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Extra-dimensional components of gauge fields in higher-dimensional gauge theories will play a role of the
Higgs field and become tachyonic after Kaluza-Klein compactifications on internal spaces with (topologically
nontrivial) gauge field backgrounds. Its condensation is then expected to break gauge symmetries
spontaneously. But, contrary to the expectation, some models exhibit restoration of gauge symmetries. In
this paper, by considering all the massive Kaluza-Klein excitations of gauge fields, we explicitly show that
some of them indeed become massless at the minimum of the Higgs potential and restore (a part of) the gauge
symmetries which are broken by gauge field backgrounds. We particularly consider compactifications on S2

with monopolelike fluxes and also on CP2 with instanton and monopolelike fluxes. In some cases, the gauge
symmetry is fully restored, as argued in previous literatures. In other cases, there is a stable vacuum with a
partial restoration of the gauge symmetry after Higgs condensation. Topological structure of the gauge field
configurations prevent the gauge symmetries from being restored.
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I. INTRODUCTION

The dynamics of gauge symmetry breaking is yet to be
investigated, especially when it is caused by the elementary
Higgs scalar field with a nontrivial potential. The mecha-
nism of gauge symmetry breaking or the origin of the Higgs
potential is highly required. Among numerous proposals or
models including radiative symmetry breaking mechanism
(see e.g., [1–7]) and extra dimensions (see e.g., [8–24]), a
possibility to understand the origin of Higgs potential in the
context of higher-dimensional gauge theory has been
widely investigated. In the present paper, we revisit the
gauge symmetry breaking by the coset space dimensional
reductions of higher-dimensional gauge theories with
background gauge fluxes (see [25] for review, and see
e.g., [26] for dimensional reduction to noncoset spaces).
The basic idea of this construction appeared in [8] which
realizes the bosonic part of the Weinberg-Salam model
from the six-dimensional Yang-Mills theory. In this

construction, the Higgs potential of the double-well type
dynamically appears, and this class of models has been
applied to the gauge-Higgs unification models of the
electroweak theory [20].
Background gauge fluxes in compact spaces in higher-

dimensional gauge theories are originally introduced to
stabilize the compact space [27–32] in the context of the
Einstein-Yang-Mills theory, and further developed in
the studies of flux compactifications in string theories
(for reviews, see [33–35]). The well-studied examples of
compact spaces are coset spaces G=H, such as S2 ¼
SUð2Þ=Uð1Þ or CP2 ¼ SUð3Þ=ðSUð2Þ × Uð1ÞÞ, and (in)
stability of such compactifications in the presence of
gravity have been extensively investigated. If tachyonic
fields appear, the solution becomes unstable and their
condensations will generate a new vacuum solution. In
particular, such tachyonic fields can be utilized as candi-
dates of the Higgs scalars, and understanding of the shape
of tachyon potential and the pattern of gauge symmetry
breaking is an important issue to be investigated.
In flux compactifications, the original gauge symmetry

in higher dimensions is explicitly broken by the back-
ground gauge fluxes in the compact spaces, and the Higgs
vacuum expectation value is expected to further break some
part of the remaining gauge symmetries spontaneously in
four-dimensional effective theory. In previous literatures,
most studies have focused on low lying states in the
effective four-dimensional theories after compactifications.
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Among infinitely many fields, only massless fields are
usually taken into consideration in the effective theory, and
all the other higher excited modes are neglected. It is
justified when we consider low-energy physics below the
scale of the compact spaces, but when we investigate the
condensation of the tachyonic field, the massive modes will
also play an important role since the mass scale in the Higgs
potential is typically the same as masses of Kaluza-Klein
higher modes. Especially, when the Higgs acquires vacuum
expectation value, we need to take care of a possibility that
some of the massive Kaluza-Klein modes may become
massless.
In this paper, we investigate dynamics of the Higgs con-

densation in several simple models on coset spaces, such as
S2¼SUð2Þ=Uð1Þ and CP2¼SUð3Þ=ðSUð2Þ×Uð1ÞÞ, with
all the massive Kaluza-Klein modes included. We find that,
although the Higgs vacuum expectation value itself breaks
a part of the remaining gauge symmetries and the corre-
sponding gauge bosons indeed become massive, some of
the massive Kaluza-Klein modes will become massless and
gauge symmetries are recovered in the four-dimensional
effective theory. In fact, such a possibility was pointed
out in [36,37]. In this paper, we develop a group-theoretic
technique which enables us to clarify explicitly which
Kaluza-Klein modes become massless vectors after the
Higgs condensation. As we will see, some of Kaluza-Klein
massive modes become massless according to their repre-
sentations with respect to a subgroup of the gauge group
which is specified by the Higgs vacuum expectation value.
Therefore, the counting of massless vector fields amounts
to an algebraic procedure. In string theory, it is known that
similar gauge symmetry enhancement occurs for conden-
sation of massless scalars, or moduli. Nonsupersymmetric
string theories were discussed in this context recently
in [38] and references therein.
In Sec. II, we give a general formulation of the Kaluza-

Klein reduction on coset spaces G=H with a topologically
nontrivial background gauge field configuration. In Sec. III,
we introduce the notion of “symmetric field” [39] which
corresponds to the zero mode, or a constant mode on the
flat compact space without flux. Interestingly, some of
these symmetric fields may have nontrivial potentials with
a negative mass squared at the origin, and we call them
symmetric Higgs fields. In Sec. IV, we investigate the Higgs
condensation in gauge field theories compactified on S2.
We study three different types of models, whose back-
ground monopolelike fluxes are different. We particularly
investigate patterns of gauge symmetry breaking when
the symmetric Higgs fields have vacuum expectation value.
In Sec. V we generalize the analysis on S2 to CP2 coset
models. In this case, since the coset space is SUð3Þ=
ðSUð2Þ × Uð1ÞÞ, both of instanton and monopolelike back-
ground configurations can exist. In one of the examples we
study in Sec. VA, all the gauge symmetries are restored by
the Higgs condensation, which cancels the background

gauge flux as was pointed out in [36,37]. There exists
another type of model, analyzed in Sec. V B, in which a
topologically nontrivial gauge field fluxes prevent the
gauge symmetries to be recovered, and a stable vacuum
with a partial restoration of gauge symmetries is realized. In
the last section we summarize our results and conclude.
There are several appendixes which review various

materials necessary for our investigations. In Appendix A,
we review the basics of coset space G=H, and describe G as
a principal H-bundle in Appendix B. In Appendix C, we
review the construction of the background gauge field and
the vielbein on G=H which are provided by the Maurer-
Cartan one-form on G. In Appendix D, we review a proof
that the background gauge field satisfies the equations of
motion. In Appendix E, concrete forms of the background
gauge field and the vielbein are given in the case of
S2 ¼ SUð2Þ=Uð1Þ. In Appendix F, we review a construction
of mode expansions on G=H by using the Peter-Weyl
theorem for the mode expansions on G. In Appendix G,
we explain eigenvalues of the Laplacian on mode functions
and mass formula of various fields on G=H. We also show
that the symmetric Higgs field has a negative mass squared
and becomes tachyonic. In Appendix H, we prove that the
symmetric Higgs field satisfies the condition of the sym-
metric field on G=H.

II. KALUZA-KLEIN REDUCTION
ON COSET SPACES

A. Action in background gauge fields

We consider Yang-Mills theory on a (4þ d)-dimensional
manifold R4 ×M with the action

S ¼
Z

dvTr

�
−
1

4
FMNFMN

�
; dv ≔

1

g2YM
d4þdX

ffiffiffiffiffiffiffi
−G

p
;

ð2:1Þ

where M;N ¼ 0; 1;…; 3þ d and GMN is a metric on
R4 ×M. The overall normalization of the action is chosen
such that each matrix component of the gauge field AM
is canonically normalized. Our convention for the field
strength is

FMN ≔ ∇MAN −∇NAM þ i½AM; AN �; ð2:2Þ

where ∇M is the covariant derivative with respect to the
metric GMN .
We investigate this theory around a background gauge

field ĀM. The gauge field AM is then decomposed as
AM ¼ ĀM þ aM. In the following, we often use the notation

D̄MaN ≔ ∇MaN þ i½ĀM; aN �: ð2:3Þ

We employ the background field gauge
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D̄MaM ¼ ∇MaM þ i½ĀM; aM� ¼ 0: ð2:4Þ

The corresponding gauge-fixing term is given by

Sgf ¼
Z

dvTr

�
−
1

2
ðD̄MaMÞ2

�
: ð2:5Þ

By expanding aM into Kaluza-Klein modes on M, we can
obtain a four-dimensional gauge theory coupled to various
matter fields.
Let xμ (μ ¼ 0;…; 3) be coordinates on R4, and let yα

(α ¼ 1;…; d) be coordinates on M. Accordingly, the
gauge field aM is decomposed into aμ and ϕα. We assume
that the background gauge field ĀM is of the form

ĀM ¼ ð0; ĀαÞ; ∂μĀα ¼ 0: ð2:6Þ

This means that we put an xμ-independent gauge flux on
M. Note that the extra-dimensional components of the
gauge field, ϕα, provide a set of adjoint matters, trans-
forming homogeneously under the gauge transformations
as they are defined by a difference of two gauge fields Aα

and Āα. We also set the background metric of R4 ×M as

GMN ¼
�
ημν 0

0 hαβðyÞ
�
: ð2:7Þ

The total action Sþ Sgf consists of the following three
parts:

S1 ¼
Z

dvTr

�
−
1

4
FμνFμν −

1

2
ð∂μaμÞ2

�

¼
Z

dvTr

�
−
1

2
ð∂μaνÞ2 − i∂μaν½aμ; aν� þ

1

4
½aμ; aν�2

�
;

ð2:8Þ

S2 ¼
Z

dvTr

�
−
1

4
FμαFμα − ∂μaμD̄αϕα

�

¼
Z

dvTr

�
−
1

2
ðDμϕαÞ2 −

1

2
ðD̄αaμÞ2 þ i½aμ;ϕα�D̄αaμ

�
;

ð2:9Þ

where

Dμϕα ≔ ∂μϕα þ i½aμ;ϕα�; ð2:10Þ

and

S3 ¼
Z

dvTr

�
−
1

4
FαβFαβ −

1

2
ðD̄αϕαÞ2

�

¼
Z

dvTr

�
−
1

4
ðF̄αβ þ D̄αϕβ − D̄βϕα þ i½ϕα;ϕβ�Þ2

−
1

2
ðD̄αϕαÞ2

�
; ð2:11Þ

where F̄αβ is the background field strength of the gauge
potential Āα.
In the Kaluza-Klein reduction, the terms (2.11) in S3 give

the scalar potential VðϕÞ after an integration on M. In
particular, the mass terms of the scalars around ϕα ¼ 0
come from the following terms:

Tr

�
1

2
ðD̄αϕβÞ2 −

1

2
ϕαRαβϕ

β − iϕα½F̄αβ;ϕβ�
�
; ð2:12Þ

where Rαβ is the Ricci tensor for hαβ on M. Note that we
have used the equations of motion for Āα in deriving (2.12).
On the other hand, the mass terms of the vector fields are
provided from the terms

Tr

�
1

2
ðD̄αaμ þ i½ϕα; aμ�Þ2

�
: ð2:13Þ

The second term gives additional contributions to mass at
hϕαi ≠ 0, whose effects we will investigate in Sec. IV for
M ¼ S2 and Sec. V for M ¼ CP2. We show that some of
the massive Kaluza-Klein modes become massless by the
second term.

B. Coset space G=H

In the following, we focus our attention on a compacti-
fication on a coset space. See e.g., [25,40] for more details.
We consider a coset space M ¼ G=H where G and H

are Lie groups with H ⊂ G. Let us decompose generators
ofG as ðftag; ftmgÞ where ftag (a ¼ 1; � � � dimH) are a set
of generators of H. Note that ftmg (m ¼ 1;…; d ¼
dimG − dimHÞ correspond to a basis of the tangent space
of G=H. We assume that the generators ta, tm satisfy the
following commutation relations:

½ta; tb� ¼ ifcabtc; ½ta; tm� ¼ ifnamtn; ½tm; tn� ¼ ifamnta:

ð2:14Þ

A coset space whose generators satisfy the commutation
relations of this form is said to be symmetric. In the
following, we use a, b, c for generators of H and m, n for
generators along G=H. The indices m, n also represent
those of coordinates of the tangent space onM ¼ G=H. In
this paper, we discuss two examples of symmetric coset
spaces, namely S2¼SUð2Þ=Uð1Þ and CP2¼SUð3Þ=Uð2Þ.
In these cases, ta are represented in terms of block-diagonal
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matrices, while tm are given in terms of block-off-diagonal
matrices, and their commutation relations are apparently
of the form (2.14). Nonsymmetric coset spaces are dis-
cussed in [41].

C. Metric and background gauge field on G=H

For a given coset space G=H, there is a “natural” choice
for the vielbein emα and the background gauge field Āα.
Suppose we have a local embedding g∶yα ∈ G=H →
gðyÞ ∈ G. Then the Maurer-Cartan one-form g−1dg
restricted on gðG=HÞ is written as a sum

g−1dg ¼ ieaðyÞta þ iemðyÞtm; ð2:15Þ

where em gives the natural choice of the vielbein on G=H
while ea provides the gauge field on the coset space.
Indeed, A ¼ eata transforms under g → gh for h ∈ H,
which is a gauge transformation as explained in
Appendix C, as A → h−1Ah − ih−1dh. In the following,
we will consider gauge group GYM that includes H as
H ⊂ GYM and define the background gauge field on the
coset space by

Ā ¼ Āαdyα ≔ eaαðyÞTadyα; ð2:16Þ

where Ta are generators of the gauge group GYM which are
the corresponding embedding of the generators ta ofH into
the Lie algebra gYM of GYM. In this paper, we consider
various different embeddings ofH intoGYM for G=H ¼ S2

and CP2.
Interestingly, this background gauge field Āα automati-

cally satisfies the equations of motion

D̄αF̄αβ ¼ ∇αF̄αβ þ i½Āα; F̄αβ� ¼ 0 ð2:17Þ

with respect to the vielbein emα [42]. This can be checked
as follows. First, the spin connection ωα

m
n defined by

dem ¼ −ωm
n ∧ en, is obtained from the relation

dðg−1dgÞ ¼ −g−1dg ∧ g−1dg ð2:18Þ

or equivalently, from the relation (C11) as

ωα
m
n ¼ −fmaneaα: ð2:19Þ

Thus, the spin connection is written in terms of the
component of the background gauge field eaα, and the
covariant derivative ∇αF̄αβ with respect to the metric on
G=H has the same form as the second term in (2.17).
Second, by using Eq. (C10), the field strength of Āα turns
out to be

F̄αβ ¼ emα enβf
a
mnTa: ð2:20Þ

Thus, the gauge field strength is nonvanishing in the H
subgroup of GYM. Inserting these expressions of (2.19)
and (2.20) into (2.17), we find that it reduces to the Jacobi
identity for the structure constants and the background
gauge field indeed satisfies the equations of motion. See
Appendix D for more details.

D. Covariant derivative on G=H

Since the spin connection ωα
m
n and the back-

ground gauge field Āα are given in terms of the same
quantity eaα, the covariant derivative of ϕm ≔ eαmϕα can be
written as

D̄αϕm ≔ ∂αϕm − ωα
n
mϕn þ i½Āα;ϕm�

¼ ∂αϕm þ ieaαð−ifnamϕn þ ½Ta;ϕm�Þ: ð2:21Þ

This shows that the field ϕm can be regarded as a field
on the flat Rd which couples to a gauge field eaα as a tensor
product of two representations. Actually, the second
commutation relation in (2.14) implies that tm form a
representation Rt ofH on which the generators are given by
ifnam. Therefore, ϕm belongs to the tensor product repre-
sentation of Rt and the adjoint representation of GYM and
can be decomposed into various irreducible representations
of H. This property plays an important role in the
investigations of mass spectrum of various fields with
different spins and charges on G=H.
Besides the beautiful properties we have seen above,

there are further advantages in choosing a symmetric
coset space G=H as the internal manifold M. Most
importantly, many properties of the complete set of
functions on G=H are well known and we can explicitly
perform the Kaluza-Klein reduction of any field on
G=H [40]. For the coset space S2, these functions are
given by the monopole harmonics [43]. For a general
coset space G=H, the Peter-Weyl theorem tells us that
each mode function in the complete set on G=H is labeled
by a representation of G. As mentioned above, the field
ϕm on G=H can be regarded as belonging to a particular
representation ofH. This information can be incorporated
by taking into account the irreducible decomposition of
the representation of Gwith respect toH. See Appendix F
for more details.
By using the mode functions, the mass of each Kaluza-

Klein mode in the four-dimensional sense can be obtained
explicitly [31,36]. As the mode functions are labeled by the
representation of G and its decomposition with respect
to H, the mass is given in terms of group-theoretic
quantities. Namely, it is given in terms of the second
Casimir invariants of certain representations. We review it
in Appendix G, which will be used in the proof of the
tachyonic behavior of the symmetric Higgs field observed
in the following sections.
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III. SYMMETRIC HIGGS FIELDS

The Kaluza-Klein reduction of a higher-dimensional
Yang-Mills theory on M contains infinitely many fields.
If one wants to employ this theory for phenomenological
model buildings, it is natural to truncate the theory so that
the resulting theory contains only a finite number of light
fields. IfM is a torus, for example, the lowest mass state is
given by a constant mode on M for a scalar field.
When M is a coset space, symmetric fields defined

below will provide such lowest mass states [25] on
M ¼ G=H. A field ϕm on G=H is called a symmetric
field if its value at y0 ∈ G=H is related to the value at any
other point y ∈ G=H through a local gauge transformation
Uðy; g0Þ ∈ H ⊂ GYM and a local Lorentz transformation
Λmnðy; g0Þ as

ϕmðy0Þ ¼ ΛmnUϕnðyÞU†; ð3:1Þ

where g0 is an isometry of G=H relating the points y, y0
[39]. It is a natural generalization of a constant field on a
flat space to a coset space. Restricting a higher-dimensional
theory on symmetric fields on G=H corresponds to focus-
ing on invariant functions under an isometry of G=H up to
local symmetry transformations. This criterion is based on
the expectation that the lowest energy field configuration is
the most symmetric one, and the coset space dimensional
reduction retaining only symmetric fields is a natural
generalization of the ordinary dimensional reduction retain-
ing only constant modes on a flat torus. Nonconstant
modes, i.e., nonsymmetric fields, correspond to massive
fields whose excitation typically costs some amount of
energy.
In this paper, instead of restricting the higher-

dimensional Yang-Mills theory on G=H to only the low
lying states, we will keep all higher Kaluza-Klein modes
and investigate their important roles in restoration of gauge
symmetries, which would be spontaneously broken by
condensation of a symmetric field. In particular, we show
that some higher excited states become massless under the
condensation of a tachyonic symmetric field.
Let us consider a field ϕm satisfying the condition

D̄αϕm ¼ 0; ∂αϕm ¼ 0: ð3:2Þ

This turns out to be a symmetric field. See Appendix H for
the proof. We call such a field a symmetric Higgs field. The
name comes from the fact that the field satisfying the above
conditions always has a negative mass squared (G14), as
shown in Appendix G, and develops a vacuum expectation
value (vev), which would lead to spontaneous gauge
symmetry breaking.
For the symmetric Higgs fields, the scalar potential of S3

in (2.11) becomes simplified as

VðϕÞ ¼ 1

4
TrðF̄mn þ i½ϕm;ϕn�Þ2; ð3:3Þ

where the background field strength (2.20) is

F̄mn ¼ famnTa: ð3:4Þ

It is nonvanishing only for Ta ∈ h ⊂ gYM, where h is the
Lie algebra of H.
Recalling the expression for the covariant derivative

(2.21), we find that the defining relations (3.2) of sym-
metric Higgs fields imply

½Ta;ϕm� ¼ ifnamϕn: ð3:5Þ

Note that Ta are generators of GYM, while fnam are
structure constants of the Lie algebra g of G, not those
of gYM. Comparing (3.5) with the second equation of
(2.14), we can see that ϕm is expressed by the representa-
tion Rt of H, possibly with a multiplicity. Thus we can
write ϕm of a symmetric Higgs field as

ϕmðxÞ ¼ φsðxÞTs
m; ð3:6Þ

where Ts
m are generators of gYM satisfying ½Ta; Ts

m� ¼
ifnamTs

n. Note that Ts
m are different generators for different

s, as we will see in the following sections. To find the
expression for a symmetric Higgs field, we decompose the
adjoint representation of GYM into irreducible representa-
tions of H. There could exist representations isomorphic to
Rt in the decomposition. In the following sections, we will
explicitly investigate this in various examples.

IV. HIGGS CONDENSATION ON S2 =SUð2Þ=Uð1Þ
In this section, we consider SUð3Þ Yang-Mills theory

compactified on the coset space S2 ¼ SUð2Þ=Uð1Þ. Thus,
GYM ¼ SUð3Þ, G ¼ SUð2Þ, and H ¼ Uð1Þ. We choose the
generators of suð2Þ such that the commutation relations are

½t3; t�� ¼ �t�; ½tþ; t−� ¼ 2t3: ð4:1Þ

Then, the index m for the tangent space takes þ and −. We
denote the generator of uð1Þ embedded into suð3Þ by T.
The background gauge field is only present in the subgroup
H ¼ Uð1Þ, and the scalar potential (3.3) becomes

VðϕÞ ¼ −
1

8
TrðF̄þ− þ i½ϕþ;ϕ−�Þ2

¼ 1

8
Trð2T − ½ϕþ;ϕ−�Þ2: ð4:2Þ

In the following, we will show that different choices of T
give us different contents of symmetric Higgs fields with
different patterns of their condensation.
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When the coset space is S2, the background gauge field
Āα and the zweibein emα can be explicitly written as
reviewed in Appendix E. In fact, Āα is given by the
monopole configuration on S2 embedded into SUð3Þ gauge
group. Details on these expressions, in addition to the
explicit formula for the covariant derivative D̄mϕn, can be
found in Appendix E. We can use these explicit expres-
sions, in particular, the monopole harmonics [43] to
investigate the spectrum in the Kaluza-Klein reduction.
However it will turn out that a more abstract formalism [40]
reviewed in Appendix F is sufficient for the purpose since
various analytic calculations can be reduced to group-
theoretic arguments on the coset space. Such an abstract
formalism is straightforwardly extended to more general
coset spaces, such as CP2 ¼ SUð3Þ=ðSUð2Þ × Uð1ÞÞ
which will be discussed in the next section.

A. Embedding of H =Uð1Þ into GYM =SUð3Þ: Case 1

Our first choice of the embedding of the H ¼ Uð1Þ
generator T in GYM ¼ SUð3Þ is

T ¼ 1

2

2
64
1 0 0

0 −1 0

0 0 0

3
75: ð4:3Þ

The background flux F̄þ− ¼ −2iT breaks the gauge group
SUð3Þ to its Cartan subgroup Uð1Þ × Uð1Þ.
Let us now find the symmetric Higgs field satisfying

the relation (3.5) for the U(1) generator T. We first define
T-charges qij of ϕ�;ij fields by

½T;ϕ��ij ¼ qijϕ�;ij; ð4:4Þ

where i, j ¼ 1; 2; 3 are indices of 3 × 3 matrices, and no
summation is taken. For the choice (4.3) of T, the
T-charges are given in the matrix notation as

q ¼

2
664

0 1 1
2

−1 0 − 1
2

− 1
2

1
2

0

3
775: ð4:5Þ

Then, the condition (3.5) for the symmetric Higgs field and
the commutation relation (4.1) tell us that the ði; jÞ ¼ ð1; 2Þ
and (2,1) components of ϕ�;ij with T-charge�1 provide us
with the symmetric Higgs fields. Thus there is only
one symmetric Higgs field (and its complex conjugate)
given by

ϕþðxÞ ¼

2
64
0 φðxÞ 0

0 0 0

0 0 0

3
75; ϕ−ðxÞ ¼

2
64

0 0 0

φ†ðxÞ 0 0

0 0 0

3
75;
ð4:6Þ

where we have used ϕ− ¼ ðϕþÞ†.
Inserting these expressions into the scalar potential (4.2),

we obtain the scalar potential for the symmetric Higgs
field φ

VðϕÞ ¼ 1

4
ð1 − jφj2Þ2: ð4:7Þ

Thus φ will acquire vev at jφj ¼ 1. At the origin φ ¼ 0, as
mentioned before, the gauge symmetry SU(3) is broken to
Uð1Þ × Uð1Þ ⊂ SUð3Þ by the background gauge flux.
When the symmetric Higgs field acquires vev at jφj ¼ 1,
the gauge symmetry is expected to be further broken to
Uð1Þ by the Higgs mechanism. Thus the expected sym-
metry breaking pattern is as follows:

GYM¼SUð3Þ ⟶backgroundflux Uð1Þ×Uð1Þ⟶Higgsvev Uð1Þ? ð4:8Þ

This is the usual argument for the gauge symmetry
breaking in the context of the coset space dimensional
reduction in which only the low lying states are taken into
considerations. However, the conclusion of the gauge
symmetry breaking is suspicious in view of the higher-
dimensional gauge theory with the Kaluza-Klein reduction.
The reason is the following. Note that we have vanishing
scalar potential Vðjφj ¼ 1Þ ¼ 0 at the global minimum of
VðϕÞ. Since the scalar potential originally comes from the
terms (2.11), the vanishing scalar potential implies that the
gauge field Aα at the symmetric Higgs vev jφj ¼ 1 must be
a pure gauge, and we must conclude that the full gauge
symmetry SUð3Þ is recovered at the symmetric Higgs
vacuum, instead of being broken to Uð1Þ.
In the rest of this section, in order to show the restoration

of the gauge symmetry, we will explicitly see that some
of the originally massive Kaluza-Klein vector fields
become massless at vev jφj ¼ 1, and eight massless vector
fields emerge at the symmetric Higgs vacuum. These
massless vector fields are the gauge fields due to the
general argument by Weinberg [44].
The mass term of the vector field aμ comes from the

term (2.13), and a vector field is massless in the presence of
the symmetric Higgs vev if and only if

D̄þaμðx; yÞ þ i½Tþ; aμðx; yÞ� ¼ 0; Tþ ≔

2
64
0 1 0

0 0 0

0 0 0

3
75

ð4:9Þ
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is satisfied. Note that T, Tþ, and T− ≔ ðTþÞ† form an
suð2Þ subalgebra of suð3Þ, and aμ is in the adjoint
representation 8 of suð3Þ. Thus, by the irreducible decom-
position of 8 of suð3Þ into 3 ⊕ 2 ⊕ 20 ⊕ 1 of suð2Þ, the
condition (4.9) can be decomposed into the following four
conditions. First, for the representation 3, we have

½1� Massless cond: for 3

D̄þ

2
64

aμ;12
aμ;11 − aμ;22

aμ;21

3
75 ¼ −i

2
64
aμ;22 − aμ;11

2aμ;21
0

3
75: ð4:10Þ

For the representations 2 and 20, we have

½2� Massless cond: for 2 D̄þ

�
aμ;13
aμ;23

�
¼ −i

�
aμ;23
0

�

ð4:11Þ

with the condition for their conjugate components aμ;31,
aμ;32 which is equivalent to

½20� Massless cond: for 20 D̄−

�
aμ;13
aμ;23

�
¼ −i

�
0

aμ;13

�
;

ð4:12Þ

and finally,

½3� Massless cond: for 1 D̄þaμ;33 ¼ 0 ð4:13Þ

for the singlet representation 1. Avector field satisfying one
of these conditions becomes massless at the global mini-
mum of the Higgs potential VðφÞ at jφj ¼ 1. These are a set
of first-order partial differential equations which can be
written explicitly by using the formulas in Appendix E,
and the number of massless vector fields can be found by
solving the above differential equations. In the following,
instead of solving them explicitly, we solve these con-
ditions by reducing to a group-theoretic problem.
For this purpose, we need to understand the action of

the covariant derivative D̄� on aμ [40]. The action can be
simplified by choosing a suitable complete set of functions
on S2 which can be used to expand aμðx; yÞ. Generally
speaking, as explained in Appendix F, due to the Peter-
Weyl theorem, a complete set of functions on a group
manifold G is given by the representation matrices ρRðgÞIJ
for all the representation R of G and their components
I; J ¼ 1;…; dimR. Then a complete set of functions on
G=H is obtained by imposing particular transformation
laws under H, corresponding to the T-charge of functions
on G=H. Collecting all the representations of H, the
complete set on G is recovered.

In the case of S2 ¼ SUð2Þ=Uð1Þ, a complete set on S2,
collecting all the charges of H ¼ Uð1Þ, is given by

fjmm0 ðyÞ where j ¼ 0;
1

2
; 1;

3

2
;…; −j ≤ m;m0 ≤ j:

ð4:14Þ

Each j corresponds to the spin j representation of
SUð2Þ. As explained in Appendix F, the function fjmm0 has
T-charge m of H ¼ Uð1Þ. Thus, m ¼ 0 gives the usual
spherical harmonics, while m ≠ 0 modes are the monopole
spherical harmonics with T-chargem, which are relevant in
the monopole background.
A field χðyÞ on S2 with the T-charge q is then expanded

in terms of fjqm0 ðyÞ as

χðyÞ ¼
X
j

Xj

m0¼−j

cjm0f
j
qm0 ðyÞ; ð4:15Þ

where the sum of j is taken over all values of the spin j
whose magnetic quantum numberm0 can take q. Explicitly,
j in the sum must satisfy

−j ≤ q ≤ j; j − q ∈ Z: ð4:16Þ

From this expansion, we obtain 2jþ 1 complex-valued
fields, labeled by m0, with the T-charge q from each j.
In order to discuss the massless condition (4.9) for vector

fields, it is sufficient to know the action of D̄þ on the mode
functions fjmm0 ðyÞ. From (G3) in Appendix G, this action
turns out to be given by

D̄þf
j
mm0 ðyÞ ¼ −i

Xj

n¼−j
ðTðjÞ

þ Þmnf
j
nm0 ðyÞ; ð4:17Þ

where TðjÞ
þ is the spin-j representation of tþ. Note that it is

valid irrespective of the value of the symmetric Higgs field.
Thus, the condition (4.9) for massless vector fields is
reduced to algebraic relations of the coefficients cjμ;i1i2;m0 in
the mode expansion

aμ;i1i2ðyÞ ¼
X
j

Xj

m0¼−j

cjμ;i1i2;m0f
j
qði1;i2Þ;m0 ðyÞ ð4:18Þ

between the first and the second terms in (4.9). Here
qði1; i2Þ is the T-charge of ði1; i2Þ-component of aμ. The

first term in (4.9) is a multiplication of TðjÞ
þ on the complete

set fjmm0 ðyÞ due to the covariant derivative D̄þ while the
second term is the adjoint action of Tþ due to the
symmetric Higgs vev. If we can choose the expansion
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coefficients of aμ such that these two actions have the same
effect, then we obtain a massless vector field.
Let us check whether this condition can be satisfied.

First, we consider (4.11) of the massless condition for
representation 2, i.e., q ¼ �1=2. Thus, the representations
of SU(2) are restricted to be j ¼ kþ 1=2 for non-negative
integers k. This can be written as

X∞
k¼0

Xkþ1
2

m0¼−k−1
2

ckm0 ðTðkþ1
2
Þ

þ Þ1
2
;nf

kþ1
2

nm0 ðyÞ ¼
X∞
k¼0

Xkþ1
2

m0¼−k−1
2

c̃km0f
kþ1

2

−1
2
;m0 ðyÞ

ð4:19Þ

and

X∞
k¼0

Xkþ1
2

m0¼−k−1
2

c̃km0 ðTðkþ1
2
Þ

þ Þ−1
2
;nf

kþ1
2

nm0 ðyÞ ¼ 0; ð4:20Þ

where we renamed the coefficients cjμ;13;m0 and cjμ;23;m0

as ckm0 and c̃km0 , respectively. These equations are satisfied if
and only if c0m0 ¼ c̃0m0 are the only nonzero coefficients.
Note that in our normalization and notation

ðTð1
2
Þ

þ Þ1
2
;−1

2
¼ ðσþÞ12 ¼ 1; ð4:21Þ

where σþ is the Pauli matrix. The same coefficients also
solve (4.12). Consequently, we have shown that

aμ;13ðx; yÞ ¼
X
m0¼�1

2

c0m0 ðxÞf
1
2
1
2
;m0 ðyÞ;

aμ;23ðx; yÞ ¼
X
m0¼�1

2

c0m0 ðxÞf
1
2

−1
2
;m0 ðyÞ ð4:22Þ

and their conjugates give us four massless vector fields.
Next, we consider (4.10) for the massless condition

for representation 3, i.e., q ¼ 0;�1. Thus, the representa-
tions of SU(2) are restricted to be j ¼ l for non-negative
integers l. The range of l depends on the T-charges. The
linear combinations

−aμ;12;
1ffiffiffi
2

p ðaμ;11 − aμ;22Þ; aμ;21 ð4:23Þ

as the independent fields are convenient for our purpose.
Then, the condition (4.10) can be written as

X∞
l¼1

Xl

m0¼−l

clm0 ðTðlÞ
þ Þ1;nflnm0 ðyÞ ¼

ffiffiffi
2

p X∞
l¼0

Xl

m0¼−l

c̃lm0fl0;m0 ðyÞ;

ð4:24Þ

X∞
l¼0

Xl

m0¼−l

c̃lm0 ðTðlÞ
þ Þ0;nflnm0 ðyÞ ¼

ffiffiffi
2

p X∞
l¼1

Xl

m0¼−l

ĉlm0fl−1;m0 ðyÞ;

ð4:25Þ

X∞
l¼1

Xl

m0¼−l

ĉlm0 ðTðlÞ
þ Þ−1;nflnm0 ðyÞ ¼ 0: ð4:26Þ

These equations are satisfied if and only if c1m0 ¼ c̃1m0 ¼ ĉ1m0

are the only nonzero coefficients. Then, the following three
combinations

−aμ;12 ¼
X

m0¼−1;0;1

c1m0f11;m0 ðyÞ; ð4:27Þ

1ffiffiffi
2

p ðaμ;11 − aμ;22Þ ¼
X

m0¼−1;0;1

c1m0f10;m0 ðyÞ; ð4:28Þ

aμ;21 ¼
X

m0¼−1;0;1

c1m0f1−1;m0 ðyÞ; ð4:29Þ

with the condition a†μ ¼ aμ, give us three massless vector
fields. In fact, this can be easily anticipated by rewriting
(4.10) as

D̄þ

2
64

−aμ;12
1ffiffi
2

p ðaμ;11 − aμ;22Þ
aμ;21

3
75 ¼ −iTð1Þ

þ

2
64

−aμ;12
1ffiffi
2

p ðaμ;11 − aμ;22Þ
aμ;21

3
75:
ð4:30Þ

Namely, these three components form the triplet of the suð2Þ
subalgebra, as mentioned before. Note that aμ;11 − aμ;22 has
also a contribution from j ¼ 0 which was massless before
the Higgs condensation. This becomes massive due to the
Higgs mechanism.
Finally, let us consider the condition (4.13) for the

massless condition for representation 1, i.e., q¼0. Thus,
the representation fjm;m0 of SUð2Þ is restricted to be j ¼ l
for non-negative integers l. The condition simply means
that aμ;33 is independent of y, resulting in one massless
vector field. This is nothing but the Uð1Þ gauge field which
is unbroken after the Higgs condensation.
In total, we have found eight massless vector fields

which should correspond to the SUð3Þ gauge field which is
expected to appear at the symmetric Higgs vacuum.
Therefore we conclude that, contrary to the expectation
in (4.8) within the analysis of the low lying states, the
symmetry-breaking restoration pattern is given by

GYM ¼ SUð3Þ⟶background flux Uð1Þ × Uð1Þ⟶Higgs vev SUð3Þ
ð4:31Þ
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if all the Kaluza-Klein modes are taken into consider-
ation. It should be noted that seven massless vector fields
out of eight ones come from the Kaluza-Klein modes
which were massive before the Higgs condensation.
Indeed, all the massless vector fields before the Higgs
condensation come from j ¼ 0 mode in the expansions,
while seven massless fields after the Higgs condensation
come from the j ¼ 1

2
and j ¼ 1 modes. This phenomenon

happens because we keep all the Kaluza-Klein modes in
the model, in contrast to the simplest analysis of the coset
space dimensional reduction in which only the low lying
modes are taken into account. Usually, the Kaluza-Klein
modes are considered to be so heavy that they are not
considered in discussing the dynamics of light fields.
However, since our model has only a single mass scale
given by the radius of the coset space, the potential height
and the Higgs vev are also of the same Kaluza-Klein mass
scale. This enables some of the massive Kaluza-Klein
modes to become massless.
The investigation of the massless vector fields performed

above is possible because the vev of φ is exactly the right
value so that the vev of ϕþ is equal to the generator Tþ,
including the overall normalization. We will observe in the
following that this coincidence persists for the other models
discussed in this paper. It is very interesting to clarify
whether this is the general feature of the Kaluza-Klein
reduction on coset spaces. If this is the case, the masses of
the fields at the symmetric Higgs vacuum would be
possibly given in terms of group-theoretic quantities, as
the mass formulas in Appendix G are valid before the
symmetric Higgs condensation.

B. Embedding of H =Uð1Þ into GYM =SUð3Þ: Case 2

Our next choice of an embedding of U(1) charge T into
GYM ¼ SUð3Þ is

T ¼ 1

3

2
64
1

1

−2

3
75: ð4:32Þ

The corresponding background flux F̄þ− ¼ −2iT breaks
the gauge group GYM ¼ SUð3Þ into SUð2Þ × Uð1Þ.
The T-charges for the components of ϕþ defined in (4.4)

are given by

q ¼

2
64

0 0 1

0 0 1

−1 −1 0

3
75: ð4:33Þ

Recall that the components of ϕþ with the T-charge þ1
become the symmetric Higgs fields, and there are two such
components. Therefore, the symmetric Higgs fields are
given by

ϕþ ¼

2
64
0 0 φ1

0 0 φ2

0 0 0

3
75; ϕ− ¼

2
64

0 0 0

0 0 0

φ†
1 φ†

2 0

3
75: ð4:34Þ

The components φ1 and φ2 form a doublet of the unbroken
SUð2Þ gauge group.
The scalar potential for this symmetric Higgs doublet can

be obtained by inserting the above expressions into (4.2).
We obtain

VðϕÞ ¼ 1

4
ð1 − jφj2Þ2 þ 1

12
; ð4:35Þ

where jφj2 ≔ jφ1j2 þ jφ2j2. At the minimum of the poten-
tial, they acquire the vev

φ1 ¼ 1; φ2 ¼ 0; ð4:36Þ

up to a global SU(2) gauge transformation. This would
break the gauge group SUð2Þ × Uð1Þ preserved by the
background flux to Uð1Þ. Manton [8] applied this mecha-
nism of the gauge symmetry breaking to realization of
the Weinberg-Salam model based on the six-dimensional
Yang-Mills theory. The expected symmetry breaking pat-
tern within the low lying states would be as follows:

GYM ¼ SUð3Þ ⟶background flux SUð2Þ × Uð1Þ⟶Higgs vev Uð1Þ?
ð4:37Þ

In order to perform the calculation of VðϕÞ while
keeping the SUð2Þ × Uð1Þ gauge invariance, it is conven-
ient to introduce 3 × 3 matrices T s (s ¼ 1; 2) and write ϕþ
in (4.34) as

ϕþ ¼
X
s¼1;2

φsT s: ð4:38Þ

The matrices T s defined by this relation satisfy

½T s; T
†
t � ¼ σ−ts

2
64
0 1 0

0 0 0

0 0 0

3
75þ σþts

2
64
0 0 0

1 0 0

0 0 0

3
75

þ σ3ts

2
64

1
2

0 0

0 − 1
2

0

0 0 0

3
75þ 3

2
δtsT; ð4:39Þ

where σþts etc. are ðt; sÞ components of the Pauli matrices.
Let us count the number of massless vector fields at the

symmetric Higgs vacuum. We notice that the vev of ϕþ is
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ϕþ ¼

2
64
0 0 1

0 0 0

0 0 0

3
75 ð4:40Þ

which is the spin-1
2
representation of tþ embedded into an

suð2Þ subalgebra of suð3Þ different from the one in the
previous section. The massless conditions in this case can
be obtained from the previous ones by simply exchanging
2 and 3 in the matrix indices. For example, we have

D̄−

�
aμ;12
aμ;32

�
¼ −i

�
0

aμ;12

�
: ð4:41Þ

In this case, however, the T-charges of the components are
different. The T-charges for aμ are

q ¼

2
64

0 0 1

0 0 1

−1 −1 0

3
75: ð4:42Þ

Therefore, aμ;12 has the T-charge 0, while aμ;32 has the
T-charge −1. Their mode expansions are given as

aμ;12 ¼
X∞
j¼0

Xj

m0¼−j

cjm0f
j
0;m0 ; ð4:43Þ

aμ;32 ¼
X∞
j¼1

Xj

m0¼−j

c̃jm0f
j
−1;m0 : ð4:44Þ

We find that D̄−f
j
0;m0 vanishes only if j ¼ 0. Since D̄−aμ;32

does not have a contribution from the spin-0 representation,
we conclude that the condition (4.41) does not have a
solution.
We also have

D̄þ

2
64

−aμ;13
1ffiffi
2

p ðaμ;11 − aμ;33Þ
aμ;31

3
75 ¼ −iTð1Þ

þ

2
64

−aμ;13
1ffiffi
2

p ðaμ;11 − aμ;33Þ
aμ;31

3
75:
ð4:45Þ

The T-charge assignment for aμ turns out to be appropriate
so that we can find the following solution:

−aμ;13ðx; yÞ ¼
X1
m0¼−1

c1m0f11;m0 ðyÞ; ð4:46Þ

1ffiffiffi
2

p ðaμ;11ðx; yÞ − aμ;33ðx; yÞÞ ¼
X1
m0¼−1

c1m0f10;m0 ðyÞ; ð4:47Þ

aμ;13ðx; yÞ ¼
X1
m0¼−1

c1m0f1−1;m0 ðyÞ: ð4:48Þ

They give us three massless vector fields.
The last condition

D̄þaμ;22 ¼ 0 ð4:49Þ

gives us one massless vector field.
In total, we have found four massless vector fields. Three

of them were massive before the Higgs condensation. Since
scalar potential (4.35) does not vanish at the symmetric
Higgs vacuum jφj ¼ 1, there remains a nontrivial flux after
the Higgs condensation which prevents the full SUð3Þ gauge
symmetry from recovering. Probably, the gauge group at the
symmetric Higgs vacuum would be SUð2Þ × Uð1Þ, where
the SUð2Þ part is not the one preserved by F̄þ− but an
“emergent” one. Therefore we may conclude that, contrary
to the expectation in (4.37) within the analysis of the low
lying states, the symmetry-breaking restoration pattern is
given by

GYM¼SUð3Þ⟶backgroundfluxSUð2Þ×Uð1Þ⟶HiggsvevSUð2Þ×Uð1Þ:
ð4:50Þ

For confirmation of this pattern, a more detailed analysis will
be necessary.
It is natural to ask whether the symmetric Higgs vacuum

jφj ¼ 1 is stable or not. In the previous section, the stability
is obvious since the vacuum attains the global minimum of
the scalar potential in every direction of the field space. For
the case in this section, it is possible that there still exists a
Higgs field at the symmetric Higgs vacuum, and a further
condensation would occur.
At least, we can show that jφj ¼ 1 is a classical solution

of the full theory including all Kaluza-Klein modes. In
other words, we claim that the symmetric Higgs vacuum
discussed in this section has the same relevance as the
trivial solution before the symmetric Higgs condensation
which has been discussed in the literature [31]. To show
this, we need to confirm that the symmetric Higgs vev does
not act as a source for other scalar fields coming from the
Kaluza-Klein expansion of ϕ�. If there would exist terms in
the scalar potential of the form

TrðF̄φΦÞ; Trðφ3ΦÞ; ð4:51Þ

where Φ indicates scalar fields other that the symmetric
Higgs fields, then the vev of φ would give a source term
of Φ, so that Φ ¼ 0 is not the classical solution. As
mentioned above, there could exist terms with Φ2 which
would indicate the presence of other Higgs fields. Since this
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allows Φ ¼ 0 to be a classical solution, we ignore them in
the following.
Recall that a symmetric Higgs field φ is a constant mode

on S2 and is singlet for the H transformation, which are
implied by the conditions (3.2). Then, Φ is a nonconstant
mode on S2 or H nonsinglet. This implies that the terms of
the second kind in (4.51) is absent. Indeed, if Φ is a
nonconstant mode, then the integration of Trðφ3ΦÞ over S2,
performed in the Kaluza-Klein reduction, vanishes due to
the orthogonality condition for the mode functions fjmm0 .
On the other hand, if Φ is H nonsinglet, then Trðφ3ΦÞ
simply vanishes since the scalar potential is H singlet. The
terms of the first kind in (4.51) are also prohibited since the
background flux F̄þ− is also constant on S2 and H singlet.
The latter is valid since F̄þ− is invariant under the Uð1Þ
gauge transformation, and is also invariant under the local
Lorentz transformation.

C. Embedding of H =Uð1Þ into GYM =SUð3Þ: Case 3

Our last choice for T is

T ¼

2
64
1

0

−1

3
75: ð4:52Þ

The background flux F̄þ− ¼ −2iT breaks the gauge group
SUð3Þ to Uð1Þ × Uð1Þ. The T-charge of the components of
ϕþ is then

q ¼

2
64

0 1 2

−1 0 1

−2 −1 0

3
75: ð4:53Þ

Therefore, there are two symmetric Higgs fields which are
given by

ϕþ ¼

2
64
0 φ1 0

0 0 φ2

0 0 0

3
75; ϕ− ¼

2
64

0 0 0

φ†
1 0 0

0 φ†
2 0

3
75: ð4:54Þ

This is our first example where two independent symmetric
Higgs fields appear. In the previous section, we also have
two symmetric Higgs fields, but they form a doublet of
SUð2Þ gauge group.
The scalar potential for this case becomes

VðϕÞ ¼ 1

8
ðjφ1j2 − 2Þ2 þ 1

8
ðjφ2j2 − jφ1j2Þ2 þ

1

8
ðjφ2j2 − 2Þ2:

ð4:55Þ

The Higgs vacuum corresponds to φ1 ¼ φ2 ¼
ffiffiffi
2

p
up to

Uð1Þ × Uð1Þ transformation. This attains the global

minimum of the scalar potential which implies that the
original SUð3Þ gauge symmetry should be recovered. Then
at the minimum, the symmetric Higgs field ϕþ has the vev
given by

ϕþ ¼ Tð1Þ
þ ≔

2
64
0

ffiffiffi
2

p
0

0 0
ffiffiffi
2

p

0 0 0

3
75: ð4:56Þ

This is the spin-1 representation Tð1Þ
þ of tþ embedded into

suð3Þ. Then the counting in this case is also reduced to a
group-theoretic calculation.
The massless condition (4.9), in which Tþ is replaced

with Tð1Þ
þ , can be written as

D̄þ

2
64
aμ;11 aμ;12 aμ;13
aμ;21 aμ;22 aμ;23
aμ;31 aμ;32 aμ;33

3
75

¼ −i

2
664

ffiffiffi
2

p
aμ;21

ffiffiffi
2

p ðaμ;22 − aμ;11Þ
ffiffiffi
2

p ðaμ;23 − aμ;12Þffiffiffi
2

p
aμ;31

ffiffiffi
2

p ðaμ;32 − aμ;21Þ
ffiffiffi
2

p ðaμ;33 − aμ;22Þ
0 −

ffiffiffi
2

p
aμ;31 −

ffiffiffi
2

p
aμ;32

3
775:

ð4:57Þ

This can be rearranged into two sets of equations. One is

D̄þ

2
6666664

ffiffiffi
2

p
aμ;13

aμ;23 − aμ;12
1ffiffi
3

p ðaμ;11 − 2aμ;22 þ aμ;33Þ
aμ;21 − aμ;32ffiffiffi

2
p

aμ;31

3
7777775

¼ −iTð2Þ
þ

2
6666664

ffiffiffi
2

p
aμ;13

aμ;23 − aμ;12
1ffiffi
3

p ðaμ;11 − 2aμ;22 þ aμ;33Þ
aμ;21 − aμ;32ffiffiffi

2
p

aμ;31

3
7777775
; ð4:58Þ

where

Tð2Þ
þ ≔

2
6666664

0 2 0 0 0

0 0
ffiffiffi
6

p
0 0

0 0 0
ffiffiffi
6

p
0

0 0 0 0 2

0 0 0 0 0

3
7777775

ð4:59Þ

is the spin-2 representation of tþ. The other is
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D̄þ

2
64

aμ;23 þ aμ;12
aμ;33 − aμ;11
−aμ;21 − aμ;32

3
75 ¼ −iTð1Þ

þ

2
64

aμ;23 þ aμ;12
aμ;33 − aμ;11
−aμ;21 − aμ;32

3
75; ð4:60Þ

where Tð1Þ
þ is the spin-1 representation of tþ given in

Eq. (4.56). These two sets of equations correspond to the
irreducible decomposition of 8 of suð3Þ into 5 ⊕ 3 of an
suð2Þ subgroup.
Recall that the T-charges for aμ are given also as (4.53).

Each linear combination in the above equations consists of
components with the same T-charge, as it should be. We
find that the spin-2 representation in the mode expansion
gives the solution for the condition (4.58), and the spin-1
representation gives the solution for the condition (4.60).
They give eight massless vector fields at the symmetric
Higgs vacuum, and as expected, the symmetry pattern is
given by

GYM ¼ SUð3Þ ⟶background flux Uð1Þ × Uð1Þ⟶Higgs vev SUð3Þ:
ð4:61Þ

V. HIGGS CONDENSATION ON
CP2 =SUð3Þ=ðSUð2Þ × Uð1ÞÞ

In this section, we consider Yang-Mills theories on
R4 × CP2 with the gauge group SU(4). Since CP2 can
be represented as a coset space G=H ¼ SUð3Þ=ðSUð2Þ×
Uð1ÞÞ, we can apply to this case techniques similar to those
in the previous section.
The choice of the H ¼ SUð2Þ × Uð1Þ subgroup of

G ¼ SUð3Þ is specified by their generators given as

ta ≔
1

2

2
64 σa

0

0

0 0 0

3
75; t4 ≔

1

3

2
64
1 0 0

0 1 0

0 0 −2

3
75: ð5:1Þ

where a ¼ 1; 2; 3. We choose the other generators of
suð3Þ as

tz ≔

2
64
0 0 1

0 0 0

0 0 0

3
75; tw ≔

2
64
0 0 0

0 0 1

0 0 0

3
75; ts̄ ≔ ðtsÞ†;

ð5:2Þ

where s ¼ z, w. According to this choice, the tangent space
index m takes z, w, z̄, and w̄.
In the following, we always embed suð2Þ part, t1, t2, t3,

into gYM ¼ suð4Þ as

Ta ≔

2
6664

0

ta 0

0

0 0 0 0

3
7775: ð5:3Þ

In the following, we will study two cases of embedding T4

charge of the uð1Þ generator, t4, into suð4Þ.
The scalar potential (3.3) becomes

VðϕÞ ¼ 1

8
TrjF̄zz̄ þ i½ϕz;ϕz̄�j2 þ

1

8
TrjF̄ww̄ þ i½ϕw;ϕw̄�j2

þ 1

4
TrjF̄zw þ i½ϕz;ϕw�j2 þ

1

4
TrjF̄zw̄ þ i½ϕz;ϕw̄�j2:

ð5:4Þ

Recall that the background flux is given as

F̄mn ¼ famnTa; ð5:5Þ

where famn are the structure constants of g ¼ suð3Þ, not of
gYM ¼ suð4Þ. In this case we find F̄zw ¼ 0 since the above
choice of the generators for suð3Þ in (5.1) and (5.2)
gives fazw ¼ 0.
Recall that the background gauge field Āα is defined as

Āα ¼ eaαTa: ð5:6Þ

In the previous section, eaα gives a monopole configuration
on S2. Similarly, onCP2, eaα gives an instanton background.
This can be deduced from the fact that eaα also gives the spin
connection on CP2 as (2.19), and that the second Chern
number of CP2 is nonzero [45].
In fact, this can be checked easily since the flux can be

given explicitly. We consider

f̄mn ≔ famnta ð5:7Þ

as a flux of the SUð2Þ × Uð1Þ gauge field on CP2. We
notice that

f̄zz̄ ¼ −i
�
t3 þ

3

2
t4

�
; f̄ww̄ ¼ −i

�
−t3 þ

3

2
t4

�
;

f̄zw̄ ¼ −iðt1 þ it2Þ; f̄zw ¼ 0 ð5:8Þ

satisfy

f̄zz̄ þ f̄ww̄ ¼ −3it4; f̄zw ¼ 0; f̄z̄ w̄ ¼ 0: ð5:9Þ

Note that f̄zz̄ þ f̄ww̄ is nonvanishing for the uð1Þ part, and
there is no suð2Þ part. Since the instanton equation

Fmn ¼ −
1

2
ϵmnklFkl; ð5:10Þ
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can be rewritten in terms of the complex coordinates as

Fzz̄ þ Fww̄ ¼ 0; Fzw ¼ 0; Fz̄ w̄ ¼ 0; ð5:11Þ

we find that the suð2Þ part of the flux f̄mn satisfies these
instanton equations. Thus the suð2Þ field strength is given
by an suð2Þ instanton configuration. But it does not always
mean that the SU(4) configuration has a nonzero instanton
number, as we will see later.
In the following, we consider two embeddings of

SUð2Þ × Uð1Þ into SUð4Þ, and investigate the correspond-
ing Higgs condensations. We will see that the topological
nature of the background SUð4Þ flux plays an important
role in the gauge symmetry pattern when the symmetric
Higgs acquires vev.

A. Embedding of H =SUð2Þ × Uð1Þ
into GYM =SUð4Þ: Case 1

Since the SUð2Þ part ofH ¼ SUð2Þ × Uð1Þ is embedded
into SU(4) as (5.3), we choose an embedding of Uð1Þ ⊂ H
part. Our first choice for T4 ∈ uð1Þ is

T4 ¼
1

3

2
6664
1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 0

3
7775: ð5:12Þ

The background flux F̄mn breaks the SUð4Þ gauge group
to Uð1Þ × Uð1Þ.
Recall that the condition (3.5) for the symmetric Higgs

fields is

½Ta;ϕm� ¼ ifnamϕn ð5:13Þ

where Ta are Lie algebra generators of H. In the previous
section, this is a condition for a charge assigned to the
components of ϕm. For the CP2 case, Ta form an suð2Þ ×
uð1Þ subalgebra of suð4Þ, and the adjoint representation
adYM, i.e., 15 representation of suð4Þ, can be decomposed
into irreducible representations of suð2Þ × uð1Þ as

15 ¼ 30 ⊕ 21 ⊕ 21
3
⊕ 2−1 ⊕ 2−1

3
⊕ 12

3
⊕ 1−2

3
⊕ ð10Þ2:

ð5:14Þ

On the other hand, the same commutation relations are
realized by the original suð3Þ algebras,

½ta; tm� ¼ ifnamtn; ð5:15Þ

and tm forms a set of irreducible representations of
suð2Þ × uð1Þ:

Rt ¼ 21 ⊕ 2−1: ð5:16Þ

Then the symmetric Higgs fields ϕm satisfying (5.13) can
be obtained by those representations of suð2Þ × uð1Þ
isomorphic to Rt in the irreducible decomposition of the
adjoint representation 15 of suð4Þ. From the definitions
of tm in (5.2), we see that the symmetric Higgs fields are
given by

ϕz ¼

2
6664
0 0 φ 0

0 0 0 0

0 0 0 0

0 0 0 0

3
7775; ϕw ¼

2
6664
0 0 0 0

0 0 φ 0

0 0 0 0

0 0 0 0

3
7775; ϕs̄¼ðϕsÞ†:

ð5:17Þ
Note that their nonzero components must be the same in
order to satisfy (5.13).
The scalar potential VðϕÞ is then given by

VðϕÞ ¼ 3

4
ð1 − jφj2Þ2: ð5:18Þ

Therefore, the symmetric Higgs field φ acquires vev at
φ ¼ 1 up to a gauge transformation. This breaks the
residual Uð1Þ × Uð1Þ gauge symmetry to Uð1Þ, and within
the analysis of the low lying modes in the coset space
compactification, the symmetry breaking pattern would be

GYM ¼ SUð4Þ ⟶background flux Uð1Þ × Uð1Þ⟶Higgs vev Uð1Þ?
ð5:19Þ

We have found that the symmetric Higgs vacuum attains
the global minimum of the scalar potential. This implies
the stability of the vacuum, and the restoration of gauge
symmetry when the Higgs acquires vev. In fact, this turns
out to happen in more general situations [46,47]. This will
become apparent when we reconsider the above calcula-
tions as follows to elaborate the reason why jφj ¼ 1 attains
the global minimum of the potential in the present setup.
We have considered the embedding (5.3) and (5.12), which
can be generalized to the other generators as

Tm ≔

2
6664

0

tm 0

0

0 0 0 0

3
7775: ð5:20Þ

Then, Ta and Tm form an suð3Þ subalgebra embedded into
the 3 × 3 upper-left block of suð4Þ. The condition for the
symmetric Higgs fields is given by (5.13), and the con-
dition for the vanishing scalar potential in (3.3) is written as

½ϕm;ϕn� ¼ ifamnTa: ð5:21Þ

Comparing these two conditions, we find that ϕm ¼ Tm is a
solution for both conditions since they become nothing but
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a part of the commutation relations of suð3Þ. This is the
reason why the symmetric Higgs vev φ ¼ 1 attains the
global minimum of the scalar potential. Now, it is clear that
this phenomenon always happens for a general coset space
G=H, if we choose an embedding of H into GYM which
is induced by an embedding of G into GYM. In fact, we
have already observed this phenomenon in Sec. IVA for
G=H ¼ S2.
At this point, one might be puzzled by the fact that the

symmetric Higgs vacuum attains the global minimum
of the scalar potential, especially when one remembers
that the background gauge filed consists of an instanton
configuration. On the one hand, the Higgs condensation is
nothing but a continuous deformation of the gauge field
configuration on CP2. On the other hand, the vanishing
potential implies that the gauge field configuration is just a
pure gauge. This looks contradicting to the topologically
nontrivial nature of the instanton configuration. The res-
olution of this puzzle comes from the fact that the suð2Þ
instanton is embedded into suð4Þ with a uð1Þ flux, and the
instanton number is cancelled between the suð2Þ and uð1Þ
parts. Indeed, we can calculate the instanton number of the
background gauge field Āα for the suð4Þ gauge field
explicitly, and find

1

2
ϵmnklTrFmnFkl ¼ Trð−Fzz̄Fww̄ þ FzwFz̄ w̄ − Fzw̄Fz̄wÞ

¼ Tr

�
−T3T3 þ

9

4
T4T4 − T1T1 − T2T2

�
¼ 0: ð5:22Þ

The ðT4Þ2 part is a contribution from the uð1Þ, and we
conclude that the gauge field configuration before the
Higgs condensation has zero instanton number. This is
compatible with the fact that the gauge field configuration
at the symmetric Higgs vacuum is trivial.
Finally, let us check whether there are 15 massless vector

fields at the symmetric Higgs vacuum. The massless
conditions in this case are

D̄zaμ þ i½Tz; aμ� ¼ 0; D̄waμ þ i½Tw; aμ� ¼ 0; ð5:23Þ

where Tz and Tw are defined in (5.20) with m ¼ z and w,
respectively. Since Ta and Tm form an suð3Þ subalgebra of
suð4Þ, as mentioned above, it is convenient to decompose
these massless conditions according to the irreducible
decomposition of 15 of suð4Þ to 8 ⊕ 3 ⊕ 3̄ ⊕ 1 of the
suð3Þ subalgebra. By rearranging the components aμ;ij into

the corresponding vectors aðRÞμ with R ¼ 8; 3; 3̄; 1, we
obtain

D̄za
ðRÞ
μ ¼ −iTðRÞ

z · aðRÞμ ; D̄wa
ðRÞ
μ ¼ −iTðRÞ

w · aðRÞμ ; ð5:24Þ

where TðRÞ
m are generators in the representation R.

As reviewed in Appendix F, each component of the

vectors aðRÞμ onCP2 can be expanded by the complete set of
functions fRIJðyÞ where R runs over all representations of
SUð3Þ and I, J are the indices for the representation R, that
is, they run from 1 to dimR. Recall that the representation
R and one of the indices I are constrained by a condition of
what kind of representation ofH we are investigating on the
coset space G=H. In the previous section, we used one
index m of the mode functions fjmm0 ðyÞ to indicate its T-
charges q, and j is constrained so that the representation
contains the desired value of m ¼ q. Similarly, in this case,
we use one index I of fRIJðyÞ to indicate its suð2Þ × uð1Þ
representation. Namely, if the irreducible decomposition of
R has a representation r of suð2Þ × uð1Þ, then fRiJðyÞ
contributes to the expansion of a field in the representation
r of suð2Þ × uð1Þ, where i runs from 1 to dim r. Therefore,
the expansion of a field χiðyÞ in the representation r is
given as

χiðyÞ ¼
X
r⊂R

XdimR

J¼1

cRJ f
R
iJðyÞ; ð5:25Þ

where the first summation is over the representations R
of suð3Þ whose irreducible decomposition with respect to
suð2Þ × uð1Þ has r. If the decomposition of R contains
several irreducible representations each of which is iso-
morphic to r, then the multiplicity is also taken into account
in the sum.

The suð2Þ × uð1Þ representations for aðRÞμ can be found
by further decomposition of R with respect to suð2Þ × uð1Þ
subalgebra of suð3Þ. Explicitly,

8 ¼ 30 ⊕ 21 ⊕ 2−1 ⊕ 10; ð5:26Þ
3 ¼ 21

3
⊕ 1−2

3
; ð5:27Þ

3̄ ¼ 2−1
3
⊕ 12

3
; ð5:28Þ

1 ¼ 10: ð5:29Þ

The action of the covariant derivatives D̄z, D̄w on the
mode functions fRiJðyÞ is again given by the multiplication

of TðRÞ
z , TðRÞ

w from the left. Therefore, the massless con-
dition is again reduced to the requirement that the adjoint
action of Tz, Tw due to the symmetric Higgs vev has the

same effect on aμ as the action of TðRÞ
z , TðRÞ

w on the mode
functions.
In the present case, the solution to the massless con-

ditions is almost obvious. For example, let i1, i2 be indices
for the representations 21

3
; 1−2

3
, respectively. Then

að3Þμ ðx; yÞ ¼
"P

3
J¼1 c

3
JðxÞf3i1JðyÞP

3
J¼1 c

3
JðxÞf3i2JðyÞ

#
ð5:30Þ
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is the solution for R ¼ 3. Note that the expansion coef-
ficients in the first and the second rows are the same. The
solutions for the other R can be obtained similarly. They
give us 15 massless vector fields, as expected. Thus, the
gauge symmetry is restored and we have the symmetry-
breaking restoration pattern

GYM ¼ SUð4Þ ⟶background flux Uð1Þ × Uð1Þ⟶Higgs vev SUð4Þ:
ð5:31Þ

B. Embedding of H =SUð2Þ × Uð1Þ
into GYM =SUð4Þ: Case 2

Let us consider a different embedding of H into GYM.
The SU(2) part of H ¼ SUð2Þ × Uð1Þ is embedded into
GYM ¼ SUð4Þ as (5.3). Our second choice of the Uð1Þ part,
T4, into SUð4Þ is

T4 ¼
1

2

2
6664
1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

3
7775: ð5:32Þ

The corresponding background flux breaks the SUð4Þ
gauge group to SUð2Þ × Uð1Þ. The symmetric Higgs fields
are then given by

ϕz ¼

2
6664
0 0 φ1 φ2

0 0 0 0

0 0 0 0

0 0 0 0

3
7775; ϕw ¼

2
6664
0 0 0 0

0 0 φ1 φ2

0 0 0 0

0 0 0 0

3
7775:

ð5:33Þ

Note that the irreducible decomposition of 15 is now

15 ¼ 30 ⊕ ð21Þ2 ⊕ ð2−1Þ2 ⊕ ð10Þ4 ð5:34Þ

due to the different choice of T4. Thus there are two Rt ¼
21 ⊕ 2−1 representations in 15, and we have two symmetric
Higgs. The components φs (s ¼ 1; 2) form a doublet of the
SUð2Þ gauge group.
The calculation of the scalar potential for φs is rather

complicated if we just insert the above expressions into
(5.4). It is better to keep track of the residual gauge
invariance. For this purpose, we rewrite a part of the
commutation relations of suð4Þ relevant for calculating
VðϕÞ so that the residual SUð2Þ gauge symmetry becomes
manifest.
Let us explicitly write some generators of suð4Þ other

than Ta. First, we define

T̃i ≔

2
6664
0 0

0 0

0 0

0 0

0 0

0 0
1
2
σi

3
7775: ð5:35Þ

These three T̃i and T4 correspond to the generators of the
residual gauge symmetry SUð2Þ × Uð1Þ. The generators in
the off-diagonal components are relabeled as

T1
z ≔ Tz; T1

w ≔ Tw; T2
z ≔

2
6664
0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

3
7775;

T2
w ≔

2
6664
0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

3
7775; ð5:36Þ

where Tz and Tw are defined in (5.20) with m ¼ z and w,
respectively, and Tα

s̄ ≔ ðTα
s Þ† with s ¼ z, w. Then, the

symmetric Higgs field ϕs in (5.33) can be written in terms
of these generators as

ϕs ¼
X
α¼1;2

φαTα
s ; ϕs̄ ¼

X
α¼1;2

φ†
αTα

s̄ : ð5:37Þ

The relevant commutation relations for calculating VðϕÞ
are

½Tα
s ; T

β
t̄ � ¼ ðσiÞt̄sδαβTi þ δt̄sδ

αβT4 − δt̄sðσiÞαβT̃i; ð5:38Þ
where ðσiÞz̄z ≔ ðσiÞ11 etc. Then we obtain

½ϕs;ϕt̄�¼ jφj2ðσiÞt̄sTiþjφj2δt̄sT4−δt̄sðφσiφ†ÞT̃i; ð5:39Þ

where jφj2 ≔ jφ1j2 þ jφ2j2.
We also need to rewrite the commutation relation for ta

in suð3Þ as

½ts; tt̄� ¼ ðσiÞt̄sti þ
3

2
δt̄st4: ð5:40Þ

Then the background flux can be written as

F̄st̄ ¼ −i
�
ðσiÞt̄sTi þ

3

2
δt̄sT4

�
: ð5:41Þ

Note that F̄st and F̄s̄ t̄ vanish.
By using the above expressions, we find

F̄zz̄ þ i½ϕz;ϕz̄� ¼ iðjφj2 − 1ÞT3 þ i

�
jφj2 − 3

2

�
T4

− iðφσiφ†ÞT̃i; ð5:42Þ
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F̄ww̄ þ i½ϕw;ϕw̄� ¼ −iðjφj2 − 1ÞT3 þ i

�
jφj2 − 3

2

�
T4

− iðφσiφ†ÞT̃i; ð5:43Þ

F̄zw̄ þ i½ϕz;ϕw̄� ¼ iðjφj2 − 1ÞðT1 − iT2Þ: ð5:44Þ

Finally, the potential VðϕÞ turns out to be

VðϕÞ ¼ 1

4

�
1

2
ð1 − jφj2Þ2 þ

�
3

2
− jφj2

�
2

þ 1

2
ðφσiφ†Þ2

�

þ 1

4
ð1 − jφj2Þ2

¼ 3

4
ð1 − jφj2Þ2 þ 3

16
: ð5:45Þ

The symmetric Higgs doublet therefore acquires the vev

φ1 ¼ 1; φ2 ¼ 0; ð5:46Þ

up to a global gauge transformation. The nonzero value of
the scalar potential at the symmetric Higgs vacuum implies
that there remains a flux at this vacuum, which suggests
that the gauge symmetry at the symmetric Higgs vacuum
must be smaller than SUð4Þ.
Now, we count the number of massless vector fields at

the symmetric Higgs vacuum. The massless conditions are
given as (5.23), exactly the same condition we discussed
in the previous section. Therefore, we can employ the
decomposition (5.24) again.
Let us consider

D̄za
ð3Þ
μ ¼ −iTð3Þ

z · að3Þμ ; D̄wa
ð3Þ
μ ¼ −iTð3Þ

w · að3Þμ : ð5:47Þ

Recall that að3Þμ is formed from the components aμ;14, aμ;24
and aμ;34. In terms of the suð2Þ × uð1Þ subgroup generated
by Ta, this consists of the representations 21 ⊕ 10. As
explained in Appendix F, they are expanded by the mode
functions fRIJðyÞ, where R is a representation of suð3Þ
whose irreducible decomposition contains 21 or 10. An
important point is that this irreducible decomposition must
be considered with respect to the suð2Þ × uð1Þ subgroup
(5.1), not to any suð4Þ embeddings. According to this, the
representation 3 of the suð3Þ is decomposed as 21

3
⊕ 1−2

3
.

This implies that the mode functions f3IJðyÞ do not

contribute to the expansion of að3Þμ . Instead, other mode
functions, for example, f8IJðyÞ contribute to the expansion
since 8 is decomposed as 30 ⊕ 21 ⊕ 2−1 ⊕ 10. Then, the

covariant derivatives D̄z, D̄w can be converted to Tð8Þ
z , Tð8Þ

w

but never to Tð3Þ
z , Tð3Þ

w . By this reason, we conclude that
the massless conditions (5.47) do not have solutions.

Similarly, the conjugate components að3̄Þμ give us only
massive vector fields.

The conditions for the other two representations 8 and 1
turn out to give us 8þ 1 massless vector fields. A natural
guess is that the emergent gauge symmetry at the sym-
metric Higgs vacuum would be SUð3Þ × Uð1Þ,

GYM ¼ SUð4Þ ⟶background flux SUð2Þ × Uð1Þ
⟶
Higgs vev

SUð3Þ × Uð1Þ: ð5:48Þ

This should be confirmed by a further analysis.
At the symmetric Higgs vacuum obtained above, the

scalar potential is nonvanishing. This is a similar situation
as the one discussed in Sec. IV B. Interestingly, we can
show that the symmetric Higgs vacuum in this section is
stable, and the topological nature of the background gauge
field plays an important role. In the following, we see that
the background gauge field Āα before the Higgs conden-
sation has a nonzero instanton number, which is unchanged
by any continuous deformation of the gauge field. The
nonzero instanton number is obtained in this setup since
the embedding T4 of t4 is different from the one we chose in
the previous section. Let us calculate the instanton number
for the gauge field configuration, including the symmetric
Higgs vev, given by

Fmn ¼ F̄mn þ i½ϕm;ϕn�; ϕm ¼ φαTα
m: ð5:49Þ

Their explicit forms are given in (5.42), (5.43), (5.44). We
find

1

2
ϵmnklTrFmnFkl ¼

1

2
ðjφj2 − 1Þ2 −

�
jφj2 − 3

2

�
2

−
1

2
ðφσiφ†Þ2 þ ðjφj2 − 1Þ2

¼ −
3

4
: ð5:50Þ

The scalar potential is bounded by this instanton number
density as

VðϕÞ ¼ 1

8
Tr

�
Fmn þ

1

2
ϵmnklFkl

�
2

−
1

8
ϵmnklTrFmnFkl

≥
3

16
: ð5:51Þ

This shows that the symmetric Higgs vacuum attains the
global minimum of the scalar potential in a given topo-
logical sector of the gauge field. In other words, we can say
that the nontrivial topological nature of the original back-
ground gauge field Āα stabilizes the nontrivial symmetric
Higgs vacuum.
This example tells us the geometric picture of the Higgs

condensation realized in the Kaluza-Klein reduction of
Yang-Mills theory. Since the Higgs fields come from some
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components of the gauge field, the Higgs condensation is
nothing but a particular continuous deformation of the
gauge field. The condensation occurs in order to minimize
the “Euclidean action”

SE ≔
1

4

Z
dvTrFmnFmn: ð5:52Þ

The configuration space of the gauge field is divided into
various components according to certain topological invar-
iants. The vacuum corresponds to the global minimum of
SE in a given component. The global minimummay or may
not be attained by the condensation of symmetric Higgs
fields, according to the situation.
It is interesting to notice that the gauge field configu-

ration Fmn including the symmetric Higgs vev becomes
exactly an instanton configuration at the symmetric Higgs
vacuum. This means that we find an explicit construction of
the instanton solution on CP2. It is interesting to clarify
how general this construction is.

VI. CONCLUSIONS

Higher-dimensional gauge theories with nontrivial
fluxes of the background gauge fields in the compact
space have been investigated as phenomenological models
of gauge symmetry breaking. The background gauge fluxes
explicitly break some of the original gauge symmetries, and
often provide tachyonic scalar fields whose vacuum expect-
ation value further breaks the remaining gauge symmetries
in the four-dimensional effective field theory. Thus, this
kind of models are often utilized for dynamical generation
of Higgs potential. In their investigations, we usually study
four-dimensional effective field theories by keeping only
the light fields and neglecting other massive modes in the
Kaluza-Klein tower, since we are interested in physics in
the lower energy scale than that of the compact space.
In this paper, we revisit such higher-dimensional models

including all the massive Kaluza-Klein modes to inves-
tigate their roles in the gauge symmetry breaking. The
inclusion of higher modes will be important since the scale
of the vacuum expectation value of the Higgs field is
usually given by the same scale as the mass of the Kaluza-
Klein modes. Indeed both of them are given by the scale of
the compact space. What we have shown in the present
paper is that, when the Higgs acquires vacuum expectation
value at the minimum of the potential, some of the
originally massive vector fields in the Kaluza-Klein tower
become massless and the corresponding gauge symmetries
are restored. If we restricted ourselves to consider only the
light modes, we would conclude that the gauge symmetry,
which remains to be unbroken by the gauge flux, would be
further broken by the Higgs field. But, if we consider all the
Kaluza-Klein modes, the symmetries, on the contrary, are
restored even to the full set of the original gauge sym-
metries. When the massive gauge field becomes massless, it

will provide an additional massless scalar field to the
massless gauge field. Possible candidates for such massless
scalar fields are, for example, instanton moduli in the model
discussed in Sec. V B. It is interesting to see whether the
scalar field acquires mass due to the radiative corrections or
remains massless against perturbations.
We have studied two classes of the compact space, S2

and CP2. Both of them are coset spaces G=H, and due to
the beautiful group-theoretical structures of the coset space,
we have succeeded to analyze the mass spectrum even
when the Higgs acquires vacuum expectation value. In
some cases, all the gauge symmetries are recovered, and in
other cases, only a part of them are recovered. The vacuum
is shown to be stable even in the latter cases. The stability is
related to the topological structures of the gauge field
configurations. In cases when the background gauge field
configurations are topologically trivial, the original gauge
symmetries are completely restored at the global minimum
of the potential. On the other hand, in cases when the
background gauge configurations are topologically non-
trivial, or when they have some conserved topological
numbers, the original gauge symmetries can be only
partially restored. The background gauge field configura-
tions including the Higgs fields in the true vacua are
described by new topologically nontrivial configurations
with the same topological numbers.
We have developed a group-theoretic technique for

analyzing the number of massless vector fields at the
symmetric Higgs vacuum. It is reasonable to expect that
the technique can be extended to obtain the mass formulas
applicable also to massive vector fields and scalar fields.
A key result which enables the technique to work is that the
symmetric Higgs vacuum expectation values coincide with
some generators of the gauge group GYM. It is interesting to
clarify whether this happens in more general models. A
detailed understanding of the structure of the scalar potential
will help us to gain insights on this issue. We expect that the
analysis of the mass spectrum at the symmetric Higgs
vacuum is reduced to an algebraic problem on a subgroup
of GYM specified by the symmetric Higgs vacuum expect-
ation values. A possible relation of this algebraic problem to
the geometric picture of the symmetric Higgs condensation
is also an interesting issue to be clarified.
An interesting observation we made is that the Higgs

vacuum in a model investigated in Sec. V B corresponds to
an instanton solution on CP2. The solution can be given
quite explicitly from the Maurer-Cartan one-form on G.
It is curious to see whether this can be a general method
of constructing instanton solutions on coset spaces. Our
calculation suggests that the different embeddings ofH into
GYM would give us instanton solutions with different
instanton numbers.
The effects of gravity are neglected in the investigations

of the present paper. One of the original physics targets
of the coset compactifications is the stabilization of the
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compact space with gravity, called “spontaneous compac-
tification,” in which the background flux in the coset space
is a classical solution of the gauge field equations as well
as the Einstein equation. It will be interesting to investigate
the stability and the pattern of gauge symmetry breaking
including the fluctuations of gravity.
The Einstein-Yang-Mills theory naturally appears as

the bosonic part of the low-energy effective theory of
the heterotic string theory. A Higgs field which appears in
this context corresponds to a closed string tachyon, whose
condensation is an interesting research subject theoretically
as well as phenomenologically. The condensation of closed
string tachyon was discussed, for example, in [48,49].
Since the Einstein-Yang-Mills theory can be regarded as a
truncation of string field theory, it is a natural arena for
discussing the Higgs (closed string tachyon) condensation.
It is interesting if there would exist an endpoint of the
condensation which is stabilized due to a topological
reason.
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APPENDIX A: COSET SPACES

In this Appendix, we summarize some mathematical
basics of coset spaces. For further details, see, e.g., [25]
or [50].
Let G be a group, and H be a subgroup of G. For an

element g of G, we define a subset gH of G as

gH ≔ fghjh ∈ Hg: ðA1Þ

The set of such subsets is denoted by G=H.
Suppose that g belongs to both g1H and g2H in G=H.

Then, g can be written as g ¼ g1h1 and g ¼ g2h2, which
imply g1 ¼ g2h2h−11 . This then implies g1H ¼ g2H. In
other words, g1H and g2H in G=H are either equal or
disjoint as subsets of G.
We choose one representation giH for each element of

G=H. Then, the set fgig of elements of G is in one-to-one
correspondence to G=H. The elements gi are called a set of
representatives for G=H. In terms of the representatives, G
can be written as

G ¼ ∪
i
giH; ðA2Þ

where giH and gjH are disjoint to each other if gi ≠ gj.
We can perform the same construction when G is a

Lie group and H is its closed subgroup. Note that H is
always a Lie subgroup of G. In this case, G=H is known
to be a smooth manifold. This is called a coset space.

In mathematics literature, this is also called a homogeneous
space. If the dimensions of G and H are dG and dH,
respectively, then the dimension of G=H is d ≔ dG − dH.
A set of representatives for G=H is regarded as a G-valued
function on G=H. For a given local coordinate patch U of
G=H, the representatives corresponding to points in U can
be chosen such that they are given by a smooth function
gðyÞ on U where yα are coordinates on U.
In this paper, we focus our attention on a particular class

of coset spaces, known as symmetric coset spaces. They are
characterized by the structures of the Lie algebras g and h
of G and H, respectively. Let ta be a set of generators of h
where a runs from 1 to dH. Their commutation relations are

½ta; tb� ¼ ifcabtc; ðA3Þ

since h is a subalgebra of g. Let tm be a set of generators of
g other than ta where m runs from 1 to d. We require that
the other commutation relations of g are of the form

½ta; tm� ¼ ifnamtn; ½tm; tn� ¼ ifamnta: ðA4Þ

A coset space G=H in which the Lie algebras g; h satisfy
this condition is said to be symmetric. This condition can be
understood as follows. For a symmetric coset space, we can
assign a “parity” for generators such that ta has þ1 and tm
has −1. In Secs. IVand V, we consider particular symmetric
coset spaces, namely S2 and CP2.
First, let us describe S2 as a symmetric coset space.

For this purpose, we regard S2 as CP1. A point in CP1 is
represented by a pair of complex numbers ðc1; c2Þ ∈ C2

with ðc1; c2Þ ≠ ð0; 0Þ. Two such pairs ðc1; c2Þ and ðc01; c02Þ
correspond to the same point of CP1 if and only if there
exists a nonzero λ ∈ C such that

ðc01; c02Þ ¼ ðλc1; λc2Þ ðA5Þ

is satisfied. Using this ambiguity, we can always choose
the pair ðc1; c2Þ such that they satisfy jc1j2 þ jc2j2 ¼ 1. Any
pair ðc1; c2Þ satisfying jc1j2 þ jc2j2 ¼ 1 can be written as

�
c1
c2

�
¼ U

�
1

0

�
; U ∈ SUð2Þ: ðA6Þ

A pair ðc1; c2Þ represents the same point in CP1 as (1,0) if
and only if U is of the form

U ¼
�
eiφ 0

0 e−iφ

�
: ðA7Þ

Such elements form a Uð1Þ subgroup of SUð2Þ. We have
found that S2 ¼ CP1 can be written as the coset space
SUð2Þ=Uð1Þ. In this case, ta corresponds to 1

2
σ3 and tm
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correspond to σ�. Their commutation relations show that
SUð2Þ=Uð1Þ is symmetric.
Next, consider CP2. This is a straightforward generali-

zation of the CP1 case. Any point of CP2 corresponds to a
triple ðc1; c2; c3Þ ∈ C3 satisfying jc1j2 þ jc2j2 þ jc3j2 ¼ 1,
which can be written as

2
64
c1
c2
c3

3
75 ¼ U

2
64
1

0

0

3
75; U ∈ SUð3Þ: ðA8Þ

The multiplication byU does not change the point inCP2 if
and only if U is of the form

2
64
e2iφ

0

0

0 0

e−iφU

3
75; U ∈ SUð2Þ: ðA9Þ

The matrices of the form consist of an SUð2Þ × Uð1Þ
subgroup of SUð3Þ. We have found that CP2 can be written
as a coset space SUð3Þ=ðSUð2Þ × Uð1ÞÞ. This is apparently
a symmetric coset space.

APPENDIX B: G AS A PRINCIPAL H BUNDLE

In this paper, a coset space G=H is used as a compacti-
fication manifold M of a higher-dimensional Yang-Mills
theory. Since we would like to define a gauge theory on
G=H with the gauge group GYM, we need a principal GYM
bundle on G=H on which we can define the gauge field
as a connection. Note that, in this paper, we discuss only
classical aspects of Yang-Mills theory on a fixed principal
GYM bundle, and the summation over different bundles will
not be considered.
It is known [50] that there exists a natural principal H

bundle on G=H, as will be reviewed shortly. In fact, it is G
itself. This principal H bundle is specified by a set of
transition functions gijðyÞ, whose values are in H, defined
on the overlap Ui ∩ Uj of two local coordinate patches
Ui; Uj ⊂ G=H. If we choose an embedding of H into the
gauge group GYM, then gijðyÞ can be regarded as a set of
transition functions whose values are in GYM. Using these
transition functions, we can construct a principal GYM
bundle on G=H. In this manner, we can define Yang-Mills
theory on G=H whose gauge group is GYM.
Recall the decomposition (A2) of G. This suggests that

G is a fiber bundle whose fibers are of the form gH. The
subset gH is in one-to-one correspondence to H for any g.
In fact, it can be shown that G can be regarded as a fiber
bundle whose fibers are H, that is, a principal H bundle on
G=H. For the coset spaces, the representatives gi are
replaced with gðyÞ chosen for each local coordinate patch.
A choice of gðyÞ on U amounts to choosing a local section

gðyÞ on U of the principal H bundle G. The situation is
depicted in Fig. 1.
Let g0ðyÞ be another local section on U. This is related to

the original one by

g0ðyÞ ¼ gðyÞhðyÞ; hðyÞ ∈ H: ðB1Þ
Note that this transformation does not transform a point in
U to a different one since

g0ðyÞH ¼ gðyÞhðyÞH ¼ gðyÞH: ðB2Þ
Indeed, this amounts to a local gauge transformation
with respect to hðyÞ ∈ H ⊂ GYM, as we will show in
Appendix C. In fact, this also induces a local Lorentz
transformation simultaneously. To avoid possible confu-
sions with the ordinary gauge transformation, we call the
local transformation induced by the right multiplication of
hðyÞ an H transformation.
We can multiply any y-independent element g0 to the

representatives gðyÞ from the left. The result g0 · gðyÞ is also
an element of G, so this must be in a certain subset gðy0ÞH
for some point y0. This can be written as

g0 · gðyÞ ¼ gðy0Þhðy; g0Þ: ðB3Þ
In general, the point y0 is different from the original y.
Therefore, the left multiplication of g0 induces a coordinate
transformation of G=H. In addition, this simultaneously
induces an H transformation with respect to hðy; g0Þ. We
will see in the next section that this is actually an isometry
of G=H for a natural choice of the metric on G=H. In fact,
the isometry group of G=H with respect to the metric is
known to be isomorphic to G, that is, any isometry of G=H
is induced by the left multiplication as above.

APPENDIX C: MAURER-CARANT ONE-FORM

There exists a one-form on G which can be defined
without any additional information. We review in the
following that this one-form defines a natural metric and
background gauge field on G=H. See [25,50] for details.

FIG. 1. Lie group G can be regarded as a principal H bundle
onG=H. The vertical direction corresponds to the fiberH. A local
section gðyÞ on U is also depicted.
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Let gijðξÞ be a matrix-valued function on a local
coordinate patch of G whose value at a point ξ ∈ G is
an N × N matrix representing ξ. This can be regarded as a
set of coordinate functions on G. Therefore, like dyα on
U ⊂ G=H, we have a set of functions dgijðξÞ on G whose
values are one-forms on G. Using them, we construct

ðg−1ÞijðξÞdgjkðξÞ: ðC1Þ

This is called the Maurer-Cartan one-form on G. In the
following, we simply denote this by g−1dg.
A local section gðyÞ can be regarded as an embedding of

the local coordinate patch U into G. The pullback of g−1dg
with respect to this embedding gives us a one-form
gðyÞ−1dgðyÞ on U. The latter can be expanded as

gðyÞ−1dgðyÞ ¼ iemtm þ ieata; ðC2Þ

where

em ¼ emα dyα; ea ¼ eaαdyα; ðC3Þ

since gðyÞ−1∂αgðyÞ is in the Lie algebra g. We will clarify
the meanings of emα and eaα in the following.
Recall that elements of the Lie algebra g correspond to

tangent vectors of G at the identity element. For the coset
space, tm correspond to a set of basis of the tangent space of
G=H. Therefore, emα gives us a vielbein on G=H. This is an
invertible d × d matrix by construction.
To see the role played by eaα, consider an H trans-

formation gðyÞ → gðyÞhðyÞ. This induces

gðyÞ−1dgðyÞ → hðyÞ−1ðgðyÞ−1dgðyÞÞhðyÞ þ hðyÞ−1dhðyÞ:
ðC4Þ

This implies

em → hðyÞ−1emhðyÞ;
ea → hðyÞ−1eahðyÞ − ihðyÞ−1dhðyÞ: ðC5Þ

Here, we have used the fact that

hðyÞ−1tmhðyÞ ∈ m ðC6Þ

holds, wherem is a vector space spanned by tm. This is due
to the commutation relation

½ta; tm� ¼ ifnamtn ðC7Þ

which we assumed in Appendix A. The transformation of
ea shows that eaα behaves as a gauge field on G=H with the
gauge group H, defined on the principal H bundle G.
Note that em also transforms under theH transformation.

Indeed, Eq. (C6) implies that this is a local Lorentz

transformation acting on the tangent space of G=H.
Therefore, the right multiplication of hðyÞ to gðyÞ induces
both a gauge transformation of eaα and a local Lorentz
transformation of emα simultaneously.
Recall that the left multiplication of g0 ∈ G to a local

section gðyÞ induces a coordinate transformation y → y0 of
G=H. The one-form gðyÞ−1dgðyÞ on U is trivially invariant
under gðyÞ → g0 · gðyÞ for a y-independent g0. This implies
that the vielbein emα (and the gauge field eaα) are invariant
under the coordinate transformation. In other words, the
coordinate transformation is an isometry with respect to the
metric hαβ constructed from emα . It is known that any
isometry of G=H is induced in this manner. Therefore, the
isometry group of G=H is isomorphic to G.
We calculate the field strength two-form

1

2
fata ≔ deata þ ieata ∧ ebtb ¼ deata −

1

2
tcfcabea ∧ eb:

ðC8Þ
For this purpose, we do not need to know the explicit form
of eaα. Instead, we start with the following identity:

dðgðyÞ−1dgðyÞÞ ¼ −gðyÞ−1dgðyÞ ∧ gðyÞ−1dgðyÞ: ðC9Þ
This can be decomposed into the following two equations:

deata ¼
1

2
tcfcabea ∧ eb þ 1

2
tafamnem ∧ en; ðC10Þ

demtm ¼ tmfmanea ∧ en: ðC11Þ

The first equation tells us that the field strength is given as

faαβ ¼ famnemα enβ: ðC12Þ
On the other hand, the second equation gives us the spin
connection

ωα
m
n ¼ −fmaneaα: ðC13Þ

Then, the curvature

1

2
Rαβ

m
ndy

α ∧ dyβ ≔ dωm
n þ ωm

k ∧ ωk
n ðC14Þ

can be also calculated explicitly. We obtain

Rαβ
m
n ¼ −faklfmanekαelβ: ðC15Þ

APPENDIX D: EQUATIONS OF MOTION FOR
THE BACKGROUND FLUX

In this Appendix, we show that the background gauge
field Āα defined in Sec. II C satisfies the equations of
motion with respect to the vielbein defined in Appendix C.

ISO, KITAZAWA, and SUYAMA PHYS. REV. D 105, 045008 (2022)

045008-20



The equations of motion are

∇αF̄αβ þ i½Āα; F̄αβ� ¼ 0; ðD1Þ

where

Āα ¼ eaαTa; F̄αβ ¼ emα enβf
a
mnTa: ðD2Þ

The covariant derivative is defined with respect to the spin
connection as

∇αF̄αβ ¼ enβð∂mF̄mn − ωml
mF̄ln − ωml

nF̄mlÞ
¼ enβe

mαeaαðflamfbln þ flanfbmlÞTb: ðD3Þ

The commutator can be written as

i½Āα; F̄αβ� ¼ −enβemαeaαfbacfcmnTb: ðD4Þ

By using the Jaocbi identity and the fact that G=H is
symmetric, we find that the equations of motion (D1) are
automatically satisfied.

APPENDIX E: EXPLICIT CONSTRUCTIONS
OF BACKGROUNDS IN THE SUð2Þ=Uð1Þ

COSET SPACE

In this Appendix, we explicitly calculate emα and eaα
defined in Appendix C for the case G=H ¼ S2. We will see
that emα is the standard zweibein which gives the round
metric on S2, and eaα describes a monopole configuration
on S2.
Any element g of SU(2) can be written as

g ¼
�
a −b�

b a�

�
; jaj2 þ jbj2 ¼ 1: ðE1Þ

The Maurer-Cartan one-form g−1dg is then given as

g−1dg ¼ σþðb�da� − a�db�Þ þ σ−ðadb − bdaÞ
þ σ3ða�daþ b�dbÞ; ðE2Þ

where σ� and σ3 are the Pauli matrices.
We choose a local section gðθ;φÞ by restricting a, b to be

a ¼ cos
θ

2
; b ¼ eiφ sin

θ

2
; ðE3Þ

where θ;φ are the polar and the azimuthal angles of S2,
respectively. The pullback of g−1dg by this local section
is then

gðθ;φÞ−1dgðθ;φÞ ¼ ieþtþ þ ie−t− þ ie3t3; ðE4Þ

where

t� ≔ σ�; t3 ≔
1

2
σ3; ðE5Þ

and

e� ≔ � i
2
e∓iφðdθ ∓ i sin θdφÞ; e3 ≔ ð1 − cos θÞdφ:

ðE6Þ

The metric hαβ obtained from e� is therefore the round
metric

ds2 ¼ 4eþe− ¼ dθ2 þ sin2 θdφ2; ðE7Þ

as expected. The field strength obtained from e3 is

de3 ¼ sin θdθdφ: ðE8Þ

The integral of this two-form gives

1

2π

Z
S2
sin θdθdφ ¼ 2: ðE9Þ

This shows that e3α describes a Uð1Þ monopole configura-
tion with the monopole charge 2.
Note that the radius of S2 is set to be 1 in the above

expressions. It is rather easy to recover the radius a based
on the dimensional analysis since a is essentially the only
dimensionful parameter in the Kaluza-Klein reduction of
Yang-Mills theory. In higher dimensions, the coupling
constant gYM is dimensionful, but it is just an overall
coefficient in the action.
In the following, we present an explicit description of

the model of S2 ¼ SUð2Þ=Uð1Þ compactification. We will
employ different conventions from those in the main body
of this paper, which might be more familiar to the readers.
The action of the six-dimensional space-time is

S ¼
Z

d6x
ffiffiffiffiffiffi
−g

p �
1

κ2
R −

1

2g2
TrðFMNFMNÞ − Λ

�
; ðE10Þ

whereR and Λ are Ricci scalar and cosmological constant,
respectively, and

FMN ¼ ∇MAN −∇NAM − i½AM; AN � ðE11Þ

is the gauge field strength with the covariant derivative

∇MAN ¼ ∂MAN − ΓL
MNAL ðE12Þ

and M;N ¼ 0; 1; 2;…; 4; 5. The field strength is matrix
valued as FMN ¼ TaFa

MN , where T
a is the generator matrix

of the gauge group GYM ¼ SU(3) with
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TrðTaTbÞ ¼ 1

2
δab; ½Ta; Tb� ¼ ifabcTc: ðE13Þ

The metric is described as

ds2 ¼ −dt2 þ
X

i¼1;2;3

dxidxi þ a2ðdθ2 þ sin2 θdφ2Þ: ðE14Þ

The sphere of radius a is described by two angular
coordinates, θ and φ, and noncompact spacetime is the
Minkowski space. A vector on the sphere is described by
two independent basis vectors, eθ and eφ, which corre-
spond to the two of three unit vectors of the polar
coordinate system of three-dimensional flat space.
Introduce a background gauge field on the sphere

Ā ¼ Āθeθ þ Āφeφ; Āθ ¼ 0; Āφ ¼ 1

2
H
cos θ ∓ 1

a sin θ
;

ðE15Þ

where negative sign is for 0 < θ < π=2 and positive sign
is for π=2 < θ < π in Aφ. Note that Ā4 ¼ aĀθ and
Ā5 ¼ a sin θĀφ, since x4 ¼ θ and x5 ¼ φ. This is a spheri-
cal slice of monopole configuration with unit magnetic
charge at radius a, and the generator of corresponding Uð1Þ
gauge symmetry is H=2. We can explicitly write

H ¼

0
B@

n1 0 0

0 n2 0

0 0 −n1 − n2

1
CA: ðE16Þ

The off-diagonal components of the matrix-valued SUð3Þ
gauge field transform as matter fields under this Uð1Þ gauge
symmetry with charges

0
B@

� ðn1 − n2Þ=2 ð2n1 þ n2Þ=2
−ðn1 − n2Þ=2 � ðn1 þ 2n2Þ=2
−ð2n1 þ n2Þ=2 −ðn1 þ 2n2Þ=2 �

1
CA;

ðE17Þ

and the Dirac quantization of electric charge by a monopole
indicates that twice of each charge should be an integer,
which indicates

n1 − n2 ∈ Z; 3n1 ∈ Z; 3n2 ∈ Z: ðE18Þ

This background configuration is invariant under the
symmetry transformation of S2, or SUð2Þ, up to corre-
sponding gauge transformation generated by H=2.
Furthermore, we can make this background configuration
a solution of field equations of the action, (E10), namely
SUð3Þ Yang-Mills equation and Einstein equation by
choosing Λ ¼ 1=κ2a2 and g2 ¼ TrððH=2Þ2Þκ4Λ [42].

The fluctuation around the background configuration
of (E15), δA4 and δA5, can be described as scalar fields in
low-energy four-dimensional effective theory. It is conven-
ient to describe these fields so that they are living on the
tangent space of S2. Introduce zweibein as

gμν ¼ eμmδmnenν; ðE19Þ

where μ; ν ¼ 4; 5; m; n ¼ 4; 5 and in the matrix form
gμν ¼ a2diagð1; sin2 θÞ. Explicitly we specially introduce

enν ¼ a

�
cosφ − sinφ

sinφ cosφ

��
1 0

0 sin θ

�
ðE20Þ

which satisfies the above formula of definition. The field on
tangent space is defined as

Vn ≡ enνδAν: ðE21Þ

Furthermore, it is convenient to define a complex scalar
field as

V� ≡ 1ffiffiffi
2

p ðV4 ∓ iV5Þ; V− ¼ ðVþÞ†: ðE22Þ

We define a covariant derivative with background field as

D̄μV� ≡∇μV� − i½Āμ; V��: ðE23Þ

The explicit form can be obtained as

D̄μV� ¼ ∂μV� − iδ5μðcos θ − 1Þ
�
�V� þ

�
H
2
; V�

��
ðE24Þ

for 0 < θ < π=2. In case of π=2 < θ < π, the factor
ðcos θ − 1Þ in the second term should be replaced by
ðcos θ þ 1Þ. Note that the field V� is matrix valued as
Va
�T

a and the second term can vanish depending on the
choice of H.

APPENDIX F: MODE EXPANSIONS ON G=H

In order to perform the Kaluza-Klein reduction on G=H,
we need to have a complete set of functions on G=H by
which any fields can be expanded. More precisely, we need
to expand sections of suitable vector bundles on G=H, not
only functions, since there are fields with local Lorentz
indices belonging to a nontrivial representation of the
gauge group. For S2, the monopole harmonics [43] play
such a role. In more general cases, it is known that there
exists a useful set of functions on G [40] which can be
employed for our purpose, as we will review in this
Appendix.
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1. Mode expansions on G

It is rather easy to find examples of functions on G. Let
ρ∶G → GLðn;CÞ be an n-dimensional representation of G.
This assigns to each element g of G an n × n matrix ρðgÞ.
Each matrix component ρðgÞIJ is therefore a function onG.
For each n, or more appropriately, for each representation R
of G, we can obtain many functions on G in this manner.
It can be shown that they are linearly independent.
The Peter-Weyl theorem tells us that any function on G

can be expanded by these functions. Explicitly, a function
fðgÞ on G can be written as

fðgÞ ¼
X
R

XdR
I;J¼1

c̃RIJρ
RðgÞIJ; ðF1Þ

where the first sum is taken over all the representations
of G with the multiplicity one, dR is the dimension of the
representation R, and ρRðgÞ is the matrix representing
g ∈ G on the representation R. For a later purpose, we
employ an equivalent expansion

fðgÞ ¼
X
R

XdR
I;J¼1

cRIJρ
Rðg−1ÞIJ: ðF2Þ

This is also valid since any function fðgÞ on G can be
written as f̃ðg−1Þ by using some f̃ðgÞ.

2. Mode expansions of scalar functions on G=H

We then study a complete set of functions on G=H by
using its extension to G as follows. Let ϕðyÞ be a function
on a local coordinate patch U of G=H. By using a local
section gðyÞ ∈ G, we can regard ϕðyÞ as a functionΦðgðyÞÞ
defined only on a subset ofG which is the embedding ofU.
We can extend ΦðgðyÞÞ to the fiber direction by an action
hðyÞ ∈ H as

ΦðgðyÞhðyÞÞ ¼ ϕðyÞ; hðyÞ ∈ H: ðF3Þ

In this manner, any function ϕðyÞ on G=H can be extended
to a function ΦðgÞ on G. Thus a complete set of functions
on G=H can be obtained from a complete set of functions
on G by imposing the condition

ΦðgðyÞhðyÞÞ ¼ ΦðgðyÞÞ: ðF4Þ

Namely, these functions must take constant values along
the fiber direction corresponding to H transformations.
Any function on G can be uniquely expanded as (F2).

The representation R of G is decomposed into various
irreducible representations of H, which may contain unit
representation 1. A complete set of scalar functions ϕðyÞ
on G=H is then given by a complete set of constant
functions along the fiber H, which correspond to the unit

representations constructed from all the representations R
of G. An explicit form of the expansion is discussed as a
special case of nonscalar functions (sections) which trans-
form nontrivially as representation r of H.

3. Mode expansions of aμ and ϕm on G=H

In the Kaluza-Klein reduction of Yang-Mills theory, we
would like to expand aμ and ϕm. Since they are sections of
some vector bundles on G=H and transforms nontrivially
underH, we need to modify the above expansion procedure
as follows.
First, consider aμ. This belongs to the adjoint repre-

sentation adYM of GYM. Recall that, as explained in
Appendix B, our principal GYM bundle is constructed
from the principal H bundle G, and the transition functions
take values in a subgroup H of GYM. This means that
we can consider aμ as a field defined on the principal H
bundle G. Since adYM is reducible for H, we decompose aμ
into components according to the irreducible decomposi-
tion of adYM with respect to H. Each component belongs
to an irreducible representation of H, and forms a section
of a vector bundle on G=H. Note that this decomposition
is compatible with the gauge symmetry preserved by the
background flux F̄αβ since the preserved symmetry
corresponds to a subgroup of GYM which commutes
with H.
The case for ϕm requires one more twist since it has the

tangent space index m, and transforms under the local
Lorentz transformations. As explained under (2.21), the
covariant derivative ∇α with respect to the metric on G=H
can be identified with the one with respect to the back-
ground gauge field in the representation Rt of H, which is
given by the commutation relation (C7). Thus, the tangent
space indices are regarded as indices of the representation
Rt of H. Then, ϕm belongs to a product representation
Rt ⊗ adYM of H. We decompose ϕm into components
according to the irreducible decomposition of Rt ⊗ adYM
with respect toH. Each component again forms a section of
a vector bundle on G=H.
To summarize, the mode expansions of aμ and ϕm can be

performed if we know how to expand a section of a vector
bundle on G=H which belongs to an irreducible represen-
tation of H. The mode expansions of aμ or ϕm are given by
a sum of various mode functions corresponding to each
irreducible representations of H.

4. Mode expansions of χ iðyÞ in representation r of H

Now, we consider the expansion of χiðyÞ which belongs
to a specific representation r of H. Recall a local section
gðyÞ on G=H can be extended to the fiber direction by the
H transformation as

gðyÞ → gðyÞhðyÞ:
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Thus, any g ∈ G is written as a product of the local section
gðyÞ and the H transformation hðyÞ. This induces an H
transformation on χiðyÞ as

χiðyÞ → ρrðhðyÞ−1ÞijχjðyÞ:

Thus, we can extend the function χiðyÞ on G=H to a
function X iðgÞ on G by

X iðgÞ ≔ X iðgðyÞhðyÞÞ ¼ ρrðhðyÞ−1ÞijχjðyÞ; ðF5Þ

where g ¼ gðyÞhðyÞ. If r is the trivial representation of H,
then this reduces to (F3). By construction, X iðgÞ satisfies

X iðghÞ ¼ ρrðh−1ÞijX jðgÞ: ðF6Þ

Since each component X iðgÞ is a function on G, it is
expanded as (F2). Then, the above condition (F6) imposes
the following restriction on the expansion coefficients cRIJ,
namely an allowed set of functions on G. For a represen-
tation R of G, the function ρRðg−1ÞIJ on G satisfies the
transformation law

ρRððghÞ−1ÞIJ¼ρRðh−1g−1ÞIJ¼ρRðh−1ÞIKρRðg−1ÞKJ ðF7Þ

under an action of h ∈ H. This representation R ofG can be
decomposed into irreducible representations r1 ⊕ � � � ⊕ rl
of H. For the basis according to this decomposition, the
matrix ρRðh−1ÞIK takes a block-diagonal form. Let i1;…; il
be indices corresponding to the representations r1;…; rl,
respectively. Then, ρRðg−1Þi1K;…; ρRðg−1ÞilK transform
separately as

ρRððghÞ−1ÞiaJ ¼ ρraðh−1ÞiajaρRðg−1ÞjaJ; ða ¼ 1;…; lÞ
ðF8Þ

under the H transformation. Let us first consider the
case when the representation r1 is isomorphic to r. Then
a rectangular part ρRðg−1Þi1J satisfies the condition (F6). In
general, the decomposition of R contains a multiple of r
representation of H. Suppose that ra ¼ r for a ¼ 1;…; k
among ðr1; � � � rlÞ. We denote the corresponding rectan-
gular part by ρR;aðg−1ÞiJ where i is the index for r. Then, the
function X iðgÞ in the representation r can be expanded in
terms of these functions as

X iðgÞ ¼
X
r⊂R

XdR
J¼1

Xk
a¼1

cR;aJ ρR;aðg−1ÞiJ: ðF9Þ

The first sum is taken over all the representations R of G
whose irreducible decomposition with respect to H con-
tains r. Finally, the expansion of χiðyÞ is given as

χiðyÞ ¼
X
r⊂R

XdR
J¼1

Xk
a¼1

cR;aJ fR;aiJ ðyÞ; ðF10Þ

where

fR;aiJ ðyÞ ≔ ρR;aðgðyÞ−1ÞiJ: ðF11Þ

These functions satisfy the same transformation law of (F8)
where ra ¼ r. In this paper, we sometimes suppress the
index a for notational simplicity.

APPENDIX G: LAPLACIAN AND THE MASS
FORMULA ON G=H

In the Kaluza-Klein reduction, the mass of each mode is
typically related to the eigenvalue of the Laplacian of the
compactification manifold. The eigenvalues of the Laplacian
on coset spaces were discussed in [51]. Interestingly, the
mode functions we introduced in Appendix F turn out to be
the eigenfunctions of the Laplacian on G=H provided that
the vielbein emα and the background gauge field Āα are given
as in Sec. II and Appendix C [31,36].
First, we show that the action of the covariant derivative D̄α

on the mode functions fRIJðyÞ can be written in an algebraic
form. Since fRIJðyÞ can be written as ðρRðgðyÞÞ−1ÞIJ, the
exterior derivative is given as

dρRðgðyÞÞ−1¼−ρRðgðyÞÞ−1dρRðgðyÞÞ ·ρRðgðyÞÞ−1; ðG1Þ

where the matrix indices are suppressed. The right-hand side
contains the pullback of the Maurer-Cartan one-form in the
representation R. This can be expanded as

ρRðgðyÞÞ−1dρRðgðyÞÞ ¼ iemTR
m þ ieaTR

a ; ðG2Þ

where TR
m, TR

a are the generators of g in the representation R.
Inserting this expression into (G1), we obtain

dρRðgðyÞÞ−1 þ ieaTR
aρ

RðgðyÞÞ−1 ¼ −iemTR
mρ

RðgðyÞÞ−1:
ðG3Þ

Since the background gauge field is given by Ā ¼ eaαTadyα,
this can be written as

D̄αfRIJðyÞ ¼ −iemα ðTR
mÞIKfRKJðyÞ: ðG4Þ

Thus, the group-theoretic argument shows that the covariant
derivative D̄α on fRIJðyÞ can be simply written as a multipli-
cation of −iemα TR

m. Note that the covariant derivative D̄α

originally contains the spin connection on G=H, but as
explained below (2.21), we can regard the local Lorentz
indices as a charge of the gauge group H on G=H. Thus the
spin connection term in D̄α is absorbed into the gauge
connection. The representation matrices of H are thus given
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by the tensor product of the local Lorentz representation and
the original H charge.
In Sec. IV, in particular in (4.17), we use this relation for

G ¼ SUð2Þ. The representations of SUð2Þ are labeled by
the half integers j. The spin-j representation is give by the
matrix-valued function ρðjÞðgÞmm0 where −j ≤ m;m0 ≤ j.
We define the mode functions on G=H by

fjmm0 ðyÞ ≔ ρðjÞðgðyÞ−1Þmm0 ; ðG5Þ

where m is constrained by the H ¼ Uð1Þ charge q. The
condition is discussed in (4.15).
The covariant derivative D̄þ acting on fjmm0 ðyÞ can be

rewritten as a multiplication of −iðTðjÞ
þ Þmm0 on the function

as (4.17). Note that the charge quantization discussed in
Appendix E is automatically satisfied.
Next, we show that the mode functions fRiJðyÞ are

eigenfunctions of the Laplacian hαβD̄αD̄β, where i is the
index for an irreducible representation r of H which is
contained in R [51]. Indeed,

−hαβD̄αD̄βfRiJðyÞ ¼ −hαβD̄αð−ienβðTR
n ÞiKfRKJðyÞÞ

¼ ihαβenβððTR
n ÞiK∂αfRKJðyÞ þ eaαfmanðTR

mÞiKfRKJðyÞ þ ieaαðTR
aTR

n ÞiKfRKJðyÞÞ
¼ ihαβenβðTR

mÞiKD̄αfRKJðyÞ þ ieaαð−ifmanTR
m þ ½TR

a ; TR
n �ÞiKfRKJðyÞ

¼ δmnðTR
mTR

n ÞiKfRKJðyÞ
¼ ðcG2 ðRÞ − cH2 ðrÞÞfRiJðyÞ; ðG6Þ

where cG2 ðRÞ is the second Casimir invariant of the
representation R of G.
This eigenvalue gives us the mass of each Kaluza-Klein

mode of aμ. Recall that, for the mode expansion of aμ
reviewed in Appendix F, we first need to decompose the
adjoint representation adYM ofGYM with respect toH. Let r
be one of the irreducible representations of H appearing in
the decomposition of adYM. The components of aμ corre-
sponding to r are expanded in terms of fRiJðyÞ where R is a
representation of G whose irreducible decomposition with
respect to H contains r. This vector mode has the mass
given as

m2
v ¼ m2

R;r ≔ cG2 ðRÞ − cH2 ðrÞ: ðG7Þ

Note that m2
R;r is always non-negative.

Next, we consider the masses of scalar modes obtained
from ϕm. Recall that the mass terms of the modes come
from

Tr

�
1

2
ðD̄αϕβÞ2 −

1

2
ϕαRαβϕ

β − iϕα½F̄αβ;ϕβ�
�
: ðG8Þ

The first term gives m2
R;r. The explicit expression of the

curvature (C15) implies that the Ricci tensor is given as

Rαβ ¼ −cH2 ðRtÞemα enβtrðtmtnÞ; ðG9Þ

where tm belong to the representation used to define the
coset space G=H. Therefore, the curvature contribution to
the mass is given as

1

2
cH2 ðRtÞmnTrϕmϕ

n: ðG10Þ

The flux contribution can be written as

ϕmAðTRt
a ÞmnðTaÞABϕnB; ðG11Þ

where ϕm ¼ ϕA
mTA is the expansion of ϕm in terms of the

generators TA of GYM, and ðTaÞAB are the generators of h
represented on adYM which is reducible with respect to h.
Like in the case of the angular momentum in quantum
mechanics, this can be written as

1

2
ϕmAðcH2 ðRt ⊗ adYMÞmA

nB − cH2 ðRtÞmnδ
A
B

− cH2 ðadYMÞABδmn ÞϕnB: ðG12Þ

The second term cancels the curvature contribution.
In order to determine the mass explicitly, we consider

the decomposition of ϕm in more detail. This belongs to
Rt ⊗ adYM. First, we decompose adYM and pick up one
irreducible representation r̃ of H. The corresponding
components of ϕm belong to Rt ⊗ r̃. We further decompose
Rt ⊗ r̃ and pick up r. These components are expanded in
terms of fRiJðyÞ where R contains r. Their masses are
therefore given as

m2
s ¼ m2

R;r þ cH2 ðrÞ − cH2 ðr̃Þ ¼ cG2 ðRÞ − cH2 ðr̃Þ: ðG13Þ

The important difference of this mass formula fromm2
v is

that the second term in the right-hand side is the Casimir
invariant for r̃, not for r. For example, even if r̃ is nontrivial,
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Rt ⊗ r̃ may contain a singlet component. In this case, we
can choose R ¼ 1, so that m2 is negative.
Indeed, this happens for the symmetric Higgs fields. As

defined in Sec. III, a symmetric Higgs field consists of
those components of ϕm which is singlet with respect to H.
This means r ¼ 1. Therefore, the mode expansion of the
symmetric Higgs field do contain the contribution from
R ¼ 1. This is nothing but the constant mode, and the mass
is given as

m2 ¼ −cH2 ðr̃Þ: ðG14Þ

As long as r̃ is nontrivial, this mode has a tachyonic mass
term which allows the symmetric Higgs field to acquire
a nonzero vacuum expectation value. This fact justifies
their name.

APPENDIX H: SYMMETRIC HIGGS FIELDS
ARE SYMMETRIC

In this Appendix, we show that the symmetric Higgs
fields defined in Sec. III are symmetric fields in the sense of
[39], as the name suggests.
First, we introduce the notion of G-invariant fields. A

field ϕm on G=H is said to be G invariant if this satisfies

g0 · ϕmðyÞ ¼ ϕmðyÞ; g0 ∈ G; ðH1Þ

where the action of g0 is defined as

g0 · ϕmðyÞ ≔ Φmðg0gðyÞÞ; ðH2Þ

where ΦmðgÞ are a set of functions on G which extend
ϕmðyÞ on G=H to the fiber directions H, as explained
in Appendix F. Recall that g0gðyÞ can be written as
gðy0Þhðy; g0Þ, where y → y0 is an isometry of G=H induced
by g0 and hðy; g0Þ ∈ H is an H transformation. Then, the
condition (H1) can be written as

ΛmnðyÞUðyÞϕnðy0ÞUðyÞ† ¼ ϕmðyÞ; ðH3Þ

where ΛmnðyÞ and UðyÞ are the local Lorentz transforma-
tion and the gauge transformation induced by hðy; g0Þ. This
shows that a G-invariant field is symmetric.
Recall that a symmetric Higgs field ϕm is defined to

satisfy D̄αϕn ¼ 0 and ∂αϕn ¼ 0. These imply that ϕm is yα

independent and H invariant. Then, we find

ΛmnðyÞUðyÞϕnðy0ÞUðyÞ† ¼ ΛmnðyÞUðyÞϕnðyÞUðyÞ†
¼ ϕmðyÞ: ðH4Þ

Therefore, ϕm is G invariant. This then implies that it is
symmetric.
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