

sinh3κx
2jVj

sinh3κjx
0 j

2jVj

� ; ðA24Þ

while that of (A21) is

Gð1Þ
2;vðt; x; x0Þ ¼ −

ℏn
4πmjVj3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2

3
tanh 3κx

2jVjÞ
q

ð2þ 2
3
tanh 3κx

2jVjÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ 2
3
tanh 3κx0

2jVjÞ
q

ð2þ 2
3
tanh 3κx0
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×
1�

9
16jVj ðx − x0Þ − 1

8κ ln
2e

3κx
2jVjþe

−3κx
2jVj

2e
3κx0
2jVjþe

−3κx
0

2jVj

	
2
: ðA25Þ

Instead of the initial vacuum state described by jini in which there are no incoming quanta, we can consider the case in
which the condensate has an initial temperature T so that we have an initial thermal distribution of phonons characterized by
an occupation number

NωuðvÞ ¼
1

e
ℏωuðvÞ
kBT − 1

; ðA26Þ

where the Doppler rescaled frequencies are

ωu ¼
ωcin

cin − jVj ; ωv ¼
ωcin

cin þ jVj ðA27Þ

ROBERTO BALBINOT and ALESSANDRO FABBRI PHYS. REV. D 105, 045010 (2022)

045010-16



and kB is the Boltzmann constant. The corresponding two-point function for this thermal state, that we denote by jTi, for the
quantum field δθ̂ð2Þ is [37]

hTjδθ̂ð2Þðt; xÞδθ̂ð2Þðt0; x0ÞjTi ¼ −
ℏ
4π

ln
sinhAuΔuin

Au

sinhAvΔvin
Av

; ðA28Þ

where

AuðvÞ ¼
πkBTðcin ∓ jVjÞ

ℏcin
; ðA29Þ

the minus sign in (A29) corresponds to Au, and the plus sign corresponds to Av; Δuin ¼ uin − u0in;Δvin ¼ vin − v0in.
The thermal equal-time density-density correlator now reads

Gð1Þ
2;Tðt; x; x0Þ ¼ −

ℏnð1Þ

4πmcðxÞ1=2cðx0Þ1=2
�

1

ðcðxÞ − jVjÞðcðx0Þ − jVjÞ
duin
du

du0in
du0

A2
u

sinh2Auðuin − u0inÞ

þ 1

ðcðxÞ þ jVjÞðcðx0Þ þ jVjÞ
dvin
dv

dv0in
dv0

A2
v

sinh2Avðvin − v0inÞ
�����

t¼t0
: ðA30Þ

Separating the u and v channels, we have explicitly

Gð1Þ
2;Tuðt; x; x0Þ ¼ −
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4πm
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	 ðA31Þ

and

Gð1Þ
2;Tvðt; x; x0Þ ¼ −
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4πm

1
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!! : ðA32Þ

Note that by introducing the Hawking temperature TH ¼ ℏκ
2πkB

we can rewrite the prefactor of the ln in Eq. (A31), see also

(A13), as kBπ
ℏβA

ðcin−jVjÞ
cin

¼ − T
TH

jVj
3cin

, and, in (32), see also (A16), 4κ
B

kBπ
ℏβ

ðcinþjVjÞ
cin

¼ T
TH

4jVjκ
3cin

. We see that stationarity of Gð1Þ
2;Tu is

reached when T > 3cin
jVj TH not just by the previous condition e−κt sinh 3κjxj

2jVj ≪ 1, which holds for T < 3cin
jVj TH, but by the most

stringent condition
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T
3cin
jVj TH

e−κt sinh
3κjxj
2jVj ≪ 1: ðA33Þ

The denominator of the last term in (A31) can be approximated as follows:

sinh2

0
B@kBπ
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ðcin − jVjÞ
cin

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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≃ sinh2
�
kBπ
ℏβA

ðcin − jVjÞ
cin

e−κt
�
sinh
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kBπ
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cin

	
2

e−2κt
�
sinh
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2

: ðA34Þ

Inserting this in Eq. (A31) and approximating
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e−2κt sinh2 3κx

2jVj
q

≃ 1, we have
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ðA35Þ

which (for points x, x0 situated on both sides of the horizon) is exactly the same as the one at T ¼ 0; see Eq. (A24). One can

for completeness evaluate the late-time limit of Gð1Þ
2;Tv, giving

Gð1Þ
2;Tvðt; x; x0Þ ¼ −
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4πm
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jVj3
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ðcinþjVjÞ

cin
Þ2

sinh2
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16jVj ðx − x0Þ − 1
8κ ln
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−3κx
2jVj
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−3κx
0
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		 : ðA36Þ

APPENDIX B: GRAVITATIONAL BHS: DETAILS OF OUR MATHEMATICAL CONSTRUCTION

The Schwarzschild metric in Painlevé coordinates is (we consider the two-dimensional section)

ds2 ¼ −fdt2 − 2Vdtdrþ dr2: ðB1Þ

The components of the 4-velocity of a geodesic observer freely falling from infinity with initial zero velocity are

ua ¼ ð1; VÞ: ðB2Þ

So,

T̂abuaub ¼ T̂tt þ 2VT̂rt þ V2T̂rr: ðB3Þ

The vanishing of the trace of T̂ab gives

gabT̂ab ¼ −T̂tt − 2VT̂tr þ fT̂rr ¼ 0; ðB4Þ

which, inserted in Eq. (B3), gives

T̂abuaub ¼ T̂rr: ðB5Þ
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Given the form of the two-point function [see Eq. (3.15)], it is useful for the calculations to express T̂rr in terms of T̂uu and
T̂vv (note that T̂uv ¼ 0), where u, v are Eddington-Finkelstein null coordinates. Performing the coordinate transformation,
we have

T̂rrðt; rÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffi

1 − f
p þ 1

f

�
2

T̂uuðu; vÞ þ
� ffiffiffiffiffiffiffiffiffiffiffi

1 − f
p

− 1

f

�
2

T̂vvðu; vÞ; ðB6Þ

which, taking into account that f ¼ 1 − V2, V < 0, yields

T̂rr ¼
T̂uu

ð1þ VÞ2 þ
T̂vv

ð1 − VÞ2 ; ðB7Þ

where V ¼ −
ffiffiffiffiffi
2m
r

q
.

From (3.17), we have

T̂uu ¼ ∂uϕ̂∂uϕ̂; ðB8Þ

and similarly

T̂vv ¼ ∂vϕ̂∂vϕ̂: ðB9Þ

The fundamental object for our calculation is

∂u∂u0 hinjϕ̂ðxÞϕ̂ðx0Þjini ¼ −
ℏ
4π

duin
du

du0in
du0

1

ðuin − u0inÞ2
; ðB10Þ

where use of the two-point function (3.15) was made. From this, the correlator of T̂uu reads formally

hinjT̂uuðxÞT̂u0u0 ðx0Þjini ¼ ð∂u∂u0 hinjϕ̂ðxÞϕ̂ðx0ÞjiniÞ2: ðB11Þ

For the v sector,

∂v∂v0 hinjϕ̂ðxÞϕ̂ðx0Þjini ¼ −
ℏ
4π

1

ðv − v0Þ2 ; ðB12Þ

so

hinjT̂vvðxÞT̂v0v0 ðx0Þjini ¼
ℏ

ð4πÞ2
1

ðv − v0Þ4 : ðB13Þ

Taking into account the relation between u and u0 [see Eq. (3.12)], we can rewrite (B10) as

∂u∂u0 hinjϕ̂ðxÞϕ̂ðx0Þjini ¼ −
ℏ
4π

uinu0in
ðuin − u0inÞ2

1

ðuin − 4mÞðu0in − 4mÞ
¼ −

ℏ
4π

1

4cosh2 ln
ffiffiffiffiffiffiffi
−uin
u0in

q 1

ðuin − 4mÞðu0in − 4mÞ ; ðB14Þ

where we have chosen the point x outside the horizon (uin < 0) and x0 inside the horizon (u0in > 0) [more precisely, see
Eq. (3.13)],

uin ¼ −4mWðe− u
4mÞ; u0in ¼ −4mWðe− u0

4mÞ: ðB15Þ
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We see that the v sector gives just vacuum correlations. The correlations in Hawking radiation come only from the u sector,
and this is a consequence of the conformal invariance of our model, which does not take into account backscattering of the
modes of the quantum field. The mixed correlator can be similarly computed,

hinjT̂uuðxÞT̂v0v0 ðx0Þjini ¼ 2ð∂u∂v0 hinjϕ̂ðxÞϕ̂ðx0ÞjiniÞ2; ðB16Þ

hinjT̂vvðxÞT̂u0u0 ðx0Þjini ¼ 2ð∂v∂u0 hinjϕ̂ðxÞϕ̂ðx0ÞjiniÞ2; ðB17Þ

with

∂u∂v0 hinjϕ̂ðxÞϕ̂ðx0Þjini ¼ −
ℏ
4π

uin
ðuin − 4mÞ

1

ðuin − v0Þ2 ðB18Þ

and

∂v∂u0 hinjϕ̂ðxÞϕ̂ðx0Þjini ¼ −
ℏ
4π

u0in
ðu0in − 4mÞ

1

ðu0in − vÞ2 : ðB19Þ
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[25] P.-E. Larré, A. Recati, I. Carusotto, and N. Pavloff, Phys.
Rev. A 85, 013621 (2012).

[26] R. Schutzhold and W. G. Unruh, Phys. Rev. D 81, 124033
(2010).

[27] P. T. Chrusciel, J. L. Costa, and M. Heusler, Living Rev.
Relativity 15, 7 (2012).

[28] R. M. Wald, Phys. Rev. D 13, 3176 (1976).
[29] A. Fabbri and J. Navarro-Salas, Modeling Black Hole

Evaporation (Imperial College Press/World Scientific,
London, 2005).

[30] M. R. R. Good, P. R. Anderson, and C. R. Evans, Phys. Rev.
D 94, 065010 (2016).

[31] R. Balbinot and A. Barletta, Classical Quantum Gravity 6,
195 (1989).

[32] R. Parentani and T. Piran, Phys. Rev. Lett. 73, 2805 (1994).
[33] B. A. Juárez-Aubry and J. Louko, J. High Energy Phys. 05

(2018) 140.
[34] L. Liao, E. C. I. van der Wurff, and D. van Oosten, Phys.

Rev. A 99, 023850 (2019).
[35] C. Buss and M. Casals, Phys. Lett. B 776, 168 (2018).
[36] A. Lanir, A. Levi, A. Ori, and O. Sela, Phys. Rev. D 97,

024033 (2018).
[37] F. Vendrell, Helv. Phys. Acta 70, 598 (1997).

ROBERTO BALBINOT and ALESSANDRO FABBRI PHYS. REV. D 105, 045010 (2022)

045010-20

https://doi.org/10.1038/248030a0
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
https://doi.org/10.1086/153853
https://doi.org/10.1016/j.astropartphys.2016.03.007
https://doi.org/10.1103/PhysRevD.54.7426
https://doi.org/10.1103/PhysRevD.54.7426
https://doi.org/10.1103/PhysRevLett.46.1351
https://doi.org/10.12942/lrr-2005-12
https://doi.org/10.12942/lrr-2005-12
https://doi.org/10.1103/PhysRevLett.85.4643
https://doi.org/10.1103/PhysRevLett.85.4643
https://doi.org/10.1103/PhysRevA.63.023611
https://doi.org/10.1103/PhysRevA.78.021603
https://doi.org/10.1088/1367-2630/10/10/103001
https://doi.org/10.1038/nphys3863
https://doi.org/10.1038/s41586-019-1241-0
https://doi.org/10.1038/s41567-020-01076-0
https://doi.org/10.1103/PhysRevLett.126.111301
https://doi.org/10.1103/PhysRevLett.126.111301
https://doi.org/10.1103/PhysRevD.15.365
https://doi.org/10.1016/j.physletb.2015.12.076
https://doi.org/10.1016/j.physletb.2017.09.076
https://doi.org/10.1016/j.physletb.2017.09.076
https://doi.org/10.1016/j.physletb.2019.134828
https://doi.org/10.1016/j.physletb.2019.134828
https://doi.org/10.1103/PhysRevD.13.2720
https://doi.org/10.1103/PhysRevD.13.2720
https://doi.org/10.1103/PhysRevD.82.025008
https://doi.org/10.1103/PhysRevD.94.084027
https://doi.org/10.1103/PhysRevD.94.084027
https://doi.org/10.1103/PhysRevD.87.124018
https://doi.org/10.1103/PhysRevA.80.043601
https://doi.org/10.1103/PhysRevA.80.043601
https://doi.org/10.1103/PhysRevA.80.043603
https://doi.org/10.1103/PhysRevA.80.043603
https://doi.org/10.1103/PhysRevA.85.013621
https://doi.org/10.1103/PhysRevA.85.013621
https://doi.org/10.1103/PhysRevD.81.124033
https://doi.org/10.1103/PhysRevD.81.124033
https://doi.org/10.12942/lrr-2012-7
https://doi.org/10.12942/lrr-2012-7
https://doi.org/10.1103/PhysRevD.13.3176
https://doi.org/10.1103/PhysRevD.94.065010
https://doi.org/10.1103/PhysRevD.94.065010
https://doi.org/10.1088/0264-9381/6/2/013
https://doi.org/10.1088/0264-9381/6/2/013
https://doi.org/10.1103/PhysRevLett.73.2805
https://doi.org/10.1007/JHEP05(2018)140
https://doi.org/10.1007/JHEP05(2018)140
https://doi.org/10.1103/PhysRevA.99.023850
https://doi.org/10.1103/PhysRevA.99.023850
https://doi.org/10.1016/j.physletb.2017.11.048
https://doi.org/10.1103/PhysRevD.97.024033
https://doi.org/10.1103/PhysRevD.97.024033
https://doi.org/10.5169/seals-117040

