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Extra-dimensional components of gauge fields in higher-dimensional gauge theories will play a role of the
Higgs field and become tachyonic after Kaluza-Klein compactifications on internal spaces with (topologically
nontrivial) gauge field backgrounds. Its condensation is then expected to break gauge symmetries
spontaneously. But, contrary to the expectation, some models exhibit restoration of gauge symmetries. In
this paper, by considering all the massive Kaluza-Klein excitations of gauge fields, we explicitly show that
some of them indeed become massless at the minimum of the Higgs potential and restore (a part of) the gauge

symmetries which are broken by gauge field backgrounds. We particularly consider compactifications on S?

with monopolelike fluxes and also on CP? with instanton and monopolelike fluxes. In some cases, the gauge
symmetry is fully restored, as argued in previous literatures. In other cases, there is a stable vacuum with a
partial restoration of the gauge symmetry after Higgs condensation. Topological structure of the gauge field
configurations prevent the gauge symmetries from being restored.

DOI: 10.1103/PhysRevD.105.045008

I. INTRODUCTION

The dynamics of gauge symmetry breaking is yet to be
investigated, especially when it is caused by the elementary
Higgs scalar field with a nontrivial potential. The mecha-
nism of gauge symmetry breaking or the origin of the Higgs
potential is highly required. Among numerous proposals or
models including radiative symmetry breaking mechanism
(see e.g., [1-7]) and extra dimensions (see e.g., [§-24]), a
possibility to understand the origin of Higgs potential in the
context of higher-dimensional gauge theory has been
widely investigated. In the present paper, we revisit the
gauge symmetry breaking by the coset space dimensional
reductions of higher-dimensional gauge theories with
background gauge fluxes (see [25] for review, and see
e.g., [26] for dimensional reduction to noncoset spaces).
The basic idea of this construction appeared in [8] which
realizes the bosonic part of the Weinberg-Salam model
from the six-dimensional Yang-Mills theory. In this
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construction, the Higgs potential of the double-well type
dynamically appears, and this class of models has been
applied to the gauge-Higgs unification models of the
electroweak theory [20].

Background gauge fluxes in compact spaces in higher-
dimensional gauge theories are originally introduced to
stabilize the compact space [27-32] in the context of the
Einstein-Yang-Mills theory, and further developed in
the studies of flux compactifications in string theories
(for reviews, see [33-35]). The well-studied examples of
compact spaces are coset spaces G/H, such as S§? =
SU(2)/U(1) or CP? = SU(3)/(SU(2) x U(1)), and (in)
stability of such compactifications in the presence of
gravity have been extensively investigated. If tachyonic
fields appear, the solution becomes unstable and their
condensations will generate a new vacuum solution. In
particular, such tachyonic fields can be utilized as candi-
dates of the Higgs scalars, and understanding of the shape
of tachyon potential and the pattern of gauge symmetry
breaking is an important issue to be investigated.

In flux compactifications, the original gauge symmetry
in higher dimensions is explicitly broken by the back-
ground gauge fluxes in the compact spaces, and the Higgs
vacuum expectation value is expected to further break some
part of the remaining gauge symmetries spontaneously in
four-dimensional effective theory. In previous literatures,
most studies have focused on low lying states in the
effective four-dimensional theories after compactifications.
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Among infinitely many fields, only massless fields are
usually taken into consideration in the effective theory, and
all the other higher excited modes are neglected. It is
justified when we consider low-energy physics below the
scale of the compact spaces, but when we investigate the
condensation of the tachyonic field, the massive modes will
also play an important role since the mass scale in the Higgs
potential is typically the same as masses of Kaluza-Klein
higher modes. Especially, when the Higgs acquires vacuum
expectation value, we need to take care of a possibility that
some of the massive Kaluza-Klein modes may become
massless.

In this paper, we investigate dynamics of the Higgs con-
densation in several simple models on coset spaces, such as
§2=SU(2)/U(1) and CP>=SU(3)/(SU(2) xU(1)), with
all the massive Kaluza-Klein modes included. We find that,
although the Higgs vacuum expectation value itself breaks
a part of the remaining gauge symmetries and the corre-
sponding gauge bosons indeed become massive, some of
the massive Kaluza-Klein modes will become massless and
gauge symmetries are recovered in the four-dimensional
effective theory. In fact, such a possibility was pointed
out in [36,37]. In this paper, we develop a group-theoretic
technique which enables us to clarify explicitly which
Kaluza-Klein modes become massless vectors after the
Higgs condensation. As we will see, some of Kaluza-Klein
massive modes become massless according to their repre-
sentations with respect to a subgroup of the gauge group
which is specified by the Higgs vacuum expectation value.
Therefore, the counting of massless vector fields amounts
to an algebraic procedure. In string theory, it is known that
similar gauge symmetry enhancement occurs for conden-
sation of massless scalars, or moduli. Nonsupersymmetric
string theories were discussed in this context recently
in [38] and references therein.

In Sec. II, we give a general formulation of the Kaluza-
Klein reduction on coset spaces G/H with a topologically
nontrivial background gauge field configuration. In Sec. 111,
we introduce the notion of “symmetric field” [39] which
corresponds to the zero mode, or a constant mode on the
flat compact space without flux. Interestingly, some of
these symmetric fields may have nontrivial potentials with
a negative mass squared at the origin, and we call them
symmetric Higgs fields. In Sec. IV, we investigate the Higgs
condensation in gauge field theories compactified on S°.
We study three different types of models, whose back-
ground monopolelike fluxes are different. We particularly
investigate patterns of gauge symmetry breaking when
the symmetric Higgs fields have vacuum expectation value.
In Sec. V we generalize the analysis on S? to CP? coset
models. In this case, since the coset space is SU(3)/
(SU(2) x U(1)), both of instanton and monopolelike back-
ground configurations can exist. In one of the examples we
study in Sec. VA, all the gauge symmetries are restored by
the Higgs condensation, which cancels the background

gauge flux as was pointed out in [36,37]. There exists
another type of model, analyzed in Sec. V B, in which a
topologically nontrivial gauge field fluxes prevent the
gauge symmetries to be recovered, and a stable vacuum
with a partial restoration of gauge symmetries is realized. In
the last section we summarize our results and conclude.

There are several appendixes which review various
materials necessary for our investigations. In Appendix A,
we review the basics of coset space G/H, and describe G as
a principal H-bundle in Appendix B. In Appendix C, we
review the construction of the background gauge field and
the vielbein on G/H which are provided by the Maurer-
Cartan one-form on G. In Appendix D, we review a proof
that the background gauge field satisfies the equations of
motion. In Appendix E, concrete forms of the background
gauge field and the vielbein are given in the case of
§? = SU(2)/U(1). In Appendix F, we review a construction
of mode expansions on G/H by using the Peter-Weyl
theorem for the mode expansions on G. In Appendix G,
we explain eigenvalues of the Laplacian on mode functions
and mass formula of various fields on G/H. We also show
that the symmetric Higgs field has a negative mass squared
and becomes tachyonic. In Appendix H, we prove that the
symmetric Higgs field satisfies the condition of the sym-
metric field on G/H.

II. KALUZA-KLEIN REDUCTION
ON COSET SPACES

A. Action in background gauge fields

We consider Yang-Mills theory on a (4 4+ d)-dimensional
manifold R* x M with the action

1 1
S = / dvTr [— —FMNFMN} . dv = 5—d*™XV-G,
4 Iym

(2.1)

where M,N =0,1,...,3+d and Gy is a metric on
R* x M. The overall normalization of the action is chosen
such that each matrix component of the gauge field A,
is canonically normalized. Our convention for the field
strength is
Fyy = VyAy — VyAy + i[Ay. Ay), (2.2)
where V,, is the covariant derivative with respect to the
metric Gyy-
We investigate this theory around a background gauge
field Ay. The gauge field A,, is then decomposed as
A, = Ay + ay,. In the following, we often use the notation

DMaN = VMaN + l[AM, aN]. (23)

We employ the background field gauge
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The corresponding gauge-fixing term is given by
Liam, v
ng = dvTr —5 (D CZM) . (25)

By expanding a,, into Kaluza-Klein modes on M, we can
obtain a four-dimensional gauge theory coupled to various
matter fields.

Let x* (u=0,...,3) be coordinates on R*, and let Ve
(a=1,....,d) be coordinates on M. Accordingly, the
gauge field ay, is decomposed into a, and ¢,. We assume

that the background gauge field A,, is of the form

Ay = (0,A,), 0,A, = 0. (2.6)
This means that we put an x*-independent gauge flux on
M. Note that the extra-dimensional components of the
gauge field, ¢,, provide a set of adjoint matters, trans-
forming homogeneously under the gauge transformations
as they are defined by a difference of two gauge fields A,
and A,. We also set the background metric of R* x M as

0 } (2.7)

G :[ .
M0 hy(y)

The total action S + Sy consists of the following three
parts:

1 1
Sl :/dvTr{—ZFWF’“’—E(B”aM)Z}

= /dvTr {—; (0,a,)* — i0,a,[a*, a*] + % la,. ay]z} ,

(2.8)
1 _
S2 = / dvTr |:—4F/mFﬂ(l _ aﬂa”Dad)a]
1 2 1 = 2 . T
= /dvTr ) (Dyp,)* — > (Dya,)” + ila,, ¢po|D*a" |,
(2.9)
where
Dypa = Oytpa + i, dal, (2.10)
and

1 |
Sy = [ dvTr|—=F 4F% —— (D% )?
3 / v r{ 4" b 2( ¢a)

1 _ _ —
= /dl)TI' |:—Z (Faﬂ + Da¢ﬂ - D/i¢a + i[¢av ¢ﬂ])2

—

(2.11)

[\

——<‘“¢a>2],

where F «p 18 the background field strength of the gauge
potential A,,.

In the Kaluza-Klein reduction, the terms (2.11) in S5 give
the scalar potential V(¢) after an integration on M. In
particular, the mass terms of the scalars around ¢, =0
come from the following terms:

1, - 1 _
Tr |:§ (Da¢ﬂ)2 - E ¢{1Raﬂ¢ﬂ - i¢a [Faf)’v ¢/}]:| ’ (2 12)

where R, is the Ricci tensor for h,5 on M. Note that we
have used the equations of motion for A, in deriving (2.12).
On the other hand, the mass terms of the vector fields are
provided from the terms

Tr B (Dutt, + il a,,])2] . (2.13)

The second term gives additional contributions to mass at
(o) # 0, whose effects we will investigate in Sec. IV for
M = §? and Sec. V for M = CP?. We show that some of
the massive Kaluza-Klein modes become massless by the
second term.

B. Coset space G/H

In the following, we focus our attention on a compacti-
fication on a coset space. See e.g., [25,40] for more details.

We consider a coset space M = G/H where G and H
are Lie groups with H C G. Let us decompose generators
of Gas ({t,},{t,}) where {z,} (a =1, - -dim H) are a set
of generators of H. Note that {¢,} (m=1,...,d =
dim G — dim H) correspond to a basis of the tangent space
of G/H. We assume that the generators ¢,, t,, satisfy the
following commutation relations:

[tmﬁ tn] = ifamnta'
(2.14)

[tav tb] = ifcabtcv [ta’ tm] = ifnamtn!

A coset space whose generators satisfy the commutation
relations of this form is said to be symmetric. In the
following, we use a, b, ¢ for generators of H and m, n for
generators along G/H. The indices m, n also represent
those of coordinates of the tangent space on M = G/H. In
this paper, we discuss two examples of symmetric coset
spaces, namely S? =SU(2)/U(1) and CP?=SU(3)/U(2).
In these cases, 7, are represented in terms of block-diagonal
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matrices, while ¢,, are given in terms of block-off-diagonal
matrices, and their commutation relations are apparently
of the form (2.14). Nonsymmetric coset spaces are dis-
cussed in [41].

C. Metric and background gauge field on G/H

For a given coset space G/H, there is a “natural” choice
for the vielbein e and the background gauge field A,,.
Suppose we have a local embedding ¢:y* € G/H —
g(y) € G. Then the Maurer-Cartan one-form g 'dg
restricted on g(G/H) is written as a sum

gldg = ie" (1, +ie" () (2.15)
where ¢ gives the natural choice of the vielbein on G/H
while e“ provides the gauge field on the coset space.
Indeed, A = e“t, transforms under g — gh for h € H,
which is a gauge transformation as explained in
Appendix C, as A — h™'Ah — ih~'dh. In the following,
we will consider gauge group Gvy)y that includes H as
H C Gy and define the background gauge field on the
coset space by
A= Aadya = eg(.y)Tadya’ (216)
where T, are generators of the gauge group Gy, which are
the corresponding embedding of the generators 7, of H into
the Lie algebra gvy of Gyy. In this paper, we consider
various different embeddings of H into Gy, for G/H = §?
and CP2.
Interestingly, this background gauge field A, automati-
cally satisfies the equations of motion
DaFaﬂ == V"Faﬁ + i[Aa, Faﬂ] - 0 (217)
with respect to the vielbein e} [42]. This can be checked
as follows. First, the spin connection w,”, defined by

de™ = —w™, A €", is obtained from the relation
d(g~'dg) = —g~'dg A g7'dg (2.18)
or equivalently, from the relation (C11) as
@g"y = =" an€- (2.19)

Thus, the spin connection is written in terms of the
component of the background gauge field ¢4, and the
covariant derivative V*F, «p With respect to the metric on
G/H has the same form as the second term in (2.17).
Second, by using Eq. (C10), the field strength of A, turns
out to be

Fuy = el'elf* T (2.20)

Thus, the gauge field strength is nonvanishing in the H
subgroup of Gyy. Inserting these expressions of (2.19)
and (2.20) into (2.17), we find that it reduces to the Jacobi
identity for the structure constants and the background
gauge field indeed satisfies the equations of motion. See
Appendix D for more details.

D. Covariant derivative on G/H

Since the spin connection ®,”, and the back-
ground gauge field A, are given in terms of the same
quantity e%, the covariant derivative of ¢,, = e% ¢, can be
written as

Da¢m = aa¢nl - wanm¢n + i[Aw ¢m]

= aa¢m + ieg(_ifnaﬂ’l¢ﬂ + [Tll7 ¢m])' (2'21)

This shows that the field ¢,, can be regarded as a field
on the flat R¢ which couples to a gauge field e¢ as a tensor
product of two representations. Actually, the second
commutation relation in (2.14) implies that ¢,, form a
representation R, of H on which the generators are given by
if" .- Therefore, ¢,, belongs to the tensor product repre-
sentation of R, and the adjoint representation of Gyy; and
can be decomposed into various irreducible representations
of H. This property plays an important role in the
investigations of mass spectrum of various fields with
different spins and charges on G/H.

Besides the beautiful properties we have seen above,
there are further advantages in choosing a symmetric
coset space G/H as the internal manifold M. Most
importantly, many properties of the complete set of
functions on G/H are well known and we can explicitly
perform the Kaluza-Klein reduction of any field on
G/H [40]. For the coset space S, these functions are
given by the monopole harmonics [43]. For a general
coset space G/H, the Peter-Weyl theorem tells us that
each mode function in the complete set on G/H is labeled
by a representation of G. As mentioned above, the field
¢,, on G/H can be regarded as belonging to a particular
representation of H. This information can be incorporated
by taking into account the irreducible decomposition of
the representation of G with respect to H. See Appendix F
for more details.

By using the mode functions, the mass of each Kaluza-
Klein mode in the four-dimensional sense can be obtained
explicitly [31,36]. As the mode functions are labeled by the
representation of G and its decomposition with respect
to H, the mass is given in terms of group-theoretic
quantities. Namely, it is given in terms of the second
Casimir invariants of certain representations. We review it
in Appendix G, which will be used in the proof of the
tachyonic behavior of the symmetric Higgs field observed
in the following sections.
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III. SYMMETRIC HIGGS FIELDS

The Kaluza-Klein reduction of a higher-dimensional
Yang-Mills theory on M contains infinitely many fields.
If one wants to employ this theory for phenomenological
model buildings, it is natural to truncate the theory so that
the resulting theory contains only a finite number of light
fields. If M is a torus, for example, the lowest mass state is
given by a constant mode on M for a scalar field.

When M is a coset space, symmetric fields defined
below will provide such lowest mass states [25] on
M =G/H. A field ¢,, on G/H is called a symmetric
field if its value at y/ € G/H is related to the value at any
other point y € G/H through a local gauge transformation
U(y,g0) € H C Gyy and a local Lorentz transformation

Amn (y9 90) as

where g is an isometry of G/H relating the points y, y'
[39]. It is a natural generalization of a constant field on a
flat space to a coset space. Restricting a higher-dimensional
theory on symmetric fields on G/H corresponds to focus-
ing on invariant functions under an isometry of G/H up to
local symmetry transformations. This criterion is based on
the expectation that the lowest energy field configuration is
the most symmetric one, and the coset space dimensional
reduction retaining only symmetric fields is a natural
generalization of the ordinary dimensional reduction retain-
ing only constant modes on a flat torus. Nonconstant
modes, i.e., nonsymmetric fields, correspond to massive
fields whose excitation typically costs some amount of
energy.

In this paper, instead of restricting the higher-
dimensional Yang-Mills theory on G/H to only the low
lying states, we will keep all higher Kaluza-Klein modes
and investigate their important roles in restoration of gauge
symmetries, which would be spontaneously broken by
condensation of a symmetric field. In particular, we show
that some higher excited states become massless under the
condensation of a tachyonic symmetric field.

Let us consider a field ¢,, satisfying the condition

Dy, =0, Oupm = 0. (3.2)

This turns out to be a symmetric field. See Appendix H for
the proof. We call such a field a symmetric Higgs field. The
name comes from the fact that the field satisfying the above
conditions always has a negative mass squared (G14), as
shown in Appendix G, and develops a vacuum expectation
value (vev), which would lead to spontaneous gauge
symmetry breaking.

For the symmetric Higgs fields, the scalar potential of S
in (2.11) becomes simplified as

I
V@) = Te(Fon + b )P (33)

where the background field strength (2.20) is
an = fam}’lT(l' (3'4)

It is nonvanishing only for 7', € § C gyy, Where § is the
Lie algebra of H.

Recalling the expression for the covariant derivative
(2.21), we find that the defining relations (3.2) of sym-
metric Higgs fields imply

[Tw ¢m] = ifnam¢n‘ (35)
Note that 7, are generators of Gy, while f”,, are
structure constants of the Lie algebra g of G, not those
of gyy. Comparing (3.5) with the second equation of
(2.14), we can see that ¢,, is expressed by the representa-
tion R, of H, possibly with a multiplicity. Thus we can
write ¢, of a symmetric Higgs field as

D (x) = @5(x) T}, (3.6)
where T3, are generators of gy satisfying [T, T3,] =
if" . T5. Note that T3, are different generators for different
s, as we will see in the following sections. To find the
expression for a symmetric Higgs field, we decompose the
adjoint representation of Gyy into irreducible representa-
tions of H. There could exist representations isomorphic to

R, in the decomposition. In the following sections, we will
explicitly investigate this in various examples.

IV. HIGGS CONDENSATION ON $2=SU(2)/U(1)

In this section, we consider SU(3) Yang-Mills theory
compactified on the coset space S? = SU(2)/U(1). Thus,
Gym = SU(3), G = SU(2), and H = U(1). We choose the
generators of su(2) such that the commutation relations are

[t3,14] = £14, [ty 1] = 2ts. (4.1)
Then, the index m for the tangent space takes + and —. We
denote the generator of u(1) embedded into su(3) by T.
The background gauge field is only present in the subgroup
H = U(1), and the scalar potential (3.3) becomes

V(g) =~ g Tr(F o + il p)?

= %Tr(2T — [P, )2 (4.2)

In the following, we will show that different choices of T
give us different contents of symmetric Higgs fields with
different patterns of their condensation.
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When the coset space is S2, the background gauge field
A, and the zweibein e can be explicitly written as
reviewed in Appendix E. In fact, A, is given by the
monopole configuration on S? embedded into SU(3) gauge
group. Details on these expressions, in addition to the
explicit formula for the covariant derivative D,,¢,, can be
found in Appendix E. We can use these explicit expres-
sions, in particular, the monopole harmonics [43] to
investigate the spectrum in the Kaluza-Klein reduction.
However it will turn out that a more abstract formalism [40]
reviewed in Appendix F is sufficient for the purpose since
various analytic calculations can be reduced to group-
theoretic arguments on the coset space. Such an abstract
formalism is straightforwardly extended to more general
coset spaces, such as CP?=SU(3)/(SU(2) x U(1))
which will be discussed in the next section.

A. Embedding of H=U(1) into Gy,;=SU(3): Case 1

Our first choice of the embedding of the H = U(1)
generator 7 in Gyy = SU(3) is

Jrooo
T=310 -1 0 (4.3)
0 0 0

The background flux F,_ = —2iT breaks the gauge group
SU(3) to its Cartan subgroup U(1) x U(1).

Let us now find the symmetric Higgs field satisfying
the relation (3.5) for the U(1) generator 7. We first define
T-charges g;; of ¢, ;; fields by

T, ¢+l = qijb+.ij» (4.4)

where i, j = 1,2,3 are indices of 3 x 3 matrices, and no
summation is taken. For the choice (4.3) of T, the
T-charges are given in the matrix notation as

0 1 !
g=1-1 0 -1l (4.5)
SR

Then, the condition (3.5) for the symmetric Higgs field and
the commutation relation (4.1) tell us that the (i, j) = (1,2)
and (2,1) components of ¢, ;; with T-charge +1 provide us
with the symmetric Higgs fields. Thus there is only
one symmetric Higgs field (and its complex conjugate)
given by

0 ¢x) 0 0 00

g (x)=10 0 0], ¢(x)=[o'(x) 0 0],
o 0 O 0 0 0

(4.6)

where we have used ¢_ = (¢,)".

Inserting these expressions into the scalar potential (4.2),
we obtain the scalar potential for the symmetric Higgs
field ¢

V(g) = (1= o2

Z (4.7)

Thus ¢ will acquire vev at |p| = 1. At the origin ¢ = 0, as
mentioned before, the gauge symmetry SU(3) is broken to
U(1) x U(1) € SU(3) by the background gauge flux.
When the symmetric Higgs field acquires vev at |p| = 1,
the gauge symmetry is expected to be further broken to
U(1) by the Higgs mechanism. Thus the expected sym-
metry breaking pattern is as follows:

Higgsvev

backgroundflux U(I)XU(I) U(l)f) (48)

Gyn=SU(3)

This is the usual argument for the gauge symmetry
breaking in the context of the coset space dimensional
reduction in which only the low lying states are taken into
considerations. However, the conclusion of the gauge
symmetry breaking is suspicious in view of the higher-
dimensional gauge theory with the Kaluza-Klein reduction.
The reason is the following. Note that we have vanishing
scalar potential V(|| = 1) = 0 at the global minimum of
V(¢). Since the scalar potential originally comes from the
terms (2.11), the vanishing scalar potential implies that the
gauge field A, at the symmetric Higgs vev |p| = 1 must be
a pure gauge, and we must conclude that the full gauge
symmetry SU(3) is recovered at the symmetric Higgs
vacuum, instead of being broken to U(1).

In the rest of this section, in order to show the restoration
of the gauge symmetry, we will explicitly see that some
of the originally massive Kaluza-Klein vector fields
become massless at vev |@| = 1, and eight massless vector
fields emerge at the symmetric Higgs vacuum. These
massless vector fields are the gauge fields due to the
general argument by Weinberg [44].

The mass term of the vector field a, comes from the
term (2.13), and a vector field is massless in the presence of
the symmetric Higgs vev if and only if

Dia,(xy) +ill1.a,(xy)] =0, T.:=

oS O O
S O =
o O O

(4.9)
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is satisfied. Note that T, T, and T_:= (T,)" form an
su(2) subalgebra of su(3), and a, is in the adjoint
representation 8 of su(3). Thus, by the irreducible decom-
position of 8 of su(3) into 3P 2@ 2 B 1 of su(2), the
condition (4.9) can be decomposed into the following four
conditions. First, for the representation 3, we have

[1] Massless cond. for 3

.12 Au22 — Ayl
D |a,n—aun| =-i 2a,7 (4.10)
a'u,zl 0

For the representations 2 and 2’, we have

_ [a a
[2] Massless cond. for 2 D, [ ”’13] = —z[ ”’23]
a,n3

(4.11)

with the condition for their conjugate components a,, 3,

a, 3, which is equivalent to

— aﬂ,13 . 0
[2] Massless cond. for 2/ D_ =—i ,

a,n3 a, 13
(4.12)
and finally,
3] Masslesscond. for1 D a,3; =0 (4.13)

for the singlet representation 1. A vector field satisfying one
of these conditions becomes massless at the global mini-
mum of the Higgs potential V() at || = 1. These are a set
of first-order partial differential equations which can be
written explicitly by using the formulas in Appendix E,
and the number of massless vector fields can be found by
solving the above differential equations. In the following,
instead of solving them explicitly, we solve these con-
ditions by reducing to a group-theoretic problem.

For this purpose, we need to understand the action of
the covariant derivative D on a, [40]. The action can be
simplified by choosing a suitable complete set of functions
on S which can be used to expand a,(x,y). Generally
speaking, as explained in Appendix F, due to the Peter-
Weyl theorem, a complete set of functions on a group
manifold G is given by the representation matrices p%(g),,
for all the representation R of G and their components
I,J =1,...,dimR. Then a complete set of functions on
G/H is obtained by imposing particular transformation
laws under H, corresponding to the T-charge of functions
on G/H. Collecting all the representations of H, the
complete set on G is recovered.

In the case of $? = SU(2)/U(1), a complete set on S,
collecting all the charges of H = U(1), is given by

i 1
ffnnf(y) Wherej:O,—,l, _jSm,m,Sj.

(4.14)

Each j corresponds to the spin j representation of
SU(2). As explained in Appendix F, the function ff' Ly Nas
T-charge m of H =U(1). Thus, m = 0 gives the usual
spherical harmonics, while m # 0 modes are the monopole
spherical harmonics with T-charge m, which are relevant in
the monopole background.

A field y(y) on S? with the T-charge g is then expanded

in terms of f, /() as

=2 Z e F o )

j m'=

(4.15)

where the sum of j is taken over all values of the spin j
whose magnetic quantum number m’ can take g. Explicitly,
j in the sum must satisfy
—-j<q<j, j-q€Z (4.16)

From this expansion, we obtain 2j + 1 complex-valued
fields, labeled by m’, with the T-charge g from each j.

In order to discuss the massless condition (4.9) for vector
fields, it is sufficient to know the action of D on the mode
functions f/ (y). From (G3) in Appendix G, this action
turns out to be given by

D+f :—lz

n=—j

mnfim ) (4 1 7)

where TEZ) is the spin-j representation of ¢, . Note that it is
valid irrespective of the value of the symmetric Higgs field.

Thus, the condition (4.9) for massless vector fields is
reduced to algebraic relations of the coefficients c” iy ,in
the mode expansion

;41117 zz /41117me1]12 ()

Jj om'=—j

(4.18)

between the first and the second terms in (4.9). Here
q(iy.iy) is the T-charge of (i, i,)-component of a,. The
first term in (4.9) is a multiplication of TS{) on the complete
set f{;1 /(y) due to the covariant derivative D, while the
second term is the adjoint action of 7, due to the
symmetric Higgs vev. If we can choose the expansion
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coefficients of a, such that these two actions have the same
effect, then we obtain a massless vector field.

Let us check whether this condition can be satisfied.
First, we consider (4.11) of the massless condition for
representation 2, i.e., ¢ = +1/2. Thus, the representations
of SU(2) are restricted to be j = k + 1/2 for non-negative
integers k. This can be written as

»
NI'—‘

>~
l—

~r pk+L
ek fot(y)

—Lm'

Tl L =
TN, =3

k=0 mi——k

(s
E ck o
k=0 p/——k -1

w\_.

(4.19)

and

Pv
NI—

1

Z & 7! +%))_1,nfi:f(3’) =0,

(4.20)
k=0 j/— :

NI'—‘

where we renamed the coefficients ¢’ , and ¢/ ,
u,13,m 1,23,m

as cf;, and Z‘fn,, respectively. These equations are satisfied if
and only if ¢?, =¢°, are the only nonzero coefficients.

Note that in our normalization and notation

(1) = () = 1. (4.21)

where o, is the Pauli matrix. The same coefficients also
solve (4.12). Consequently, we have shown that

Guis(y) = D2 (), (),
m'=+}

aun(ny) = 3 L, 0) (4.22)
m'=+}

and their conjugates give us four massless vector fields.

Next, we consider (4.10) for the massless condition
for representation 3, i.e., ¢ = 0, 1. Thus, the representa-
tions of SU(2) are restricted to be j = [ for non-negative
integers /. The range of / depends on the 7T-charges. The
linear combinations

aﬂ’21 (423)

1
—d, 12, E (aﬂ,ll - au,22)’

as the independent fields are convenient for our purpose.
Then, the condition (4.10) can be written as

00 l 0 1
Z Z el ( \/EZ Z Z’inrff)_m/()’)

=1 m'=-1 =0 m'=—

(4.24)

o0 l o l
> TS0 =V2Y - > e

=0 m'=—1 =1 m'=-1

(4.25)

(4.26)

These equations are satisfied if and only if c,ln, = E}n, = c1 /

are the only nonzero coefficients. Then, the following three
combinations

—ap= Y bt (4.27)
m'=—1,0,1
1
—= (@ —a,m) = Z Cin/f(l) (V) (4.28)
\/E m'=-=1,0,1 ’
a,n = Z C:n/fl_l,m/(Y)’ (4.29)

m'=-1,0,1

with the condition a;; = a,, give us three massless vector
fields. In fact, this can be easily anticipated by rewriting
(4.10) as

a4y 12 —dy.12

B (1
D, \/Li(aﬂ,ll - aﬂ,22) = _lT(+) \/Li(a”’“ B aﬂ’ZZ)

Ay A2l

(4.30)

Namely, these three components form the triplet of the su/(2)
subalgebra, as mentioned before. Note that a,, ; — a, 5, has
also a contribution from j = 0 which was massless before
the Higgs condensation. This becomes massive due to the
Higgs mechanism.

Finally, let us consider the condition (4.13) for the
massless condition for representation 1, i.e., ¢=0. Thus,
, of SU(2) is restricted to be j = [
for non-negative integers /. The condition simply means
that a, 33 is independent of y, resulting in one massless
vector field. This is nothing but the U(1) gauge field which
is unbroken after the Higgs condensation.

In total, we have found eight massless vector fields
which should correspond to the SU(3) gauge field which is
expected to appear at the symmetric Higgs vacuum.
Therefore we conclude that, contrary to the expectation
in (4.8) within the analysis of the low lying states, the
symmetry-breaking restoration pattern is given by

the representation f{n m

background flux

Gyw = SU(3) N U(1) x U(1) =22

SU(3)
(4.31)
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if all the Kaluza-Klein modes are taken into consider-
ation. It should be noted that seven massless vector fields
out of eight ones come from the Kaluza-Klein modes
which were massive before the Higgs condensation.
Indeed, all the massless vector fields before the Higgs
condensation come from j = 0 mode in the expansions,
while seven massless fields after the Higgs condensation
come from the j = % and j = 1 modes. This phenomenon
happens because we keep all the Kaluza-Klein modes in
the model, in contrast to the simplest analysis of the coset
space dimensional reduction in which only the low lying
modes are taken into account. Usually, the Kaluza-Klein
modes are considered to be so heavy that they are not
considered in discussing the dynamics of light fields.
However, since our model has only a single mass scale
given by the radius of the coset space, the potential height
and the Higgs vev are also of the same Kaluza-Klein mass
scale. This enables some of the massive Kaluza-Klein
modes to become massless.

The investigation of the massless vector fields performed
above is possible because the vev of ¢ is exactly the right
value so that the vev of ¢, is equal to the generator 7',
including the overall normalization. We will observe in the
following that this coincidence persists for the other models
discussed in this paper. It is very interesting to clarify
whether this is the general feature of the Kaluza-Klein
reduction on coset spaces. If this is the case, the masses of
the fields at the symmetric Higgs vacuum would be
possibly given in terms of group-theoretic quantities, as
the mass formulas in Appendix G are valid before the
symmetric Higgs condensation.

B. Embedding of H=U(1) into Gyy; =SU(3): Case 2

Our next choice of an embedding of U(1) charge T into
GYM = SU(3) is

1
1
T= 3 1 (4.32)
-2
The corresponding background flux F,_ = —2iT breaks

the gauge group Gyy = SU(3) into SU(2) x U(1).
The T-charges for the components of ¢, defined in (4.4)
are given by

0 0 1
g=|0 0 1 (4.33)
-1 -1 0

Recall that the components of ¢, with the T-charge +1
become the symmetric Higgs fields, and there are two such
components. Therefore, the symmetric Higgs fields are
given by

0 0 ¢ 0 0 0
$.=10 0 ¢@|. p_=10 0 0|. (434)
00 0 o] ¢} 0

The components ¢, and ¢, form a doublet of the unbroken
SU(2) gauge group.

The scalar potential for this symmetric Higgs doublet can
be obtained by inserting the above expressions into (4.2).
We obtain

1
(1-loP)* +

V(p) = h (4.35)

FN

where |@|? = |@;|* + |@,/|*. At the minimum of the poten-
tial, they acquire the vev

P = 1, Py = 0, (436)
up to a global SU(2) gauge transformation. This would
break the gauge group SU(2) x U(1) preserved by the
background flux to U(1). Manton [8] applied this mecha-
nism of the gauge symmetry breaking to realization of
the Weinberg-Salam model based on the six-dimensional
Yang-Mills theory. The expected symmetry breaking pat-
tern within the low lying states would be as follows:

background flux

Gyy = SU(3) MR G1y(2) x U(1) 228

U(1)?
(4.37)

In order to perform the calculation of V(¢) while
keeping the SU(2) x U(1) gauge invariance, it is conven-
ient to introduce 3 x 3 matrices 7 ; (s = 1,2) and write ¢,
in (4.34) as

¢+ = Z¢STs- (438)
s=1,2
The matrices 7 defined by this relation satisfy
01 0 0 0 0
7, T]]=06;]0 0 0| +0/5|1 0 0
0 0O 0 0 0
Looo]
+oi [0 =1 0] +36.T, (4.39)
0 0 O

where 6 etc. are (7, s) components of the Pauli matrices.
Let us count the number of massless vector fields at the
symmetric Higgs vacuum. We notice that the vev of ¢, is
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(4.40)

0 0
$¢+=10 0
0 0

oS O =

which is the spin—% representation of ¢, embedded into an
su(2) subalgebra of su(3) different from the one in the
previous section. The massless conditions in this case can
be obtained from the previous ones by simply exchanging
2 and 3 in the matrix indices. For example, we have

o R
a, s a, 12
In this case, however, the T-charges of the components are
different. The T-charges for a, are

(4.41)

0 0 1
g=10 0 (4.42)
-1 -1 0

Therefore, a, ;> has the T-charge 0, while a, 3, has the
T-charge —1. Their mode expansions are given as

© J

Gz = Y Chfh (4.43)
J=0 m'=—j
o Jo

A=Y Y T (4.44)
e

We find that D_f;, , vanishes only if j = 0. Since D_a,, 3,
does not have a contribution from the spin-0 representation,
we conclude that the condition (4.41) does not have a
solution.

We also have

4,13 —a,13
Dy | () —auss) | = =TV | L= (a, 1) — aus3)
+ | 2 \Pull 1,33 + V2 \ Y11 1,33
a, 31 au 31

(4.45)

The T-charge assignment for a,, turns out to be appropriate
so that we can find the following solution:

1

—au,13(x7)’) = Z Crln/f},m/()’>7

,n/:_

(4.46)

%wﬂ,”(x, M- austen) = Y b, )

m=—

(4.47)

1

aﬂ,13(x, y) = Z C,ln/fl_l,,,/()’)- (4.48)
m=—
They give us three massless vector fields.
The last condition
D+aﬂ’22 =0 (449)

gives us one massless vector field.

In total, we have found four massless vector fields. Three
of them were massive before the Higgs condensation. Since
scalar potential (4.35) does not vanish at the symmetric
Higgs vacuum |¢| = 1, there remains a nontrivial flux after
the Higgs condensation which prevents the full SU(3) gauge
symmetry from recovering. Probably, the gauge group at the
symmetric Higgs vacuum would be SU(2) x U(1), where
the SU(2) part is not the one preserved by F,_ but an
“emergent” one. Therefore we may conclude that, contrary
to the expectation in (4.37) within the analysis of the low
lying states, the symmetry-breaking restoration pattern is
given by

background flux Higgsvev
_— E—

Gyn=SU(3) SU(2) x U(1) SU(2)x U(1).

(4.50)

For confirmation of this pattern, a more detailed analysis will
be necessary.

It is natural to ask whether the symmetric Higgs vacuum
|p| = 1 is stable or not. In the previous section, the stability
is obvious since the vacuum attains the global minimum of
the scalar potential in every direction of the field space. For
the case in this section, it is possible that there still exists a
Higgs field at the symmetric Higgs vacuum, and a further
condensation would occur.

At least, we can show that |¢| = 1 is a classical solution
of the full theory including all Kaluza-Klein modes. In
other words, we claim that the symmetric Higgs vacuum
discussed in this section has the same relevance as the
trivial solution before the symmetric Higgs condensation
which has been discussed in the literature [31]. To show
this, we need to confirm that the symmetric Higgs vev does
not act as a source for other scalar fields coming from the
Kaluza-Klein expansion of ¢ . If there would exist terms in
the scalar potential of the form

Tr(Fo®), Tr(p’®), (4.51)
where @ indicates scalar fields other that the symmetric
Higgs fields, then the vev of ¢ would give a source term
of ®, so that ® = 0 is not the classical solution. As
mentioned above, there could exist terms with ®2 which
would indicate the presence of other Higgs fields. Since this
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allows @ = 0 to be a classical solution, we ignore them in
the following.

Recall that a symmetric Higgs field ¢ is a constant mode
on S? and is singlet for the H transformation, which are
implied by the conditions (3.2). Then, ® is a nonconstant
mode on S? or H nonsinglet. This implies that the terms of
the second kind in (4.51) is absent. Indeed, if ® is a
nonconstant mode, then the integration of Tr(¢p3®) over 2,
performed in the Kaluza-Klein reduction, vanishes due to
the orthogonality condition for the mode functions f{n e
On the other hand, if ® is H nonsinglet, then Tr(g’®)
simply vanishes since the scalar potential is H singlet. The
terms of the first kind in (4.51) are also prohibited since the
background flux F _ is also constant on S? and H singlet.
The latter is valid since F,_ is invariant under the U(1)
gauge transformation, and is also invariant under the local
Lorentz transformation.

C. Embedding of H=U(1) into Gyy; =SU(3): Case 3
Our last choice for T is

(4.52)

The background flux F',_ = —2iT breaks the gauge group
SU(3) to U(1) x U(1). The T-charge of the components of
¢ is then

0 1 2
g=1]-1 0 (4.53)
—2 -1 0

Therefore, there are two symmetric Higgs fields which are
given by

0 ¢ O 0 0 0
p.=10 0 ¢, d_= |0 0 0 (4.54)
0 0 ¢, 0

This is our first example where two independent symmetric
Higgs fields appear. In the previous section, we also have
two symmetric Higgs fields, but they form a doublet of
SU(2) gauge group.

The scalar potential for this case becomes

V(@) =g =27+ 0P = oV + gl =2
(4.55)

The Higgs vacuum corresponds to ¢; = ¢, = v/2 up to
U(1) x U(1) transformation. This attains the global

minimum of the scalar potential which implies that the
original SU(3) gauge symmetry should be recovered. Then
at the minimum, the symmetric Higgs field ¢, has the vev
given by

0 V2 0
p.=TV:=10 0 2 (4.56)
0 0 0

This is the spin-1 representation T$> of ¢, embedded into

su(3). Then the counting in this case is also reduced to a
group-theoretic calculation.
The massless condition (4.9), in which 7', is replaced

with TS), can be written as

e iz a3
Dy auo aup auns
a,sz Aduz 4,33

\/zaﬂll \/E(aﬂ.zz - aﬂ,n) \/§<aﬂ.23 - 61,4,12)
=—i \/zaﬂ,?’l \/z(ausz - aﬂ,zl) \/E(a
0 —\/50”731

33— a,,,zz)
—\/E%.az
(4.57)

This can be rearranged into two sets of equations. One is

i \/iau,w i
a,n3
D. | Y(a,, —2a,2:» +a,ss)
+ 1 3\l 22 u.33
aun1 —au32
L \/id”’:ﬂ J
[ \/zay,l?) i

a,u.23 - a;¢,12

—dua2

% (@11 —2a,0 +a,33) |, (4.58)

ayn1 — a3

L \/Ea”’gl 4

where

0
V6
(4.59)

~

+3

i
o o o o o
o o o o w
oo%oo
o v o o o

0
0
! 0 1

is the spin-2 representation of 7, . The other is
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Auo3 + a, 12 au03 + a1
D — ;7D
D, | ayzz—a,n | =—iTy | ayzz—a,1 |, (4.60)
—Aun1 — 4,3 —d,n) —dy3
1 . . . . .
where Tﬁr) is the spin-1 representation of 7, given in

Eq. (4.56). These two sets of equations correspond to the
irreducible decomposition of 8 of su(3) into 5 @ 3 of an
su(2) subgroup.

Recall that the T-charges for a, are given also as (4.53).
Each linear combination in the above equations consists of
components with the same T-charge, as it should be. We
find that the spin-2 representation in the mode expansion
gives the solution for the condition (4.58), and the spin-1
representation gives the solution for the condition (4.60).
They give eight massless vector fields at the symmetric
Higgs vacuum, and as expected, the symmetry pattern is
given by

background flux Higgs vev
_— —_—

Gy = SU(3) U(1) x U(1) SU(3).

V. HIGGS CONDENSATION ON
CP2=SU(3)/(SU(2) x U(1))

In this section, we consider Yang-Mills theories on
R* x CP? with the gauge group SU(4). Since CP? can
be represented as a coset space G/H = SU(3)/(SU(2)x
U(1)), we can apply to this case techniques similar to those
in the previous section.

The choice of the H = SU(2) x U(1) subgroup of
G = SU(3) is specified by their generators given as

. 0 | 1 0 0
op
ta =§ 0 5 t4 -—g O 1 O (51)
0 0 O 00 -2

where a = 1,2,3. We choose the other generators of
su(3) as

tX' = (ts)T’

S
i
o o o
o o o
o o ~
~
S
i
o o o
o o o
o ~ o

(5.2)

where s = z, w. According to this choice, the tangent space
index m takes z, w, z, and w.

In the following, we always embed su(2) part, #, t,, 3,
into gyy = su(4) as

0

t 0

‘ 5.3
0 (5.3)
0

In the following, we will study two cases of embedding 74
charge of the u(1) generator, 4, into su(4).
The scalar potential (3.3) becomes

1. .- 1.
V(¢) = gTr|FZZ + i[¢z’ ¢Z]|2 +§Tr|FWW + i[d’w’ ¢v’v]|2

1= , | .
+ZTr|sz + l[d)z? ¢w]|2 +ZTr|FzW + l[¢z’ ¢w]|2-
(5.4)

Recall that the background flux is given as

an = famnTa’ (5'5)

where f¢,, are the structure constants of ¢ = su(3), not of
gym = su(4). In this case we find F,, = 0 since the above
choice of the generators for su(3) in (5.1) and (5.2)
gives f*,, =0.

Recall that the background gauge field A, is defined as

A, = eirT,. (5.6)
In the previous section, €% gives a monopole configuration
on S2. Similarly, on CP?, e¢ gives an instanton background.
This can be deduced from the fact that ¢4 also gives the spin
connection on CP? as (2.19), and that the second Chern
number of CP? is nonzero [45].

In fact, this can be checked easily since the flux can be
given explicitly. We consider

fmn = famnta

as a flux of the SU(2) x U(1) gauge field on CP?. We
notice that

7 ; 3 Z . 3
fZZ:_l(t3+§t4>3 fww:_l<—13+§t4),

(5.7)

.}_CZW = _i(tl +it2)’ ]'zw =0 (58)
satisfy
.}_CZE +.]_va7/ = =3ity, fzw =0, .]_CZW =0. (59)

Note that f.: + f, is nonvanishing for the «(1) part, and
there is no su(2) part. Since the instanton equation

an = _Eemnleklv (510)
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can be rewritten in terms of the complex coordinates as

F:+F,; =0, F., =0, F:7 =0, (5.11)
we find that the su(2) part of the flux f,,, satisfies these
instanton equations. Thus the su(2) field strength is given
by an su(2) instanton configuration. But it does not always
mean that the SU(4) configuration has a nonzero instanton
number, as we will see later.

In the following, we consider two embeddings of
SU(2) x U(1) into SU(4), and investigate the correspond-
ing Higgs condensations. We will see that the topological
nature of the background SU(4) flux plays an important
role in the gauge symmetry pattern when the symmetric
Higgs acquires vev.

A. Embedding of H=SU(2) x U(1)
into Gy, =SU(4): Case 1
Since the SU(2) part of H = SU(2) x U(1) is embedded
into SU(4) as (5.3), we choose an embedding of U(1) C H
part. Our first choice for T, € u(1) is

1 0 0 0
1101 0 o0

T, =~ 5.12

7310 0 =2 0 (5:12)
00 0 0

The background flux F,,, breaks the SU(4) gauge group
to U(1) x U(1).
Recall that the condition (3.5) for the symmetric Higgs
fields is
[T ] = if" amb (5.13)
where T, are Lie algebra generators of H. In the previous
section, this is a condition for a charge assigned to the
components of ¢,,. For the CP? case, T, form an su(2) x
u(1) subalgebra of su(4), and the adjoint representation

adyyy, i.e., 15 representation of su(4), can be decomposed
into irreducible representations of su(2) x u(1) as

15=3020202,02:0L61.:6 (1)
(5.14)

On the other hand, the same commutation relations are
realized by the original su(3) algebras,

[tar tw] = if" amt; (5.15)

and 1, forms a set of irreducible representations of
su(2) x u(l):

Rt :21 @2_1. (516)

Then the symmetric Higgs fields ¢,, satisfying (5.13) can
be obtained by those representations of su(2) x u(1)
isomorphic to R, in the irreducible decomposition of the
adjoint representation 15 of su(4). From the definitions
of ¢, in (5.2), we see that the symmetric Higgs fields are
given by

00¢0 0000
0000 00¢0
p— pu— - = T.
b 0000’% 0000’4& (¢5)
0000 0000
(5.17)

Note that their nonzero components must be the same in
order to satisfy (5.13).
The scalar potential V(¢) is then given by

V(g) = (1o

0 (5.18)

Therefore, the symmetric Higgs field ¢ acquires vev at
@ =1 up to a gauge transformation. This breaks the
residual U(1) x U(1) gauge symmetry to U(1), and within
the analysis of the low lying modes in the coset space
compactification, the symmetry breaking pattern would be

background flux Higgs vev
m— E—

Gywm = SU(4) U(1) x U(1) U(1)?

(5.19)

We have found that the symmetric Higgs vacuum attains
the global minimum of the scalar potential. This implies
the stability of the vacuum, and the restoration of gauge
symmetry when the Higgs acquires vev. In fact, this turns
out to happen in more general situations [46,47]. This will
become apparent when we reconsider the above calcula-
tions as follows to elaborate the reason why |¢| = 1 attains
the global minimum of the potential in the present setup.
We have considered the embedding (5.3) and (5.12), which
can be generalized to the other generators as

0

tw 0
T, = 5.20
. (5.20)

0 0 00

Then, T, and T,, form an su(3) subalgebra embedded into
the 3 x 3 upper-left block of su(4). The condition for the
symmetric Higgs fields is given by (5.13), and the con-
dition for the vanishing scalar potential in (3.3) is written as

[¢mv ¢1’J = ifamnTa' (5'21)

Comparing these two conditions, we find that ¢, = T, is a
solution for both conditions since they become nothing but
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a part of the commutation relations of su(3). This is the
reason why the symmetric Higgs vev ¢ = 1 attains the
global minimum of the scalar potential. Now, it is clear that
this phenomenon always happens for a general coset space
G/H, if we choose an embedding of H into Gy); which
is induced by an embedding of G into Gyy. In fact, we
have already observed this phenomenon in Sec. IVA for
G/H = S°.

At this point, one might be puzzled by the fact that the
symmetric Higgs vacuum attains the global minimum
of the scalar potential, especially when one remembers
that the background gauge filed consists of an instanton
configuration. On the one hand, the Higgs condensation is
nothing but a continuous deformation of the gauge field
configuration on CP2. On the other hand, the vanishing
potential implies that the gauge field configuration is just a
pure gauge. This looks contradicting to the topologically
nontrivial nature of the instanton configuration. The res-
olution of this puzzle comes from the fact that the su(2)
instanton is embedded into su(4) with a u(1) flux, and the
instanton number is cancelled between the su(2) and u(1)
parts. Indeed, we can calculate the instanton number of the
background gauge field A, for the su(4) gauge field
explicitly, and find

1
EemnleranFkl = Tr(_FZEFww + FZWFZW - sz‘vFZw)

9
= Tr<—T3T3 + ZT4T4 - T1T1 — T2T2>
=0. (5.22)

The (T,)?* part is a contribution from the u(1), and we
conclude that the gauge field configuration before the
Higgs condensation has zero instanton number. This is
compatible with the fact that the gauge field configuration
at the symmetric Higgs vacuum is trivial.

Finally, let us check whether there are 15 massless vector
fields at the symmetric Higgs vacuum. The massless
conditions in this case are

D,a,+i[T, a,]=0, Dya,+ilT, a,]=0 (523)
where T, and T, are defined in (5.20) with m = z and w,
respectively. Since T, and T, form an su(3) subalgebra of
su(4), as mentioned above, it is convenient to decompose
these massless conditions according to the irreducible
decomposition of 15 of su(4) to 8 ® 3 @ 3®1 of the

su(3) subalgebra. By rearranging the components a,, ;; into

the corresponding vectors a/(,R) with R =8,3,3,1, we
obtain

Dzaf,R) = —iT;R) -af,R), Dwa,(,R) = —iTEVR) . af,R),

(5.24)

(R)

where T, are generators in the representation R.

As reviewed in Appendix F, each component of the
vectors a,SR) on CIP? can be expanded by the complete set of
functions f%(y) where R runs over all representations of
SU(3) and 1, J are the indices for the representation R, that
is, they run from 1 to dim R. Recall that the representation
R and one of the indices / are constrained by a condition of
what kind of representation of H we are investigating on the
coset space G/H. In the previous section, we used one
index m of the mode functions f{n v () to indicate its 7-
charges ¢, and j is constrained so that the representation
contains the desired value of m = ¢. Similarly, in this case,
we use one index I of £ (y) to indicate its su(2) x u(1)
representation. Namely, if the irreducible decomposition of
R has a representation r of su(2) x u(1), then f&(y)
contributes to the expansion of a field in the representation
rof su(2) x u(1), where i runs from 1 to dim r. Therefore,
the expansion of a field y;(y) in the representation r is
given as

dim R

2 =YY KR,

rCR J=1

(5.25)

where the first summation is over the representations R
of su(3) whose irreducible decomposition with respect to
su(2) x u(1) has r. If the decomposition of R contains
several irreducible representations each of which is iso-
morphic to r, then the multiplicity is also taken into account
in the sum.

The su(2) x u(1) representations for af,R) can be found
by further decomposition of R with respect to su(2) x u(1)
subalgebra of su(3). Explicitly,

8=3,®2,d2_, P 1, (5.26)
3=201; (5.27)
3=2,01, (5.28)

1=1,. (5.29)

The action of the covariant derivatives D,, D,, on the
mode functions % (y) is again given by the multiplication

of TER), Tsf ) from the left. Therefore, the massless con-
dition is again reduced to the requirement that the adjoint

action of T, T,, due to the symmetric Higgs vev has the

same effect on a, as the action of TER), TEVR) on the mode

functions.

In the present case, the solution to the massless con-
ditions is almost obvious. For example, let i, i, be indices
for the representations 2% , 1_%, respectively. Then

5o, 0)

a®xy)
) [23_1 ()13 ()

] (5.30)
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is the solution for R = 3. Note that the expansion coef-
ficients in the first and the second rows are the same. The
solutions for the other R can be obtained similarly. They
give us 15 massless vector fields, as expected. Thus, the
gauge symmetry is restored and we have the symmetry-
breaking restoration pattern

background flux

GYM - SU(4) EEE— U(l) H;ggsvev

x U(1) SU(4).

(5.31)

B. Embedding of H=SU(2) x U(1)
into Gyy; =SU(4): Case 2
Let us consider a different embedding of H into Gyy.
The SU(2) part of H = SU(2) x U(1) is embedded into
Gym = SU(4) as (5.3). Our second choice of the U(1) part,
T,, into SU(4) is

1 0 0 0
1101 o0

T, =~ 5.32

Y7210 0 -1 (5:32)
00 0 -1

The corresponding background flux breaks the SU(4)
gauge group to SU(2) x U(1). The symmetric Higgs fields
are then given by

00 ¢ ¢ 00 0 0
00 0 O 0 0 ¢ o
¢z: ’ ¢w:
00 0 O 00 0 O
00 0 O 00 0 O
(5.33)

Note that the irreducible decomposition of 15 is now

15=3)® (21)° ® (2.4)° & (1p)* (5.34)
due to the different choice of T,. Thus there are two R, =
2, @ 2_; representations in 15, and we have two symmetric
Higgs. The components ¢, (s = 1,2) form a doublet of the
SU(2) gauge group.

The calculation of the scalar potential for ¢, is rather
complicated if we just insert the above expressions into
(5.4). Tt is better to keep track of the residual gauge
invariance. For this purpose, we rewrite a part of the
commutation relations of su(4) relevant for calculating
V(¢) so that the residual SU(2) gauge symmetry becomes
manifest.

Let us explicitly write some generators of su(4) other
than 7. First, we define

(5.35)

~q

1l
S O o O
S O o O

o;

=

These three 7; and T, correspond to the generators of the
residual gauge symmetry SU(2) x U(1). The generators in
the off-diagonal components are relabeled as

0 0

T!:

Z

o O o O
o o O =

0 0
7o o0
0 0

T2 = , (5.36)

o o o O
o O O
o o O O

0

where T, and T, are defined in (5.20) with m = z and w,
respectively, and T¢ := (T%)" with s =z, w. Then, the
symmetric Higgs field ¢, in (5.33) can be written in terms
of these generators as

b= > @.T¢

a=1.2

(5.37)

¢s = Z (ﬂZzT?‘

a=1.2

The relevant commutation relations for calculating V(¢)
are

(75,77 = (05 39Ts + 68Ty = 85 (0)PTi. (5.38)
where (0;);, == (0;);, etc. Then we obtain
(s 1) = | * (0:)5, Ti + @263, Ta = 62 (00,9") T, (5.39)

where [p|? = |g1 > + 2]
We also need to rewrite the commutation relation for 7,
in su(3) as

3
(13 11] = (0)3ti + 5 Gusta. (5.40)
Then the background flux can be written as
- . 3
Fg=—i|(ei)Ti + 70174l (5.41)
Note that F,, and F;; vanish.
By using the above expressions, we find
= . . 2 . 2 3
Fo+ilg,. ¢z = i(lo)" = DT5 + i 9] 5 )14
— i(poip" )T, (5.42)

045008-15



ISO, KITAZAWA, and SUYAMA

PHYS. REV. D 105, 045008 (2022)

- 3
Fas + ilbunts] = =iloP = DTy +i{loP =3 ) 74

- i(§06i(PT)Ti’ (5'43)

Foy+ilge bl = illoP = 1)(T1 —iT2).  (5.44)

Finally, the potential V(¢) turns out to be
11 3 21
— 2= 1e2 + (22102 Lo 12

1
(1= 2\2
+ 4 (1=1oP)

i3 2)2 3
=1 (I=loPP + ¢ (5.45)

The symmetric Higgs doublet therefore acquires the vev

¢ =1, ¢ =0, (5-46)
up to a global gauge transformation. The nonzero value of
the scalar potential at the symmetric Higgs vacuum implies
that there remains a flux at this vacuum, which suggests
that the gauge symmetry at the symmetric Higgs vacuum
must be smaller than SU(4).

Now, we count the number of massless vector fields at
the symmetric Higgs vacuum. The massless conditions are
given as (5.23), exactly the same condition we discussed
in the previous section. Therefore, we can employ the
decomposition (5.24) again.

Let us consider
D.al) = —it? .4, D,al =it o). (5.47)
Recall that a,(f) is formed from the components a,, 14, @, 24
and a,, 34. In terms of the su(2) x u(1) subgroup generated
by T, this consists of the representations 2; @ 1,. As
explained in Appendix F, they are expanded by the mode
functions f%(y), where R is a representation of su(3)
whose irreducible decomposition contains 2; or 1,. An
important point is that this irreducible decomposition must
be considered with respect to the su(2) x u(1) subgroup
(5.1), not to any su(4) embeddings. According to this, the
representation 3 of the su(3) is decomposed as 2@1.

This implies that the mode functions f3,(y) do not

contribute to the expansion of a. Instead, other mode
functions, for example, f%,(y) contribute to the expansion
since 8 is decomposed as 3y @ 2; ® 2_; & 1. Then, the

covariant derivatives D, D,, can be converted to Tgs), 7®
but never to T?), T$v3 ). By this reason, we conclude that

the massless conditions (5.47) do not have solutions.

Similarly, the conjugate components a

massive vector fields.

give us only

The conditions for the other two representations 8 and 1
turn out to give us 8 4+ 1 massless vector fields. A natural
guess is that the emergent gauge symmetry at the sym-
metric Higgs vacuum would be SU(3) x U(1),

background flux
_—

Gym = SU(4) SU(2) x U(1)

Higgs vev
E—

SU(3) x U(1). (5.48)
This should be confirmed by a further analysis.

At the symmetric Higgs vacuum obtained above, the
scalar potential is nonvanishing. This is a similar situation
as the one discussed in Sec. IV B. Interestingly, we can
show that the symmetric Higgs vacuum in this section is
stable, and the topological nature of the background gauge
field plays an important role. In the following, we see that
the background gauge field A, before the Higgs conden-
sation has a nonzero instanton number, which is unchanged
by any continuous deformation of the gauge field. The
nonzero instanton number is obtained in this setup since
the embedding 7', of , is different from the one we chose in
the previous section. Let us calculate the instanton number
for the gauge field configuration, including the symmetric
Higgs vev, given by

an = an + l[d)m? d)n]’ ¢m = q)aTgr (549)
Their explicit forms are given in (5.42), (5.43), (5.44). We
find

Lo TF = (of =17 = (1o =2)
2 mnkl mn kl_2 74 Q 2
1 .
-3 (po,0")* + (lof* — 1)

(5.50)

1w

The scalar potential is bounded by this instanton number
density as

1 1 21
V(¢) =STr an + 7€mnlekl - 7€mnleranFkl
8 2 8
3
>—. 5.51
216 (5.51)

This shows that the symmetric Higgs vacuum attains the
global minimum of the scalar potential in a given topo-
logical sector of the gauge field. In other words, we can say
that the nontrivial topological nature of the original back-
ground gauge field A, stabilizes the nontrivial symmetric
Higgs vacuum.

This example tells us the geometric picture of the Higgs
condensation realized in the Kaluza-Klein reduction of
Yang-Mills theory. Since the Higgs fields come from some

045008-16



GAUGE SYMMETRY RESTORATION BY HIGGS CONDENSATION ...

PHYS. REV. D 105, 045008 (2022)

components of the gauge field, the Higgs condensation is
nothing but a particular continuous deformation of the
gauge field. The condensation occurs in order to minimize
the “Euclidean action”

1
Se=7 / dVTtF ), F . (5.52)

The configuration space of the gauge field is divided into
various components according to certain topological invar-
iants. The vacuum corresponds to the global minimum of
Sg in a given component. The global minimum may or may
not be attained by the condensation of symmetric Higgs
fields, according to the situation.

It is interesting to notice that the gauge field configu-
ration F,, including the symmetric Higgs vev becomes
exactly an instanton configuration at the symmetric Higgs
vacuum. This means that we find an explicit construction of
the instanton solution on CP?. It is interesting to clarify
how general this construction is.

VI. CONCLUSIONS

Higher-dimensional gauge theories with nontrivial
fluxes of the background gauge fields in the compact
space have been investigated as phenomenological models
of gauge symmetry breaking. The background gauge fluxes
explicitly break some of the original gauge symmetries, and
often provide tachyonic scalar fields whose vacuum expect-
ation value further breaks the remaining gauge symmetries
in the four-dimensional effective field theory. Thus, this
kind of models are often utilized for dynamical generation
of Higgs potential. In their investigations, we usually study
four-dimensional effective field theories by keeping only
the light fields and neglecting other massive modes in the
Kaluza-Klein tower, since we are interested in physics in
the lower energy scale than that of the compact space.

In this paper, we revisit such higher-dimensional models
including all the massive Kaluza-Klein modes to inves-
tigate their roles in the gauge symmetry breaking. The
inclusion of higher modes will be important since the scale
of the vacuum expectation value of the Higgs field is
usually given by the same scale as the mass of the Kaluza-
Klein modes. Indeed both of them are given by the scale of
the compact space. What we have shown in the present
paper is that, when the Higgs acquires vacuum expectation
value at the minimum of the potential, some of the
originally massive vector fields in the Kaluza-Klein tower
become massless and the corresponding gauge symmetries
are restored. If we restricted ourselves to consider only the
light modes, we would conclude that the gauge symmetry,
which remains to be unbroken by the gauge flux, would be
further broken by the Higgs field. But, if we consider all the
Kaluza-Klein modes, the symmetries, on the contrary, are
restored even to the full set of the original gauge sym-
metries. When the massive gauge field becomes massless, it

will provide an additional massless scalar field to the
massless gauge field. Possible candidates for such massless
scalar fields are, for example, instanton moduli in the model
discussed in Sec. V B. It is interesting to see whether the
scalar field acquires mass due to the radiative corrections or
remains massless against perturbations.

We have studied two classes of the compact space, S>
and CP?. Both of them are coset spaces G/H, and due to
the beautiful group-theoretical structures of the coset space,
we have succeeded to analyze the mass spectrum even
when the Higgs acquires vacuum expectation value. In
some cases, all the gauge symmetries are recovered, and in
other cases, only a part of them are recovered. The vacuum
is shown to be stable even in the latter cases. The stability is
related to the topological structures of the gauge field
configurations. In cases when the background gauge field
configurations are topologically trivial, the original gauge
symmetries are completely restored at the global minimum
of the potential. On the other hand, in cases when the
background gauge configurations are topologically non-
trivial, or when they have some conserved topological
numbers, the original gauge symmetries can be only
partially restored. The background gauge field configura-
tions including the Higgs fields in the true vacua are
described by new topologically nontrivial configurations
with the same topological numbers.

We have developed a group-theoretic technique for
analyzing the number of massless vector fields at the
symmetric Higgs vacuum. It is reasonable to expect that
the technique can be extended to obtain the mass formulas
applicable also to massive vector fields and scalar fields.
A key result which enables the technique to work is that the
symmetric Higgs vacuum expectation values coincide with
some generators of the gauge group Gyy. It is interesting to
clarify whether this happens in more general models. A
detailed understanding of the structure of the scalar potential
will help us to gain insights on this issue. We expect that the
analysis of the mass spectrum at the symmetric Higgs
vacuum is reduced to an algebraic problem on a subgroup
of Gy specified by the symmetric Higgs vacuum expect-
ation values. A possible relation of this algebraic problem to
the geometric picture of the symmetric Higgs condensation
is also an interesting issue to be clarified.

An interesting observation we made is that the Higgs
vacuum in a model investigated in Sec. V B corresponds to
an instanton solution on CP2. The solution can be given
quite explicitly from the Maurer-Cartan one-form on G.
It is curious to see whether this can be a general method
of constructing instanton solutions on coset spaces. Our
calculation suggests that the different embeddings of H into
Gym would give us instanton solutions with different
instanton numbers.

The effects of gravity are neglected in the investigations
of the present paper. One of the original physics targets
of the coset compactifications is the stabilization of the
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compact space with gravity, called “spontaneous compac-
tification,” in which the background flux in the coset space
is a classical solution of the gauge field equations as well
as the Einstein equation. It will be interesting to investigate
the stability and the pattern of gauge symmetry breaking
including the fluctuations of gravity.

The Einstein-Yang-Mills theory naturally appears as
the bosonic part of the low-energy effective theory of
the heterotic string theory. A Higgs field which appears in
this context corresponds to a closed string tachyon, whose
condensation is an interesting research subject theoretically
as well as phenomenologically. The condensation of closed
string tachyon was discussed, for example, in [48,49].
Since the Einstein-Yang-Mills theory can be regarded as a
truncation of string field theory, it is a natural arena for
discussing the Higgs (closed string tachyon) condensation.
It is interesting if there would exist an endpoint of the
condensation which is stabilized due to a topological
reason.
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APPENDIX A: COSET SPACES

In this Appendix, we summarize some mathematical
basics of coset spaces. For further details, see, e.g., [25]
or [50].

Let G be a group, and H be a subgroup of G. For an
element g of G, we define a subset gH of G as

gH = {gh|h € H}. (Al)
The set of such subsets is denoted by G/H.

Suppose that g belongs to both g;H and g,H in G/H.
Then, g can be written as g = g, h; and g = g,h,, which
imply g; = g2hyh7!. This then implies g;H = g,H. In
other words, giH and g,H in G/H are either equal or
disjoint as subsets of G.

We choose one representation g;H for each element of
G/H. Then, the set {g;} of elements of G is in one-to-one
correspondence to G/H. The elements g; are called a set of
representatives for G/H. In terms of the representatives, G
can be written as

G= ugiH’

1

(A2)

where g;H and g;H are disjoint to each other if g; # g;.
We can perform the same construction when G is a
Lie group and H is its closed subgroup. Note that H is
always a Lie subgroup of G. In this case, G/H is known
to be a smooth manifold. This is called a coset space.

In mathematics literature, this is also called a homogeneous
space. If the dimensions of G and H are d; and dy,
respectively, then the dimension of G/H is d := dg — dy.
A set of representatives for G/H is regarded as a G-valued
function on G/H. For a given local coordinate patch U of
G/H, the representatives corresponding to points in U can
be chosen such that they are given by a smooth function
g(y) on U where y* are coordinates on U.

In this paper, we focus our attention on a particular class
of coset spaces, known as symmetric coset spaces. They are
characterized by the structures of the Lie algebras g and [
of G and H, respectively. Let 7, be a set of generators of [
where a runs from 1 to d. Their commutation relations are

[tw tb] = ifcubtc’ (A3)
since [ is a subalgebra of g. Let 7,, be a set of generators of
g other than 7, where m runs from 1 to d. We require that
the other commutation relations of g are of the form

[tav tm} = ifnamtm [tm7 tn] = ifamnta- (A4)
A coset space G/H in which the Lie algebras g, h satisfy
this condition is said to be symmetric. This condition can be
understood as follows. For a symmetric coset space, we can
assign a “parity” for generators such that ¢, has +1 and 7,,
has —1. In Secs. IV and V, we consider particular symmetric
coset spaces, namely S?> and CP2.

First, let us describe S? as a symmetric coset space.
For this purpose, we regard S? as CP!. A point in CP! is
represented by a pair of complex numbers (¢, c,) € C?
with (¢, ¢;) # (0,0). Two such pairs (cy, ¢;) and (], c5)
correspond to the same point of CP! if and only if there
exists a nonzero 4 € C such that

(c}.c5) = (dey, Acy) (AS)
is satisfied. Using this ambiguity, we can always choose
the pair (¢, ¢,) such that they satisfy |c;|> + |c,|? = 1. Any
pair (cy, c,) satisfying |c|> + |c,|> = 1 can be written as

[CI] :Um, U e Su(2). (A6)

2
A pair (¢, c,) represents the same point in CP! as (1,0) if
and only if U is of the form

(A7)

Such elements form a U(1) subgroup of SU(2). We have
found that §> = CP! can be written as the coset space
SU(2)/U(1). In this case, 7, corresponds to 163 and 7,
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correspond to o. Their commutation relations show that
SU(2)/U(1) is symmetric.

Next, consider CP2. This is a straightforward generali-
zation of the CP! case. Any point of CP? corresponds to a
triple (cy, ¢, c3) € C3 satisfying |ci|*> + |c2]? + |3 = 1,
which can be written as

Cq 1
o|=Ulo|, Uesud). (A8)
C3 0

The multiplication by U does not change the point in CP? if
and only if U is of the form

€2i(ﬂ 00
0  wy | UeSU@R.  (A9)
0

The matrices of the form consist of an SU(2) x U(1)
subgroup of SU(3). We have found that CP? can be written
as a coset space SU(3)/(SU(2) x U(1)). This is apparently
a symmetric coset space.

APPENDIX B: G AS A PRINCIPAL H BUNDLE

In this paper, a coset space G/H is used as a compacti-
fication manifold M of a higher-dimensional Yang-Mills
theory. Since we would like to define a gauge theory on
G/H with the gauge group Gy, we need a principal Gyy
bundle on G/H on which we can define the gauge field
as a connection. Note that, in this paper, we discuss only
classical aspects of Yang-Mills theory on a fixed principal
Gy bundle, and the summation over different bundles will
not be considered.

It is known [50] that there exists a natural principal H
bundle on G/H, as will be reviewed shortly. In fact, it is G
itself. This principal H bundle is specified by a set of
transition functions g;;(y), whose values are in H, defined
on the overlap U; N U; of two local coordinate patches
U;,U; C G/H. If we choose an embedding of H into the
gauge group Gyy, then g;;(y) can be regarded as a set of
transition functions whose values are in Gyy;. Using these
transition functions, we can construct a principal Gy
bundle on G/H. In this manner, we can define Yang-Mills
theory on G/H whose gauge group is Gyy.

Recall the decomposition (A2) of G. This suggests that
G is a fiber bundle whose fibers are of the form gH. The
subset gH is in one-to-one correspondence to H for any g.
In fact, it can be shown that G can be regarded as a fiber
bundle whose fibers are H, that is, a principal H bundle on
G/H. For the coset spaces, the representatives ¢g; are
replaced with g(y) chosen for each local coordinate patch.
A choice of g(y) on U amounts to choosing a local section

G/H

FIG. 1. Lie group G can be regarded as a principal H bundle
on G/H. The vertical direction corresponds to the fiber H. A local
section g(y) on U is also depicted.

g(y) on U of the principal H bundle G. The situation is
depicted in Fig. 1.

Let ¢/ (y) be another local section on U. This is related to
the original one by

h(y) € H. (B1)
Note that this transformation does not transform a point in
U to a different one since

g()H = g(y)h(y)H = g(y)H.

Indeed, this amounts to a local gauge transformation
with respect to h(y) € H C Gyy, as we will show in
Appendix C. In fact, this also induces a local Lorentz
transformation simultaneously. To avoid possible confu-
sions with the ordinary gauge transformation, we call the
local transformation induced by the right multiplication of
h(y) an H transformation.

We can multiply any y-independent element g, to the
representatives g(y) from the left. The result g, - g(y) is also
an element of G, so this must be in a certain subset g(y')H
for some point y’. This can be written as

(B2)

90+ 9(y) = g(y)h(y. go)- (B3)
In general, the point y’ is different from the original y.
Therefore, the left multiplication of g, induces a coordinate
transformation of G/H. In addition, this simultaneously
induces an H transformation with respect to h(y, gy). We
will see in the next section that this is actually an isometry
of G/H for a natural choice of the metric on G/H. In fact,
the isometry group of G/H with respect to the metric is
known to be isomorphic to G, that is, any isometry of G/H
is induced by the left multiplication as above.

APPENDIX C: MAURER-CARANT ONE-FORM

There exists a one-form on G which can be defined
without any additional information. We review in the
following that this one-form defines a natural metric and
background gauge field on G/H. See [25,50] for details.
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Let g;;(£) be a matrix-valued function on a local
coordinate patch of G whose value at a point £ € G is
an N x N matrix representing £. This can be regarded as a
set of coordinate functions on G. Therefore, like dy* on
U C G/H, we have a set of functions dg;;(§) on G whose
values are one-forms on G. Using them, we construct

(g_l)i/(f)dgjk(f)- (C1)
This is called the Maurer-Cartan one-form on G. In the
following, we simply denote this by g~'dg.

A local section g(y) can be regarded as an embedding of
the local coordinate patch U into G. The pullback of g~'dg
with respect to this embedding gives us a one-form
g(y)~'dg(y) on U. The latter can be expanded as

g(y)~tdg(y) = ie™t,, + ie“t,, (C2)

where

e = eldy”®, e = eldy?, (C3)
since g(y)~'9,9(y) is in the Lie algebra g. We will clarify
the meanings of ¢/ and e% in the following.

Recall that elements of the Lie algebra g correspond to
tangent vectors of G at the identity element. For the coset
space, t,, correspond to a set of basis of the tangent space of
G/H. Therefore, ¢! gives us a vielbein on G/H. This is an
invertible d x d matrix by construction.

To see the role played by e§, consider an H trans-
formation g(y) — g(y)h(y). This induces

g(y)~dg(y) = h(y)~ (g(y)"'dg(y))h(y) + h(y)~'dh(y).

(C4)
This implies
" = h(y)~'e"h(y),
et = h(y)~'e“h(y) —ih(y)~'dh(y).  (C5)
Here, we have used the fact that
h(y)™'t,h(y) € m (Co)

holds, where m is a vector space spanned by t,,. This is due
to the commutation relation
[tu’ tm] = ifnllmt}’l (C7)
which we assumed in Appendix A. The transformation of
¢“ shows that €% behaves as a gauge field on G/H with the
gauge group H, defined on the principal H bundle G.
Note that ¢ also transforms under the H transformation.
Indeed, Eq. (C6) implies that this is a local Lorentz

transformation acting on the tangent space of G/H.
Therefore, the right multiplication of 4(y) to g(y) induces
both a gauge transformation of e¢% and a local Lorentz
transformation of e} simultaneously.

Recall that the left multiplication of gy € G to a local
section g(y) induces a coordinate transformation y — y’ of
G/H. The one-form g(y)~'dg(y) on U is trivially invariant
under g(y) — g - g(y) for a y-independent g,. This implies
that the vielbein ¢} (and the gauge field e%) are invariant
under the coordinate transformation. In other words, the
coordinate transformation is an isometry with respect to the
metric h,z constructed from ey. It is known that any
isometry of G/H is induced in this manner. Therefore, the
isometry group of G/H is isomorphic to G.

We calculate the field strength two-form

1 1
Efat“ = det, + ie‘t, A e’t, = de’t, — Etcfca,,e“ A eb.
(C8)

For this purpose, we do not need to know the explicit form
of ¢%. Instead, we start with the following identity:

d(g(y)~'dg(y)) = —g(y)"'dg(y) A g(y)~'dg(y).

This can be decomposed into the following two equations:

(€9)

1 1
det, = ztcfcabe“ A eb —I—Etaf",,me'" Aet,  (C10)

de"t, = t,f" e’ N e,

(C11)
The first equation tells us that the field strength is given as
Z/j :famne(rxnez' (C12)

On the other hand, the second equation gives us the spin
connection

0"y = —f" an€- (C13)
Then, the curvature
1
ERaﬂ’”ndy“ A dy? = do™, + o™ A oF, (C14)
can be also calculated explicitly. We obtain
Raﬁmn = —f”szmanela{zf«’/[;- (C15)

APPENDIX D: EQUATIONS OF MOTION FOR
THE BACKGROUND FLUX

In this Appendix, we show that the background gauge
field A, defined in Sec. IIC satisfies the equations of
motion with respect to the vielbein defined in Appendix C.
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The equations of motion are
V"F,,/,v + i[A(l, Fa[)’] - 0, (D])

where

Ay =eqT,, Faﬂ - ege;l}famnTa- (D2)

The covariant derivative is defined with respect to the spin
connection as

vUlFa/i = e;(ampmn - a)mlmFln - wmlnle)

= ezemaeg(flamfbln + flanfhml)Tb' (D3)
The commutator can be written as
i[Aa’ Fa'/f] = _e/nfemGngbacfcmnTb' (D4)

By using the Jaocbi identity and the fact that G/H is
symmetric, we find that the equations of motion (D1) are
automatically satisfied.

APPENDIX E: EXPLICIT CONSTRUCTIONS
OF BACKGROUNDS IN THE SU(2)/U(1)
COSET SPACE

In this Appendix, we explicitly calculate ¢ and e
defined in Appendix C for the case G/H = S?. We will see
that e} is the standard zweibein which gives the round
metric on 2, and e% describes a monopole configuration
on 2.

Any element g of SU(2) can be written as

a -b*

g:b a*

], la|® + |b]> = 1. (E1)

The Maurer-Cartan one-form ¢g~'dg is then given as

g 'dg = o (b*da* — a*db*) + o_(adb — bda)
+ oy(a*da + b*db), (E2)

where o, and o3 are the Pauli matrices.
We choose a local section g(0, ¢) by restricting a, b to be

.0
a=cos, b=e"? sinz, (E3)

where 6, ¢ are the polar and the azimuthal angles of S2,
respectively. The pullback of g~'dg by this local section
is then

9(0,0)7'dg(0, p) = iett, +ie"t_+ie’t;, (E4)

where

1
13 := 703, (ES)

tﬂ::ZUj:’ 2

and

ot = i%eﬂFitp(da F isinfdg), e3 = (1 —cos®)dy.

(E6)

The metric h,; obtained from e* is therefore the round
metric

ds®> = 4ete” = d6? + sin? 6dy?, (E7)

as expected. The field strength obtained from &3 is

de® = sin 0d0dep. (E8)

The integral of this two-form gives

1 .
2 e sin 0dOdg = 2. (E9)

This shows that e} describes a U(1) monopole configura-
tion with the monopole charge 2.

Note that the radius of S? is set to be 1 in the above
expressions. It is rather easy to recover the radius a based
on the dimensional analysis since a is essentially the only
dimensionful parameter in the Kaluza-Klein reduction of
Yang-Mills theory. In higher dimensions, the coupling
constant gy, is dimensionful, but it is just an overall
coefficient in the action.

In the following, we present an explicit description of
the model of $? = SU(2)/U(1) compactification. We will
employ different conventions from those in the main body
of this paper, which might be more familiar to the readers.

The action of the six-dimensional space-time is

1 1
S = /d6x,/—g{—2'R—FTr(FMNFMN) —A}, (El())
K g

where R and A are Ricci scalar and cosmological constant,
respectively, and

Fyy = VyAy = VyAy — i[Ay, Ay (E11)

is the gauge field strength with the covariant derivative
VuAy = OyAy = TryunAL (E12)

and M,N =0,1,2,...,4,5. The field strength is matrix

valued as Fyy = T“F;y, where T is the generator matrix
of the gauge group Gyy = SU(3) with
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Tr(T9T?) = %5“’, (T4, T = ifebeTe.  (E13)

The metric is described as

ds® = —di> + Z dx'dx' + a*(d6* + sin”> 0dy?). (E14)
=123

The sphere of radius a is described by two angular
coordinates, @ and ¢, and noncompact spacetime is the
Minkowski space. A vector on the sphere is described by
two independent basis vectors, e, and €, which corre-
spond to the two of three unit vectors of the polar
coordinate system of three-dimensional flat space.
Introduce a background gauge field on the sphere

_ _ - - 1 cosf F1
A :Ageg—FA(pe(p, A() :O, A(p :EHW
(E15)

where negative sign is for 0 < 8 < z/2 and positive sign
is for 7/2<60 <z in A, Note that A; =aA, and
As = asinA,,, since x, = 6 and x5 = . This is a spheri-
cal slice of monopole configuration with unit magnetic
charge at radius a, and the generator of corresponding U(1)
gauge symmetry is H/2. We can explicitly write

ny 0 0
H=|0 n, 0 (E16)
0 0 —n, —ny

The off-diagonal components of the matrix-valued SU(3)
gauge field transform as matter fields under this U(1) gauge
symmetry with charges

* (m—ny)/2  (2n +ny)/2
—(ny —ny)/2 * (ny +2n3)/2 |,
—(2ny +ny)/2  —(ny +2ny)/2 *
(E17)

and the Dirac quantization of electric charge by a monopole
indicates that twice of each charge should be an integer,
which indicates
n—n, €L, 3n, € Z, 3n, € Z. (E18)
This background configuration is invariant under the
symmetry transformation of S2, or SU(2), up to corre-
sponding gauge transformation generated by H/2.
Furthermore, we can make this background configuration
a solution of field equations of the action, (E10), namely
SU(3) Yang-Mills equation and Einstein equation by
choosing A = 1/k%a® and ¢* = Tr((H/2)*)x*A [42].

The fluctuation around the background configuration
of (E15), 6A* and SA>, can be described as scalar fields in
low-energy four-dimensional effective theory. It is conven-
ient to describe these fields so that they are living on the
tangent space of S?. Introduce zweibein as

g/w = eumﬁmne”w (Elg)
where pu,v=4,5,m,n=4,5 and in the matrix form
g = a*diag(1,sin” 6). Explicitly we specially introduce

cos —sin 1 0
e, = a( ¢ €0> < . ) (E20)
cos ¢ 0 sind

sin ¢
which satisfies the above formula of definition. The field on
tangent space is defined as
V= e",0A". (E21)

Furthermore, it is convenient to define a complex scalar
field as

1 .
Vi = 7§(V4 F lVS),

We define a covariant derivative with background field as

V_= (V). (E22)

D,\V.=V,V.—ilA, V] (E23)

The explicit form can be obtained as

_ H
DV,=090,V,— iéf;(cose - 1){iVi + [3 Vi:| }
(E24)

for 0 <0 <x/2. In case of 7/2 <0 < &, the factor
(cos@—1) in the second term should be replaced by
(cos@+ 1). Note that the field V. is matrix valued as
V4T* and the second term can vanish depending on the
choice of H.

APPENDIX F: MODE EXPANSIONS ON G/H

In order to perform the Kaluza-Klein reduction on G/H,
we need to have a complete set of functions on G/H by
which any fields can be expanded. More precisely, we need
to expand sections of suitable vector bundles on G/H, not
only functions, since there are fields with local Lorentz
indices belonging to a nontrivial representation of the
gauge group. For S2, the monopole harmonics [43] play
such a role. In more general cases, it is known that there
exists a useful set of functions on G [40] which can be
employed for our purpose, as we will review in this
Appendix.
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1. Mode expansions on G

It is rather easy to find examples of functions on G. Let
p:G — GL(n, C) be an n-dimensional representation of G.
This assigns to each element g of G an n x n matrix p(g).
Each matrix component p(g),, is therefore a function on G.
For each n, or more appropriately, for each representation R
of G, we can obtain many functions on G in this manner.
It can be shown that they are linearly independent.

The Peter-Weyl theorem tells us that any function on G
can be expanded by these functions. Explicitly, a function
f(g) on G can be written as

dr
@) =YY" e (9 (F1)
R 1J=1

where the first sum is taken over all the representations
of G with the multiplicity one, dj is the dimension of the
representation R, and pR(g) is the matrix representing
g € G on the representation R. For a later purpose, we
employ an equivalent expansion

UED ) E VAU PR

This is also valid since any function f(g) on G can be
written as f(g~!) by using some f(g).

2. Mode expansions of scalar functions on G/H

We then study a complete set of functions on G/H by
using its extension to G as follows. Let ¢(y) be a function
on a local coordinate patch U of G/H. By using a local
section g(y) € G, we can regard ¢(y) as a function ®(g(y))
defined only on a subset of G which is the embedding of U.
We can extend ®(g(y)) to the fiber direction by an action
h(y) € H as

hy)eH.  (F3)

In this manner, any function ¢(y) on G/H can be extended
to a function ®(g) on G. Thus a complete set of functions
on G/H can be obtained from a complete set of functions
on G by imposing the condition

D(g(y)h(y)) = P(g(y))- (F4)

Namely, these functions must take constant values along
the fiber direction corresponding to H transformations.
Any function on G can be uniquely expanded as (F2).
The representation R of G is decomposed into various
irreducible representations of H, which may contain unit
representation 1. A complete set of scalar functions ¢(y)
on G/H is then given by a complete set of constant
functions along the fiber H, which correspond to the unit

representations constructed from all the representations R
of G. An explicit form of the expansion is discussed as a
special case of nonscalar functions (sections) which trans-
form nontrivially as representation r of H.

3. Mode expansions of a, and ¢,, on G/H

In the Kaluza-Klein reduction of Yang-Mills theory, we
would like to expand a, and ¢,,. Since they are sections of
some vector bundles on G/H and transforms nontrivially
under H, we need to modify the above expansion procedure
as follows.

First, consider a,. This belongs to the adjoint repre-
sentation adyy; of Gyy. Recall that, as explained in
Appendix B, our principal Gy, bundle is constructed
from the principal H bundle G, and the transition functions
take values in a subgroup H of Gyy. This means that
we can consider a, as a field defined on the principal H
bundle G. Since adyy, is reducible for H, we decompose a,,
into components according to the irreducible decomposi-
tion of adyy; with respect to H. Each component belongs
to an irreducible representation of H, and forms a section
of a vector bundle on G/H. Note that this decomposition
is compatible with the gauge symmetry preserved by the
background flux F,; since the preserved symmetry
corresponds to a subgroup of Gyy which commutes
with H.

The case for ¢,, requires one more twist since it has the
tangent space index m, and transforms under the local
Lorentz transformations. As explained under (2.21), the
covariant derivative V, with respect to the metric on G/H
can be identified with the one with respect to the back-
ground gauge field in the representation R, of H, which is
given by the commutation relation (C7). Thus, the tangent
space indices are regarded as indices of the representation
R, of H. Then, ¢,, belongs to a product representation
R, ® adyy; of H. We decompose ¢,, into components
according to the irreducible decomposition of R, ® adyy
with respect to H. Each component again forms a section of
a vector bundle on G/H.

To summarize, the mode expansions of a, and ¢,, can be
performed if we know how to expand a section of a vector
bundle on G/H which belongs to an irreducible represen-
tation of H. The mode expansions of a, or ¢,, are given by
a sum of various mode functions corresponding to each
irreducible representations of H.

4. Mode expansions of y;(y) in representation r of H

Now, we consider the expansion of y;(y) which belongs
to a specific representation r of H. Recall a local section
g(y) on G/H can be extended to the fiber direction by the
H transformation as

9(y) = g(y)h(y).
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Thus, any g € G is written as a product of the local section
g(y) and the H transformation h(y). This induces an H
transformation on y;(y) as

xi(y) = o (h(y) ™) i (y).

Thus, we can extend the function y;(y) on G/H to a
function X;(g) on G by

Xi(g) = X;(g()h(y)) = p"(h(y)™")ix;(y). (F5)

where g = g(y)h(y). If r is the trivial representation of H,
then this reduces to (F3). By construction, X;(g) satisfies

Xi(gh) = p"(h™");;X;(g). (Fo)

Since each component X;(g) is a function on G, it is
expanded as (F2). Then, the above condition (F6) imposes
the following restriction on the expansion coefficients c¥,,
namely an allowed set of functions on G. For a represen-
tation R of G, the function p®(g7!),, on G satisfies the
transformation law

PR((gh) ™) =pR (g™ =R (R 1kp® (g7 ks (FT)

under an action of 4 € H. This representation R of G can be
decomposed into irreducible representations r; @ --- @ r;
of H. For the basis according to this decomposition, the
matrix pR(h~!),, takes a block-diagonal form. Let iy, ..., i,
be indices corresponding to the representations ry, ..., 1,
respectively. Then, p®(g7'); k,....p"(¢g7");x transform
separately as

pR((gh)—l)inJ = prﬂ<h_1)iuj,,pR(g_l)j“J’ (a=1,...,1)

(F8)

under the H transformation. Let us first consider the
case when the representation r; is isomorphic to r. Then
a rectangular part p®(g7"), ; satisfies the condition (F6). In
general, the decomposition of R contains a multiple of r
representation of H. Suppose that r, =r fora=1,...,k
among (ry,---r;). We denote the corresponding rectan-
gular part by pf4(g~1),, where i is the index for r. Then, the
function X;(g) in the representation r can be expanded in
terms of these functions as

dp  k
SS9

rCR J=1 a=1

The first sum is taken over all the representations R of G
whose irreducible decomposition with respect to H con-
tains 7. Finally, the expansion of y;(y) is given as

=> Z Z ck ), (F10)
rCR J=1 a=
where
FEA) = pR(g(y)™) - (F11)

These functions satisfy the same transformation law of (F8)
where r, = r. In this paper, we sometimes suppress the
index a for notational simplicity.

APPENDIX G: LAPLACIAN AND THE MASS
FORMULA ON G/H

In the Kaluza-Klein reduction, the mass of each mode is
typically related to the eigenvalue of the Laplacian of the
compactification manifold. The eigenvalues of the Laplacian
on coset spaces were discussed in [51]. Interestingly, the
mode functions we introduced in Appendix F turn out to be
the eigenfunctions of the Laplacian on G/H provided that
the vielbein ¢! and the background gauge field A, are given
as in Sec. II and Appendix C [31,36].

First, we show that the action of the covariant derivative D,,
on the mode functions f%;(y) can be written in an algebraic
form. Since f%(y) can be written as (pR(g(y))™"),,, the
exterior derivative is given as

dpR(g(y)) ™" ==p"(g(»))""dp®(9(y))-p*(9(»))",

where the matrix indices are suppressed. The right-hand side
contains the pullback of the Maurer-Cartan one-form in the
representation R. This can be expanded as

PR(g(y) " dpR(g(y))

where TR, TR are the generators of g in the representation R.
Inserting this expression into (G1), we obtain

PR(g(y))™!

(G1)

= ie"TR +ie*TR,  (G2)

+ie“TpR(g(y)) ™" = —ie" Thp"(g(y))~".
(G3)

Since the background gauge field is given by A = 4T ,dy",
this can be written as

D ffy(y) = —ieq (T}) xS % (v)- (G4)
Thus, the group-theoretic argument shows that the covariant
derivative D, on f%,(y) can be simply written as a multipli-
cation of —ze(”jTR Note that the covariant derivative D,
originally contains the spin connection on G/H, but as
explained below (2.21), we can regard the local Lorentz
indices as a charge of the gauge group H on G/H. Thus the
spin connection term in D, is absorbed into the gauge
connection. The representation matrices of H are thus given
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by the tensor product of the local Lorentz representation and
the original H charge.

In Sec. 1V, in particular in (4.17), we use this relation for
G = SU(2). The representations of SU(2) are labeled by
the half integers j. The spin-j representation is give by the
matrix-valued function p\/)(g), . where —j < m,m’' < j.
We define the mode functions on G/H by

£ @) = pD (g()™") s (G5)

—h?DDsff(y) = —hD,(~ief(T)ix f5s(¥))

where m is constrained by the H = U(1) charge g. The
condition is discussed in (4.15).

The covariant derivative D, acting on f7, (y) can be

rewritten as a multiplication of —i (T(j))mm, on the function
as (4.17). Note that the charge quantization discussed in
Appendix E is automatically satisfied.

Next, we show that the mode functions f%(y) are
eigenfunctions of the Laplacian h’D,Dj, where i is the

index for an irreducible representation r of H which is
contained in R [51]. Indeed,

= iha/}e/n}((Tﬁ)iKaafzj(y) + efif’”an(Tﬁ)mf%(y) + ieﬁ(Tng)ikfIISJ(J’))
= ihel(TR) ik Daf 57 (y) + ieG(=if " anTh + [TK, TR])ix S5, ()

= ém"(TﬁTﬁ)inﬁj(y)
= (c§(R) = H(N)fEG).

where ¢§(R) is the second Casimir invariant of the

representation R of G.

This eigenvalue gives us the mass of each Kaluza-Klein
mode of a,. Recall that, for the mode expansion of a,
reviewed in Appendix F, we first need to decompose the
adjoint representation adyy; of Gy with respectto H. Let r
be one of the irreducible representations of H appearing in
the decomposition of adyy;. The components of a, corre-
sponding to r are expanded in terms of fX (y) where R is a
representation of G whose irreducible decomposition with
respect to H contains r. This vector mode has the mass
given as

w2 = ni, = G(R) = el (1)

(G7)
Note that m3 , is always non-negative.

Next, we consider the masses of scalar modes obtained
from ¢,,. Recall that the mass terms of the modes come
from

1 - 1 _
Tr E(Daqﬁ/})z - §¢“Raﬁ¢/j - i¢a[Faﬁ7¢/j} . (G8)

The first term gives m,%qr. The explicit expression of the
curvature (C15) implies that the Ricci tensor is given as

R(lﬁ = _Cg(Rt)e:Inegtr(tmtn)» (G9)

where ¢, belong to the representation used to define the
coset space G/H. Therefore, the curvature contribution to
the mass is given as

(G6)
1
Ecg(R,)’"”Trqﬁmqﬁ”. (G10)
The flux contribution can be written as
Gma(Ta)", (T 5p"E (G11)

where ¢,, = ¢4 T4 is the expansion of ¢,, in terms of the
generators T4 of Gyy;, and (T,)" are the generators of §
represented on adyy; which is reducible with respect to §.
Like in the case of the angular momentum in quantum
mechanics, this can be written as

1
5¢mA(C§1(Rt ® adyw)"™,5 — 5 (R)" .85

— cff (adym)* 307 )" (G12)
The second term cancels the curvature contribution.

In order to determine the mass explicitly, we consider
the decomposition of ¢,, in more detail. This belongs to
R, ® adyy. First, we decompose adyy; and pick up one
irreducible representation 7 of H. The corresponding
components of ¢,, belong to R, ® 7. We further decompose
R, ® 7 and pick up r. These components are expanded in
terms of f®(y) where R contains r. Their masses are
therefore given as

mi =my, + ' (r) = cf/(7) = §(R) = ¢f' (7). (GI3)

The important difference of this mass formula from 2 is
that the second term in the right-hand side is the Casimir
invariant for 7, not for r. For example, even if 7 is nontrivial,
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R, ® 7 may contain a singlet component. In this case, we
can choose R = 1, so that m? is negative.

Indeed, this happens for the symmetric Higgs fields. As
defined in Sec. III, a symmetric Higgs field consists of
those components of ¢,, which is singlet with respect to H.
This means r = 1. Therefore, the mode expansion of the
symmetric Higgs field do contain the contribution from
R = 1. This is nothing but the constant mode, and the mass
is given as

m* = —cl (7).

(G14)
As long as 7 is nontrivial, this mode has a tachyonic mass
term which allows the symmetric Higgs field to acquire
a nonzero vacuum expectation value. This fact justifies
their name.

APPENDIX H: SYMMETRIC HIGGS FIELDS
ARE SYMMETRIC

In this Appendix, we show that the symmetric Higgs
fields defined in Sec. III are symmetric fields in the sense of
[39], as the name suggests.

First, we introduce the notion of G-invariant fields. A
field ¢,, on G/H is said to be G invariant if this satisfies

(H1)

gO'¢m(y) :¢m<y)7 g()EG,

where the action of g, is defined as

90 * P (¥) = @y (g09(y)). (H2)
where @,,(g) are a set of functions on G which extend
¢(y) on G/H to the fiber directions H, as explained
in Appendix F. Recall that gyg(y) can be written as
g(y")h(y, go), where y — y' is an isometry of G/H induced
by go and h(y, go) € H is an H transformation. Then, the
condition (H1) can be written as

AU @), )UG)" = (). (H3)
where A,,,(y) and U(y) are the local Lorentz transforma-
tion and the gauge transformation induced by A(y, go). This
shows that a G-invariant field is symmetric.

Recall that a symmetric Higgs field ¢,, is defined to
satisfy D¢, = 0 and 0,¢, = 0. These imply that ¢,, is y*
independent and H invariant. Then, we find

A MU, (VU()T = A U ) (0) U (y)"

= du(y) (H4)

Therefore, ¢,, is G invariant. This then implies that it is
symmetric.
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